WorldWideScience

Sample records for reflective solar bands

  1. Improved Band-to-Band Registration Characterization for VIIRS Reflective Solar Bands Based on Lunar Observations

    Directory of Open Access Journals (Sweden)

    Zhipeng Wang

    2015-12-01

    Full Text Available Spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS instrument aboard the Suomi National Polar-orbiting Partnership (S-NPP satellite are spatially co-registered. The accuracy of the band-to-band registration (BBR is one of the key spatial parameters that must be characterized. Unlike its predecessor, the Moderate Resolution Imaging Spectroradiometer (MODIS, VIIRS has no on-board calibrator specifically designed to perform on-orbit BBR characterization. To circumvent this problem, a BBR characterization method for VIIRS reflective solar bands (RSB based on regularly-acquired lunar images has been developed. While its results can satisfactorily demonstrate that the long-term stability of the BBR is well within ±0.1 moderate resolution band pixels, undesired seasonal oscillations have been observed in the trending. The oscillations are most obvious between the visible/near-infrared bands and short-/middle wave infrared bands. This paper investigates the oscillations and identifies their cause as the band/spectral dependence of the centroid position and the seasonal rotation of the lunar images over calibration events. Accordingly, an improved algorithm is proposed to quantify the rotation and compensate for its impact. After the correction, the seasonal oscillation in the resulting BBR is reduced from up to 0.05 moderate resolution band pixels to around 0.01 moderate resolution band pixels. After removing this spurious seasonal oscillation, the BBR, as well as its long-term drift are well determined.

  2. Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing

    Directory of Open Access Journals (Sweden)

    Slawomir Blonski

    2015-12-01

    Full Text Available Radiometric calibration coefficients for the VIIRS (Visible Infrared Imaging Radiometer Suite reflective solar bands have been reprocessed from the beginning of the Suomi NPP (National Polar-orbiting Partnership mission until present. An automated calibration procedure, implemented in the NOAA (National Oceanic and Atmospheric Administration JPSS (Joint Polar Satellite System operational data production system, was applied to reprocess onboard solar calibration data and solar diffuser degradation measurements. The latest processing parameters from the operational system were used to include corrected solar vectors, optimized directional dependence of attenuation screens transmittance and solar diffuser reflectance, updated prelaunch calibration coefficients without an offset term, and optimized Robust Holt-Winters filter parameters. The parameters were consistently used to generate a complete set of the radiometric calibration coefficients for the entire duration of the Suomi NPP mission. The reprocessing has demonstrated that the automated calibration procedure can be successfully applied to all solar measurements acquired from the beginning of the mission until the full deployment of the automated procedure in the operational processing system. The reprocessed calibration coefficients can be further used to reprocess VIIRS SDR (Sensor Data Record and other data products. The reprocessing has also demonstrated how the automated calibration procedure can be used during activation of the VIIRS instruments on the future JPSS satellites.

  3. Functional form of the radiometric equation for the SNPP VIIRS reflective solar bands

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong

    2016-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager, observing radiative energy from the Earth in 22 spectral bands from 0.41 to 12 μm which include 14 reflective solar bands (RSBs). Extending the formula used by the Moderate Resolution Imaging Spectroradiometer instruments, currently the VIIRS determines the sensor aperture spectral radiance through a quadratic polynomial of its detector digital count. It has been known that for the RSBs the quadratic polynomial is not adequate in the design specified spectral radiance region and using a quadratic polynomial could drastically increase the errors in the polynomial coefficients, leading to possible large errors in the determined aperture spectral radiance. In addition, it is very desirable to be able to extend the radiance calculation formula to correctly retrieve the aperture spectral radiance with the level beyond the design specified range. In order to more accurately determine the aperture spectral radiance from the observed digital count, we examine a few polynomials of the detector digital count to calculate the sensor aperture spectral radiance.

  4. Functional Form of the Radiometric Equation for the SNPP VIIRS Reflective Solar Bands: An Initial Study

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager, observing radiative energy from the Earth in 22 spectral bands from 0.41 to 12 microns which include 14 reflective solar bands (RSBs). Extending the formula used by the Moderate Resolution Imaging Spectroradiometer instruments, currently the VIIRS determines the sensor aperture spectral radiance through a quadratic polynomial of its detector digital count. It has been known that for the RSBs the quadratic polynomial is not adequate in the design specified spectral radiance region and using a quadratic polynomial could drastically increase the errors in the polynomial coefficients, leading to possible large errors in the determined aperture spectral radiance. In addition, it is very desirable to be able to extend the radiance calculation formula to correctly retrieve the aperture spectral radiance with the level beyond the design specified range. In order to more accurately determine the aperture spectral radiance from the observed digital count, we examine a few polynomials of the detector digital count to calculate the sensor aperture spectral radiance.

  5. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    Science.gov (United States)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This

  6. Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands

    Directory of Open Access Journals (Sweden)

    Qiaozhen Mu

    2017-05-01

    Full Text Available MODIS reflective solar bands are calibrated on-orbit using a solar diffuser and near-monthly lunar observations. To monitor the performance and effectiveness of the on-orbit calibrations, pseudo-invariant targets such as deep convective clouds (DCCs, Libya-4, and Dome-C are used to track the long-term stability of MODIS Level 1B product. However, the current MODIS operational DCC technique (DCCT simply uses the criteria set for the 0.65-µm band. We optimize several critical DCCT parameters including the 11-µm IR-band Brightness Temperature (BT11 threshold for DCC identification, DCC core size and uniformity to help locate DCCs at convection centers, data collection time interval, and probability distribution function (PDF bin increment for each channel. The mode reflectances corresponding to the PDF peaks are utilized as the DCC reflectances. Results show that the BT11 threshold and time interval are most critical for the Short Wave Infrared (SWIR bands. The Bidirectional Reflectance Distribution Function model is most effective in reducing the DCC anisotropy for the visible channels. The uniformity filters and PDF bin size have minimal impacts on the visible channels and a larger impact on the SWIR bands. The newly optimized DCCT will be used for future evaluation of MODIS on-orbit calibration by MODIS Characterization Support Team.

  7. Multitemporal cross-calibration of the Terra MODIS and Landsat 7 ETM+ reflective solar bands

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chander, Gyanesh; Choi, Taeyoung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  8. Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Changler, Gyanesh; Choi, Taeyoyung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  9. [On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration].

    Science.gov (United States)

    Sun, Ling; Guo, Mao-Hua; Xu, Na; Zhang, Li-Jun; Liu, Jing-Jing; Hu, Xiu-Qing; Li, Yuan; Rong, Zhi-Guo; Zhao, Ze-Hui

    2012-07-01

    MERSI is the keystone payload of FengYun-3 and there have been two sensors operating on-orbit since 2008. The on-orbit response changes obviously at reflective solar bands (RSBs) and must be effectively monitored and corrected. However MERSI can not realize the RSBs onboard absolute radiometric calibration. This paper presents a new vicarious calibration (VC) method for RSBs based on in-situ BRDF model, and vector radiometric transfer model 6SV with gaseous absorption correction using MOTRAN. The results of synchronous VC experiments in 4 years show that the calibration uncertainties are within 5% except for band at the center of water vapor absorption, and 3% for most bands. Aqua MODIS was taken as the radiometric reference to evaluate the accuracy of this VC method. By comparison of the simulated radiation at top of atmosphere (TOA) with MODIS measurement, it was revealed that the average relative differences are within 3% for window bands with wavelengths less than 1 microm, and 5% for bands with wavelengths larger than 1 microm (except for band 7 at 2.1 microm). Besides, the synchronous nadir observation cross analysis shows the excellent agreement between re-calibrated MERSI TOA apparent reflectance and MODIS measurements. Based on the multi-year site calibration results, it was found that the calibration coefficients could be fitted with two-order polynomials, thus the daily calibration updates could be realized and the response variation between two calibration experiments could be corrected timely; there are large response changes at bands with wavelengths less than 0.6 microm, the degradation rate of the first year at band 8 (0.41 microm) is about 14%; the on-orbit response degradation is maximum at the beginning, the degradation rates slow down after one year in operation, and after two years the responses even increase at some band with wavelengths larger than 0.6 microm.

  10. Monitoring the On-Orbit Calibration of Terra MODIS Reflective Solar Bands Using Simultaneous Terra MISR Observations

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng

    2016-01-01

    On December 18, 2015, the Terra spacecraft completed 16 years of successful operation in space. Terra has five instruments designed to facilitate scientific measurements of the earths land, ocean, and atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MISR) instruments provide information for the temporal studies of the globe. After providing over 16 years of complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for various science products. The 20 reflective solar bands (RSBs) of MODIS are calibrated using a combination of solar diffuser and lunar measurements, supplemented by measurements from pseudoinvariant desert sites. MODIS views the on-board calibrators and the earth via a two-sided scan mirror at three spatial resolutions: 250 m using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000 m using 10 detectors in bands 819 and 26. Simultaneous measurements of the earths surface are acquired in a push-broom fashion by MISR at nine view angles spreading out in the forward and backward directions along the flight path. While the swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus scan angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and earth-view measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short-wavelength bands. The on-orbit RVS change for the short-wavelength bands (bands 3, 8, and 9) at nadir is observed to be greater than 10 over the mission lifetime. Due to absence of a scanning mechanism, MISR can serve as an effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also monitor the detector and scan

  11. Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands

    Directory of Open Access Journals (Sweden)

    Fangfang Yu

    2016-02-01

    Full Text Available The Advanced Himawari Imager (AHI on-board Himawari-8, which was launched on 7 October 2014, is the first geostationary instrument housed with a solar diffuser to provide accurate onboard calibrated data for the visible and near-infrared (VNIR bands. In this study, the Ray-matching and collocated Deep Convective Cloud (DCC methods, both of which are based on incidently collocated homogeneous pairs between AHI and Suomi NPP (S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS, are used to evaluate the calibration difference between these two instruments. While the Ray-matching method is used to examine the reflectance difference over the all-sky collocations with similar viewing and illumination geometries, the near lambertian collocated DCC pxiels are used to examine the difference for the median or high reflectance scenes. Strong linear relationships between AHI and VIIRS can be found at all the paired AHI and VIIRS bands. Results of both methods indicate that AHI radiometric calibration accuracy agrees well with VIIRS data within 5% for B1-4 and B6 at mid and high reflectance scenes, while AHI B5 is generally brighter than VIIRS by ~6%–8%. No apparent East-West viewing angle dependent calibration difference can be found at all the VNIR bands. Compared to the Ray-matching method, the collocated DCC method provides less uncertainty of inter-calibration results at near-infrared (NIR bands. As AHI has similar optics and calibration designs to the GOES-R Advanced Baseline Imager (ABI, which is currently scheduled to launch in fall 2016, the on-orbit AHI data provides a unique opportunity to develop, test and examine the cal/val tools developed for ABI.

  12. On-Orbit Performance and Calibration Improvements For the Reflective Solar Bands of Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper

  13. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  14. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    Science.gov (United States)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  15. Solar reflection panels

    Science.gov (United States)

    Diver, Jr., Richard B.; Grossman, James W [Albuquerque, NM; Reshetnik, Michael [Boulder, CO

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  16. Cross-calibration of the reflective solar bands of Terra MODIS and Landsat 7 Enhanced Thematic Mapper plus over PICS using different approaches

    Science.gov (United States)

    Angal, Amit; Brinkmann, Jake; Mishra, Nischal; Link, Daniel; Xiong, Xiaoxiong J.; Helder, Dennis

    2015-10-01

    Both Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) have been successfully operating for over 15 years to collect valuable measurements of the earth's land, ocean, and atmosphere. The land-viewing bands of both sensors are widely used in several scientific products such as surface reflectance, normalized difference vegetation index, enhanced vegetation index etc. A synergistic use of the multi-temporal measurements from both sensors can greatly benefit the science community. Previous effort from the MODIS Characterization Support Team (MCST) was focused on comparing the top-of-atmosphere reflectance of the two sensors over Libya 4 desert target. Uncertainties caused by the site/atmospheric BRDF, spectral response mismatch, and atmospheric water-vapor were also characterized. In parallel, an absolute calibration approach based on empirical observation was also developed for the Libya 4 site by the South Dakota State University's (SDSU) Image Processing Lab. Observations from Terra MODIS and Earth Observing One (EO-1) Hyperion were used to model the Landsat ETM+ TOA reflectance. Recently, there has been an update to the MODIS calibration algorithm, which has resulted in the newly reprocessed Collection 6 Level 1B calibrated products. Similarly, a calibration update to some ETM+ bands has also resulted in long-term improvements of its calibration accuracy. With these updates, calibration differences between the spectrally matching bands of Terra MODIS and L7 ETM+ over the Libya 4 site are evaluated using both approaches.

  17. Progress of S-NPP VIIRS Reflective Solar Calibration

    OpenAIRE

    Xiong, Jack; Lei, N.; Wang, Z; Keller, G

    2017-01-01

    The S-NPP VIIRS has successfully operated for more than 5 years since its launch in October, 2011. Including a day-night band (DNB), the VIIRS collects data in 22 spectral bands, covering wavelengths from 0.4 to 12.4 um. On-orbit calibration of its reflective solar bands (RSB),is performed using a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system. In addition, regularly scheduled lunar observations are used to support RSB on-orbit calibration. In this paper, we provide an...

  18. Atmospheric Solar Heating in Minor Absorption Bands

    Science.gov (United States)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  19. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    Science.gov (United States)

    2015-02-09

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  20. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  1. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-Young; Chander, Gyanesh; Wu, Aisheng

    2010-04-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  2. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-young; Chander, Gyanesh; Wu, Aisheng

    2010-01-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  3. Active fire detection using Landsat 8 reflective bands

    Science.gov (United States)

    Sathyachandran, S. K.; Roy, D. P.

    2015-12-01

    Vegetation fires can alter landscapes and are a significant source of atmospheric emissions, particulates and greenhouse gases. Currently, only coarse spatial resolution sensors with high temporal coverage, such as MODIS or VIIRS, are used for routine global active fire mapping. Higher spatial resolution satellites have not been used due to their low temporal coverage and so are less useful for monitoring fires at the time of satellite overpass. However, looking forward, combination of the recently launched Landsat-8 (2013), Sentinel-2A (2015) and upcoming Sentinel-2B (2016) sensor data will provide 10-30m global coverage multi-spectral reflective wavelength observations approximately every three days. Therefore the development of reflective wavelength active fire detections to take advantage of these new data is highly attractive. Conventional detection algorithms use the elevated thermal emission of fire to detect the location of fires burning at the time of satellite overpass and apply contextual checks to remove commission errors by examination of neighboring pixels. A Landsat 8 active fire detection algorithm that takes advantage of the improved 12-bit radiometric resolution and high reflectance saturation of the Landsat 8 OLI detectors is presented. The algorithm uses the 1.6 μm and 2.2 μm bands without the need for a contextual implementation, or thermal bands, and was parameterized using six months of Landsat 8 data over the conterminous United States. Active fire detection results for Landsat 8 scenes acquired over a range of fire sizes and temperatures in Canada, Brazil and Southern Africa are presented and compared to detections found using an existing Landsat 7 contextual algorithm adapted to the Landsat 8 bands. Results show that the Landsat 8 algorithm has potential for global application, with relatively low omission and commission errors, and is suitable for application to the corresponding Sentinel 2 reflectance wavelength bands.

  4. Toward a High-Efficient Utilization of Solar Radiation by Quad-Band Solar Spectral Splitting.

    Science.gov (United States)

    Cao, Feng; Huang, Yi; Tang, Lu; Sun, Tianyi; Boriskina, Svetlana V; Chen, Gang; Ren, Zhifeng

    2016-12-01

    The promising quad-band solar spectral splitter incorporates the properties of the optical filter and the spectrally selective solar thermal absorber can direct PV band to PV modules and absorb thermal band energy for thermal process with low thermal losses. It provides a new strategy for spectral splitting and offers potential ways for hybrid PVT system design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The limiting efficiency of band gap graded solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rafat, Nadia H. [Faculty of Engineering, Cairo University, Giza (Egypt); Habib, S.E.D. [Faculty of electronics and communication, Cairo University, Giza (Egypt)

    1998-09-04

    Two fundamental mechanisms limit the maximum attainable efficiency of solar cells, namely the radiative recombination and Auger recombination. We show in this paper that proper band gap grading of the solar cell localizes the Auger recombination around the metallurgical junction. Two beneficial effects result from this Auger recombination localization; first the cell is less sensitive to the surface conditions, and second, the previous estimates for the limiting efficiency of solar cells by Shockley, Tiedje, and Green are revised upwardly. We calculate the optimum bandgap grading profile for several real material systems, including GaInAsP lattice matched to InP, and a-SiGe on a-Si substrate

  6. Intermediate band solar cells: Recent progress and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Y., E-mail: okada@mbe.rcast.u-tokyo.ac.jp; Tamaki, R.; Farrell, D. J.; Yoshida, K.; Ahsan, N.; Shoji, Y.; Sogabe, T. [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Ekins-Daukes, N. J., E-mail: n.ekins-daukes@imperial.ac.uk; Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C. C. [Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Kita, T. [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Guillemoles, J.-F. [Institute of Research and Development of Energy from Photovoltaics (IRDEP-CNRS), Chatou 78401 (France); NextPV, Joint RCAST-CNRS Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-06-15

    Extensive literature and publications on intermediate band solar cells (IBSCs) are reviewed. A detailed discussion is given on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC. The experimental solar cell performance is further discussed, which has been recently demonstrated by using highly mismatched alloys and high-density quantum dot arrays and superlattice. IBSCs having widely different structures, materials, and spectral responses are also covered, as is the optimization of device parameters to achieve maximum performance.

  7. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  8. Four-band Hamiltonian for fast calculations in intermediate-band solar cells

    Science.gov (United States)

    Luque, Antonio; Panchak, Aleksandr; Vlasov, Alexey; Martí, Antonio; Andreev, Viacheslav

    2016-02-01

    The 8-dimensional Luttinger-Kohn-Pikus-Bir Hamiltonian matrix may be made up of four 4-dimensional blocks. A 4-band Hamiltonian is presented, obtained from making the non-diagonal blocks zero. The parameters of the new Hamiltonian are adjusted to fit the calculated effective masses and strained QD bandgap with the measured ones. The 4-dimensional Hamiltonian thus obtained agrees well with measured quantum efficiency of a quantum dot intermediate band solar cell and the full absorption spectrum can be calculated in about two hours using Mathematica© and a notebook. This is a hundred times faster than with the commonly-used 8-band Hamiltonian and is considered suitable for helping design engineers in the development of nanostructured solar cells.

  9. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    Science.gov (United States)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  10. Measuring solar reflectance Part II: Review of practical methods

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23{sup o}], and to within 0.02 for surface slopes up to 12:12 [45{sup o}]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R*{sub g,0}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R*{sub g,0} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R*{sub g,0} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R*{sub g,0} to within about 0.01.

  11. Solar Data in the J and H Bands (Abstract)

    Science.gov (United States)

    Howe, R.

    2017-06-01

    (Abstract only) Early work of stellar astronomers established the nomenclature for the infrared wavelength bands in the 1,000 to 5,000 nm range known as J, H, K, L, and M. This study is using the AAVSO SSP-4 photometer to collect solar data in the J and H bands, where the central wavelengths of these bands are roughly 1,300 nm for the J, and 1,600 nm for the H band. The continuum radiation from the sun is formed at the deepest level in the sun around 40 km from the surface at 1,600 nm (H band), and then the spectral continuum begins as the height increases with increasing wavelength in the infrared spectrum. From data collected here the H band has slightly larger values than the J band, however, there are distinct cross-overs on different days of observing. The telescope being used is a 60-mm LUNT, a blocking factor of 12 with a tilt-etalon filter (https://luntsolarsystems.com/product/ls60tds/) which can be adjusted to look at "white light"; and in that configuration the SSP-4 photometer captures the sun's disc centered in the SSP-4 eyepiece (1 inch focal length 25.4 mm). The Orion equatorial mount has an Astro-view Right Accession motor, which tracks the sun, and for an average data capture session of about 10 minutes, it is quite stable. Capturing data in the early morning is best as the weight of the SSP-4 helps the little RA motor rather than in the afternoon when the balance would be against the direction of the earth's rotation.

  12. Standardization of Solar Mirror Reflectance Measurements - Round Robin Test: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Meyen, S.; Lupfert, E.; Fernandez-Garcia, A.; Kennedy, C.

    2010-10-01

    Within the SolarPaces Task III standardization activities, DLR, CIEMAT, and NREL have concentrated on optimizing the procedure to measure the reflectance of solar mirrors. From this work, the laboratories have developed a clear definition of the method and requirements needed of commercial instruments for reliable reflectance results. A round robin test was performed between the three laboratories with samples that represent all of the commercial solar mirrors currently available for concentrating solar power (CSP) applications. The results show surprisingly large differences in hemispherical reflectance (sh) of 0.007 and specular reflectance (ss) of 0.004 between the laboratories. These differences indicate the importance of minimum instrument requirements and standardized procedures. Based on these results, the optimal procedure will be formulated and validated with a new round robin test in which a better accuracy is expected. Improved instruments and reference standards are needed to reach the necessary accuracy for cost and efficiency calculations.

  13. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi' an 710300 (China); Wang, Ye Feng [School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Wei, Dong; Chen, Yu; Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Cui, Bin [School of Chemistry and Materials Science, Northwestern University, Xi' an 710620 (China)

    2016-06-20

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn{sup 2+} is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the “loss-in-potential,” inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  14. Vibration-rotation bands of CH in the solar infrared spectrum and the solar carbon abundance

    NARCIS (Netherlands)

    Grevesse, N.; Lambert, D.L.; Sauval, A.J.; Dishoeck, van E.F.; Farmer, C.B.; Norton, R.H.

    1991-01-01

    High resolution solar spectra obtained from the ATMOS Fourier Transform Spectrometer (Spacelab 3 flight on April 29-May 6, 1985) have made it possible to identify and measure a large number of lines of the vibration-rotation fundamental bands of the X2 Pi state of CH. From about 100 lines of the

  15. Comparison of device models for organic solar cells: Band-to-band vs. tail states recombination

    Energy Technology Data Exchange (ETDEWEB)

    Soldera, Marcos; Taretto, Kurt [Departamento de Electrotecnia, Universidad Nacional del Comahue, Buenos Aires, Neuquen (Argentina); Kirchartz, Thomas [Department of Physics, Imperial College London, South Kensington (United Kingdom)

    2012-01-15

    The efficiency-limiting recombination mechanism in bulk-heterojunction (BHJ) solar cells is a current topic of investigation and debate in organic photovoltaics. In this work, we simulate state-of-the-art BHJ solar cells using two different models. The first model takes into account band-to-band recombination and field dependent carrier generation. The second model assumes a Shockley-Read-Hall (SRH) recombination mechanism via tail states and field independent carrier generation. Additionally, we include in both cases optical modelling and, thus, position-dependent exciton generation and non-ideal exciton collection. We explore both recombination mechanisms by fitting light and dark current-voltage (JV) characteristics of BHJ cells of five materials: P3HT, MDMO-PPV, MEH-PPV, PCDTBT and PF10TBT, all blended with fullerene derivatives. We show that although main device parameters such as short circuit current, open circuit voltage, fill factor and ideality factor are accurately reproduced by both Langevin and tail recombination, only tail recombination reproduces also the ideality factor of dark characteristics accurately. Nevertheless, the model with SRH recombination via tail states needs the inclusion of external circuitry to account for the heavy shunt present in all the blends, except P3HT:PCBM, when illuminated. Finally, we propose a means to find analytical expressions for the short circuit current by assuming a linear relation between the recombination rate and the concentration of free minority carriers. The model reproduces experimental data of P3HT cells at various thickness values using realistic parameters for this material. Dark JV measurement (circles) of a PCDTBT:PC{sub 70}BM solar cell (Park et al., Nature Photon. 3, 297 (2009) [1]), the fit with the model including recombination via tail states (solid line) and the fit with the model reported by (Koster et al., Phys. Rev. B 72, 085205 (2005) [2]) that includes bimolecular band-to-band recombination

  16. Single-material multilayer ZnS as anti-reflective coating for solar cell applications

    Science.gov (United States)

    Salih, Ammar T.; Najim, Aus A.; Muhi, Malek A. H.; Gbashi, Kadhim R.

    2017-04-01

    Multilayer Zinc Sulfide (ZnS) is a promising low cost antireflective coating for solar cell applications, in this work; thin films with novel structure containing cubic and hexagonal phases were successfully deposited by thermal evaporation technique with three different layers. XRD analysis confirms the existence of both phases and high specific surface area. AFM analysis reveals that films with three layers have lower roughness and average grain size than other films. The optical measurements obtained by UV-vis, the calculated values of refractive index and reflectivity using some well known refractive index-band gap relations indicate that thin films with triple layer TL-ZnS have lower refractive index and reflectivity than other films, empirical equations were suggested and show the quantum confinement effects on band gap and reflectivity.

  17. Investigating effect of different reflective surfaces on solar thermal collector

    Science.gov (United States)

    Chua, Yaw Long; Chin, Kiat Keong; Tay, Tee Tiong

    2017-11-01

    This paper reports on the experiments conducted to investigate the efficiency of different type of reflecting surfaces used on solar thermal collector. Three types of commonly available reflective surfaces coated with silver colour acrylic paint, reflective aluminium foil and blank compact disc are investigated. In this paper, the effect of different reflective surfaces on the water container and parabolic concentrator dish are investigated. In the first experiment, two types of surfaces, coated with silver colour acrylic paint and black colour acrylic paint on an aluminium container are compared. The other factors that might influence the experiment outcome like the material, focal point, and weather condition are kept constant. The experiment results proved that black colour surface is better in absorbing heat reflected by the parabolic dish. The second experiment focused on investigating the effect of different reflective surfaces on the parabolic concentrator dish itself. These surfaces are tested on a parabolic disc of a static solar thermal collector that reflects heat from the sun to a body of water stored in a black colour aluminium container. The temperature of the water is measured at a predetermined interval to measure the efficiency of the reflective surfaces used. It is found that the aluminium reflective surface performed the best compared to the other surfaces.

  18. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR and Quantification of Red-Edge Band BRDF Effects

    Directory of Open Access Journals (Sweden)

    David P. Roy

    2017-12-01

    Full Text Available Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF. The Sentinel-2 multi-spectral instrument (MSI acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 million (January 2016 and 10.7 million (April 2016 pairs of forward and back scatter reflectance observations extracted over approximately 20° × 10° of southern Africa. Non-negligible MSI red-edge BRDF effects up to 0.08 (reflectance units across the 290 km wide MSI swath are documented. A recently published MODIS BRDF parameter c-factor approach to adjust MSI visible, near-infrared, and short wave infrared reflectance to nadir BRDF-adjusted reflectance (NBAR is adapted for application to the MSI red-edge bands. The red-edge band BRDF parameters needed to implement the algorithm are provided. The parameters are derived by a linear wavelength interpolation of fixed global MODIS red and NIR BRDF model parameters. The efficacy of the interpolation is investigated using POLDER red, red-edge, and NIR BRDF model parameters, and is shown to be appropriate for the c-factor NBAR generation approach. After adjustment to NBAR, red-edge MSI BRDF effects were reduced for the January data (acquired close to the solar principal where BRDF effects are maximal and the April data (acquired close to the orthogonal plane for all the MSI red-edge bands.

  19. High Reflectivity, Broad-Band Silver Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space telescopes such as the Super Nova Acceleration Probe (SNAP) require exceptionally reflective coatings applied to mirrors several meters in diameter. In...

  20. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  1. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  2. Total Internal Reflection for Effectively Transparent Solar Cell Contacts

    CERN Document Server

    Jahelka, Phillip; Atwater, Harry

    2016-01-01

    A new strategy for eliminating photocurrent losses due to the metal contacts on the front of a solar cell was proposed, simulated, and tested. By placing triangular cross-section lines of low refractive index on top of the contacts, total-internal reflection at the interface of the low-index triangles and the surrounding material can direct light away from the metal and into the photoactive absorber. Simulations indicated that losses can be eliminated for any incident angle, and that yearly energy production improvements commensurate with the metallized area are possible. Proof of principle experiments were carried out to eliminate the reflective losses of a commercial solar cell's busbar contact. Spatially resolved laser beam induced current measurements demonstrated that reflection losses due to the busbar were reduced by voids with triangular cross-section.

  3. Research Needs: Glass Solar Reflectance and Vinyl Siding

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

    2011-07-07

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  4. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    Science.gov (United States)

    Jorgensen, Gary; Gee, Randall C.; White, David

    2017-05-02

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  5. Measurement of the Vertical Distribution of Reflected Solar Radiation

    Directory of Open Access Journals (Sweden)

    Tetsu Aoki

    2015-05-01

    Full Text Available The purpose of this study was to develop a devicefor measuring the vertical distribution of the reflected radiation to the inside of a room from terrace to building.The proposed device is attached to aluminum plates that are painted matte black at intervals of 20 cm on polystyrene insulation. The surface temperature of the aluminum plate, called the SAT (sol-air temperature, is used as an indicator of the quantity of solar radiation. In order to compare terrace materials, two of the measuring devices were located facing south.Concrete tile, artificial turf, and wood chips were selected as materials to be comparedfor the surface of the terrace and were laid in front of the measuring devices. The results indicate that the SAT reflected onto a vertical plane was higher closer to the ground for all materials. Hourly fluctuations of the vertical distribution of the reflected solar radiation differed, depending on the terrace surface material. When concrete tiles of different thicknesses were compared, the temporal heating patterns varied due to differences in heat capacity. These results lead us to the conclusion that using the developed measuringdevice enables grasping the effect of vertical distribution of reflected solar radiation from a terrace.

  6. Analysis of an anti-reflecting nanowire transparent electrode for solar cells

    Science.gov (United States)

    Zhao, Zhexin; Wang, Ken Xingze; Fan, Shanhui

    2017-03-01

    Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this paper, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry-Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.

  7. Computer-aided design of broad band reflection type amplifiers

    DEFF Research Database (Denmark)

    Hammershaimb, Edgar; Jeppesen, Palle; Schjær-Jacobsen, Hans

    1974-01-01

    . At the same time the impedance of unpackaged devices are obtained by on-line correction for the package parasitics. The microwave circuit chosen is a multiple slug coaxial cavity, that is modelled by sections of lossy transmission lines including step susceptances. The measured small signal impedance......Microwave negative resistance reflection type amplifiers using stable transferred electron devices (TED's) are optimized by numerical optimization techniques programmed for an interactive graphic datascreen. The small signal impedance of packaged TED's is measured on an automatic network analyzer...... of the packaged TED's and the cavity model are used in a direct optimization procedure, in which the calculated minimum gain in the prescribed frequency range is progressively maximized by adjusting the lengths, characteristic impedances and positions of the slugs. The computed results are displayed...

  8. Anisotropical C2-O reflection bands measured in α-helixes of silk fibroin

    Science.gov (United States)

    Sato, Kenso

    1986-06-01

    From analysis of 36 anisotropical reflectrion spectra of the C2-O bending bands of silk fibroin at ≈700˜200 cm-1 region at static state, presence of the A, B, C and D-band and reflection edge was also confirmed. Furthermore, we confirmed stepnized reflectivity overlapping on the C2-O bending bands and stenized values of the reflection integral (optical activity). Second, analysing four diffusion diagrams of these bands, we inspected stepnized polar distribution of the band and quantized polar distribution was confirmed as, θN = 27.5·N + 2.5 (degrees) with N=1, 2, 3, 4...12 and 13, without N=5,6 and 7 at θ=120°˜180° as in case of polar distribution of the C2-O and Si-O stretching reflection bands and C2-O bending band measured in case of silicate cellulose present in the surface skin layer of bamboo's stem.

  9. Rain Attenuation Correction of Reflectivity for X-Band Dual-Polarization Radar

    Directory of Open Access Journals (Sweden)

    Liang Feng

    2016-12-01

    Full Text Available In order to improve the performance of X-band dual-polarization radars, it is necessary to conduct attenuation correction before using the X-band radar data. This study analyzes a variety of attenuation correction methods for the X-band radar reflectivity, and proposes a high-resolution slide self-consistency correction (SSCC method, which is an improvement of Kim et al.’s method based on Bringi et al.’s original method. The new method is comprehensively evaluated with the observational data of convective cloud, stratiform cloud, and the stratiform cloud with embedded convection. Comparing with the intrinsic reflectivity at X-band calculated from the reflectivity at S-band, it is found that the new method can effectively reduce the correction errors when calculating differential propagation shift increments using the conventional self-consistency attenuation correction method. This method can efficiently correct the X-band dual-polarization radar reflectivity, in particular, for the echoes with reflectivity greater than 35 dBZ.

  10. Equilibria near asteroids for solar sails with reflection control devices

    Science.gov (United States)

    Gong, Shengping; Li, Junfeng

    2015-02-01

    Solar sails are well-suited for long-term, multiple-asteroid missions. The dynamics of solar sails near an asteroid have not yet been studied in detail. In this paper, out-of-plane artificial equilibria in a Sun-asteroid rotating frame and hovering points in a body-fixed rotating frame are studied (using a solar sail equipped with reflection control devices). First, the dynamics and the stability of out-of-plane artificial equilibria are studied as an elliptical restricted three body problem. Next, the body-fixed hovering problem is discussed as a two-body problem. Hovering flight is only possible for certain values of the latitude of the asteroid's orbit. In addition, the feasible range of latitudes is determined for each landmark on the asteroid's surface. The influence of the sail lightness number on the feasible range is also illustrated. Several special families of hovering points are discussed. These points include points above the equator and poles and points with an altitude equal to the radius of the synchronous orbit. In both of these types of problems, the solar sail (equipped with reflection control devices) can equilibrate over a large range of locations.

  11. Research Needs: Glass Solar Reflectance and Vinyl Siding

    OpenAIRE

    Hart, Robert

    2012-01-01

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and fact...

  12. Model Calculations of Solar Spectral Irradiance in the 3.7 Micron Band for Earth Remote Sensing Applications

    Science.gov (United States)

    Platnick, Steven; Fontenla, Juan M.

    2006-01-01

    Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources.

  13. Bitumen content estimation of Athabasca oil sand from broad band infrared reflectance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, B.; Feng, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Earth and Atmospheric Sciences, Earth Observation Systems Laboratory; Lyder, D. [Alberta Environment, Edmonton, AB (Canada); Gallie, A. [Laurentian Univ., Sudbury, ON (Canada). Dept. of Earth Sciences; Cloutis, E. [Winnipeg Univ., MB (Canada). Dept. of Geography; Dougan, P.; Gonzalez, S. [Syncrude Canada Ltd, Edmonton, AB (Canada); Cox, D. [Suncor Energy Inc., Fort McMurray, AB (Canada); Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-10-15

    Oil sand deposits are not homogeneous. The ore has a large variability in clay, bitumen and fines, which impact bitumen recovery. This paper reported on a study in which a linear model was developed to estimate total bitumen content (TBC) with good accuracy and independent of mine location. The purpose of the study was to enable oil sands mining operators to estimate TBC in real time. Modelling of the TBC in the Athabasca oil sands of western Canada was undertaken on the basis of hyperspectral reflectance spectra. A variety of bitumen, water, and clay mineral spectral features were used to develop broad-band TBC predictive models, with less than 1.5 percent error with respect to laboratory methods of bitumen assay. Simple broad band models, based upon previously identified Gaussian features or wavelet features, provided an incremental improvement over the two-band ratio model presently used by industry. This paper also presented a newly developed and improved two-band model which combines the same two bands, normalized to their mean. The influence of water, clay, and textural variation on selected bitumen features was addressed by a wavelet-based, broad-band model comprised of indices and five bands, where the bands were normalized to the mean of the bands. The most robust estimator of TBC appeared to be the five-band model which can be used at different sites within a mine as well as in different mines without additional tuning or calibration. 17 refs., 4 tabs., 8 figs.

  14. Wide tunable shift of the reflection band in dual frequency cholesteric liquid crystals.

    Science.gov (United States)

    Oton, Eva; Netter, Estelle

    2017-06-12

    Technologies featuring external control of reflected and transmitted light are lately being explored for a wide range of optical and photonic applications. Yet, the options for spectral band tuning are scarce, especially if dynamic control of either reflected or transmitted light is required. In this work we demonstrate a tunable device capable of shifting the reflected light spectrum of an impinging light using dual frequency cholesteric liquid crystals. Modulating the frequency of the applied signal, the Bragg reflection can be dynamically shifted over a wide spectral range and also switched off. This feature can be applied to color filters, augmented reality, multi-color lasers or tunable windows.

  15. Reflective type Solar-LCDs by using polarizing polymer solar cells.

    Science.gov (United States)

    Huh, Yoon Ho; Shin, Jung Chul; Kim, Young Chan; Park, Byoungchoo

    2012-03-12

    We present herein the results of a study of the reflective polarizing photovoltaic (PV) effects in an aligned polymer bulk-heterojunction PV layer. The PV layer consisted of a composite of regioregular poly(3-hexylthiophene) and methanofullerene (P3HT:PCBM) and the fairly uniform in-plane alignment of the P3HT:PCBM PV layer was achieved by means of a simple rubbing technique. The macroscopic axial orientation of the P3HT polymer in the aligned PV layer was observed to be significantly increased in the direction of rubbing with an axial orientational order parameter of 0.40. Moreover, it was also found that the reflective polarizing polymer solar cells (PSCs) that contained the aligned P3HT:PCBM layers exhibited a greater degree of anisotropy of 1.60 for the PV efficiencies under polarized illumination along the two principal axes. These reflective polarizing PSCs were applied to new reflective type solar cell-liquid crystal displays (Solar-LCDs), which exhibited a contrast ratio of 1.7. These results form a promising foundation for various energy-harvesting polarization-dependent opto-electrical Solar-LCD device applications.

  16. Deriving Polarization Properties of Desert-Reflected Solar Spectra with PARASOL Data

    Science.gov (United States)

    Sun, Wenbo; Baize, Rosemary R.; Lukashin, Constantine

    2015-01-01

    Reflected solar radiation from desert is strongly polarized by sand particles. To date, there is no reliable desert surface reflection model to calculate desert reflection matrix. In this study, the PARASOL data are used to retrieve physical properties of desert. These physical properties are then used in the ADRTM to calculate polarization of desert-reflected light for the whole solar spectra.

  17. Theoretical study of solar light reflectance from vertical snow surfaces

    Directory of Open Access Journals (Sweden)

    O. V. Nikolaeva

    2013-04-01

    Full Text Available The influence of horizontal and vertical inhomogeneity of snow surfaces on solar light reflectance is studied using the radiative transfer theory (RTT. We compared 1-D RTT and 2-D RTT and found that large errors are produced if the 1-D RTT is used for the calculation of the snow reflection function (and, therefore, also in the retrievals of the snow grain radii in 2-D measurement geometries. Such 2-D geometries are common in the procedures for the determination of the effective snow grain radii using near-infrared photography and spectroscopy of vertical snow walls. In particular, we have considered three cases for the numerical calculations: (1 the case with no black film; (2 the case with a black film at the pit's bottom; (3 the case with a black film at the pit's bottom and also at one of the vertical snow walls.

  18. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  19. Reflectivity calculated for a three-dimensional silicon photonic band gap crystal with finite support

    NARCIS (Netherlands)

    Devashish, D.; Hasan, Shakeeb B.; Van Der Vegt, J. J.W.; Vos, Willem L.

    2017-01-01

    We study numerically the reflectivity of three-dimensional (3D) photonic crystals with a complete 3D photonic band gap. We employ the finite element method to study crystals with the cubic diamondlike inverse woodpile structure. The high-index backbone has a dielectric function similar to silicon.

  20. Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands

    Science.gov (United States)

    Subhash, N.; Mallia, J. R.; Thomas, S. S.; Mathews, A.; Sebastian, P.; Madhaven, J.

    2006-01-01

    A low-cost, fast, and noninvasive method for early diagnosis of malignant lesions of oral mucosa based on diffuse reflectance spectral signatures is presented. In this technique, output of a tungsten halogen lamp is guided to the tissue through the central fiber of a reflection probe whose surrounding six fibers collects tissue reflectance. Ex vivo diffuse reflectance spectra in the 400 to 600-nm region is measured from surgically removed oral cavity lesions using a miniature fiber optic spectrometer connected to a computer. Reflectance spectral intensity is higher in malignant tissues and shows dips at 542 and 577 nm owing to absorption from oxygenated hemoglobin (HbO2). Measurements carried out, within an hour of surgical excision, on malignant lesion and adjoining uninvolved mucosa show that these absorption features are more prominent in neoplastic tissues owing to increased microvasculature and blood content. It is observed that reflectance intensity ratio of hemoglobin bands, R540/R575, from malignant sites are always lower than that from normal sites and vary according to the histological grade of malignancy. The diffuse reflectance intensity ratio R540/R575 of the hemoglobin bands appears to be a useful tool to discriminate between malignant lesions and normal mucosa of the oral cavity in a clinical setting.

  1. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  2. Electrical equivalent model of intermediate band solar cell using ...

    Indian Academy of Sciences (India)

    realize these promising photovoltaic devices for low cost and high efficiency. Keywords. PSpice simulator; IBSCS; neuronal network; analog behavior modeling. (ABM). 1. Introduction. Worldwide photo-voltaic (PV) research is continuing in order to produce a low-cost and high- efficiency device for solar energy conversion.

  3. Alpha-band rhythm suppression during memory recall reflecting memory performance.

    Science.gov (United States)

    Yokosawa, Koichi; Kimura, Keisuke; Chitose, Ryota; Momiki, Takuya; Kuriki, Shinya

    2016-08-01

    Alpha-band rhythm is thought to be involved in memory processes, similarly to other spontaneous brain rhythms. Ten right-handed healthy volunteers participated in our proposed sequential short-term memory task that provides a serial position effect in accuracy rate. We recorded alpha-band rhythms by magnetoencephalography during performance of the task and observed that the amplitude of the rhythm was suppressed dramatically in the memory recall period. The suppressed region was estimated to be in the occipital lobe, suggesting that alpha-band rhythm is suppressed by activation of the occipital attentional network. Additionally, the alpha-band suppression reflected accuracy rate, that is, the amplitude was suppressed more when recalling items with higher accuracy rate. The sensors with a significant correlation between alpha-band amplitude and accuracy rate were located widely from the frontal to occipital regions mainly in the right hemisphere. The results suggests that alpha-band rhythm is involved in memory recall and can be index of memory performance.

  4. Analysis of the reflective multibandgap solar cell concept

    Science.gov (United States)

    Stern, T. G.

    1983-01-01

    A new and unique approach to improving photovoltaic conversion efficiency, the reflective multiband gap solar cell concept, was examined. This concept uses back surface reflectors and light trapping with several physically separated cells of different bandgaps to make more effective use of energy from different portions of the solar spectrum. Preliminary tests performed under General Dynamics Independent Research and Development (IRAD) funding have demonstrated the capability for achieving in excess of 20% conversion efficiency with aluminum gallium arsenide and silicon. This study analyzed the ultimate potential for high conversion efficiency with 2, 3, 4, and 5 different bandgap materials, determined the appropriate bandgaps needed to achieve this optimized efficiency, and identified potential problems or constraints. The analysis indicated that an improvement in efficiency of better than 40% could be attained in this multibandgap approach, compared to a single bandgap converter under the same assumptions. Increased absorption loss on the back surface reflector was found to incur a minimal penalty on efficiency for two and three bandgap systems. Current models for bulk absorption losses in 3-5 materials were found to be inadequate for explaining laboratory observed transmission losses. Recommendations included the continued development of high bandgap back surface reflector cells and basic research on semiconductor absorption mechanisms.

  5. Experimental performance analysis for mini-parabolic solar reflecting collectors

    Energy Technology Data Exchange (ETDEWEB)

    Barakos, G.; Kaplanis, S.; Spyrogiannoulas, A. [Technological Educational Inst. of Patras, Patra (Greece)

    2007-07-01

    This paper presented a detailed analysis of the thermal behaviour of a mini-parabolic solar reflecting collector installed on the roof of a building. A data logging system was used to monitor fluid inlet and outlet temperatures in the absorber; total solar radiation incident on the aperture surface; ambient temperatures; and fluid flow measurements. The aim of the study was to increase the reliability of the collector, maximize output, and optimize the geometrical and physical characteristics of the collector's components. Experiments were conducted over a 4-day period in October and November 2006 at a location in Greece. Data obtained during the experiments showed that as the mass flow rate increased, the outlet and inlet temperatures decreased. The system's efficiency increased as the mass flow rate increased. Losses were decreased when temperatures in the tube absorber remained low. The results of several subsequent experiments confirmed that higher mass flow rates increase the efficiency of the collectors.15 refs., 10 figs.

  6. Simulator spectral characterization using balloon calibrated solar cells with narrow band pass filters

    Science.gov (United States)

    Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.

    1981-01-01

    The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.

  7. Surface roughness effects on the solar reflectance of cool asphalt shingles

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem; Jacobs, Jeffry; Klink, Frank

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with small corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.

  8. Broad-Band EUV Multilayer Coatings For Solar Physics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and commercialize a new class of aperiodic multilayer coating that is designed to provide high normal-incidence reflectance over a wide...

  9. Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps.

    Science.gov (United States)

    Longhi, S

    2001-09-01

    Superluminal pulse reflection is shown to occur in a class of one-dimensional asymmetric photonic band gaps in which a spectral window inside the gap is opened. By means of a coupled-mode equation analysis, we describe in detail two possible realizations of superluminal pulse reflection that can be achieved using fiber Bragg gratings. The former method is based on the introduction of a defect into the otherwise periodic dielectric structure, whereas the latter one exploits the interference of two closely-spaced resonance modes and simulates the dispersion properties of an inverted medium possessing a doublet line.

  10. Development of high band gap materials for tandem solar cells and simulation studies on mechanical tandem solar cells

    Science.gov (United States)

    Vijayakumar, Vishnuvardhanan

    Development of low cost, high efficiency tandem solar cells is essential for large scale adoption of solar energy especially in densely populated regions of the world. In this thesis four-terminal mechanical (stack like) tandem solar cells were evaluated using detailed simulation models and design criteria for selecting candidate materials were established. Since silicon solar cells are low cost and have a multi-giga watt global manufacturing and supply chain capacity already in place then only tandem stacks incorporating silicon as one of the layers in the device was investigated. Two candidate materials which have high band gaps that could be used as top cells in the mechanical tandem device were explored as part of the thesis. Dye-sensitized solar cells (DSSC) sensitized with N719 dye (one of the candidates for the top cell) were fabricated with the goal of enabling a flexible processing path to lower cost. Stainless steel (SS) mesh substrates were used to fabricate anodes for flexible DSSC in order to evaluate them as replacements for more expensive Transparent Conducting Oxides (TCO's). Loss mechanisms in DSSC's due to SS mesh oxidation were quantified and protective coatings to prevent oxidation of SS mesh were developed. The second material which was evaluated for use as the top cell was copper zinc tin sulfide (CZTS). CZTS was deposited through a solution deposition route. Detailed investigations were done on the deposited films to understand the chemistry, crystal structure and its opto-electronic properties. Deposited CZTS films were found to be highly crystalline in direction. The films had a direct band gap of 1.5 eV with absorption coefficient greater than 104 cm -1 in agreement with published values. In the second part of the thesis detailed electrical and optical simulation models of the mechanical tandem solar cells were developed based on the most up-to-date materials physical constants available for each layer. The modeling was used to quantify

  11. Graded band-gap engineering for increased efficiency in CZTS solar cells

    Science.gov (United States)

    Ferhati, H.; Djeffal, F.

    2018-02-01

    In this paper, we propose a potential high efficiency Cu2ZnSn(S,Se)4/CdS (CZTS) solar cell design based on graded band-gap engineering that can offer the benefits of improved absorption behavior and reduced recombination effects. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to determinate the optimal band-gap profile of the amended CZTS absorber layer to achieve further efficiency enhancement. It is found that the proposed design exhibits superior performance, where a high efficiency of 16.9% is recorded for the optimized solar cell with a relative improvement of 92%, compared with the reference cell efficiency of 8.8%. Likewise, the optimized CZTS solar cell with a graded band-gap enables achieving a higher open circuit voltage of 889 mV, a short-circuit current of 28.5 mA and a fill factor of 66%. Therefore, the optimized CZTS-based solar cell with graded-band gap paradigm pinpoints a new path toward recording high-efficiency thin-film solar cells through enhancing carrier collection and reducing the recombination rate.

  12. Role of balanced charge carrier transport in low band gap polymer: Fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Moet, D.J.D.; Blom, P.W.M.

    2011-01-01

    Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced

  13. Temperature comparison of different reflective surfaces of a solar thermal collector

    Science.gov (United States)

    Koh, Yit Yan; Chua, Yaw Long; Chin, Kiat Keong

    2017-09-01

    With the rapid depletion of fossil fuels, the search for application of alternative energy sources becomes more important than ever before. Solar energy has been identified as one of the major renewable energy that will contribute to power generation is years to come. There are two major categories of solar energy applications. Solar thermal collector is one of it. This paper presents an investigation on the effect of different reflecting surfaces on solar thermal collector. Three different reflective surfaces were applied on the surface of the solar thermal collector. Data was collected and analyzed. From the results, the aluminum mirror sheet performed best.

  14. Design of multi-layer anti-reflection coating for terrestrial solar panel ...

    Indian Academy of Sciences (India)

    Abstract. To date, there is no ideal anti-reflection (AR) coating available on solar glass which can effectively trans- mit the incident light within the visible wavelength range. However, there is a need to develop multifunctional coating with superior anti-reflection properties and self-cleaning ability meant to be used for solar ...

  15. What is the band alignment of Cu2ZnSn(S,Se)4 solar cells?

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Hansen, Ole

    2017-01-01

    The band alignment at the Cu2ZnSn(S,Se)4/CdS solar cell heterojunction is a controversial issue, as different measurements and calculations point to substantially different conduction band offsets (CBO). As the actual value of the CBO has profound implications on solar cell performance, the aim...... of this work is to separate genuine process-dependent variations in the CBO from errors in its experimental determination. We argue that the two most likely mechanisms responsible for real CBO variations are Fermi level pinning (which tends to decrease the CBO) and chemical interdiffusion (which tends...... measurement approaches. Interestingly, a rough correlation can be established between the CBO measured at the Cu2ZnSnS4/CdS interface by different groups and their corresponding solar cell efficiency: lower-efficiency cells often have a large "cliff-like" offset, whereas most high-efficiency cells have...

  16. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell.

    Science.gov (United States)

    Ho Huh, Yoon; Park, Byoungchoo

    2015-06-23

    We herein report the results of a study of a power generating reflective-type liquid crystal display (LCD), composed of a 90° twisted nematic (TN) LC cell attached to the top of a light-absorbing polymer solar cell (PSC), i.e., a Solar-LCD. The PSC consisted of a polymer bulk-heterojunction photovoltaic (PV) layer of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and [6,6]-phenyl C71 butyric acid methyl ester (PCDTBT:PCBM70), and showed a high power conversion efficiency of about 5%. In order to improve the visibility of the Solar-LCD, between the TN-LC and the PV cells we inserted a reflective polariser of a giant birefringent optical (GBO) film. The reflectivity from the Solar-LCD was observed to be considerably increased by more than 13-15% under illumination by visible light. The Solar-LCD also exhibited a significantly improved contrast ratio of more than 17-19. We believe there is a clear case for using such Solar-LCDs in new power-generating reflective-type displays; taken as a whole these results also demonstrate the possibility of their application in a number of energy-harvesting opto-electrical display devices.

  17. Low refractive index porous silicon multilayer with a high reflection band

    Energy Technology Data Exchange (ETDEWEB)

    Xifre Perez, E.; Pallares, J.; Ferre-Borrull, J.; Trifonov, T.; Marsal, L.F. [Departament d' Enginyeria Electronica, Electrica i Automatica, ETSE, Campus Sescelades, Universitat Rovira i Virgili, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)

    2007-07-01

    We present the fabrication and characterization of a one-dimensional photonic crystal consisting of the periodic repetition of two porous silicon layers with different refractive index. The refractive indices of the single layers have been determined from experimental measurements using two different methods. Both methods lead to the same results: the obtained average refractive index for a current density of J=30 mA/cm{sup 2} is 1.7 and for J=70 mA/cm{sup 2} is 1.3. The reflectivity spectrum of the studied multilayer for different angles of incidence has been measured and a good agreement with the simulation of the structure has been achieved. It has been observed that it presents a high reflectivity band in the NIR. Besides, we show that the projected band structure of the multilayer can be used for the analysis of the reflectivity results. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    Science.gov (United States)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  19. X-Band Microwave Reflection Properties of Samarium/Bismuth-Substituted Barium Lanthanum Titanate Ceramics

    Science.gov (United States)

    Bahel, Shalini; Pubby, Kunal; Narang, Sukhleen Bindra

    2017-03-01

    Samarium/bismuth-substituted barium lanthanum titanate ceramics with chemical composition Ba4 (La_{1 - y - z} Smy Biz )_{9.33} Ti_{18} O_{54} ( y = 0.5, 0.7; z = 0.05, 0.10, 0.15), intended as microwave reflecting materials, have been investigated in microwave X-band (8.2 GHz to 12.4 GHz) and the effect of substitution on their dielectric properties, i.e., dielectric constant and dielectric loss tangent, has been studied by vector network analyzer. Dielectric analysis showed that the dielectric constant increased with increasing samarium as well as bismuth content. Dielectric relaxation was observed for all samples in the scanned frequency range. Microwave reflection and transmission analysis of ceramic pellets of thickness 4 mm was carried out using two methods, i.e., open- and short-circuit approach, both indicating very high values of reflected power and very low values of transmitted power for all the doped materials in comparison with the base composition. The doped compositions are therefore potential microwave shielding materials for use in anechoic chambers, microwave laboratories, and radar equipment. Double-layer reflectors are also proposed, having better reflection properties (˜99% reflection) compared with single-layer reflectors.

  20. Retrieving Vegetation Parameters and Soil Reflection Coefficients with P-band SAR Polarimetry

    Science.gov (United States)

    Alemohammad, S. H.; Konings, A. G.; Jagdhuber, T.; Entekhabi, D.

    2015-12-01

    Photosynthetic activity of plants is highly dependent on the water available to the plant through its roots. Therefore, measuring the root-zone-soil-moisture across large spatial scales is of great importance for crop monitoring and yield estimation as well as hydrological and ecological modeling. Unlike L-band instruments, which are sensitive to only a few centimeters of the top soil layer, P-band Synthetic Aperture Radar (SAR) instruments have a penetration depth that can be used to retrieve soil moisture profiles in depths of several tens of centimeters (depending on soil texture and moisture content). NASA's Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission is designed to study the application of P-band SAR measurements for monitoring root-zone-soil-moisture. In this study, we introduce a new framework to retrieve vegetation parameters and smooth-surface soil reflection coefficients using SAR polarimetry and the fully polarimetric covariance matrix of the backscattering signal from AirMOSS observations. The retrieved soil reflectivities (both horizontally and vertically -polarized) can then be used to estimate the soil moisture profile. The retrieval model takes into account contributions from surface, dihedral and volume scattering coming from the vegetation and soil components, and does not require prior vegetation parameters. This approach reduces the dependency of the retrieval on allometry-based vegetation models with large numbers of uncertain parameters. The performance of this method will be validated using observations from AirMOSS field campaigns in July 2013 over Harvard Forest in Massachusetts, USA. This will enable a quality assessment of the polarimetry-based retrieval of the soil reflectivities and the estimated root-zone-soil-moisture profiles.

  1. Gradient SiNO anti-reflective layers in solar selective coatings

    Science.gov (United States)

    Ren, Zhifeng; Cao, Feng; Sun, Tianyi; Chen, Gang

    2017-08-01

    A solar selective coating includes a substrate, a cermet layer having nanoparticles therein deposited on the substrate, and an anti-reflection layer deposited on the cermet layer. The cermet layer and the anti-reflection layer may each be formed of intermediate layers. A method for constructing a solar-selective coating is disclosed and includes preparing a substrate, depositing a cermet layer on the substrate, and depositing an anti-reflection layer on the cermet layer.

  2. [Wide band tympanometry energy reflectance in Chinese infants and children with normal outer and middle ears].

    Science.gov (United States)

    Lei, Yibo; Lu, Wei; Mo, Lingyan

    2014-06-01

    To explore the law of wide band tympanometry energy reflectance (WBTER) in Chinese infants of Han nationality with normal outer and middle ears, and to provide the normal values for the clinical application of WBTER. Ninety four infants (170 ears) of Han nationality with normal outer and middle ears evidenced by temporal bone CT, and 226 Hz and 1 000 Hz tympanometry at the ages between three and 48 months (median age: 14 months) were selected and divided into four groups: 3-6 months (32 ears), 7-12 months (53 ears), 13-24 months (46 ears) and 25-48 months (39 ears). WBTER was conducted on these infants, and the basic law of energy reflectance under different frequencies, as well as the influence of age on energy reflectance were analyzed using SPSS 15.0. The normal value of energy reflectance was higher at low frequency, gradually decreased with the increase of frequency, reached the minimum near 4 000 Hz , followed by constantly increased till 8 000 Hz. In the scope of frequency below 1 000 Hz and above 6 350 Hz, the energy reflectance values of infants in the group of 3-6 months were significantly lower than those of infants in other age groups (P reflectance and lower fluctuation. The pattern of energy reflectance across frequency range for Chinese infants and children was consistent with that of other races reported in foreign countries. The WBTER changes with the growing of age, which tends to be stable after the first six months of birth.

  3. Backscatter of hard X-rays in the solar atmosphere. [Calculating the reflectance of solar x ray emission

    Science.gov (United States)

    Bai, T.; Ramaty, R.

    1977-01-01

    The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.

  4. θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech.

    Science.gov (United States)

    Pefkou, Maria; Arnal, Luc H; Fontolan, Lorenzo; Giraud, Anne-Lise

    2017-08-16

    incomprehensible accelerated speech, and show that neural phase patterns in the θ band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The drop in comprehension, however, is signaled by a significant decrease in the power of low-β oscillations (14-21 Hz). These data suggest that speech comprehension is not limited by the capacity of θ oscillations to adapt to syllabic rate, but by an endogenous decoding process. Copyright © 2017 the authors 0270-6474/17/377930-09$15.00/0.

  5. Practical anti-reflection coating for metal semiconductor solar cells

    Science.gov (United States)

    Yeh, Y.-C. M.; Stirn, R. J.

    1975-01-01

    The metal-semiconductor solar cell is a possible candidate for converting solar to electrical energy for terrestrial application. A method is given for obtaining optical parameters of practical antireflection coatings for the metal-semiconductor solar cell. This method utilizes the measured refractive index obtained from ellipsometry since the surface to be AR coated has a multilayer structure. Both the experimental results and theoretical calculation of optical parameters for Ta2O5 antireflection coatings on Au-GaAs and Au-GaAs(0.78)P(0.22) solar cells are presented for comparison.

  6. [Estimate of soil attributes using the method of special band and reflectance inflection difference].

    Science.gov (United States)

    Lu, Peng; Wei, Zhi-Qiang; Niu, Zheng

    2009-03-01

    Random sample approaches were employed for the sampling scenario with 41 spots sampled in topsoil (0-20 cm) in Red Soil ecology experimental station, Poyang Lake ecology experimental station, and Qianyanzhou ecology experimental station in Jiangxi Province by global position system (GPS). The hyperspectral reflectance spectra of soil samples were measured in ultraviolet, visible, and near infrared region from 225 to 2 500 nm with an interval of 1nm. The change characteristics of soil hyperspectral reflectance curves were studied. The objective of the present paper was to develop a methodology to estimate soil attributes using spectral reflectance. The multiple linear stepwise regression analysis method was used to build hyperspectral models for the prediction of soil attributes, with 22 bands and 13 "reflectance inflexion differences" as independent variables and the soil attributes as dependent variables respectively. Root mean squared error (RMSE) was introduced to test the predictability and precision of the models, and the correlation coefficient was used to evaluate the stability of the models. Some attributes, such pH, SOC, TN, TP, CEC and available N, had the correlation coefficients higher than 0.80, while the value of TK, available P and available K was about 0.68. The results show that the method is feasible to predict the concentration of some soil attributes, while further study should be done for others attributes.

  7. Enhanced Aluminum Reflecting and Solar-Blind Filter Coatings for the Far-Ultraviolet

    Science.gov (United States)

    Del Hoyo, Javier; Quijada, Manuel

    2017-01-01

    The advancement of far-ultraviolet (FUV) coatings is essential to meet the specified throughput requirements of the Large UV/Optical/IR (LUVOIR) Surveyor Observatory which will cover wavelengths down to the 100 nm range. The biggest constraint in the optical thin film coating design is attenuation in the Lyman-Alpha Ultraviolet range of 100-130 nm in which conventionally deposited thin film materials used in this spectral region (e.g. aluminum [Al] protected with Magnesium fluoride [MgF2]) often have high absorption and scatter properties degrading the throughput in an optical system. We investigate the use of optimally deposited aluminum and aluminum tri-fluoride (AlF3) materials for reflecting and solar blind band-pass filter coatings for use in the FUV. Optical characterization of the deposited designs has been performed using UV spectrometry. The optical thin film design and optimal deposition conditions to produce superior reflectance and transmittance using Al and AlF3 are presented.

  8. Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell

    Science.gov (United States)

    Imran, Ali; Jiang, Jianliang; Eric, Debora; Yousaf, Muhammad

    2018-01-01

    Quantum Dots (QDs) intermediate band solar cells (IBSC) are the most attractive candidates for the next generation of photovoltaic applications. In this paper, theoretical model of InAs/GaAs device has been proposed, where we have calculated the effect of variation in the thickness of intrinsic and IB layer on the efficiency of the solar cell using detailed balance theory. IB energies has been optimized for different IB layers thickness. Maximum efficiency 46.6% is calculated for IB material under maximum optical concentration.

  9. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  10. Alpha-band oscillations reflect altered multisensory processing of the McGurk illusion in schizophrenia

    Directory of Open Access Journals (Sweden)

    Yadira eRoa Romero

    2016-02-01

    Full Text Available The formation of coherent multisensory percepts requires integration of stimuli across the multiple senses. Patients with schizophrenia (ScZ often experience a loss of coherent perception and hence, they might also show dysfunctional multisensory processing. In this high-density electroencephalography study we investigated the neural signatures of the McGurk illusion, as a phenomenon of speech-specific multisensory processing. In the McGurk illusion lip movements are paired with incongruent auditory syllables, which can induce a fused percept. In ScZ patients and healthy controls we compared neural oscillations and event-related potentials (ERPs to congruent audiovisual speech stimuli and McGurk illusion trials, where a visual /ga/ and an auditory /pa/ was often perceived as /ka/. There were no significant group differences in illusion rates. However, we found larger short latency ERPs to McGurk illusion compared with congruent trials in controls, whereas they were reduced in ScZ patients, indicating an early audiovisual processing deficit. Moreover, we observed stronger suppression of medio-central alpha-band power (8-10 Hz, 550-700 ms in response to McGurk illusion compared with control trials in the control group. The reversed pattern was found in SCZ patients. Within groups, alpha-band suppression was negatively correlated with the McGurk illusion rate in ScZ patients, while the correlation tended to be positive in controls. The topography of alpha-band effects suggests an involvement of auditory and/or frontal structures. Our study suggests that early ERPs and later alpha-band oscillations reflect abnormal multisensory processing of the McGurk illusion in schizophrenia.

  11. Alpha-Band Oscillations Reflect Altered Multisensory Processing of the McGurk Illusion in Schizophrenia.

    Science.gov (United States)

    Roa Romero, Yadira; Keil, Julian; Balz, Johanna; Niedeggen, Michael; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-01

    The formation of coherent multisensory percepts requires integration of stimuli across the multiple senses. Patients with schizophrenia (ScZ) often experience a loss of coherent perception and hence, they might also show dysfunctional multisensory processing. In this high-density electroencephalography study, we investigated the neural signatures of the McGurk illusion, as a phenomenon of speech-specific multisensory processing. In the McGurk illusion lip movements are paired with incongruent auditory syllables, which can induce a fused percept. In ScZ patients and healthy controls we compared neural oscillations and event-related potentials (ERPs) to congruent audiovisual speech stimuli and McGurk illusion trials, where a visual /ga/ and an auditory /pa/ was often perceived as /ka/. There were no significant group differences in illusion rates. The EEG data analysis revealed larger short latency ERPs to McGurk illusion compared with congruent trials in controls. The reversed effect pattern was found in ScZ patients, indicating an early audiovisual processing deficit. Moreover, we observed stronger suppression of medio-central alpha-band power (8-10 Hz, 550-700 ms) in response to McGurk illusion compared with control trials in the control group. Again, the reversed pattern was found in SCZ patients. Moreover, within groups, alpha-band suppression was negatively correlated with the McGurk illusion rate in ScZ patients, while the correlation tended to be positive in controls. The topography of alpha-band effects indicated an involvement of auditory and/or frontal structures. Our study suggests that short latency ERPs and long latency alpha-band oscillations reflect abnormal multisensory processing of the McGurk illusion in ScZ.

  12. Applying measured reflection from the ground to simulations of thermal perfromance of solar collectors

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    2009-01-01

    Solar radiation on tilted and vertical surfaces in the Arctic is, in large parts of the year, strongly influenced by reflection from snow. In connection with planning and optimization of energy efficient buildings and solar energy systems in the Arctic, it is important to have an accurate...... representation of the reflection from the ground. In this study a more accurate description of the albedo is obtained based on detailed measurements from a solar hat, installed at ASIAQ’s climate station in Sisimiut, Greenland. The solar hat measures the global radiation on horizontal, the total radiation...... on vertical surfaces facing north, south, east and west, and radiation reflected from the ground on vertical surfaces facing north, south, east and west. Based on measured data from 2004-2007 the albedo is determined for each month of the year as a function of the difference between the solar azimuth...

  13. The Influence of Conduction Band Offset on CdTe Solar Cells

    Science.gov (United States)

    Chen, Yunfei; Tan, Xuehai; Peng, Shou; Xin, Cao; Delahoy, Alan E.; Chin, Ken K.; Zhang, Chuanjun

    2018-02-01

    Numerical modeling of conduction band offset (Δ E C) between an n-type CdSO window layer and a p-type CdTe absorption layer on the effect of the cadmium telluride (CdTe) solar cells was studied through simulation. The simulation results show that a slightly positive Δ E C yields high efficiency because the surface recombination rate at the CdSO/CdTe interface can be substantially reduced, leading to higher open-circuit voltage ( V OC) and fill factor. Further increase in Δ E C (≥ 0.4 eV) will impose an energy barrier against the photo-generated electrons under forward bias. We demonstrated the mechanistic picture of this effect using thermionic emission. However, if intra-band tunneling is considered in the simulation, a large Δ E C shows negligible influence on the performance of CdTe solar cells. Our simulation results suggest that an Δ E C of 0.3 eV is an optimal conduction band offset for high-efficiency CdTe solar cells.

  14. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink Devices will increase the efficiency of multi-junction solar cells by designing and demonstrating advanced anti-reflection coatings (ARCs) that will...

  15. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink and its subcontractor Magnolia Solar will develop and demonstrate advanced anti-reflection coating (ARC) designs that will provide a better broadband and...

  16. Band engineering of GaSbN alloy for solar fuel applications

    Science.gov (United States)

    Shi, Qing; Chen, Ying-Chih; Chowdhury, Faqrul A.; Mi, Zetian; Michaud-Rioux, Vincent; Guo, Hong

    2017-08-01

    III-nitride nanostructures possess ideal attributes for harvesting solar energy and generating solar fuel through natural water splitting. The most basic requirement of the latter is to engineer the band gap of the semiconductor to straddle the redox potential of water molecules. To this end, using first principles method we predict that GaN engineered with Sb doping at the dilute limit of 0.3% and/or slightly less is suitable for photochemical water splitting applications. The valence band edge is very significantly enhanced by dilute Sb doping while the conduction band edge is not. The microscopic physics behind the strong band bowing by such a small impurity concentration, not seen in other III-V semiconductors, is revealed by investigating the quantum interaction between Sb impurity states and the host GaN states. The dilute doping limit dictates very large systems to be calculated at the hybrid exchange-correlation level which is made possible by our newly developed first principles approach.

  17. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.

    Science.gov (United States)

    Roa Romero, Yadira; Senkowski, Daniel; Keil, Julian

    2015-04-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. Copyright © 2015 the American Physiological Society.

  18. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process.

    Science.gov (United States)

    Teng, Xiangbin; Tian, Xing; Doelling, Keith; Poeppel, David

    2017-10-17

    Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands (~1-8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize acoustic information. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Shadow bands during the total solar eclipse of 3 November 1994.

    Science.gov (United States)

    Jones, B. W.

    1996-08-01

    The author recorded shadow bands just before and just after the total phase of the solar eclipse of 3 November 1994. The recordings were made using two broad-band silicon photodiodes separated by 100 mm. They were mounted on a plate that faced the eclipsed Sun, which was at an altitude of 32.4° as seen from the observing site 4500 m above sea level between Putre and Lake Chungara in northern Chile. The irradiance fluctuations associated with the shadow bands were around 0.008 W m-2 rms on a background of about 2-8 W m-2. The cross-correlation function indicates that the shadow bands were moving at a speed of about 1.8 m s-1 perpendicular to their extent. The power spectral density functions are in accord with the shadow band theory of Codona (1986). The author carried out a similar experiment in Baja California during the eclipse of 11 July 1991. In spite of the considerable differences between the two circumstances, the results on the two occasions are broadly similar.

  20. Inter-band and intra-band reflections in graphene–insulator–superconductor junctions with zigzag or armchair edge

    Energy Technology Data Exchange (ETDEWEB)

    Duque, M.F., E-mail: mfduqued@unal.edu.co; Gomez P, S., E-mail: sgomezp@unal.edu.co; Herrera, W.J., E-mail: jherreraw@unal.edu.co

    2014-12-15

    We analyze electron–electron and Andreev reflections (AR) for a graphene–insulator–superconductor junction for zigzag and armchair edges, where the insulator is modeled as a potential barrier characterized by a strength. We calculate the reflection probabilities and differential conductance using the Bogoliubov–de Gennes–Dirac (BdGD) equations. For low doping values and zigzag edge the reflection coefficients have the same behavior that in a graphene–superconductor junction. However for high doping values the reflection probabilities have a periodicity of πwith the strength barrier values. For high doping values and armchair edge the electron–electron reflections associated to K′ valley increase and AR associated to K valley decrease. We compare our results with the differential conductance obtained by the Green formalism. We show that the effect of barrier strength for high doping resembles the behavior when a hopping between graphene and superconductor interfaces is considered.

  1. Inter-band and intra-band reflections in graphene-insulator-superconductor junctions with zigzag or armchair edge

    Science.gov (United States)

    Duque, M. F.; Gomez P., S.; Herrera, W. J.

    2014-12-01

    We analyze electron-electron and Andreev reflections (AR) for a graphene-insulator-superconductor junction for zigzag and armchair edges, where the insulator is modeled as a potential barrier characterized by a strength. We calculate the reflection probabilities and differential conductance using the Bogoliubov-de Gennes-Dirac (BdGD) equations. For low doping values and zigzag edge the reflection coefficients have the same behavior that in a graphene-superconductor junction. However for high doping values the reflection probabilities have a periodicity of πwith the strength barrier values. For high doping values and armchair edge the electron-electron reflections associated to K ‧ valley increase and AR associated to K valley decrease. We compare our results with the differential conductance obtained by the Green formalism. We show that the effect of barrier strength for high doping resembles the behavior when a hopping between graphene and superconductor interfaces is considered.

  2. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  3. Multifunctional TiN nanowires for wide band absorption in organic solar cells

    Science.gov (United States)

    Magdi, Sara; Gan, Qiaoqiang; Swillam, Mohamed A.

    2017-02-01

    One of the key issues limiting the efficiency of organic solar cells is the narrow absorption band of the polymer active layer. Thus, a huge amount of the incident sunlight is lost. Here, a new structure is theoretically proposed achieving wide band absorption in organic solar cells using multifunctional TiN nanowires. In addition to the plasmonic properties of TiN, it was reported that TiN has the capability to produce free carriers upon light absorption. Thus, the structure is based on the ability to collect these photo-generated carriers. Using the combination of TiN and polymer significantly broadened the absorption band due to the ability of TiN to localize light inside P3HT:PC70BM in addition to its ability to absorb light at longer wavelengths. The optimized structure enhanced the absorbed power by 95% and the optimal short circuit current by 123% over the same structure without the TiN nanowires. Electric field distribution is studied at different wavelengths to gain further insight on the localization of light inside the structure.

  4. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Juan; Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190 (China); Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-17

    The mechanism of charge recombination at the interface of n-type electron transport layer (n-ETL) and perovskite absorber on the carrier properties in the perovskite solar cell is theoretically studied. By solving the one dimensional diffusion equation with different boundary conditions, it reveals that the interface charge recombination in the perovskite solar cell can be suppressed by adjusting the conduction band offset (ΔE{sub C}) at ZnO ETL/perovskite absorber interface, thus leading to improvements in cell performance. Furthermore, Mg doped ZnO nanorods ETL has been designed to control the energy band levels. By optimizing the doping amount of Mg, the conduction band minimum of the Mg doped ZnO ETL has been raised up by 0.29 eV and a positive ΔE{sub C} of about 0.1 eV is obtained. The photovoltage of the cell is thus significantly increased due to the relatively low charge recombination.

  5. Band-gap engineering in CuIn(Se,S){sub 2} absorbers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, J. [Department of NDT and Physics, Vaal University of Technology, P/Bag X021, Vanderbijlpark 1911 (South Africa)

    2009-05-15

    Thin films based on CuInSe{sub 2} have become very successful as absorber layers for solar cells. It is only in the recent past that gallium (Ga) and sulfur (S) were incorporated into CuInSe{sub 2} in order to increase the energy band gap of the film to an optimum value with the ultimate aim of producing more efficient devices. This paper focuses on the incorporation of S into partly selenized CuInSe{sub 2} films in order to produce CuIn(Se,S){sub 2} films with varying S/Se+S ratios, resulting in different band-gap energies. This was achieved by varying the conditions when selenizing Cu/In alloys in H{sub 2}Se/Ar, and then exposing these various partly selenized films to H{sub 2}S/Ar under identical conditions. (author)

  6. Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting.

    Science.gov (United States)

    Wang, Tuo; Gong, Jinlong

    2015-09-07

    Solar water splitting provides a clean and renewable approach to produce hydrogen energy. In recent years, single-crystal semiconductors such as Si and InP with narrow band gaps have demonstrated excellent performance to drive the half reactions of water splitting through visible light due to their suitable band gaps and low bulk recombination. This Minireview describes recent research advances that successfully overcome the primary obstacles in using these semiconductors as photoelectrodes, including photocorrosion, sluggish reaction kinetics, low photovoltage, and unfavorable planar substrate surface. Surface modification strategies, such as surface protection, cocatalyst loading, surface energetics tuning, and surface texturization are highlighted as the solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Field collapse due to band-tail charge in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States); Schiff, E.A. [Syracuse Univ., NY (United States)

    1996-05-01

    It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  8. Anti-reflective microstructure array and its performance evaluation in thin film flexible solar cells

    Science.gov (United States)

    Chen, Fei; Zhan, Xinghua; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The anti-reflective (AR) structure greatly reduces the light reflection. When it is applied on solar cells, it enables more light to be absorbed by the cells, increasing the energy of the incident light and improving the light-to-electricity conversion efficiency. In this study, the optical properties of AR microstructures are investigated followed by the performance evaluation of solar cells. The AR microstructure is arrayed in a uniform and periodic fashion. When it is applied on PMMA, only 1.0% of the light is reflected away while 2.6% of the light is reflected on glass. The angular dependence performance is also improved with AR structure with 9.4% more light absorption, which can increase the effective energy generation duration for the solar cell. The AR structure is applied to amorphous silicon thin film solar cells by nano-imprinting technology. The solar cell with AR structure gained 8.63% more power compared to the conventional solar cells.

  9. Heating of solar coronal holes by reflected Alfven waves

    Science.gov (United States)

    Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    As a continuation of the work of Moore et al. (1991), who found evidence that coronal holes are heated by Alfven waves that are reflected back down within the coronal holes, this paper shows that to demonstrate this evidence, it is only necessary to consider a subset of the Moore et al. models, namely, those having radial magnetic field. Using these models, it is shown that the Alfven velocity is not constant in the atmosphere of coronal holes, but changes with height (or radius), causing downward reflection of all upward Alfven waves of sufficiently long wavelength (or period).

  10. Novel wide band gap materials for highly efficient thin film tandem solar cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E.; Connor, Stephen T.; Peters, Craig H.

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949 mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV's goal in Phase I of the DOE SBIR was to (1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and (2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS

  11. Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Rufangura, Patrick [Sustainable Environment and Energy Systems, Middle East Technical University - Northern Cyprus Campus, Kalkanli, Guzelyurt, 99738, TRNC/Mersin 10 (Turkey); Sabah, Cumali, E-mail: sabah@metu.edu.tr [Department of Electrical and Electronics Engineering, Middle East Technical University - Northern Cyprus Campus, Kalkanli, Guzelyurt, 99738, TRNC/Mersin 10 (Turkey)

    2016-06-25

    This paper proposes a metamaterial absorber design for solar energy harvesting using a simplified and symmetric structure. A unit cell of this design consists of three important layers namely, the bottom metallic layer, which is gold lossy, the intermediate layer: made of a lossy dielectric material that is gallium arsenide and patches which formed by a combination of gold and gallium arsenide. These three important layers are being carefully arranged at the top of a dielectric spacer. The geometric structure was being examined for its contribution towards absorption characteristics. The simulation results show outstanding dual-bands absorption (99.96% and 99.37%) in the visible frequency regime of electromagnetic wave. Due to the excellent symmetric nature of the proposed structure, its absorptance capacity exhibits polarization insensitivity for a wide range of incident angles for electromagnetic radiation. - Highlights: • New and dual-band metamaterial absorber for solar cells. • Geometrically simple and easy to fabricate metamaterial absorber. • Wide range of visible range scavenging applications. • Efficient harvesting for the novel photonic materials and innovative photonic devices.

  12. Optical analysis of Si-tapered nanowires/low band gap polymer hybrid solar cells

    Science.gov (United States)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    Three dimensional optical simulations are performed to assess the design requirements for obtaining highly efficient tapered Si nanowires (TSiNWs)/polymer hybrid solar cells. To avoid the complex fabrication processes of Si p-n junctions, the TSiNWs are coated with a conductive polymer forming a large junction area between both materials and making the charge separation more efficient. The addition of PEDOT:PSS has been reported previously where the absorption occur in the Si only. P3HT:PCBM has been also used on top of Si nanostructures to enhance the absorption. However, the maximum absorption of P3HT and Si are in the same range resulting in competence between the absorption of each material. Thus, thick Si substrates are still needed to achieve decent absorption in these devices. We report a broadband absorption spanning the whole visible and near infra-red range of the solar spectrum with only 5 Microns TSiNWs coated with a low band gap polymer. The tapered structure provides efficient light trapping for the incident light enhancing the absorption in the short wavelengths. The addition of the low band gap polymer (pBBTDPP2:PCBM) significantly enhanced the absorption at long wavelengths (700-900nm). Thus, broadband absorption is attained without the need of thick Si substrates. Full 3D optical simulations were performed to optimize the polymer thickness and compare between the enhancements in absorption for different polymers.

  13. CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer

    Science.gov (United States)

    Mohammadnejad, Shahram; Baghban Parashkouh, Ali

    2017-12-01

    Earth abundant copper-zinc-tin-chalcogenide is an attractive class of materials for the fabrication of high efficiency, low cost, and sustainable thin-film solar cells. A CZTSSe solar cell was modeled and the effects of absorber layer band-gap grading were investigated. Regarding the tunable bandgap of kesterite absorber layers which is between 0.95 eV for CZTSe and 1.5 eV for CZTS, several grading models were simulated in SCAPS. First, using a set of comprehensive absorption data for CZTS and CZTSe, the basic bandgap was selected to be 1.15 eV due to experimental aspects, and then, five grading models namely back/front linear, back/front exponential, and inside graded were explored. The investigation of simulation results showed that the recombination rate improvement in back and front regions along with current density enhancement is achievable by these graded band-gap profiles. Finally, the modified inside graded model was reached to a power conversion efficiency of 15.6% which leaded to a considerable output performance.

  14. Analysis of calibrated sea clutter and boat reflectivity data at C- and X-band in South African coastal waters

    CSIR Research Space (South Africa)

    Herselman, PLR

    2007-10-01

    Full Text Available an asymptotically optimal detector is evaluated empirically, as well as the influence of the local sea on boat reflectivity. Measurements were conducted with a calibrated, coherent, staring, pulsed radar system at C- and X-band frequencies ranging from 6.9 GHz to 10...

  15. Linking solar induced fluorescence and the photochemical reflectance index to carbon assimilation in a cornfield

    Science.gov (United States)

    Cheng, Y.; Middleton, E.; Zhang, Q.; Corp, L.; Campbell, P. K.; Huemmrich, K. F.; Kustas, W.; Daughtry, C. S.; Dulaney, W. P.; Russ, A.

    2012-12-01

    Determining the health and vigor of vegetation using high spectral resolution remote sensing techniques is a critical component in monitoring productivity from both natural and managed ecosystems and their feedbacks to climate. This presentation summarizes a field campaign conducted in a USDA-ARS experimental cornfield site located in Beltsville, MD, USA over a five-year period. The site is equipped with an instrumented tower which makes continuous eddy covariance measurements of CO2 along with incoming PAR. Hyperspectral reflectance observations were acquired over corn canopies with a USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at multiple times a day at various stages through the growing season. On all field days, supporting plant information and leaf level data were acquired (e.g., CO2 gas exchange) as well as biophysical field data, including leaf area index (LAI), mid-day canopy PAR transmission, soil reflectivity, and soil moisture. The canopy optical measurements enabled retrievals of the photochemical reflectance index (PRI) and solar induced fluorescence (SIF) centered at O2-A and -B bands. These two spectrally based bio-indicators have been widely utilized in studies to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.). Both SIF and PRI expressed diurnal dynamics and seasonal changes that followed environmental conditions and physiological status of the cornfield. We further investigated the correlation between these two retrievals and the flux tower based carbon assimilation observations (i.e. gross ecosystem production, GEP). We were able to successfully model the variation of GEP (r2=0.81; RMSE=0.18 mg CO2/m2/s) by utilizing both SIF and PRI. Several cross-validation algorithms were applied to the model to demonstrate the robustness and consistency of the model. Our results suggest great

  16. Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays.

    Science.gov (United States)

    DiDomenico, Leo D

    2015-11-30

    This paper introduces Microfluidic Beam Steering (MBS), which is a new technique for electronically steering light having multiple octaves of bandwidth, any polarization state and incidence from any direction of the sky without significant restrictions due to physical area, optical loss and power handling capacity. It is based on optical elements comprising both transparent solids and electronically controllable fluids to control Total Internal Reflection (TIR), refraction and/or diffraction from micro-structured surfaces within a transparent solid. A TIR-based MBS is discussed in the context of solar energy and its potential to significantly increase annual energy harvests from solar arrays situated on fixed areas like roofs. The advantages and challenges associated with analog and digital MBS systems are discussed and early-stage MBS hardware is demonstrated. Finally, an analytic model of sun-tracking is provided to formally establish the potential for MBS to increase annual solar energy harvests by approximately 45% more than conventional 0-Degree Of Freedom (0-DOF) solar arrays, 62% more than 1-DOF arrays and 233% more than 2-DOF arrays, all at 20% atmospheric aerosol scattering.

  17. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.G. (Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry)

    1993-04-01

    This report describes work to improve the performance of solar cells by improving the electrical and optical properties of their transparent conducting oxides (TCO) layers. Boron-doped zinc-oxide films were deposited by atmospheric pressure chemical vapor deposition in a laminar-flow reactor from diethyl zinc, tert-butanol, and diborane in the temperature range between 300[degrees]C and 420[degrees]C. When the deposition temperature was above 320[degrees]C, both doped and undoped films have highly oriented crystallites with their c-axes perpendicular to the substrate plane. Films deposited from 0.07% diethyl zinc and 2.4% tert-butanol have electron densities between 3.5 [times] 10[sup 20] cm[sup [minus]3] and 5.5 [times] 10[sup 20] cm[sup [minus]3], conductivities between 250 [Omega][sup [minus]1] and 2500 [Omega][sup [minus]1] and mobilities between 2.5 cm[sup 2]/V-s and 35.0 cm[sup 2]/V-s, depending on dopant concentration, film thickness, and deposition temperature. Optical measurements show that the maximum infrared reflectance of the doped films is close to 90%, compared to about 20% for undoped films. Film visible absorption and film conductivity were found to increase with film thickness. The ratio of conductivity to visible absorption coefficient for doped films was between 0.1 [Omega] and 1.1 [Omega][sup [minus]1]. The band gap of the film changes from 3.3 eV to 3.7 eV when the film is doped with 0.012% diborane.

  18. Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial

    Science.gov (United States)

    Chen, Jiao; Yang, Helin; Zhang, Guoping; Yu, Zetai; Huang, Xiaojun; Hu, Sen

    2017-05-01

    In this paper, we propose and fabricate a kind of zigzag birefringent reflective metamaterial, the surface of which is a 1D rough surface. It can realize both multiple absorption and broadband polarization conversion at different frequency ranges of microwave. This metamaterial is made of a ring-shaped metal piece that is deposited on one side of a piece of grounded zigzag dielectric substrate. The absorptivities are 99.4% and 97.3% at 3.32 and 6.87 GHz respectively, and the polarization conversion ratio is more than 90% from 8.43 to 11.55 GHz, when the incident wave illuminates the sample with different polarization angles. A bifunctional device based on this metamaterial can act as either an absorber or a polarizer. This work is of significance to study the electromagnetic properties of rough surface metamaterials and provides an encouraging example in metamaterial design for combining different functions into one device.

  19. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  20. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  1. The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    Science.gov (United States)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    2017-06-01

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.

  2. Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiubo; Wei, Wensheng [Wenzhou University, College of Physics and Electronic Information Engineering, Wenzhou (China)

    2013-10-15

    In this paper, an intermediate-band solar cell (IBSC) with only one IB was designed, where the three-dimensional In{sub x} Ga{sub 1-x} N/InN quantum dot supracrystals were regularly arrayed in the i layer of the p-i-n type structural cell. IB characteristics such as position and width derived from discrete quantized energy levels in quantum dots were determined via solving the Schroedinger equation with the Kronig-Penny model. The principle of detailed balance was used to deal with the photoelectric conversion process in the IBSC. Characteristic parameters of the cell such as open circuit voltage, short circuit current density, and photoelectric conversion efficiency were numerically calculated. The influence of In content, average size of QDs, and interdot spacing on the cell performance was further analyzed. (orig.)

  3. Nanoimprinted photonic crystal color filters for solar-powered reflective displays.

    Science.gov (United States)

    Cho, Eun-Hyoung; Kim, Hae-Sung; Sohn, Jin-Seung; Moon, Chang-Youl; Park, No-Cheol; Park, Young-Pil

    2010-12-20

    A novel concept for reflective displays that uses two-dimensional photonic crystals with subwavelength gratings is introduced. A solar-powered reflective display with photonic crystal color filters was analyzed by a theoretical approach. We fabricated the photonic crystal color filters on a glass substrate by using low-cost nanoimprint lithography and multi-scan excimer laser annealing to produce RGB color filters through a single patterning process. The theoretical and experimental results show that the color filters have high reflectance and angular tolerance, which was qualitatively confirmed by chromaticity coordination analysis.

  4. Combined front and back diffraction gratings for broad band light trapping in thin film solar cell.

    Science.gov (United States)

    Meng, Xianqin; Drouard, Emmanuel; Gomard, Guillaume; Peretti, Romain; Fave, Alain; Seassal, Christian

    2012-09-10

    In this paper, we present the integration of combined front and back 1D and 2D diffraction gratings with different periods, within thin film photovoltaic solar cells based on crystalline silicon layers. The grating structures have been designed considering both the need for incident light absorption enhancement and the technological feasibility. Long wavelength absorption is increased thanks to the long period (750 nm) back grating, while the incident light reflection is reduced by using a short period (250 nm) front grating. The simulated short circuit current in a solar cell combining a front and a back grating structures with a 1.2 µm thick c-Si layer, together with the back electrode and TCO layers, is increased up to 30.3 mA/cm2, compared to 18.4 mA/cm2 for a reference stack, as simulated using the AM1.5G solar spectrum intensity distribution from 300 nm to 1100 nm, and under normal incidence.

  5. Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    Science.gov (United States)

    Reagan, John A.; Pilewskie, Peter A.; Scott-Fleming, Ian C.; Herman, Benjamin M.; Ben-David, Avishai

    1987-01-01

    Techniques for extrapolating earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  6. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Hunter, Scott Robert [ORNL; Sharma, Jaswinder K [ORNL; Cheng, Mengdawn [ORNL; Chen, Sharon S [Lawrence Berkeley National Laboratory (LBNL); Demarest, Victoria [Dow Chemical Company; Fabiny, William [Dow Chemical Company; Destaillats, Hugo [Lawrence Berkeley National Laboratory (LBNL); Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2016-03-04

    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  7. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    Science.gov (United States)

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

  8. Broad-band polarization-independent metamaterial absorber for solar energy harvesting applications

    Science.gov (United States)

    Bağmancı, Mehmet; Karaaslan, Muharrem; Ünal, Emin; Akgol, Oguzhan; Karadağ, Faruk; Sabah, Cumali

    2017-06-01

    A novel broad-band polarization-independent with wide-angle metamaterial absorber(MA) is investigated and demonstrated for solar energy harvesting applications. The proposed MA is composed of two metal layers which have different thickness and a dielectric layer which is sandwiched between these metal layers. By this combination, the proposed MA indicates plasmonic resonance characteristic. Numeric results show that proposed MA has perfect absorption characteristic which is above 88.28% with wide-angle for all visible region. It shows almost perfect absorption of 98.4% at the resonance frequency of 621.76 THz and has also 90% absorption between frequencies of 445 THz and 770 THz which is nearly all visible light region. Besides, numerical results validate that the proposed MA could achieve very high absorption at wide-angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves.. The proposed MA and its variations enable for solar cell applications due to have upper ratio of 90% in the widest range of visible spectrum comparing to the studies in literature. In order to show additional features of the proposed structure, parametric studies are realized and discussed. Furthermore, the absorption characteristic of proposed MA is investigated for infrared and ultraviolet region. The enhancement of absorption of the structure will provide new type of sensors in these frequency ranges.

  9. Poly (5,6-dithiooctylisothianaphtene), a new low band gap polymer: spectroscopy and solar cell construction : spectroscopy and solar cell construction

    NARCIS (Netherlands)

    Goris, L; Loi, MA; Cravino, A; Neugebauer, H; Sariciftci, NS; Polec, I; Lutsen, L; Andries, E; Manca, J; De Schepper, L; Vanderzande, D

    2003-01-01

    To enhance the efficiency of polymer photovoltaics, much effort is put into synthesis of novel compounds which show a better harvesting of solar light. In this respect, a new low band gap polymer, namely, poly(5,6-dithiooctylisothianaphtene), was synthesised. This work focusses on the spectroscopic

  10. New intermediate band materials for better use of solar spectrum in photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P.; Aguilera, I.; Sanchez, K.; Wahnon, P. [Universidad Politecnica de Madrid (Spain). Inst. de Energia Solar; Lucena, R.; Conesa, J.C. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Catalisis y Petroleoquimica

    2010-07-01

    More efficient photovoltaic conversion of solar energy has been proposed to be possible by using intermediate band (IB) materials. In these an isolated, partially filled IB within the gap of a semiconductor allows electrons to be excited in the latter from its valence band to its conduction band in two steps, using photons of energy lower than that of the main gap E{sub g}. The ideal efficiency limit can then be pushed from 42% (the Queisser value) to over 63% (for an optimum E{sub g} value of {approx}e eV). In the last years we have indicated, on the basis of DFT simulations, those IB characteristics can be obtained with typical semiconductors in which an electropositive element is substituted by a judiciously chosen transition metal, which can provide partially filled d electronic states at the appropriate energy position. Besides GaP(As) or CuGaS{sub 2} with Ga substituted by Ti or Cr at the 2-10% level, we propose more recently octahedral semiconductors that contain the electropositive element to be substituted (e.g. In, Sn, Sc) in octahedral coordination. Also some Si-based structures including transition metal atoms have been shown to have the desired IB properties. For some of these compounds we have carried out thea in-lab experimental proparation and the verification that sub-bandgap photon absorption takes place, in agreement with the quantum modelling predictions of electronic structure and absorption coefficient. The current status of these different proposals and the last results obtained on these systems will be presented. (orig.)

  11. Second-surface silvered glass solar mirrors of very high reflectance

    Science.gov (United States)

    Butel, Guillaume P.; Coughenour, Blake M.; Macleod, H. Angus; Kennedy, Cheryl E.; Olbert, Blain H.; Angel, J. Roger P.

    2011-10-01

    This paper reports methods developed to maximize the overall reflectance second-surface silvered glass. The reflectance at shorter wavelengths is increased with the aid of a dielectric enhancing layer between the silver and the glass, while at longer wavelengths it is enhanced by use of glass with negligible iron content. The calculated enhancement of reflectance, compared to unenhanced silver on standard low-iron float glass, corresponds to a 4.4% increase in reflectance averaged across the full solar spectrum, appropriate for CSP, and 2.7% for CPV systems using triple junction cells. An experimental reflector incorporating these improvements, of drawn crown glass and a silvered second-surface with dielectric boost, was measured at NREL to have 95.4% solar weighted reflectance. For comparison, non-enhanced, wetsilvered reflectors of the same 4 mm thickness show reflectance ranging from 91.6 - 94.6%, depending on iron content. A potential drawback of using iron-free drawn glass is reduced concentration in high concentration systems because of the inherent surface errors. This effect is largely mitigated for glass shaped by slumping into a concave mold, rather than by bending.

  12. SeaWiFS long-term solar diffuser reflectance and sensor noise analyses.

    Science.gov (United States)

    Eplee, Robert E; Patt, Frederick S; Barnes, Robert A; McClain, Charles R

    2007-02-10

    The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced

  13. Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Whittles, Thomas J. [Stephenson; Veal, Tim D. [Stephenson; Savory, Christopher N. [Department; Thomas; Welch, Adam W. [Material; de Souza Lucas, Francisco Willian [Material; Gibbon, James T. [Stephenson; Birkett, Max [Stephenson; Potter, Richard J. [Department; Scanlon, David O. [Department; Thomas; Diamond Light Source Ltd., Diamond; Zakutayev, Andriy [Material; Dhanak, Vinod R. [Stephenson

    2017-11-17

    The earth-abundant material CuSbS2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa(1-x)Se2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.

  14. The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E. [Naval Research Laboratory, Washington, DC 20375 (United States); Purdue University, West Lafayette, Indiana 47907 (United States); Hages, Charles J. [Purdue University, West Lafayette, Indiana 47907 (United States); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Agrawal, Rakesh; Lundstrom, Mark S.; Gray, Jeffery L. [Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-07-11

    Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependence and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.

  15. Conceptual optical design and system engineering of the CLARREO/RS (reflected solar) instrument suite

    Science.gov (United States)

    Thompson, Patrick L.; Hill, Peter C.

    2012-09-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) program objectives are recommended by the NRC as a Tier-1 mission in its January 15, 2007 Earth Science Decadal Survey to be the key component of a future decade-scale, global climate change observing system. The purpose of CLARREO is to make SI-traceable absolute observations sensitive to the most critical, but least understood climate forcing phenomena, responses, and feedbacks. NASA / LaRC is the mission lead as well as the Infrared (IR) instrument suite development lead. The Reflected Solar (RS) instrument lead center has been assigned to GSFC where engineering risk reduction and science calibration demonstration studies are being conducted on flight-like ETUs in anticipation of entry into Phase A. The RS instrument suite (SOLARIS) is composed of multiple all-aluminum, slit-based, push-broom imaging spectroradiometers of nearly identical construction. Each 'box' will be optimized to provide better than 8nm spectral resolution (using multiple detector elements) over a specific spectral band covering the 320-2300nm total range with significant overlaps to aid calibration. Optical design, fabrication, and alignment will provide for 500m nadir resolutions over a full slit field of 100km from an approximately 600km polar orbit greater than 90% of the time. SNRs are likewise required to exceed 33 for λ board GPS radio occultation receivers and inherent inter-calibration compatibility with existing and future Earth science and operational missions, these measurements will provide a long-term benchmarking data record for the detection, projection, and attribution of changes to our planet's climate system. The CLARREO Project team successfully completed its Mission Concept Review (MCR) on November 17, 2010 at LaRC with high marks and remains dedicated to the mission and its instruments. However, the launch readiness date (LRD) is yet to be determined pending budget directive updates from the White

  16. Reflection driven wave turbulence in an open field and the structure of solar wind

    Science.gov (United States)

    Asgari-Targhi, M.; van Ballegooijen, A. A.

    2016-12-01

    We present results from an extensive study of an open magnetic field line positioned at the center of a coronal hole. We test the hypothesis that reflection-driven wave turbulence can provide the energy needed for heating the coronal plasma in the acceleration region of the fast solar wind. We use the reduced magnetohydrodynamic simulations to describe the wave turbulence where the simulated wave dissipation rates are compared with those needed to sustain the background atmosphere. We consider the effects of density fluctuations, which may significantly increase the turbulent heating rate. These density variations simulate the effects of compressive MHD waves on the Alfvén waves. We find that such variations significantly enhance the wave reflection and thereby the turbulent dissipation rates, producing enough heat to maintain the background atmosphere. We conclude that interactions between Alfvén and compressive waves may play an important role in the turbulent heating of the fast solar wind.

  17. Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands.

    Science.gov (United States)

    Li, Jie; Qin, Yao; Jin, Chao; Li, Ying; Shi, Donglu; Schmidt-Mende, Lukas; Gan, Lihua; Yang, Jinhu

    2013-06-07

    Monolayer and bilayer TiO2 hollow hemisphere/sphere (THH/THS) films consisting of highly ordered hexagonal-patterned THHs/THSs with thin shells of ~10 nm and different diameters of ~170 and ~470 nm have been prepared by templating of two-dimensional polystyrene sphere (PS) assembly films coupled with TiO2 sputtering/wet coating approaches. Owing to their precisely adjustable structural parameters, such as THH/THS shape and diameter as well as film layer thickness, the prepared THH/THS films exhibit widely tunable visible-light reflection and absorption bands, i.e. from 380 to 850 nm for reflection and 390 to 520 nm for absorption, respectively. The mechanism of the novel optical behaviors of the THH/THS films has been discussed in depth, combined with some calculations according to Bragg's law. In addition, photocatalytic experiments of RhB degradation employing the THH/THS films as recyclable catalysts have been conducted. The THH/THS films with controlled structures and precisely tunable optical properties are attractive for a wide range of applications, such as recyclable catalysts for photocatalysis, efficient oxide electrodes or scattering layers for solar cells, gas-permeable electrode materials for high-performance sensors and so on.

  18. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Directory of Open Access Journals (Sweden)

    Sung Heo

    2015-07-01

    Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  19. Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators

    Science.gov (United States)

    Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce

    A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  20. ZnO/Al{sub 2}O{sub 3} core/shell nanorods array as excellent anti-reflection layers on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Chun-Ming; Wang, Wei-Cheng [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Chen, Ching-Hsiang [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, 106, Taiwan (China); Chen, Liang-Yih, E-mail: sampras@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, 106, Taiwan (China); Chen, Miin-Jang, E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China)

    2016-09-01

    A simple, low-temperature hydrothermal method and atomic layer deposition (ALD) were used to fabricate ZnO nanostructures as subwavelength-structure antireflection layers (SWS ARLs) on Si solar cells. ZnO seed layers with wafer-scale uniformity were prepared, and ALD was used to reproduce two types of ZnO-based structures, nanorod arrays (NRAs) and nanotip arrays (NTAs). The study examined diammonium phosphate concentrations during growth, conducted simulations based on three-dimensional finite-difference time-domain and reflection analyses, performed X-ray diffractometer, field-emission scanning electron microscope, and high-resolution transmission electron microscope characterizations, measured total reflectance spectra by using a spectrophotometer with integrated spheres, and ran solar simulations to determine the efficiency of the Si solar cells. Coating the ZnO NTAs on the Si solar cells yielded a low total reflectance over a broad band range and produced omnidirectional light scattering on the cells, causing incident light to have a shallow penetration depth near the p–n junction and leading to an increase in short current density ({sub Jsc}). Coating the ZnO NTAs with an Al{sub 2}O{sub 3} shell induced continuous variation in the refractive index, further decreasing the total reflectance to approximately 5.5%, and protected the ZnO NTAs from the harmful acidic environment. Significantly increasing the J{sub sc} and η levels of the Si solar cells, the Al{sub 2}O{sub 3}@ZnO-NTA antireflection structure produced a high efficiency of 17.79%. Its superior performance, including low and wideband reflectance, a low process temperature, and a significant increase in efficiency, indicates the potential of this antireflective structure for enhancing solar cell efficiency in photovoltaic devices. - Highlights: • ZnO nanotip arrays were synthesized by hydrothermal methods as antireflection layer. • The total reflectance is low around 7.8% from 400 nm to 1000

  1. Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap.

    Science.gov (United States)

    Longhi, S; Marano, M; Laporta, P; Belmonte, M; Crespi, P

    2002-04-01

    We report on the experimental observation of superluminal reflection of picosecond optical pulses at 1.5 microm using a specially designed 30-cm-long fiber Bragg grating (FBG) that realizes a spectral reflectivity profile given by the superposition of two closely spaced Lorentzian lines. Probing pulses of 380 ps duration tuned midway between the two Lorentzian lines are reflected without appreciable distortion with a measured peak pulse advancement of approximately 60 ps. The achievement of the negative group delay is due to the interference of the two resonance modes of the FBG structure and has a close connection to the phenomenon of negative group velocity for pulse propagation in an inverted medium possessing a doublet line.

  2. Wide-band reflection nanoporous silicon multilayers with ellipsometric investigation of the material monolayer components

    Energy Technology Data Exchange (ETDEWEB)

    Xifre-Perez, E. [Departament d' Enginyeria Electronica, Electrica i Automatica, ETSE, Campus Sescelades, Universitat Rovira i Virgili, Avda. Paisos Catalans 26, 43007 Tarragona (Spain); Garcia-Caurel, E. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Pallares, J.; Ferre-Borrull, J. [Departament d' Enginyeria Electronica, Electrica i Automatica, ETSE, Campus Sescelades, Universitat Rovira i Virgili, Avda. Paisos Catalans 26, 43007 Tarragona (Spain); Marsal, L.F. [Departament d' Enginyeria Electronica, Electrica i Automatica, ETSE, Campus Sescelades, Universitat Rovira i Virgili, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)], E-mail: lluis.marsal@urv.cat

    2008-02-15

    Two multilayer structures made of nanoporous silicon layers are designed, fabricated and characterized. The layers that form the structures are characterized by spectroscopic ellipsometry to determine their refractive index and etch rate. The first structure is a periodic structure that consists of the repetition of two layers with different refractive indices and thicknesses. The second structure is formed by two different periodic structures stacked together, being their bandgaps centered at different wavelengths and with common ranges of high reflectivity. The reflectivity spectra for different incidence angles of the periodic and the stacked structures are measured and the existence of an omnidirectional bandgap is analyzed. A model of the stacked structure is realized and its simulated results are compared with the measured reflectivity spectra.

  3. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2016-09-09

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  4. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the

  5. Grapheme-color synesthesia subtypes: Stable individual differences reflected in posterior alpha-band oscillations.

    Science.gov (United States)

    Cohen, Michael X; Weidacker, Kathrin; Tankink, Judith; Scholte, H Steven; Rouw, Romke

    2015-01-01

    Grapheme-color synesthesia is a condition in which seeing letters and numbers produces sensations of colors (e.g., the letter R may elicit a sky-blue percept). Recent evidence implicates posterior parietal areas, in addition to lower-level sensory processing regions, in the neurobiological mechanisms involved in synesthesia. Furthermore, these mechanisms seem to differ for "projectors" (synesthetes who report seeing the color "out there in the real world") versus "associators" (synesthetes who report the color to be only an internal experience). Relatively little is known about possible electrophysiological characteristics of grapheme-color synesthesia. Here we used EEG to investigate functional oscillatory differences among associators, projectors, and non-synesthetes. Projectors had stronger stimulus-related alpha-band (~10 Hz) power over posterior parietal electrodes, compared to both associators and non-synesthetes. Posterior alpha activity was not statistically significantly different between associators from non-synesthetes. We also performed a test-retest assessment of the projector-associator score and found strong retest reliability, as evidenced by a correlation coefficient of .85. These findings demonstrate that the projector-associator distinction is highly reliable over time and is related to neural oscillations in the alpha band.

  6. Ultra-low reflection porous silicon nanowires for solar cell applications

    KAUST Repository

    Najar, Adel

    2012-01-01

    High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measurements show that the 35% reflectivity of the starting silicon wafer drops to 0.1% recorded for more than 10 μm long PSiNWs. Models based on cone shape of nanowires located in a circular and rectangular bases were used to calculate the reflectance employing the Transfert Matrix Formalism (TMF) of the PSiNWs layer. Using TMF, the Bruggeman model was used to calculate the refractive index of PSiNWs layer. The calculated reflectance using circular cone shape fits better the measured reflectance for PSiNWs. The remarkable decrease in optical reflectivity indicates that PSiNWs is a good antireflective layer and have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection. ©2012 Optical Society of America.

  7. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  8. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

    Science.gov (United States)

    2015-07-01

    Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver...Aluminum Gallium Arsenide (AlGaAs) Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kimberley A Olver

  9. Fabricating omnidirectional low-reflection films by nano-imprinting method for boosting solar power generation of silicon-based solar cells

    Science.gov (United States)

    Gao, Mengyu; Zhan, Xinghua; Chen, Fei; Si, Yang; Tie, Shengnian; Gao, Wei

    2017-07-01

    Low-reflection polyethylene terephthalate (PET) films are fabricated with nano-imprinting method. The films are then used to cover polycrystalline silicon solar cells. The morphological and optical properties of films are investigated. The films have periodic cylinder-like nanostructures and relatively low reflectivity in light incident angle ranging from 30∘ to 60∘. The nanostructures are with a period of 600 nm and height of 90 nm. Besides, the polycrystalline Si solar cells covered with the films exhibit 12% more power generation than the cells covered with glass. Nano-imprinting method offers a cost-effective approach to fabricate omnidirectional anti-reflection films, which could boost the power generation of Si solar cells. Additionally, the films also have potential applications in different types of solar cells due to its facile fabricating process.

  10. Assessment of polarization correction impact on the calibration of Terra MODIS reflective solar bands

    Science.gov (United States)

    Wu, Aisheng; Angal, Amit; Geng, Xu; Xiong, Xiaoxiong

    2017-09-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS), launched in 1999 on Terra and 2002 on Aqua spacecraft respectively, is a scanning radiometer that covers a wavelength range from 0.4 μm to 14.4 μm and scans the Earth over an angular range from -55° to +55°. After a few years in the Terra mission, it became extremely challenging to characterize the changes in the sensor gain and response versus scan angle (RVS) at short wavelengths due to significant degradation and increased polarization sensitivity. To better characterize the system-level degradation, the MODIS Characterization Support Team (MCST) developed an enhanced approach in Collection-6 (C6) L1B algorithm by supplementing the on-board calibration data with the Earth-scene response trends at various scan angles obtained from the pseudo-invariant desert sites. However, the trends at short wavelengths experienced significant impact due to the increased polarization sensitivity, especially at the end of scan. In this study, a polarization correction algorithm developed by MCST is applied to the Terra MODIS RSB response trends obtained from the desert sites. The trends after polarization correction are used to derive the gain and RVS based on the existing MODIS C6 calibration algorithm. Impact of the polarization correction is examined for gain, RVS and their fitting uncertainties over the entire mission. The results of this study provide useful information on how to further improve accuracy and stability of the calibrated L1B product.

  11. Cool roofs with high solar reflectance for the welfare of dairy farming animals

    Science.gov (United States)

    Santunione, G.; Libbra, A.; Muscio, A.

    2017-01-01

    Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer.

  12. Extraction of Sensitive Bands for Monitoring the Winter Wheat (Triticum aestivum Growth Status and Yields Based on the Spectral Reflectance.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available To extract the sensitive bands for estimating the winter wheat growth status and yields, field experiments were conducted. The crop variables including aboveground biomass (AGB, soil and plant analyzer development (SPAD value, yield, and canopy spectra were determined. Statistical methods of correlation analysis, partial least squares (PLS, and stepwise multiple linear regression (SMLR were used to extract sensitive bands and estimate the crop variables with calibration set. The predictive model based on the selected bands was tested with validation set. The results showed that the crop variables were significantly correlated with spectral reflectance. The major spectral regions were selected with the B-coefficient and variable importance on projection (VIP parameter derived from the PLS analysis. The calibrated SMLR model based on the selected wavelengths demonstrated an excellent performance as the R2, TC, and RMSE were 0.634, 0.055, and 843.392 for yield; 0.671, 0.017, and 1.798 for SPAD; and 0.760, 0.081, and 1.164 for AGB. These models also performed accurately and robustly by using the field validation data set. It indicated that these wavelengths retained in models were important. The determined wavelengths for yield, SPAD, and AGB were 350, 410, 730, 1015, 1185 and 1245 nm; 355, 400, 515, 705, 935, 1090, and 1365 nm; and 470, 570, 895, 1170, 1285, and 1355 nm, respectively. This study illustrated that it was feasible to predict the crop variables by using the multivariate method. The step-by-step procedure to select the significant bands and optimize the prediction model of crop variables may serve as a valuable approach. The findings of this study may provide a theoretical and practical reference for rapidly and accurately monitoring the crop growth status and predicting the yield of winter wheat.

  13. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots

    Science.gov (United States)

    Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.

    2017-11-01

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  14. Experimental determination of vacuum-level band alignments of SnS-based solar cells by photoelectron yield spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp; Shimizu, Tsubasa; Kawade, Daisuke [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Ramya, Kottadi; Ramakrishna Reddy, K. T. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2014-02-28

    Energy band offsets of SnS-based solar cell structure using various n-type semiconductors, such as CdS, SnS{sub 2}, In{sub 2}S{sub 3}, ZnIn{sub 2}Se{sub 4}, ZnO, and Mg{sub 0.3}In{sub 0.7}O, are evaluated by photoelectron yield spectroscopy. The valence band discontinuities are estimated to be 1.6 eV for both SnS/CdS and SnS/SnS{sub 2}, 0.9 eV for SnS/In{sub 2}S{sub 3}, 1.7 eV for SnS/ZnIn{sub 2}Se{sub 4}, and 1.8 eV for both SnS/ZnO and SnS/Mg{sub 0.3}Zn{sub 0.7}O. Using the valence band discontinuity values and the corresponding energy bandgaps of the layers, energy band diagrams are developed. This study implied a type-I heterostructure, appropriate for SnS-based solar cell, for the ZnIn{sub 2}Se{sub 4} or Mg{sub x}Zn{sub 1−x}O (0 ≤ x ≤ 0.3) interface and type-II for other junctions.

  15. Experimental determination of vacuum-level band alignments of SnS-based solar cells by photoelectron yield spectroscopy

    Science.gov (United States)

    Sugiyama, Mutsumi; Shimizu, Tsubasa; Kawade, Daisuke; Ramya, Kottadi; Ramakrishna Reddy, K. T.

    2014-02-01

    Energy band offsets of SnS-based solar cell structure using various n-type semiconductors, such as CdS, SnS2, In2S3, ZnIn2Se4, ZnO, and Mg0.3In0.7O, are evaluated by photoelectron yield spectroscopy. The valence band discontinuities are estimated to be 1.6 eV for both SnS/CdS and SnS/SnS2, 0.9 eV for SnS/In2S3, 1.7 eV for SnS/ZnIn2Se4, and 1.8 eV for both SnS/ZnO and SnS/Mg0.3Zn0.7O. Using the valence band discontinuity values and the corresponding energy bandgaps of the layers, energy band diagrams are developed. This study implied a type-I heterostructure, appropriate for SnS-based solar cell, for the ZnIn2Se4 or MgxZn1-xO (0 ≤ x ≤ 0.3) interface and type-II for other junctions.

  16. Defect properties of Sn- and Ge-doped ZnTe: suitability for intermediate-band solar cells

    Science.gov (United States)

    Flores, Mauricio A.

    2018-01-01

    We investigate the electronic structure and defect properties of Sn- and Ge- doped ZnTe by first-principles calculations within the DFT+GW formalism. We find that ({{{Sn}}}{{Zn}}) and ({{{Ge}}}{{Zn}}) introduce isolated energy levels deep in the band gap of ZnTe, derived from Sn-5s and Ge-4s states, respectively. Moreover, the incorporation of Sn and Ge on the Zn site is favored in p-type ZnTe, in both Zn-rich and Te-rich environments. The optical absorption spectra obtained by solving the Bethe–Salpeter equation reveals that sub-bandgap absorptance is greatly enhanced due to the formation of the intermediate band. Our results suggest that Sn- and Ge-doped ZnTe would be a suitable material for the development of intermediate-band solar cells, which have the potential to achieve efficiencies beyond the single-junction limit.

  17. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.

    Science.gov (United States)

    Chou, Stephen Y; Ding, Wei

    2013-01-14

    Three of central challenges in solar cells are high light coupling into solar cell, high light trapping and absorption in a sub-absorption-length-thick active layer, and replacement of the indium-tin-oxide (ITO) transparent electrode used in thin-film devices. Here, we report a proposal and the first experimental study and demonstration of a new ultra-thin high-efficiency organic solar cell (SC), termed "plasmonic cavity with subwavelength hole-array (PlaCSH) solar cell", that offers a solution to all three issues with unprecedented performances. The ultrathin PlaCSH-SC is a thin plasmonic cavity that consists of a 30 nm thick front metal-mesh electrode with subwavelength hole-array (MESH) which replaces ITO, a thin (100 nm thick) back metal electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average absorption-length). Experimentally, the PlaCSH-SCs have achieved (1) light coupling-efficiency/absorptance as high as 96% (average 90%), broad-band, and Omni acceptance (light coupling nearly independent of both light incident angle and polarization); (2) an external quantum efficiency of 69% for only 27% single-pass active layer absorptance; leading to (3) a 4.4% power conversion efficiency (PCE) at standard-solar-irradiation, which is 52% higher than the reference ITO-SC (identical structure and fabrication to PlaCSH-SC except MESH replaced by ITO), and also is among the highest PCE for the material system that was achievable previously only by using thick active materials and/or optimized polymer compositions and treatments. In harvesting scattered light, the Omni acceptance can increase PCE by additional 81% over ITO-SC, leading to a total 175% increase (i.e. 8% PCE). Furthermore, we found that (a) after formation of PlaCSH the light reflection and absorption by MESH are reduced by 2 to 6 fold from the values when it is alone; and (b) the sheet resistance of a 30 nm thick MESH is 2.2 ohm/sq or less-4.5 fold or more lower

  18. Performance of "Moth Eye" Anti-Reflective Coatings for Solar Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.; Kane, M.; Jiang, P.

    2011-03-14

    An inexpensive, effective anti-reflective coating (ARC) has been developed at the University of Florida to significantly enhance the absorption of light by silicon in solar cells. This coating has nano-scale features, and its microstructure mimics that of various night active insects (e.g. a moth's eye). It is a square array of pillars, each about 700 nm high and having a diameter of about 300 nm. Samples of silicon having this coating were exposed either to various combinations of either elevated temperature and humidity or to gamma irradiation ({sup 60}Co) at the Savannah River National Laboratory, or to a broad spectrum ultraviolet light and to a 532 nm laser light at the University of Florida. The anti-reflective properties of the coatings were unaffected by any of these environmental stresses, and the microstructure of the coating was also unaffected. In fact, the reflectivity of the gamma irradiated ARC became lower (advantageous for solar cell applications) at wavelengths between 400 and 1000 nm. These results show that this coating is robust and should be tested in actual systems exposed to either weather or a space environment. Structural details of the ARCs were studied to optimize their performance. Square arrays performed better than hexagonal arrays - the natural moth-eye coating is indeed a square array. The optimal depth of the templated nanopillars in the ARC was investigated. A wet etching technology for ARC formation was developed that would be less expensive and much faster than dry etching. Theoretical modeling revealed that dimple arrays should perform better than nipple arrays. A method of fabricating both dimple and nipple arrays having the same length was developed, and the dimple arrays performed better than the nipple arrays, in agreement with the modeling. The commercial viability of the technology is quite feasible, since the technology is scalable and inexpensive. This technology is also compatible with current industrial

  19. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  20. Withholding planned speech is reflected in synchronized beta-band oscillations

    Directory of Open Access Journals (Sweden)

    Vitória ePiai

    2015-10-01

    Full Text Available When engaged in a conversation, speakers sometimes have to withhold a planned response, for example, before it is their turn to speak. In the present study, using magnetoencephalography outside of a conversational setting, we investigate the oscillatory brain mechanisms involved in the process of withholding a planned verbal response until it is time to speak. Our participants viewed a sequence of four random consonant strings and one pseudoword, which they had to pronounce when the fifth string (the imperative stimulus was presented. The pseudoword appeared either as the fourth or fifth stimulus in the sequence, creating two conditions. In the withhold condition, the pseudoword was the fourth string and the verbal response was withheld until the imperative stimulus was presented. In the control condition, the fifth string was the pseudoword, so no response was withheld. We compared oscillatory responses to the withhold relative to the control condition in the time period preceding speech. Alpha-beta power (8-30Hz decreased over occipital sensors in the withhold condition relative to the control condition. Source-level analysis indicated a posterior source (i.e., occipital cortex associated with the alpha-beta power decreases. This occipital alpha-beta desynchronization likely reflects attentional allocation to the upcoming imperative stimulus. Moreover, beta (12-20Hz power increased over frontal sensors. Source-level analysis indicated a frontal source (i.e., middle and superior frontal gyri associated with the beta-power increases. We interpret the frontal beta synchronization to reflect a mechanism aiding the maintenance of the current motor or cognitive state. Our results provide a window into a possible oscillatory mechanism implementing the ability of speakers to withhold a planned verbal response until they have to speak.

  1. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-09-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = | n real/ n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  2. Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 These test methods cover the measurement of solar energy transmittance and reflectance (terrestrial) of materials in sheet form. Method A, using a spectrophotometer, is applicable for both transmittance and reflectance and is the referee method. Method B is applicable only for measurement of transmittance using a pyranometer in an enclosure and the sun as the energy source. Specimens for Method A are limited in size by the geometry of the spectrophotometer while Method B requires a specimen 0.61 m2 (2 ft2). For the materials studied by the drafting task group, both test methods give essentially equivalent results. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    Science.gov (United States)

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  4. Thermal implications of interactions between insulation, solar reflectance, and fur structure in the summer coats of diverse species of kangaroo.

    Science.gov (United States)

    Dawson, Terence J; Maloney, Shane K

    2017-04-01

    Not all of the solar radiation that impinges on a mammalian coat is absorbed and converted into thermal energy at the coat surface. Some is reflected back to the environment, while another portion is reflected further into the coat where it is absorbed and manifested as heat at differing levels. Substantial insulation in a coat limits the thermal impact at the skin of solar radiation, irrespective where in the coat it is absorbed. In coats with low insulation, the zone where solar radiation is absorbed may govern the consequent heat load on the skin (HL-SR). Thin summer furs of four species of kangaroo from differing climatic zones were used to determine how variation in insulation and in coat spectral and structural characteristics influence the HL-SR. Coat depth, structure, and solar reflectance varied between body regions, as well as between species. The modulation of solar radiation and resultant heat flows in these coats were measured at low (1 m s-1) and high (6 m s-1) wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum similar to solar radiation was used as a proxy for the sun. We established that coat insulation was largely determined by coat depth at natural fur lie, despite large variations in fibre density, fibre diameter, and fur mass. Higher wind speed decreased coat insulation, but depth still determined the overall level. A multiple regression analysis that included coat depth (insulation), fibre diameter, fibre density, and solar reflectance was used to determine the best predictors of HL-SR. Only depth and reflectance had significant impacts and both factors had negative weights, so, as either insulation or reflectance increased, HL-SR declined, the larger impact coming from coat reflectance. This reverses the pattern observed in deep coats where insulation dominates over effects of reflectance. Across all coats, as insulation declined, reflectance increased. An

  5. Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate

    Science.gov (United States)

    Cunningham, Fred G.

    1963-01-01

    A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.

  6. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  7. Chlorophyll-a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference

    Science.gov (United States)

    Hu, Chuanmin; Lee, Zhongping; Franz, Bryan

    2011-01-01

    A new empirical algorithm is proposed to estimate surface chlorophyll-a concentrations (Chl) in the global ocean for Chl less than or equal to 0.25 milligrams per cubic meters (approximately 77% of the global ocean area). The algorithm is based on a color index (CI), defined as the difference between remote sensing reflectance (R(sub rs), sr(sup -1) in the green and a reference formed linearly between R(sub rs) in the blue and red. For low Chl waters, in situ data showed a tighter (and therefore better) relationship between CI and Chl than between traditional band-ratios and Chl, which was further validated using global data collected concurrently by ship-borne and SeaWiFS satellite instruments. Model simulations showed that for low Chl waters, compared with the band-ratio algorithm, the CI-based algorithm (CIA) was more tolerant to changes in chlorophyll-specific backscattering coefficient, and performed similarly for different relative contributions of non-phytoplankton absorption. Simulations using existing atmospheric correction approaches further demonstrated that the CIA was much less sensitive than band-ratio algorithms to various errors induced by instrument noise and imperfect atmospheric correction (including sun glint and whitecap corrections). Image and time-series analyses of SeaWiFS and MODIS/Aqua data also showed improved performance in terms of reduced image noise, more coherent spatial and temporal patterns, and consistency between the two sensors. The reduction in noise and other errors is particularly useful to improve the detection of various ocean features such as eddies. Preliminary tests over MERIS and CZCS data indicate that the new approach should be generally applicable to all existing and future ocean color instruments.

  8. Method and tool to reverse the charges in anti-reflection films used for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vivek; Tracy, Clarence

    2017-01-31

    A method is provided for making a solar cell. The method includes providing a stack including a substrate, a barrier layer disposed on the substrate, and an anti-reflective layer disposed on the barrier layer, where the anti-reflective layer has charge centers. The method also includes generating a corona with a charging tool and contacting the anti-reflective layer with the corona thereby injecting charge into at least some of the charge centers in the anti-reflective layer. Ultra-violet illumination and temperature-based annealing may be used to modify the charge of the anti-reflective layer.

  9. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of...... Zn to passivate those surface states. Focusing future research on Zn-based buffers is expected to significantly improve the open circuit voltage and efficiency of pure-sulfide Cu2ZnSnS4 solar cells....

  10. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    Science.gov (United States)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  11. Band Edge Positions and Their Impact on the Simulated Device Performance of ZnSnN2-Based Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Arca, Elisabetta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fioretti, Angela [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lany, Stephan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Teeter, Glenn R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melamed, Celeste [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pan, Jie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Toberer, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zakutayev, Andriy A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-07

    ZnSnN2 (ZTN) has been proposed as a new earth abundant absorber material for PV applications. While carrier concentration has been reduced to values suitable for device implementation, other properties such as ionization potential, electron affinity and work function are not known. Here, we experimentally determine the value of ionization potential (5.6 eV), electron affinity (4.1 eV) and work function (4.4 eV) for ZTN thin film samples with Zn cation composition Zn/(Zn+Sn) = 0.56 and carrier concentration n = 2x10^19 cm^-3. Using both experimental and theoretical results, we build a model to simulate the device performance of a ZTN/Mg:CuCrO2 solar cell, showing a potential efficiency of 23% in the limit of no defects present. We also investigate the role of band tails and recombination centers on the cell performance. In particular device simulations show that band tails are highly detrimental to the cell efficiency, and recombination centers are a major limitation if present in concentration comparable to the net carrier density. The effect of the position of the band edges of the p-type junction partner was assessed too. Through this study, we determine the major bottlenecks for the development of ZTN-based solar cell and identify avenues to mitigate them.

  12. Reflected solar radiation from horizontal, vertical and inclined surfaces: ultraviolet and visible spectral and broadband behaviour due to solar zenith angle, orientation and surface type.

    Science.gov (United States)

    Turner, J; Parisi, A V; Turnbull, D J

    2008-07-24

    Ultraviolet (UV) radiation affects human life and UV exposure is a significant everyday factor that individuals must be aware of to ensure minimal damaging biological effects to themselves. UV exposure is affected by many complex factors. Albedo is one factor, involving reflection from flat surfaces. Albedo is defined as the ratio of reflected (upwelling) irradiance to incident (downwelling) irradiance and is generally accepted only for horizontal surfaces. Incident irradiance on a non horizontal surface from a variety of incident angles may cause the reflectivity to change. Assumptions about the reflectivity of a vertical surface are frequently made for a variety of purposes but are rarely quantified. As urban structures are dominated by vertical surfaces, using albedo to estimate influence on UV exposure is limiting when incident (downwelling) irradiance is not normal to the surface. Changes to the incident angle are affected by the solar zenith angle, surface position and orientation and surface type. A new characteristic describing reflection from a surface has been used in this research. The ratio of reflected irradiance (from any surface position of vertical, horizontal or inclined) to global (or downwelling) irradiance (RRG) has been calculated for a variety of metal building surfaces in winter time in the southern hemisphere for both the UV and visible radiation spectrum, with special attention to RRG in the UV spectrum. The results show that the RRG due to a vertical surface can exceed the RRG due to a horizontal surface, at smaller solar zenith angles as well as large solar zenith angles. The RRG shows variability in reflective capacities of surface according to the above mentioned factors and present a more realistic influence on UV exposure than albedo for future investigations. Errors in measuring the RRG at large solar zenith angles are explored, which equally highlights the errors in albedo measurement at large solar zenith angles.

  13. Revealing the Chemistry between Band Gap and Binding Energy for Lead-/Tin-Based Trihalide Perovskite Solar Cell Semiconductors.

    Science.gov (United States)

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-01-23

    A relationship between reported experimental band gaps (solid) and DFT-calculated binding energies (gas) is established, for the first time, for each of the four ten-membered lead (or tin) trihalide perovskite solar cell semiconductor series examined in this study, including CH3 NH3 PbY3 , CsPbY3 , CH3 NH3 SnY3 and CsSnY3 (Y=I(3-x) Brx=1-3 , I(3-x) Clx=1-3 , Br(3-x) Cl x=1-3 , and IBrCl). The relationship unequivocally provides a new dimension for the fundamental understanding of the optoelectronic features of solid-state solar cell thin films by using the 0 K gas-phase energetics of the corresponding molecular building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, H. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States); Prioli, R. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro 22452-900 RJ (Brazil); Fischer, A. M.; Ponce, F. A., E-mail: ponce@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Kawabata, R. M. S.; Pinto, L. D.; Souza, P. L. [LabSem, CETUC, Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro 22452-900 RJ (Brazil); Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores – DISSE – PUC-Rio, RJ (Brazil); Jakomin, R. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores – DISSE – PUC-Rio, RJ (Brazil); Campus de Xerem, UFRJ, Duque de Caxias-RJ (Brazil); Pires, M. P. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores – DISSE – PUC-Rio, RJ (Brazil); Instituto de Física, UFRJ, Rio de Janeiro-RJ (Brazil)

    2016-07-21

    The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plastically relaxed QDs.

  15. Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion

    Science.gov (United States)

    Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak

    2018-02-01

    The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet–visible (UV–vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.

  16. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Manceau, Matthieu

    2010-01-01

    around a 1:2 mixing ratio. Roll-to-roll coated polymer solar cell devices were prepared under ambient conditions employing solution processing in all steps including the metallic back electrode that was printed as a grid giving semitransparent solar cell devices. Solar cell modules comprising 16 serially...... connected cells were prepared with a total module active area of 96 cm2. The devices were tested for operational stability under simulated sunlight (AM1.5G) and natural sunlight, and the photochemical stability of the polymer was examined using a combination of UV−vis and IR spectroscopy....

  17. Effects of composition and exposure on the solar reflectance of Portland cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem

    2001-12-21

    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Simulations of the influence of pavement albedo on air temperature in Los Angeles predict that increasing the albedo of 1,250 km2 of pavement by 0.25 would save cooling energy worth $15M yr-1, and reduce smog-related medical and lost-work expenses by $76M yr-1. Most sidewalks and a small fraction of roads and parking areas are paved with portland cement concrete, which can be made quite reflective through suitable choice of cement and aggregate. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Twenty-four mixes yielded substandard, ''rough'' concretes due to high, unmet aggregate water demand. The albedos of the remaining eight ''smooth'' concrete mixes ranged from 0.41 to 0.77 (mean 0.59). Simulated weathering, soiling, and abrasion each reduced average concrete albedo (mean decreases 0.06, 0.05, and 0.19, respectively), though some samples became slightly more reflective through weathering or soiling. Simulated rain (wetting) strongly depressed the albedos of concretes (mean decrease 0.23) until their surfaces were dried. Concrete albedo grew as the cement hydration reaction progressed (mean increase 0.08), but stabilized within six weeks of casting. White-cement concretes were on average significantly more reflective than gray-cement concretes. The albedo of the most-reflective white-cement concrete was 0.18 to 0.39 higher than that of the most-reflective gray-cement concrete, depending on state of exposure. Concrete albedo generally correlated with cement albedo and sand albedo, and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance

  18. High stability of benzotriazole and benzodithiophene containing medium band-gap polymer solar cell

    DEFF Research Database (Denmark)

    Unay, Hande; dos Reis Benatto, Gisele A.; Beliatis, Michail J.

    2018-01-01

    tests showed that most of the degradation was provoked by failure of the encapsulation. The experiments indicated that P-SBTBDT solar cells are sensitive to light and oxygen but are strikingly stable under humid conditions. Further developments for minimizing the degradation effects using UV-filters......The improvement of polymer solar cell stability is a challenge for the scientists and has significant implications commercially. In this study, we investigated the stability of a novel P-SBTBDT active material applied in an inverted type solar cell. Detailed stability experiments comprising shelf...... life, laboratory weathering and outdoor testing were carried out according to ISOS testing guidelines. Shelf life showed that P-SBTBDT solar cells were very stable after 840 h with encapsulation. Although accelerated weathering aging tests are a very harsh, the devices remained stable after the burn...

  19. Three-Axis Attitude Control of Solar Sails Utilising Reflectivity Control Devices

    Science.gov (United States)

    Theodorou, Theodoros

    Solar sails are spacecraft that utilise the Solar Radiation Pressure, the force generated by impinging photons, to propel themselves. Conventional actuators are not suitable for controlling the attitude of solar sails therefore specific attitude control methods have been devised to tackle this. One of these methods is to change the centre of pressure with respect to the center of mass thus creating a torque. Reflectivity Control Devices (RCDs) have been proposed and successfully used to change the centre of pressure. Current methods that utilise RCDs have control authority over two axis only with no ability to control the torque about the normal of the sail surface. This thesis extends the state of the art and demonstrates 3-axis control by generating arbitrary torque vectors within a convex polyhedron. Two different RCD materials are considered, transmission and diffusion technologies both compatible with the proposed concept. A number of metrics have been developed which facilitate the comparison of different sail configurations. One of these metics is the sun map which is a graphic representation of the sun angles for which control authority is maintained. An iterative design process is presented which makes use of the metrics developed and aids in the design of a sail which meets the mission requirements and constraints. Moreover, the effects of different parameters on the performance of the proposed control concept are discussed. For example it is shown that by alternating the angle between the edge and middle RCDs the control authority increases. The concept's scalability has been investigated and a hybrid control scheme has been devised which makes use of both RCDs and reaction wheels. The RCDs are complemented by the reaction wheels to achieve higher slew rates while in turn the RCDs desaturate the reaction wheels. Finally, a number of simulations are conducted to verify the validity of the proposed concept.

  20. Use of Incident and Reflected Solar Particle Beams to Trace the Topology of Magnetic Clouds

    Science.gov (United States)

    Tan, Lun C.; Malandraki, Olga E.; Reames, Donald V.; Ng, Chee K.; Wang, Linghua; Dorrian, Gareth

    2012-05-01

    Occasionally, large solar energetic particle (SEP) events occur inside magnetic clouds (MCs). In this work, the onset time analysis, the peak intensity analysis, and the decay phase analysis of SEPs are used to investigate two large SEP events inside MCs: the 1998 May 2 and 2002 April 21 events. The onset time analysis of non-relativistic electrons and ~MeV nucleon-1 heavy ions shows the stability of the magnetic loop structure during a period of a few hours in the events examined. The joint analysis of pitch-angle distributions and peak intensities of electrons exhibits that, depending on the particle pitch angle observed at 1 AU, in the April event the reflection point of particles may be distributed along a wide spatial range, implying that the magnetic loop is a magnetic bottle connected to the Sun with both legs. In contrast, in the May event particle reflection occurs abruptly at the magnetic mirror formed by a compressed field enhancement behind the interplanetary shock, consistent with its open field line topology.

  1. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)]. E-mail: pablop@etsit.upm.es; Sanchez, K. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J.C. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J.J. [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2007-05-31

    Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.

  2. Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages

    Directory of Open Access Journals (Sweden)

    Shuwang Yi

    2018-01-01

    Full Text Available Two large band-gap polymers (PTPACF and PTPA2CF based on polytriphenylamine derivatives with the introduction of electron-withdrawing trifluoromethyl groups were designed and prepared by Suzuki polycondensation reaction. The chemical structures, thermal, optical and electrochemical properties were characterized in detail. From the UV-visible absorption spectra, the PTPACF and PTPA2CF showed the optical band gaps of 2.01 and 2.07 eV, respectively. The cyclic voltammetry (CV measurement displayed the deep highest occupied molecular orbital (HOMO energy levels of −5.33 and −5.38 eV for PTPACF and PTPA2CF, respectively. The hole mobilities, determined by field-effect transistor characterization, were 2.5 × 10−3 and 1.1 × 10−3 cm2 V−1 S−1 for PTPACF and PTPA2CF, respectively. The polymer solar cells (PSCs were tested under the conventional device structure of ITO/PEDOT:PSS/polymer:PC71BM/PFN/Al. All of the PSCs showed the high open circuit voltages (Vocs with the values approaching 1 V. The PTPACF and PTPA2CF based PSCs gave the power conversion efficiencies (PCEs of 3.24% and 2.40%, respectively. Hence, it is a reliable methodology to develop high-performance large band-gap polymer donors with high Vocs through the feasible side-chain modification.

  3. The Solar Reflectance Index as a Tool to Forecast the Heat Released to the Urban Environment: Potentiality and Assessment Issues

    Directory of Open Access Journals (Sweden)

    Alberto Muscio

    2018-02-01

    Full Text Available Overheating of buildings and urban areas is a more and more severe issue in view of global warming combined with increasing urbanization. The thermal behavior of urban surfaces in the hot seasons is the result of a complex balance of construction and environmental parameters such as insulation level, thermal mass, shielding, and solar reflective capability on one side, and ambient conditions on the other side. Regulations makers and the construction industry have favored the use of parameters that allow the forecasting of the interaction between different material properties without the need for complex analyses. Among these, the solar reflectance index (SRI takes into account solar reflectance and thermal emittance to predict the thermal behavior of a surface subjected to solar radiation through a physically rigorous mathematical procedure that considers assigned air and sky temperatures, peak solar irradiance, and wind velocity. The correlation of SRI with the heat released to the urban environment is analyzed in this paper, as well as the sensitivity of its calculation procedure to variation of the input parameters, as possibly induced by the measurement methods used or by the material ageing.

  4. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Zuo, Lijian; Fu, Weifei

    2012-01-01

    To increase the open circuit voltage (VOC) of polymer solar cells based on diketopyrrolopyrrole (DPP) containing polymers, the weakly electron-withdrawing thiophene-3,4-dicarboxylate unit was introduced into the polymer backbone. Two ester group functionalized DPP containing polymers, PCTDPP...

  5. Effect of Atmospheric Absorption Bands on the Optimal Design of Multijunction Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    2017-06-26

    Designing terrestrial multijunction (MJ) cells with 5+ junctions is challenging, in part because the presence of atmospheric absorption bands creates a design space with numerous local maxima. Here we introduce a new taxonomical structure which facilitates both numerical convergence and the visualization of the resulting designs.

  6. Reflections

    Indian Academy of Sciences (India)

    REFLECTIONS. A freer life and independent work made of the quiet, dreamy boy a happy, outgoing, universally liked young man. He also began to familiarize himself with classical German literature. Though at first he was acquainted only with Milan and Pavia, Italy made a great impression on him even with this limitation.

  7. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  8. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)

    2017-02-28

    Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS

  9. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    Science.gov (United States)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  10. Influence of the solar radiation on the WI-FI networks performance in the 5 ghz band (802.11a)

    OpenAIRE

    Carlos Orlando Chávez

    2011-01-01

    The fundamental intention of this investigation was the analysis of the influence of the solar radiation on the Wi-Fi networks performance that operate in the 5 GHz band (802.11a), with the purpose of determining to what extent the incident solar radiation affects the performance of these networks in terms of throughput and the percentage of lost packages. For the data collection of performance a test Wi-Fi network was designed and implemented operating in the 5 GHz band formed in Ad-Hoc mode...

  11. Detection of Solar Rotational Variability in the LYRA 190 - 222 nm Spectral Band

    OpenAIRE

    Shapiro, A. V.; Shapiro, A. I.; Dominique, M.; Dammasch, I. E.; Wehrli, C.; Rozanov, E; Schmutz, W.

    2012-01-01

    We analyze the variability of the spectral solar irradiance during the period from 7 January, 2010 until 20 January, 2010 as measured by the Herzberg channel (190-222 nm) of the Large Yield RAdiometer (LYRA) onboard PROBA2. In this period of time observations by the LYRA nominal unit experienced degradation and the signal produced by the Herzberg channel frequently jumped from one level to another. Both these factors significantly complicates the analysis. We present the algorithm which allow...

  12. Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Larsen-Olsen, Thue Trofod; Andreasen, Birgitta

    2011-01-01

    films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL–1. The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL–1....... This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each...... of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were...

  13. Development of Anti-Reflection Coating Layer for Efficiency Enhancement of ZnO Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chanta, E; Bhoomanee, C; Gardchareon, A; Wongratanaphisan, D; Phadungdhitidhada, S; Choopun, S

    2015-09-01

    In this research, we investigated the effects of ZnO anti-reflection coating layers on power conversion efficiency enhancement of ZnO dye-sensitized solar cells. ZnO thin films were prepared by rf-magnetron sputtering by varying sputtering time of 10, 30, 60, 80, 100 min. Surface morphology, thickness and optical reflective index were investigated by field emission scanning electron microscopy and ellipsometry. Then, transmittance and reflectance were investigated by UV-vis spectroscopy. Furthermore, we found that ZnO anti-reflection coating layers with sputtering time of 30 and 60 min showed lower reflection and higher transmission than that of reference film. In addition, ZnO anti-reflection coating layers have rough surface with sputtering rate has 2.14 nm/min. Thus, the ZnO anti-reflection coating layers with sputtering time in the range of 10-60 min have a potential as anti-reflection coating applications. The ZnO anti-reflection coating layers were used in ZnO dye-sensitized solar cells and exhibited a short circuit current density of 5.16 mA/cm2 and the maximum power conversion efficiency of 1.54% from a sample with sputtering time at 60 min while the reference cell exhibited 3.88 mA/cm2 and 1.19%, respectively. Thus, we suggested an alternative improvement of ZnO DSSCs by adding the ZnO anti-reflection coating layers.

  14. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    Science.gov (United States)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  15. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Fauchez, Thomas [Laboratoire d’Optique Atmosphèrique (LOA), UMR 8518, Université Lille 1, Villeneuve d’Ascq (France); Rossi, Loic; Stam, Daphne M. [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2017-06-10

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.

  16. A Highly Crystalline Wide-Band-Gap Conjugated Polymer toward High-Performance As-Cast Nonfullerene Polymer Solar Cells.

    Science.gov (United States)

    Jiang, Haiying; Wang, Zhen; Zhang, Lianjie; Zhong, Anxing; Liu, Xuncheng; Pan, Feilong; Cai, Wanzhu; Inganäs, Olle; Liu, Yi; Chen, Junwu; Cao, Yong

    2017-10-18

    A new wide-band-gap conjugated polymer PBODT was successfully synthesized that showed high crystallinity and was utilized as the active material in nonfullerene bulk-heterojunction polymer solar cells (PSCs). The photovoltaic devices based on the as-cast blend films of PBODT with ITIC and IDIC acceptors showed notable power conversion efficiencies (PCEs) of 7.06% and 9.09%, with high open-circuit voltages of 1.00 and 0.93 V that correspond to low energy losses of 0.59 and 0.69 eV, respectively. In the case of PBODT:ITIC, lower exciton quenching efficiency and monomolecular recombination are found for devices with small driving force. On the other hand, the relatively higher driving force and suppressed monomolecular recombination for PBODT:IDIC devices are identified to be the reason for their higher short-circuit current density (Jsc) and higher PCEs. In addition, when processed with the nonchlorinated solvent 1,2,4-trimethylbenzene, a good PCE of 8.19% was still achieved for the IDIC-based device. Our work shows that such wide-band-gap polymers have great potential for the environmentally friendly fabrication of highly efficient PSCs.

  17. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 2. Overview).

    Energy Technology Data Exchange (ETDEWEB)

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  18. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    Energy Technology Data Exchange (ETDEWEB)

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  19. Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration

    Science.gov (United States)

    Xiong, Xiaoxiong; Chen, Hongda

    2010-01-01

    MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues.

  20. Broadband anti-reflection coating using dielectric Si3N4 nanostructures. Application to amorphous-Si-H solar cells

    Science.gov (United States)

    Elshorbagy, M. H.; Abdel-Hady, Kamal; Kamal, Hala; Alda, Javier

    2017-05-01

    Absorption of amorphous-Si hydrogenated (aSi-H) solar cells can be enhanced by using dielectric nanostructures made of Si3N4 that work like antireflection coatings. The analysis focus on the short-circuit current delivered by the cell under solar irradiance, and it is made taking into account every layer and structure of an aSi-H cell. A customized design of the antireflection coating in the form of nanostructured dielectric layers, produces a short-circuit current enhancement of 15.2% with respect to the reference flat solar cell, and a lower reflectivity of the cell. Three different geometries of linear nanostructures have been analyzed and compared with quite similar results among them. An improvement in performance has been also obtained for realizable geometrical dimensions that could be fabricated while maintaining electric conductivity of the front contact.

  1. A note on the effect of reflected solar radiation on airborne and ground measurements in the thermal infrared

    Science.gov (United States)

    Whitehead, V. S.

    1971-01-01

    The magnitude of thermal solar radiation reflected from water surfaces is considered. It is shown both theoretically and by field observation that, for instruments with small fields of view, the reflected thermal solar radiation can contribute significantly to the measured energy. Comparison of thermal scanner data taken from aircraft at a 16 deg azimuth angle from the mirror point of the sun over the open ocean with data taken at a 164 deg anzimuth angle from the mirror point of the sun at the same angle from nadir is indicative of a difference of 2.8 K in the equivalent black body radiation temperature. Observations taken from a surface vessel into sunglint 80 deg from nadir are indicative of an equivalent black body radiation temperature that is 34 K warmer than the temperature obtained at a similar nadir angle away from the sunglint.

  2. Characterization of 2D macroporous silicon photonic crystals: Improving the photonic band identification in angular-dependent reflection spectroscopy in the mid-IR

    Energy Technology Data Exchange (ETDEWEB)

    Kral, Zdenek [Nephos, Universitat Rovira i Virgili, Campus Sescelades, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)], E-mail: zdenek.kral@urv.cat; Ferre-Borrull, Josep; Pallares, Josep [Nephos, Universitat Rovira i Virgili, Campus Sescelades, Avda. Paisos Catalans 26, 43007 Tarragona (Spain); Trifonov, Trifon; Rodriguez, Angel; Alcubilla, Ramon [MNT, Universitat Politecnica de Catalunya, Campus Nord, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Marsal, Lluis F. [Nephos, Universitat Rovira i Virgili, Campus Sescelades, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)

    2008-02-15

    We report the experimental characterization of two-dimensional (2D) macroporous silicon photonic crystals using angular-dependent reflectance spectroscopy in the mid-IR region. We have investigated different sample structures and we have shown that an adequate post-processing of the measured data is crucial in order to recognize the photonic bands and to achieve a good agreement of the measured data with the theoretical predictions for the studied structures.

  3. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    Science.gov (United States)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  4. Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, Salah M. [North Carolina State Univ., Raleigh, NC (United States); Hauser, John R. [North Carolina State Univ., Raleigh, NC (United States); Elmasry, Nadia [North Carolina State Univ., Raleigh, NC (United States); Colter, Peter C. [North Carolina State Univ., Raleigh, NC (United States); Bradshaw, G. [North Carolina State Univ., Raleigh, NC (United States); Carlin, C. Z. [North Carolina State Univ., Raleigh, NC (United States); Samberg, J. [North Carolina State Univ., Raleigh, NC (United States); Edmonson, Kenneth [Spectrolab, Inc., Sylmar, CA (United States)

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  5. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    Science.gov (United States)

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  7. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths

    Science.gov (United States)

    Grenfell, Thomas C.; Warren, Stephen G.; Mullen, Peter C.

    1994-09-01

    The variation of snow albedo with wavelength across the solar spectrum from 0.3 μm in the ultraviolet (UV) to 2.5 μm in the near infrared (IR) was measured at Amundsen-Scott South Pole Station during the Antarctic summers of 1985-1986 and 1990-1991. Similar results were obtained at Vostok Station in summer 1990-1991. The albedo has a uniformly high value of 0.96-0.98 across the UV and visible spectrum, nearly independent of snow grain size and solar zenith angle, and this value probably applies throughout the interior of Antarctica. The albedo in the near IR is lower, dropping below 0.15 in the strong absorption bands at 1.5 and 2.0 μm; and it is quite sensitive to grain size and somewhat sensitive to zenith angle. Near-IR albedos were slightly lower at Vostok than at South Pole, but day-to-day variations in the measured grain size due to precipitation, drifting, and metamorphism were found to cause temporal variations in near-IR albedo larger than those due to any systematic geographical change from South Pole to Vostok. The spectrally averaged albedos ranged from 0.80 to 0.85 for both overcast and clear skies, in agreement with measurements by others at South Pole and elsewhere in Antarctica. Using a two-layer radiative transfer model, the albedo can be explained over the full wavelength range. Tests were made to correct for systematic errors in determining spectral albedo. Under clear skies at about 3000-m elevation the diffuse fraction of downward irradiance varied from 0.4 in the near UV to less than 0.01 in the near IR; knowledge of this fraction is required to correct the measured irradiance for the instrument's deviation from a perfect cosine-response. Furthermore, the deviation from cosine response is itself a function of wavelength. Under clear skies a significant error in apparent albedo can result if the instrument's cosine collector is not parallel to the surface; e.g., if the instrument is leveled parallel to the horizon, but the local snow surface

  8. High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination.

    Science.gov (United States)

    Zeng, Qingsen; Hu, Lu; Cui, Jian; Feng, Tanglue; Du, Xiaohang; Jin, Gan; Liu, Fangyuan; Ji, Tianjiao; Li, Fenghong; Zhang, Hao; Yang, Bai

    2017-09-20

    Aqueous-processed nanocrystal solar cells have attracted increasing attention due to the advantage of its environmentally friendly nature, which provides a promising approach for large-scale production. The urgent affair is boosting the power conversion efficiency (PCE) for further commercial applications. The low PCE is mainly attributed to the imperfect device structure, which leads to abundant nonradiative recombination at the interfaces. In this work, an environmentally friendly and efficient method is developed to improve the performance of aqueous-processed CdTe nanocrystal solar cells. Polymer/CdTe planar heterojunction solar cells (PHSCs) with optimized band alignment are constructed, which results in reduced interfacial charge recombination, enhanced carrier collection efficiency and built-in field. Finally, a champion PCE of 5.9%, which is a record for aqueous-processed solar cells based on CdTe nanocrystals, is achieved after optimizing the photovoltaic device.

  9. Reversible order-disorder related band gap changes in Cu2ZnSn(S,Se)4 via post-annealing of solar cells measured by electroreflectance

    Science.gov (United States)

    Krämmer, Christoph; Huber, Christian; Zimmermann, Christian; Lang, Mario; Schnabel, Thomas; Abzieher, Tobias; Ahlswede, Erik; Kalt, Heinz; Hetterich, Michael

    2014-12-01

    We report on order-disorder related band gap changes in Cu2ZnSn(S,Se)4 solar cells which are induced by post-annealing. The band gap changes of the absorber are detected utilizing electroreflectance and analyzed by comparison with predictions of the stochastic Vineyard model. This yields a critical temperature of TC=195 °C above which the Cu2ZnSn(S,Se)4 absorber layer is entirely disordered within the Cu-Zn layers of the kesterite unit cell. The temporal evolution of the band gap during annealing shows that the equilibrium value is reached on a timescale in the order of hours, depending on the annealing temperature. In contrast to other experimental techniques, electroreflectance precisely measures the band gap and is not influenced by defect-mediated radiative recombination.

  10. A Compact W-Band Reflection-Type Phase Shifter with Extremely Low Insertion Loss Variation Using 0.13 µm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Deng

    2015-03-01

    Full Text Available This paper presents a reflection-type phase shifter (RTPS at W-band in a 0.13 µm complementary metal oxide semiconductor (CMOS process. The RTPS is composed of a 90° hybrid coupler and two identical reflection loads. Lumped-distributed element transmission line is introduced in the 90° hybrid coupler to reduce the chip size. Series inductor-capacitor (LC resonators are used as the reflective loads and parallel inductors are deployed to reduce insertion loss variation. By cascading two-stage RTPS, 90° phase shifting range and 10.5 dB insertion loss with 1 dB variations from 80 GHz to 90 GHz are achieved. An impressive 0.1 dB variation is obtained at 86 GHz.

  11. High saturation intensity in InAs/GaAs quantum dot solar cells and impact on the realization of the intermediate band concept at room-temperature

    Science.gov (United States)

    Li, Tian; Dagenais, Mario

    2017-02-01

    High optical saturation intensity at room temperature is reported for an ensemble of undoped quantum dots. The non-linearity of the light-generated-current under resonant excitation from the valence band to the intermediate band is shown to be made up of two components: a background two-photon absorption term and a resonant optical saturation term. It is argued that the solar intensity is much lower than the saturation intensities involved for the first and second transitions in the intermediate band solar cell under 1-sun illumination and therefore prevents exciting an appreciable amount of population in the terminal level that can be ionized to the continuum and generate an appreciable additional current. This additional current is required for enhancing the energy conversion efficiency of a solar cell based on the intermediate band concept. Operating at cryogenic temperatures leads to a reduction in the saturation intensity but it might not be sufficient for increasing the energy conversion efficiency, unless concentrated sun light, and/or high density of quantum dots, and/or quantum dots with a lifetime more comparable to the radiative lifetime are used. The conclusions of this paper are also expected to apply to other quantum dot systems.

  12. Constraining the pass-band of future space-based coronagraphs for observations of solar eruptions in the FeXIV 530.3 nm "green line"

    Science.gov (United States)

    Bemporad, Alessandro; Pagano, Paolo; Giordano, Silvio; Fineschi, Silvano

    2017-10-01

    Observations of the solar corona in the FeXIV 530.3 nm "green line" have been very important in the past, and are planned for future coronagraphs on-board forthcoming space missions such as PROBA-3 and Aditya. For these instruments, a very important parameter to be optimized is the spectral width of the band-pass filter to be centred over the "green line". Focusing on solar eruptions, motions occurring along the line of sight will Doppler shift the line profiles producing an emission that will partially fall out of the narrower pass-band, while broader pass-band will provide observations with reduced spectral purity. To address these issues, we performed numerical (MHD) simulation of CME emission in the "green line" and produced synthetic images assuming 4 different widths of the pass-band (Δλ = 20 Å, 10 Å, 5 Å, and 2 Å). It turns out that, as expected, during solar eruptions a significant fraction of "green line" emission will be lost using narrower filters; on the other hand these images will have a higher spectral purity and will contain emission coming from parcels of plasma expanding only along the plane of the sky. This will provide a better definition of single filamentary features and will help isolating single slices of plasma through the eruption, thus reducing the problem of superposition of different features along the line of sight and helping physical interpretation of limb events. For these reasons, we suggest to use narrower band passes (Δλ ≤ 2 Å) for the observations of solar eruptions with future coronagraphs.

  13. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum

    Directory of Open Access Journals (Sweden)

    Cesaroni Claudio

    2015-01-01

    Full Text Available This work presents a contribution to the understanding of the ionospheric triggering of L-band scintillation in the region over São Paulo state in Brazil, under high solar activity. In particular, a climatological analysis of Global Navigation Satellite Systems (GNSS data acquired in 2012 is presented to highlight the relationship between intensity and variability of the total electron content (TEC gradients and the occurrence of ionospheric scintillation. The analysis is based on the GNSS data acquired by a dense distribution of receivers and exploits the integration of a dedicated TEC calibration technique into the Ground Based Scintillation Climatology (GBSC, previously developed at the Istituto Nazionale di Geofisica e Vulcanologia. Such integration enables representing the local ionospheric features through climatological maps of calibrated TEC and TEC gradients and of amplitude scintillation occurrence. The disentanglement of the contribution to the TEC variations due to zonal and meridional gradients conveys insight into the relation between the scintillation occurrence and the morphology of the TEC variability. The importance of the information provided by the TEC gradients variability and the role of the meridional TEC gradients in driving scintillation are critically described.

  14. Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells

    Science.gov (United States)

    Shoji, Yasushi; Tamaki, Ryo; Okada, Yoshitaka

    2017-06-01

    We have investigated the performance of 10-layer stacked GaSb/GaAs quantum dot (QD) and quantum ring (QR) solar cells (SCs) having a type-II band alignment. For both SCs, the external quantum efficiency (EQE) increased in the longer wavelength region beyond GaAs bandedge wavelength of λ > 870 nm due to an additive contribution from GaSb/GaAs QD or QR layers inserted in the intrinsic region of p-i-n SC structure. The EQE of GaSb/GaAs QRSC was higher than that of QDSC at room temperature and the photoluminescence intensity from GaSb/GaAs QRs was stronger compared with GaSb/GaAs QDs. These results indicate that crystal quality of GaSb/GaAs QRs is superior to that of GaSb/GaAs QDs. Furthermore, a photocurrent production due to two-step photo-absorption via GaSb/GaAs QD states or QR states, ΔEQE was measured at low temperature and the ratio of two-step absorption to total carrier extraction defined as ΔEQE / (ΔEQE + EQE), was higher for GaSb/GaAs QRSC than that of QDSC. The ratio of GaSb/GaAs QRSC exceeds 80% over the wavelength region of λ = 950 - 1250 nm. This suggests that two-step absorption process is more dominant for carrier extraction from GaSb/GaAs QR structure.

  15. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells

    Science.gov (United States)

    Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P. R.

    2016-03-01

    It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly. Electronic supplementary information (ESI) available: (i) Experimental methods, (ii) optical images of devices with and without graphene oxide (GO), (iii) comparison of the power conversion efficiency (PCE) due to the GO coating and nitric acid doping, (iv) specular and diffuse reflectance measurements, (v) stability data of pristine graphene/silicon (Gr/Si) solar cells. See DOI: 10.1039/c5

  16. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  17. A NOVEL TECHNIQUE FOR IMPROVING THE EFFICIENCY OF A PHOTOVOLTAIC SOLAR CELL BASED ON THE BAND-TRAP IMPACT IONIZATION PHENOMENON

    Directory of Open Access Journals (Sweden)

    R. Zieba Falama

    2015-09-01

    Full Text Available In this paper, we consider a photovoltaic silicon solar cell in which the charge carriers are moved solitary. To evaluate the number of charge carriers in the solar cell, the proposed nonlinear reaction-diffusion equation describing the phenomena of carriers transport in solar cell under the effect of band-trap impact ionization has been solved. The results from this equation are solitary solutions. The maximum efficiency of the proposed model has been evaluated for various photo-generation coefficients. The range of the external applied electric field Eo to be avoided has been carried out. The conditions to reach the peak of the maximum efficiency have been also identified. The interest of the obtained results is firstly economical since it could be useful in avoiding strong and undesirable external applied electric field on solar cells. The second interest is that they permit to identify the approximate maximum efficiency value of solar cell band-trap impact ionization working in dynamical regime.

  18. Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses.

    Science.gov (United States)

    Baquedano, Estela; Torné, Lorena; Caño, Pablo; Postigo, Pablo A

    2017-12-14

    We investigated the fabrication of large-area (cm²) nanostructured glasses for solar cell modules with hydrophobic and hydrophilic properties using soft lithography and colloidal lithography. Both of these techniques entail low-cost and ease of nanofabrication. We explored the use of simple 1D and 2D nanopatterns (nanowires and nanocones) and the effect of introducing disorder in the nanostructures. We observed an increase in the transmitted light for ordered nanostructures with a maximum value of 99% for wavelengths >600 nm when ordered nanocones are fabricated on the two sides of the solar glass. They produced an increment in the efficiency of the packaged solar cell with respect to the glass without nanostructures. On the one hand, the wettability properties showed that the ordering of the nanostructures improved the hydrophobicity of the solar glasses and increased their self-cleaning capacity. On the other hand, the disordered nanostructures improved the hydrophilic properties of solar glasses, increasing their anti-fogging capacity. The results show that by selecting the appropriate nanopattern, the wettability properties (hydrophobic or hydrophilic) can be easily improved without decreasing the efficiency of the solar cell underneath.

  19. Sulfurization Growth of SnS Thin Films and Experimental Determination of Valence Band Discontinuity for SnS-Related Solar Cells

    Science.gov (United States)

    Sugiyama, Mutsumi; Murata, Yoshitsuna; Shimizu, Tsubasa; Ramya, Kottadi; Venkataiah, Chinna; Sato, Tomoaki; Ramakrishna Reddy, K. T.

    2011-05-01

    Tin sulphide is considered to be a potential candidate for the development of low cost polycrystalline thin film solar cells. The advantages of using sulfurization process to grow SnS films were demonstrated. Polycrystalline p-type SnS films were obtained by a simple dry process at 300 °C for 90 min. The sulfurization condition depends on the deposition method of the Sn precursor. Using single-phase SnS films, band discontinuities at SnS/CdS and SnO2/SnS heterointerfaces were measured by X-ray photoelectron spectroscopy. The valence band offsets were determined to be approximately 1.5 eV for SnS/CdS and 3.5 eV for SnO2/SnS interfaces. Using these values and the energy band gaps of the corresponding layers, the energy band diagram was developed. It indicated that the SnS/CdS heterojunction is of TYPE-II form of heterostructure. This result indicated that SnS-related solar cells with CdS as window layer do not have an ideal band structure that could give high conversion efficiency.

  20. SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF A REFLECTING LONGITUDINAL WAVE IN A CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Innes, D. E.; Inhester, B., E-mail: pankaj@kasi.re.kr [Max-Planck Institut für Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany)

    2013-12-10

    We report high resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) of intensity oscillations in a hot, T ∼ 8-10 MK, loop. The AIA images show a large coronal loop that was rapidly heated following plasma ejection from one of the loop's footpoints. A wave-like intensity enhancement, seen very clearly in the 131 and 94 Å channel images, propagated ahead of the ejecta along the loop, and was reflected at the opposite footpoint. The wave reflected four times before fading. It was only seen in the hot, 131 and 94 Å channels. The characteristic period and the decay time of the oscillation were ∼630 and ∼440 s, respectively. The phase speed was about 460-510 km s{sup –1} which roughly matches the sound speed of the loop (430-480 km s{sup –1}). The observed properties of the oscillation are consistent with the observations of Dopper-shift oscillations discovered by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation and with their interpretation as slow magnetoacoustic waves. We suggest that the impulsive injection of plasma, following reconnection at one of the loop footpoints, led to rapid heating and the propagation of a longitudinal compressive wave along the loop. The wave bounces back and forth a couple of times before fading.

  1. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  2. Turbulent Fluctuations in G-band and K-line Intensities Observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) Instrument

    Science.gov (United States)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.

    2012-12-01

    Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

  3. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q.Z. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, J.F., E-mail: shijf@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Wang, L.L.; Li, Y.J.; Zhong, L.W. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Xu, G., E-mail: xugang@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China)

    2016-07-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO{sub 2}/Na{sub 2}O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO{sub 2}/Na{sub 2}O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  4. Testing a solar-blind pyrometer

    Science.gov (United States)

    Ballestrín, J.; Marzo, A.; Cañadas, I.; Rodríguez, J.

    2010-12-01

    Surface temperatures are key parameters in many concentrated solar radiation applications. Pyrometric temperature measurement of solar irradiated material surfaces is the alternative to contact measurement techniques, which are inadequate for measuring the temperatures of such surfaces. However, reflected solar radiation is an important uncertainty variable in this non-contact methodology. A promising method for eliminating this solar perturbation is by using centred passband filters on the atmospheric solar absorption bands, creating solar-blind pyrometric systems. A commercial pyrometer has been tested in the wavelength band at around 1.4 µm in the solar furnace at Plataforma Solar de Almería, showing its advantages and limitations. An estimation of temperature measurement uncertainty for a real case is presented with theory and experiment in agreement: the higher the temperature, the lower the uncertainty. Another experiment has shown that the pyrometer measures temperature properly even through quartz windows in this spectral range.

  5. Radiometric gains of satellite sensors of reflected solar radiation - Results from NASA ER-2 aircraft measurements

    Science.gov (United States)

    Abel, Peter; Galimore, Reginald; Cooper, John

    1992-01-01

    A method for using congruent aircraft-satellite observations to calibrate a satellite sensor is presented. A calibrated spectroradiometer at an altitude of 19 km above White Sands, NM, is oriented to view White Sands at the satellite overpass time along the same view vector as the satellite sensor. Collected data are transformed into corresponding estimates of sensor band radiance at the satellite (derived from the aircraft measurements), and average count (from the sensor measurements). These are both averaged across the footprint of the spectroradiometer. Results are presented for the evolution of NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) (Bands 1 and 2) gain between November 1988 and October 1990, and for GOES-6 and GOES-7 VISSR/VAS visible bands during the same period. Estimates of uncertainty in the results are presented, as well as ideas for their reduction in future flights.

  6. Qualitative Analysis of the Time-Frequency Signature Induced by a Reflected L-Band Signal from Time Evolving Sea Surfaces

    CERN Document Server

    Coatanhay, Arnaud

    2013-01-01

    Passive remote sensing techniques have become more and more popular for detection and characterization purposes. The advantage of using the Global Navigation Satellite Systems (GNSS) are the well known signals emitted and the availability in most areas on Earth. In the present paper, L-Band signals (including GNSS signals) are considered for oceanographic purposes. The main interest in this contribution is the analysis of the signal reflected by an evolving sea surface using time-frequency transforms. The features which occur in this domain are examined in relation to the physical phenomena: interaction of the electromagnetic waves with the moving sea surface.

  7. Measurements of the dielectric properties of explosives and inert materials at millimeter wave frequencies (V-band and above) using free space reflection methods

    Science.gov (United States)

    Smith, Peter R.; Weatherall, James C.; Barber, Jeffrey; Yam, Kevin; Greca, Joseph; Smith, Barry T.

    2017-05-01

    We present a free space material measurement system operating in the E band (60-90 GHz) frequency range that uses calibration standards placed at the sample location to define the measurement reference plane directly at the sample surface. Measurement signal to noise is improved by using an aperture in radar absorbing material (RAM) to simplify the RF measurement environment. Measurements are provided that extend earlier work done in the 18-40 GHz frequency range. Data is extracted using numerical fitting of reflection-only data to a theoretical model based on geometric optics. System calibration, and results are presented.

  8. Ultra-Efficient Thermophotovoltaics Exploiting Spectral Filtering by the Photovoltaic Band-Edge

    CERN Document Server

    Ganapati, Vidya; Yablonovitch, Eli

    2016-01-01

    Thermophotovotaics convert thermal radiation from local heat sources to electricity. A new breakthrough in creating highly efficient thin-film solar cells can potentially enable thermophotovoltaic systems with unprecedented high efficiency. The current 28.8% single-junction solar efficiency record, by Alta Devices, was achieved by recognizing that a good solar cell needs to reflect infrared band-edge radiation at the back surface, to effectively recycle infrared luminescent photons. The effort to reflect band-edge luminescence in solar cells has serendipitously created the technology to reflect all infrared wavelengths, which can revolutionize thermophotovoltaics. We have never before had such high back reflectivity for sub-bandgap radiation, permitting step-function spectral control for the first time. Thus, contemporary efficiency advances in solar photovoltaic cells create the possibility of realizing a $>50\\%$ efficient thermophotovoltaic system.

  9. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: primoz@geofisica.unam.mx [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  10. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. I - Theory

    Science.gov (United States)

    Nakajima, Teruyuki; King, Michael D.

    1990-01-01

    A method is presented for determining the optical thickness and effective particle radius of stratiform cloud layers from reflected solar radiation measurements. A detailed study is presented which shows that the cloud optical thickness (tau c) and effective particle radius (r/e/) of water clouds can be determined solely from reflection function measurements at 0.75 micron and 2.16 microns, provided tau c is not less than 4 and r(e) is not less than 6 microns. For optically thin clouds, the retrieval becomes ambiguous, resulting in two possible solutions for the effective radius and optical thickness. Adding a third channel near 1.65 micron does not improve the situation noticeably, whereas the addition of a channel near 3.70 microns reduces the ambiguity in deriving the effective radius. The effective radius determined by the above procedure corresponds to the droplet radius at some optical depth within the cloud layer.

  11. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    Science.gov (United States)

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient.

  12. Role of the Fermi level in the formation of electronic band-tails and mid-gap states of hydrogenated amorphous silicon in thin-film solar cells

    Science.gov (United States)

    Bidiville, A.; Matsui, T.; Sai, H.; Matsubara, K.

    2017-09-01

    Hydrogenated amorphous silicon solar cells in p-i-n and n-i-p configurations were made with the intrinsic absorber layer deposited at different temperatures, between 200 and 350 °C. Using Fourier-transform photocurrent spectroscopy, the sub-gap absorption was measured, allowing the evaluation of the band-tail width and mid-gap defect quantity of the intrinsic absorber layer of the working device. When deposited at high temperature (>200 °C), p-i-n cells showed a larger performance decrease than n-i-p cells, along with broader band-tails as well as a larger number of defects created in the absorber layer. Hydrogen content measurements showed that for high temperature deposition (>200 °C), the Si-H bond becomes markedly less stable if the Fermi level of the intrinsic layer is shifted toward the valence band by an adjacent p-layer. Furthermore, by annealing samples at different stages of their layer stack deposition, the impact of the band-tail and mid-gap defect states on the open-circuit voltage and on the fill factor was evaluated. Based on these insights, we propose a model to predict the losses of solar cell parameters.

  13. Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tayagaki, Takeshi, E-mail: tayagaki-t@aist.go.jp; Sugaya, Takeyoshi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-04-11

    We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔE{sub c} ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carrier capture in QDs via Auger relaxation.

  14. Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells

    Science.gov (United States)

    Tayagaki, Takeshi; Sugaya, Takeyoshi

    2016-04-01

    We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔEc ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carrier capture in QDs via Auger relaxation.

  15. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae)

    Science.gov (United States)

    Shawkey, Matthew D.; Igic, Branislav; Rogalla, Svana; Goldenberg, Jonathan; Clusella-Trullas, Susana; D'Alba, Liliana

    2017-10-01

    The visible spectrum represents a fraction of the sun's radiation, a large portion of which is within the near infrared (NIR). However, wavelengths outside of the visible spectrum that are reflected by coloured tissues have rarely been considered, despite their potential significance to thermal effects. Here, we report the reflectivity from 300 to 2100 nm of differently coloured feathers. We measured reflectivity across the UV-Vis-NIR spectra of different (a) body parts, (b) colour-producing mechanisms and (c) sexes for 252 individuals of 68 sunbird (family: Nectariniidae) species. Breast plumage was the most reflective and cap plumage the least. Female plumage had greater reflectivity than males. Carotenoid-based colours had the greatest reflectivity, followed by non-iridescent and iridescent melanin-based colours. As ordered arrays of melanin-filled organelles (melanosomes) produce iridescent colours, this suggests that nanostructuring may affect reflectance across the spectrum. Our results indicate that differently coloured feathers consistently vary in their thermal, as well as obvious visual, properties.

  16. Design of multi-layer anti-reflection coating for terrestrial solar panel ...

    Indian Academy of Sciences (India)

    ://www.ias.ac.in/article/fulltext/boms/039/03/0683-0689 ... light transmittance using essential Mcleod simulation software to produce destructive interference between reflected waves and constructive interference between transmitted waves.

  17. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  18. Instrumentation and First Results of the Reflected Solar Demonstration System for the Climate Absolute Radiance and Refractivity Observatory

    Science.gov (United States)

    McCorkel, Joel; Thome, Kurtis; Hair, Jason; McAndrew, Brendan; Jennings, Don; Rabin, Douglas; Daw, Adrian; Lundsford, Allen

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission key goals include enabling observation of high accuracy long-term climate change trends, use of these observations to test and improve climate forecasts, and calibration of operational and research sensors. The spaceborne instrument suites include a reflected solar spectroradiometer, emitted infrared spectroradiometer, and radio occultation receivers. The requirement for the RS instrument is that derived reflectance must be traceable to Sl standards with an absolute uncertainty of instrument, and presents initial calibration and characterization methods and results. SOLARIS is an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm over a full field-of-view of 10 degrees with 0.27 milliradian sampling. Results from laboratory measurements including use of integrating spheres, transfer radiometers and spectral standards combined with field-based solar and lunar acquisitions are presented. These results will be used to assess the accuracy and repeatability of the radiometric and spectral characteristics of SOLARIS, which will be presented against the sensor-level requirements addressed in the CLARREO RS instrument error budget.

  19. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Directory of Open Access Journals (Sweden)

    Lahimer A.A.

    2017-01-01

    Full Text Available Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I: car with/ without SRC (at different measurement time; Case (II: using two identical cars concurrently (SRC versus baseline; Case (III: using two identical cars concurrently (solar reflective film (SRF versus baseline and Case (IV: using two identical cars concurrently (SRF versus SRC. Experimental results dedicated to case (I revealed that the maximum cabin air temperature with SRC (39.6°C is significantly lower than that of baseline case (57.3°C. This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  20. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Science.gov (United States)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  1. Characterizing Cold Giant Planets in Reflected Light: Lessons from 50 Years of Outer Solar System Exploration and Observation

    Science.gov (United States)

    Marley, Mark Scott; Hammel, Heidi

    2014-01-01

    A space based coronagraph, whether as part of the WFIRST/AFTA mission or on a dedicated space telescope such as Exo-C or -S, will be able to obtain photometry and spectra of multiple gas giant planets around nearby stars, including many known from radial velocity detections. Such observations will constrain the masses, atmospheric compositions, clouds, and photochemistry of these worlds. Giant planet albedo models, such as those of Cahoy et al. (2010) and Lewis et al. (this meeting), will be crucial for mission planning and interpreting the data. However it is equally important that insights gleaned from decades of solar system imaging and spectroscopy of giant planets be leveraged to optimize both instrument design and data interpretation. To illustrate these points we will draw on examples from solar system observations, by both HST and ground based telescopes, as well as by Voyager, Galileo, and Cassini, to demonstrate the importance clouds, photochemical hazes, and various molecular absorbers play in sculpting the light scattered by solar system giant planets. We will demonstrate how measurements of the relative depths of multiple methane absorption bands of varying strengths have been key to disentangling the competing effects of gas column abundances, variations in cloud height and opacity, and scattering by high altitude photochemical hazes. We will highlight both the successes, such as the accurate remote determination of the atmospheric methane abundance of Jupiter, and a few failures from these types of observations. These lessons provide insights into technical issues facing spacecraft designers, from the selection of the most valuable camera filters to carry to the required capabilities of the flight spectrometer, as well as mission design questions such as choosing the most favorable phase angles for atmospheric characterization.

  2. Hybrid density functional theory study of Cu(In1−xGaxSe2 band structure for solar cell application

    Directory of Open Access Journals (Sweden)

    Xu-Dong Chen

    2014-08-01

    Full Text Available Cu(In1−xGaxSe2 (CIGS alloy based thin film photovoltaic solar cells have attracted more and more attention due to its large optical absorption coefficient, long term stability, low cost and high efficiency. However, the previous theoretical investigation of this material with first principle calculation cannot fulfill the requirement of experimental development, especially the accurate description of band structure and density of states. In this work, we use first principle calculation based on hybrid density functional theory to investigate the feature of CIGS, with B3LYP applied in the CuIn1−xGaxSe2 stimulation of the band structure and density of states. We report the simulation of the lattice parameter, band gap and chemical composition. The band gaps of CuGaSe2, CuIn0.25Ga0.75Se2, CuIn0.5Ga0.5Se2, CuIn0.75Ga0.25Se2 and CuInSe2 are obtained as 1.568 eV, 1.445 eV, 1.416 eV, 1.275 eV and 1.205 eV according to our calculation, which agree well with the available experimental values. The band structure of CIGS is also in accordance with the current theory.

  3. Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects

    Science.gov (United States)

    Clark, R. N.

    1981-01-01

    The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.

  4. Modeling and simulation of band-gap profiling with planar heterojunction of hole-transporting layer-free perovskite solar cells

    Science.gov (United States)

    Liu, Yung-Tsung; Chen, Yu-Hung; Lin, Chen-Cheng; Fan, Chia-Ming; Liu, Jun-Chin; Tung, Yung-Liang; Tsai, Song-Yeu

    2017-07-01

    This study entailed modeling a perovskite absorber involving band-gap grading at the back of the absorber and double-grading profiles of hole-transporting layer-free perovskite solar cells. Device simulation based on continuity equations and Poisson’s equation was carried out by using AMPS-1D software. The optimum grading profile consisted of a band gap of 1.7 eV at the interface between the TiO2 and absorber with a graded thickness of 300 nm, uniform 1.5 eV of 50 nm, and back surface 2.1 eV with a graded thickness of 50 nm. The attained simulated efficiency was 22.68% (open-circuit voltage, V oc  =  1.34 V; short-circuit current density, J sc  =  19.98 mA cm-2 fill factor, FF  =  0.84), which is close to the uniform band gap of 1.5 eV of the whole absorber with a hole-transporting layer (Spiro-OMeTAD). This was mainly because of back grading forming a conduction band energy barrier to suppress the transportation of photo-generated electrons from the absorber to the back electrode, thereby improving carrier collection. The results indicate that the hole-transporting layer could be replaced by optimal band-gap profiling of the absorber, with near to no decayed performance of the perovskite solar cells.

  5. Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se₂/CdS) solar cell interfaces and implications for improving performance.

    Science.gov (United States)

    Xiao, Hai; Goddard, William A

    2014-09-07

    The laboratory performance of CIGS (Cu(In,Ga)Se2) based solar cells (20.8% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use density functional theory with the B3PW91 hybrid functional that we validate to provide very accurate descriptions of the band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the conduction band offset (CBO) of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the valence band offset, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.

  6. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications

    Science.gov (United States)

    Han, Katherine; Chang, Chih-Hung

    2014-01-01

    This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered. PMID:28348287

  7. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    Science.gov (United States)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria

  8. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  9. Reinforcement of Zn(O,S) buffer layer for efficient band matching in a kesterite (Cu2ZnSnS4) solar cell and its analysis using simulation tool for the application in energy harvesting

    Science.gov (United States)

    Jani, Margi; Raval, Dhyey; Mukhopadhyay, Indrajit; Ray, Abhijit

    2017-05-01

    Zinc oxy-sulfide Zn(O,S) owing to its band gap tailoring property and non-toxicity is widely explored as buffer layer for the development of thin film solar cells. In this work band alignment of Zn(O,S) buffer with low cost chalcogenide absorbers layers such as kesterite (Cu2ZnSnS4) has been investigated. A detail study is presented in order to investigate the consequences of band bending in Cu2ZnSnS4 (CZTS) solar cells using Zn(O,S) as buffer layer on its performance by using one dimensional simulation tool SCAPS. The derived parameters are used to find minimum band offset by tuning the properties of Zn(O,S) buffer layer for better performance. Presented analysis shows that the band-gap variation with sulfur concentration in Zn(O,S) is beneficial to reduces the band offset with the hetero-junction partner material.

  10. Wide band gap solar cells with high stabilized performance. Annual technical report, 15 July 1995--15 July 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, C R; Collins, R W; Fujiwara, H [Pennsylvania State Univ., University Park, PA (United States); and others

    1997-01-01

    This report describes work on an improved understanding of stability in materials and silicon solar cells. Topics include novel intrinsic materials optimization; solar cells optimized for p- and i-layer performance; novel p-type materials; interfaces; and device modeling.

  11. An Understanding of the Band Gap Shrinkage in Sn-Doped ZnO for Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yildiz, Abdullah; Ozturk, Elif; Atilgan, Abdullah; Sbeta, Mohamed; Atli, Aycan; Serin, Tulay

    2017-12-01

    Sn-doped ZnO (TZO) films were deposited onto glass substrates by a spray pyrolysis technique. The temperature-dependent conductivity measurements and room-temperature Hall effect measurements were carried out, which indicated that the films exhibited a degenerate semiconductor behavior. Band gap energy of the films was studied by transmission measurements. With increasing Sn content, band gap shrinkage was observed. It was determined that this shrinkage was associated with the competition between many body interactions and the Burstein-Moss effect. We concluded that there is a good agreement between experimental results and theoretical calculations in terms of the shift in band gap. Furthermore, the effective mass value based on parabolic band considerations needed to be replaced by one based on nonparabolic band structure of ZnO for higher content of Sn (>3% at.) to correlate the calculations with the results.

  12. Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water.

    Science.gov (United States)

    Walker, D Carey; Len, Soo-Voon; Sheehan, Brita

    2004-04-01

    A second-generation solar disinfection (SODIS) system (pouch) was constructed from food-grade, commercially available packaging materials selected to fully transmit and amplify the antimicrobial properties of sunlight. Depending upon the season, water source, and challenge organism, culturable bacteria were reduced between 3.5 and 5.5 log cycles. The system was also capable of reducing the background presumptive coliform population in nonsterile river water below the level of detection. Similar experiments conducted with a model virus, the F-specific RNA bacteriophage MS2, indicated that the pouch was slightly less efficient, reducing viable plaques by 3.5 log units in comparison to a 5.0 log reduction of enterotoxigenic Escherichia coli O18:H11 within the same time period. These results suggest that water of poor microbiological quality can be improved by using a freely available resource (sunlight) and a specifically designed plastic pouch constructed of food-grade packaging materials.

  13. Effects of solar zenith angles on CO Cameron bands emission intensities in the dayside atmosphere of Mars: MEX/SPICAM observations

    Science.gov (United States)

    Pothuraju, Thirupathaiah; Haider, Syed A.

    2016-07-01

    We have developed a model to calculate the photoelectron energy fluxes and emission intensities of the CO Cameron bands in the upper atmosphere of Mars between solar zenith angles 0° to 90°. The production and loss mechanisms of CO (a ^{3}Π) are incorporated in the model. The atmospheric neutral parameters are adopted from the Mars Climate Database (v5.2). The required solar EUV fluxes are taken from the Solar2000 model (v2.37) and scaled to Mars. The photoelectron fluxes are calculated at different solar zenith angles using an analytical yield spectrum approach based on the Monte Carlo method. In this model we have assumed that crustal magnetic fields are horizontal in direction. Thus, photoelectrons are losing their energy at the same height where they are produced. This assumption is valid at mid and high latitudes where magnetic fields are mostly horizontal. We have also developed a coupled chemistry model to calculate the ion and electron density at different solar zenith angles, which are used in the airglow model. The model results are compared with the observations provided by the SPICAM onboard MEX. Our model reproduces the observed intensity profiles quite well. The CO (a ^{3}Π) is produced due to photoelectron excitation/dissociation, photodissociation, and dissociative recombination processes. It is destroyed by CO _{2}, CO and radiative decay. It is found that photon and photoelectron dissociation are dominant production processes of CO (a ^{3}Π), while radiative decay is a major loss mechanism of this state. The estimated photoelectron fluxes, production rates and intensities are decreasing with increasing solar zenith angles.

  14. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng

    2014-07-15

    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  15. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    Science.gov (United States)

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  16. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  17. Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass.

    Science.gov (United States)

    Eisenhauer, David; Köppel, Grit; Jäger, Klaus; Chen, Duote; Shargaieva, Oleksandra; Sonntag, Paul; Amkreutz, Daniel; Rech, Bernd; Becker, Christiane

    2017-06-01

    Recently, liquid phase crystallization of thin silicon films has emerged as a candidate for thin-film photovoltaics. On 10 μm thin absorbers, wafer-equivalent morphologies and open-circuit voltages were reached, leading to 13.2% record efficiency. However, short-circuit current densities are still limited, mainly due to optical losses at the glass-silicon interface. While nano-structures at this interface have been shown to efficiently reduce reflection, up to now these textures caused a deterioration of electronic silicon material quality. Therefore, optical gains were mitigated due to recombination losses. Here, the SMooth Anti-Reflective Three-dimensional (SMART) texture is introduced to overcome this trade-off. By smoothing nanoimprinted SiO x nano-pillar arrays with spin-coated TiO x layers, light in-coupling into laser-crystallized silicon solar cells is significantly improved as successfully demonstrated in three-dimensional simulations and in experiment. At the same time, electronic silicon material quality is equivalent to that of planar references, allowing to reach V oc values above 630 mV. Furthermore, the short-circuit current density could be increased from 21.0 mA cm-2 for planar reference cells to 24.5 mA cm-2 on SMART textures, a relative increase of 18%. External quantum efficiency measurements yield an increase for wavelengths up to 700 nm compared to a state-of-the-art solar cell with 11.9% efficiency, corresponding to a j sc, EQE gain of 2.8 mA cm-2.

  18. Generalized rainbows and unfolded glories of oblate drops: organization for multiple internal reflections and extension of cusps into Alexander's dark band.

    Science.gov (United States)

    Marston, P L; Kaduchak, G

    1994-07-20

    Oblate drops of water can produce caustics where, unlike a simple Airy caustic, more than two rays merge. We extend previous treatments of generalized primary rainbows based on catastrophe optics [Opt. Lett. 10, 588 (1985); Proc. R. Soc. (London) A 438, 397 (1992)] to rays having (p - 1) = 2 to 5 internal reflections. The analysis is for a horizontally illuminated ellipsoid with a vertical symmetry axis. Aspect ratios causing a vanishing of the vertical curvature at the equator for the outgoing wave front are found from generalized ray tracing. In response to infinitesimal deformation, the axial caustic of real glory rays unfolds producing cusps. Laboratory observations with laser illumination demonstrate that cusps resulting from rays with five internal reflections extend into Alexander's dark band when the drop's aspect ratio is near 1.08. The evolution of this p = 6 scattering pattern as cusps meet the quinary rainbow is suggestive of an E(6) catastrophe. For ellipsoids of varying aspect ratio and refractive index N, there is an organizing singularity associated with an exceptionally flat outgoing wave front from spheres with N = p.

  19. Ultra-Efficient Thermophotovoltaics Exploiting Spectral Filtering by the Photovoltaic Band-Edge

    OpenAIRE

    Ganapati, Vidya; Xiao, T. Patrick; Yablonovitch, Eli

    2016-01-01

    Thermophotovotaics convert thermal radiation from local heat sources to electricity. A new breakthrough in creating highly efficient thin-film solar cells can potentially enable thermophotovoltaic systems with unprecedented high efficiency. The current 28.8% single-junction solar efficiency record, by Alta Devices, was achieved by recognizing that a good solar cell needs to reflect infrared band-edge radiation at the back surface, to effectively recycle infrared luminescent photons. The effor...

  20. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual subcontract report, 1 May 1991--30 April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry

    1993-04-01

    This report describes work to improve the performance of solar cells by improving the electrical and optical properties of their transparent conducting oxides (TCO) layers. Boron-doped zinc-oxide films were deposited by atmospheric pressure chemical vapor deposition in a laminar-flow reactor from diethyl zinc, tert-butanol, and diborane in the temperature range between 300{degrees}C and 420{degrees}C. When the deposition temperature was above 320{degrees}C, both doped and undoped films have highly oriented crystallites with their c-axes perpendicular to the substrate plane. Films deposited from 0.07% diethyl zinc and 2.4% tert-butanol have electron densities between 3.5 {times} 10{sup 20} cm{sup {minus}3} and 5.5 {times} 10{sup 20} cm{sup {minus}3}, conductivities between 250 {Omega}{sup {minus}1} and 2500 {Omega}{sup {minus}1} and mobilities between 2.5 cm{sup 2}/V-s and 35.0 cm{sup 2}/V-s, depending on dopant concentration, film thickness, and deposition temperature. Optical measurements show that the maximum infrared reflectance of the doped films is close to 90%, compared to about 20% for undoped films. Film visible absorption and film conductivity were found to increase with film thickness. The ratio of conductivity to visible absorption coefficient for doped films was between 0.1 {Omega} and 1.1 {Omega}{sup {minus}1}. The band gap of the film changes from 3.3 eV to 3.7 eV when the film is doped with 0.012% diborane.

  1. Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces

    Science.gov (United States)

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2015-07-07

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  2. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    Science.gov (United States)

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  3. Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials

    OpenAIRE

    , Mohamad Sleiman

    2014-01-01

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and ...

  4. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.G.; Kramer, K.; Liang, H.; Liu, X.; Pang, D.; Teff, D.

    1998-09-01

    Transparent conducting fluorine doped zinc oxide was deposited as thin films on soda lime glass substrates by atmospheric pressure chemical vapor deposition (CVD) at substrate temperatures of 460 to 500 degrees C. The precursors diethylzinc, tetramethylethylenediamine and benzoyl fluoride were dissolved in xylene. This solution was nebulized ultrasonically and then flash vaporized by a carrier gas of nitrogen preheated to 150 degrees C. Ethanol was vaporized separately, and these vapors were then mixed to form a homogeneous vapor mixture. Good reproducibility was achieved using this new CVD method. Uniform thicknesses were obtained by moving the heated glass substrates through the deposition zone. The best electrically and optical properties were obtained when the precursor solution was aged for more than a week before use. The films were polycrystalline and highly oriented with the c-axis perpendicular to the substrate. More than 90% of the incorporated fluorine atoms were electrically active as n-type dopants. The electrical resistivity of the films was as low as 5 x 10/sup -4/ Omega cm. The mobility was about 45 cm ²/Vs. The electron concentration was up to 3 x 10 %sup20;/cm³. The optical absorption of the films was about 3-4% at a sheet resistance of 7 ohms/square. The diffuse transmittance was about 10% at a wavelength of 650 nm. Amorphous ilicon solar cells were deposited using the textured fluorine doped zinc oxide films as a front electrode. The short circuit current was increased over similar cells made with fluorine doped tin oxide, but the open circuit voltages and fill factors were reduced. The voltage was restored by overcoating the fluorine-doped zinc oxide with a thin layer of fluorine-doped tin oxide.

  5. A facial one-pot route synthesis and characterization of Y-stabilized Sb{sub 2}O{sub 3} solar reflective thermal insulating coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhengjun [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Liu Jie, E-mail: liujie@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wang Feijiu [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Yu Xibin, E-mail: xibinyu@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2011-10-17

    Highlights: {yields} Sb{sub 2}O{sub 3} nanoparticles were prepared via a facile one-pot ball-milling route. {yields} Sb{sub 2}O{sub 3} based coatings have high solar reflectance properties. {yields} Sb{sub 2}O{sub 3} based coatings have excellent thermal insulation properties. {yields} Sb{sub 2}O{sub 3} based coatings may find applications in the energy saving of constructions. - Abstract: An efficient solar reflective thermal insulating coatings (SRCs) based on Y-stabilized Sb{sub 2}O{sub 3} nanoparticles has been prepared via a facile one-pot ball-milling route. Y-stabilized Sb{sub 2}O{sub 3} have smaller particle size (about 5 nm), disperse more evenly in coating films and exhibit higher solar reflectance compared with pure Sb{sub 2}O{sub 3}. Y-stabilized Sb{sub 2}O{sub 3} SRCs have the reflectance of more than 90% in the region 450-1600 nm and more than 80% in the region 1600-2200 nm and excellent thermal insulating properties. The observed solar reflectance properties of Y-stabilized Sb{sub 2}O{sub 3} SRCs were explained on the basis of the electronic structure of the material and physical parameters such as mean particle size (crystallite size) and refractive index. Due to its high solar reflectance and excellent thermal insulation properties, as-prepared Y-stabilized Sb{sub 2}O{sub 3} SRCs maybe a promising candidate for the energy saving applications in the constructions and industry furnishment.

  6. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications

    KAUST Repository

    Mondal, Rajib

    2010-01-01

    Thiophene enriched fused-aromatic thieno[3,4-b]pyrazine systems were designed and employed to produce low band gap polymers (Eg = 1.0-1.4 eV) when copolymerized with fluorene and cyclopentadithiophene. The copolymers are mainly investigated for organic thin film transistor and organic photovoltaic applications. Molecular packing in the thin films of these polymers was investigated using Grazing incidence X-ray Scattering. Although both fluorene and cyclopentadithiophene polymers follow similar face to face π-π stacking, the latter polymers show much smaller lamellar d-spacings due to side-chain interdigitation between the lamellae. This lead to the higher charge carrier mobilities in cyclopentadithiophene polymers (up to 0.044 cm2/V.s) compared to fluorene polymers (up to 8.1 × 10-3 cm2/V.s). Power conversion efficiency of 1.4% was achieved using fluorene copolymer in solar cells with a fullerene derivative as an acceptor. Although the cyclopentadithiophene polymers show lower band gaps with higher absorption coefficients compared to fluorene copolymers, but the power conversion efficiencies in solar cells of these polymers are low due to their low ionization potentials. © The Royal Society of Chemistry 2010.

  7. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells

    KAUST Repository

    Ashraf, Raja Shahid

    2015-01-28

    The design, synthesis, and characterization of a series of diketopyrrolopyrrole-based copolymers with different chalcogenophene comonomers (thiophene, selenophene, and tellurophene) for use in field-effect transistors and organic photovoltaic devices are reported. The effect of the heteroatom substitution on the optical, electrochemical, and photovoltaic properties and charge carrier mobilities of these polymers is discussed. The results indicate that by increasing the size of the chalcogen atom (S < Se < Te), polymer band gaps are narrowed mainly due to LUMO energy level stabilization. In addition, the larger heteroatomic size also increases intermolecular heteroatom-heteroatom interactions facilitating the formation of polymer aggregates leading to enhanced field-effect mobilities of 1.6 cm2/(V s). Bulk heterojunction solar cells based on the chalcogenophene polymer series blended with fullerene derivatives show good photovoltaic properties, with power conversion efficiencies ranging from 7.1-8.8%. A high photoresponse in the near-infrared (NIR) region with excellent photocurrents above 20 mA cm-2 was achieved for all polymers, making these highly efficient low band gap polymers promising candidates for use in tandem solar cells. (Graph Presented).

  8. Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells.

    Science.gov (United States)

    Kada, T; Asahi, S; Kaizu, T; Harada, Y; Tamaki, R; Okada, Y; Kita, T

    2017-07-19

    We studied the effects of the internal electric field on two-step photocarrier generation in InAs/GaAs quantum dot superlattice (QDSL) intermediate-band solar cells (IBSCs). The external quantum efficiency of QDSL-IBSCs was measured as a function of the internal electric field intensity, and compared with theoretical calculations accounting for interband and intersubband photoexcitations. The extra photocurrent caused by the two-step photoexcitation was maximal for a reversely biased electric field, while the current generated by the interband photoexcitation increased monotonically with increasing electric field intensity. The internal electric field in solar cells separated photogenerated electrons and holes in the superlattice (SL) miniband that played the role of an intermediate band, and the electron lifetime was extended to the microsecond scale, which improved the intersubband transition strength, therefore increasing the two-step photocurrent. There was a trade-off relation between the carrier separation enhancing the two-step photoexcitation and the electric-field-induced carrier escape from QDSLs. These results validate that long-lifetime electrons are key to maximising the two-step photocarrier generation in QDSL-IBSCs.

  9. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    Science.gov (United States)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  10. Influence of the Cu Content in Cu2ZnSn(S,Se)4 solar cell absorbers on order-disorder related band gap changes

    Science.gov (United States)

    Lang, Mario; Renz, Tobias; Mathes, Niklas; Neuwirth, Markus; Schnabel, Thomas; Kalt, Heinz; Hetterich, Michael

    2016-10-01

    We investigate the electronic structure and the radiative recombination in wet-chemically fabricated Cu2ZnSn(S,Se)4 solar cell absorbers utilizing photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy, focusing especially on the effects of varying Cu content. This includes the impact of the latter on the band gap energy and the change in band gap energy related to the order-disorder transition. Characteristic PL and PLE parameters like the energetic position of the PL maximum and the PL yield as a function of the excitation power as well as the PLE tailing parameter do not depend on composition indicating that the nature of the radiative transition is not altered by the Cu content. However, the band gap energy Eg significantly increases as a function of decreasing Cu content. This increase is more pronounced in the disordered than in the ordered atomic arrangement of Cu and Zn atoms in the Cu-Zn planes of the kesterite crystal structure.

  11. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.

    Science.gov (United States)

    Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J

    2016-01-07

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.

  12. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    Science.gov (United States)

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH3NH3PbI3 perovskite crystals and PbI2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  13. Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber.

    Science.gov (United States)

    Astorino, Maria Denise; Fastampa, Renato; Frezza, Fabrizio; Maiolo, Luca; Marrani, Marco; Missori, Mauro; Muzi, Marco; Tedeschi, Nicola; Veroli, Andrea

    2018-01-31

    This paper reports the design, the microfabrication and the experimental characterization of an ultra-thin narrow-band metamaterial absorber at terahertz frequencies. The metamaterial device is composed of a highly flexible polyimide spacer included between a top electric ring resonator with a four-fold rotational symmetry and a bottom ground plane that avoids misalignment problems. Its performance has been experimentally demonstrated by a custom polarization-maintaining reflection-mode terahertz time-domain spectroscopy system properly designed in order to reach a collimated configuration of the terahertz beam. The dependence of the spectral characteristics of this metamaterial absorber has been evaluated on the azimuthal angle under oblique incidence. The obtained absorbance levels are comprised between 67% and 74% at 1.092 THz and the polarization insensitivity has been verified in transverse electric polarization. This offers potential prospects in terahertz imaging, in terahertz stealth technology, in substance identification, and in non-planar applications. The proposed compact experimental set-up can be applied to investigate arbitrary polarization-sensitive terahertz devices under oblique incidence, allowing for a wide reproducibility of the measurements.

  14. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    Science.gov (United States)

    Teng, Tun-Chien; Lai, Wei-Che

    2014-12-15

    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

  15. Detection of Solar Rotational Variability in the Large Yield RAdiometer (LYRA) 190-222 nm Spectral Band

    OpenAIRE

    Shapiro A. V.; Shapiro A.I.; Dominique M.; Dammasch I. E.; Wehrli C.; Rozanov E.; Schmutz W.

    2013-01-01

    We analyze the variability of the spectral solar irradiance during the period from 7 January 2010 until 20 January 2010 as measured by the Herzberg channel (190?–?222 nm) of the Large Yield RAdiometer (LYRA) onboard PROBA2. In this period of time observations by the LYRA nominal unit experienced degradation and the signal produced by the Herzberg channel frequently jumped from one level to another. Both factors significantly complicate the analysis. We present the algorithm that allowed us to...

  16. Detection of Solar Rotational Variability in the Large Yield RAdiometer (LYRA) 190 – 222 nm Spectral Band

    OpenAIRE

    Shapiro A. V.; Shapiro A.I.; Dominique M.; Dammasch I.; Wehrli C.; Rozanov E.; Schmutz W.

    2012-01-01

    We analyze the variability of the spectral solar irradiance during the period from 7 January 2010 until 20 January 2010 as measured by the Herzberg channel (190 – 222 nm) of the Large Yield RAdiometer (LYRA) onboard PROBA2. In this period of time observations by the LYRA nominal unit experienced degradation and the signal produced by the Herzberg channel frequently jumped from one level to another. Both factors significantly complicate the analysis. We present the algorithm that allowed us to...

  17. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  18. Low cost sol–gel derived SiC–SiO{sub 2} nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Azmira [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Solar Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Lee, Woojin [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Akhtar, M. Shaheer, E-mail: shaheerakhtar@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of); Li, Zhen Yu [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Yang, O.-Bong, E-mail: obyang@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of)

    2016-04-30

    Graphical abstract: - Highlights: • Sol–gel derived SiC–SiO{sub 2} nanocomposite was prepared. • It effectively coated as AR layer on p-type Si-wafer. • SiC–SiO{sub 2} layer on Si solar cells exhibited relatively low reflectance of 7.08%. • Fabricated Si solar cell attained highly comparable performance of 16.99% to commercial device. - Abstract: This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol–gel derived SiC–SiO{sub 2} nanocomposite. The prepared SiC–SiO{sub 2} nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol–gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO{sub 2} phases, which noticeably confirmed the formation of SiC–SiO{sub 2} nanocomposite. The SiC–SiO{sub 2} layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC–SiO{sub 2} nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional Si{sub x}N{sub x} AR coated Si solar cell. New and effective sol–gel derived SiC–SiO{sub 2} AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  19. Improved opto-electronic properties of silicon heterojunction solar cells with SiO x /Tungsten-doped indium oxide double anti-reflective coatings

    Science.gov (United States)

    Yu, Jian; Zhou, Jie; Bian, Jiantao; Zhang, Liping; Liu, Yucheng; Shi, Jianhua; Meng, Fanying; Liu, Jinning; Liu, Zhengxin

    2017-08-01

    Amorphous SiO x was prepared by plasma enhanced chemical vapor deposition (PECVD) to form SiO x /tungsten-doped indium oxide (IWO) double anti-reflective coatings for silicon heterojunction (SHJ) solar cell. The sheet resistance of SiO x /IWO stacks decreases due to plasma treatment during deposition process, which means thinner IWO film would be deposited for better optical response. However, the comparisons of three anti-reflective coating (ARC) structures reveal that SiO x film limits carier transport and the path of IWO-SiO x -Ag structure is non-conductive. The decrease of sheet resistance is defined as pseudo conductivity. IWO film capping with SiO x allows observably reduced reflectance and better response in 300-400 and 600-1200 nm wavelength ranges. Compared with IWO single ARC, the average reflection is reduced by 1.65% with 70 nm SiO x /80 nm IWO double anti-reflective coatings (DARCs) in 500-1200 nm wavelength range, leading to growing external quantum efficiency response, short circuit current density (J sc), and efficiency. After well optimization of SiO x /IWO stacks, an impressive efficiency of 23.08% is obtained with high J sc and without compromising open circuit voltage (V oc) and fill factor. SiO x /IWO DARCs provide better anti-reflective properties over a broad range of wavelength, showing promising application for SHJ solar cells.

  20. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen; Kumar, Vinod

    2017-01-01

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking, delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.

  1. Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells: Shielding versus Band-Edge Movement

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A. J.; Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Gratzel, M.

    2005-11-01

    The objective of this research is to determine the operational characteristics key to efficient, low-cost, stable solar cells based on dye-sensitized mesoporous films (in collaboration with DOE's Office of Science Program). Toward this end, we have investigated the mechanism by which the adsorbent chenodeoxycholate, cografted with a sensitizer onto TiO2 nanocrystals, improves the open-circuit photovoltage (VOC) and short-circuit photocurrent density (JSC). We find that adding chenodeoxycholate not only shifts the TiO2 conduction-band edge to negative potentials but also accelerates the rate of recombination. The net effect of these opposing phenomena is to produce a higher photovoltage. It is also found that chenodeoxycholate reduces the dye loading significantly but has only a modest effect on JSC. Implications of these results to developing more efficient cells are discussed.

  2. Wide Band-Gap 3,4-Difluorothiophene-Based Polymer with 7% Solar Cell Efficiency: an Alternative to P3HT

    KAUST Repository

    Wolf, Jannic Sebastian

    2015-05-27

    We report on a wide band-gap polymer donor composed of benzo[1,2-b:4,5-b\\']dithiophene (BDT) and 3,4-difluorothiophene ([2F]T) units (Eopt ~2.1 eV), and show that the fluorinated analog PBDT[2F]T performs significantly better than its non-fluorinated counterpart PBDT[2H]T in BHJ solar cells with PC71BM. While control P3HT- and PBDT[2H]T-based devices yield PCEs of ca. 4% and 3% (Max.) respectively, PBDT[2F]T-based devices reach PCEs of ca. 7%, combining a large Voc of ca. 0.9 V and short-circuit current values (ca. 10.7 mA/cm2) comparable to those of the best P3HT-based control devices.

  3. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  4. Day and nighttime L-Band amplitude scintillations during low solar activity at a low latitude station in the South Pacific region

    Science.gov (United States)

    Prasad, Ramendra; Kumar, Sushil

    2017-12-01

    A morphological study of GPS L-band amplitude scintillations observed at a low latitude station, Suva (18.1°S, 178.4°E), Fiji, during low solar activity year 2010 of solar cycle 24, has been presented. Out of a total of 480 scintillation events recorded during 2010, 84.4% were weak (0.2 ≤ S4 lightning activity around the observing station. Annual percentage occurrence shows that scintillations occurred mostly in the daytime with peak occurrence at around 05:00-09:00 LT. The daytime strong scintillation events were not associated with vTEC depletions and phase scintillations, but the signal to noise ratio during the scintillation events decreased with increase in scintillation index (S4). However, the post-midnight strong amplitude scintillations were associated with vTEC depletions and phase scintillations indicative of large scale irregularities (spread-F). The geomagnetic activity effect showed enhanced occurrence on geomagnetically disturbed days as compared to quite conditions. The geomagnetic storm effect on scintillations for 17 storms of different strengths (Dst ≤ 50 nT) during 2010-2011 showed an increase in the occurrence of post-storm scintillations, on the days following the storm.

  5. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    Science.gov (United States)

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  6. Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bands

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier

    2017-01-16

    In organic solar cells (OSCs), the energy of the charge-transfer (CT) complexes at the donor-acceptor interface, E , determines the maximum open-circuit voltage (V ). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi-crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V enormously. Yet, the question of how structural heterogeneities alter CT states and the V is seldom addressed systematically. In this work, we combine experimental measurements of vacuum-deposited rubrene/C bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E and V . We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low-lying CT states contribute strongly to V losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E configurations and maximizes V .

  7. [Effect of strengthening solar ultraviolet B band irradiation on oat (Avena sativa L. ) yield and its components in Qing Tibetan Plateau].

    Science.gov (United States)

    Wang, Sheng-Yao; Wang, Kun; Zhao, Yong-Lai; Xin, You-Jun

    2009-08-01

    Stratospheric ozone depletion occurs mainly over polar regions during the spring when the solar Ultraviolet B-band (280-315 nm, UV-B) radiation is most intense in a year, but over the Qing Tibetan Plateau region, the highest intensity is from June to September when the amount of UV-B radiation reaching the regions is more than that in the adjacent areas lying in the same latitude by 10%. From June to September is just the time of plant's germination, development, and reproduction in the alpine region. UV-B radiation may alter the reproduction of the forage plant, oat (Avena sativa.), which plays the vital role in developing indigenous herdsman's animal husbandry industry. The responses of oat yield and its components to the enhanced ultraviolet B band irradiation under the field condition were surveyed. The effect shows that the grain yield is decreased significantly by strengthened UV-B irradiation, and at the same time the main consequence is the decrease in both the number of ears per square meter and the number of grains per ear, but the weight of 1 000 grains appears not significantly different. Compared with the same respective location in a spikelet, the grain weight is decreased significantly under the treated condition, mostly because of the decreases in the number of the third and forth floret grain and the grain weight at those respective positions, and the percentage of the first and second floret grain and their weight are evidently approved on the contrary.

  8. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...... reflector increases its reflectance drastically. The process is performed at low temperature (150°C) to allow the use of plastic sheets such as polyethylene naphthalate and increases the efficiency of single junction amorphous solar cells dramatically. We present the best result obtained on a flexible...... substrate: a cell with 9.9% initial efficiency and 15.82 mA/cm2 in short circuit current is realized in n-i-p configuration. © 2011 Materials Research Society....

  9. Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO{sub 3} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Guerrero-Lemus, R. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Fundacion de Estudios de Economia Aplicada. Catedra Focus-Abengoa. Jorge Juan, 46, 28001 Madrid (Spain)], E-mail: rglemus@ull.es; Diaz-Herrera, B.; Marrero, N. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Mendez-Ramos, J.; Borchert, Dietmar [Departamento de Fisica Fundamental, Experimental Electronica y Sistemas, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Labour und Servicecentre, Institut fuer Solare Energiesysteme, Fraunhofer Institut, Auf der Reihe 2, 45884 Gelsenkirchen (Germany)

    2009-03-15

    The surface structure of multi-crystalline silicon (mc-Si) etched in HF/HNO{sub 3} at different HF/HNO{sub 3} concentrations is optimized for being applied in solar cells. The resulting texture, which determines the efficiency of solar cells, was characterized by means of scanning electron microscopy (SEM) and optical spectroscopy. The roughness of the surface increases and the reflectance decreases when the content of HNO{sub 3} in the etching solution is increased to a limit. The produced etched pits on the surface have been identified by SEM and the surface mean roughness has been characterized by atomic force microscopy (AFM). Also, depending on the concentration of the electrolyte, the mc-Si samples exhibit photoluminescence in the VIS range under UV excitation. The PL reveals the presence of nanocrystals on the surface of the etched samples. The surface structure is also optimized for an adequate placement of the metallic contact on top. Finally the solar cells were performed in order to investigate the dependence of the roughness, reflectance and photoluminescence to the solar efficiency.

  10. Determination of the valence-band offset of CdS/CIS solar cell devices by target factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Niles, D.W.; Contreras, M.; Ramanathan, K.; Noufi, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    X-ray photoemission spectroscopy (XPS) is used to determine and compare the valence-band offsets ({Delta}E{sub v}) for CdS grown by chemical bath deposition on single-crystal and thin-film CuInSe{sub 2} (CIS). The thin-film CIS device was suitable for photovoltaic energy production. By sputtering through the CdS/CIS interface and reducing the depth profile with target factor analysis, the magnitude of {Delta}E{sub v} was determined to be {Delta}E{sub v} = 1.06 {+-} 0.15 eV for both the single-crystal and thin-film interfaces. This determination of {Delta}E{sub v} is about 0.25 eV larger than many previously reported estimations CdS grown by physical vapor deposition on CIS and helps explain the record performance of CdS/CIS photovoltaic devices.

  11. Statistical Analysis of the Reflectivity of a Heliostats Field. Application to the CR S Heliostats Field of the Plataforma Solar de Almeria; Analisis Estadistico de la Reflectividad de un Campo de Heliostatos CRS de la Plataforma Solar de Almeria

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Reche, J.

    2003-07-01

    Reflectivity measuring in a heliostats field of a solar central tower is a task that should performed periodically. The reflectivity of the field is a value that should be known to evaluate the system, moreover it plays an important role in several simulation codes which are useful for the daily operation of the system. When the size of the heliostats field increases (terns of heliostats) it is necessary to find a method, due to operability reasons, that allows us to offer a reflectivity value measuring only in fe facets guaranteeing that the statistical error of this value is within a reasonable range. In this report a statistical analysis of the reflectivity in a heliostats field is presented. The analysis was particularized for the CRS heliostats field of the Plataforma Solar de Almeria. The results of the present study allow us to guarantee a reflectivity value of the heliostats field with a statistical error below 1% measuring only 12 facets (instead of the 1116 facets that compose the field). (Author) 6 refs.

  12. Energy efficiency by use of automated energy-saving windows with heat-reflective screens and solar battery for power supply systems of European and Russian buildings

    Science.gov (United States)

    Zakharov, V. M.; Smirnov, N. N.; Tyutikov, V. V.; Flament, B.

    2015-10-01

    The new energy saving windows with heat-reflecting shields have been developed, and for their practical use they need to be integrated into the automated system for controlling heat supply in buildings and the efficiency of their use together with the existing energy-saving measures must be determined. The study was based on the results of field tests of windows with heat-reflective shields in a certified climate chamber. The method to determine the minimum indoor air temperature under standby heating using heat-reflective shields in the windows and multifunctional energy-efficient shutter with solar battery have been developed. Annual energy saving for the conditions of different regions of Russia and France was determined. Using windows with heat-reflecting screens and a solar battery results in a triple power effect: reduced heat losses during the heating season due to increased window resistance; lower cost of heating buildings due to lowering of indoor ambient temperature; also electric power generation.

  13. Solar hydrogen generation with wide-band-gap semiconductors: GaP(100) photoelectrodes and surface modification.

    Science.gov (United States)

    Kaiser, Bernhard; Fertig, Dominic; Ziegler, Jürgen; Klett, Joachim; Hoch, Sascha; Jaegermann, Wolfram

    2012-08-27

    GaP, with its large band gap of 2.26 eV (indirect) and 2.78 eV (direct), is a very promising candidate for direct photoelectrochemical water splitting. Herein, p-GaP(100) is investigated as a photocathode for hydrogen generation. The samples are characterized after each preparation step regarding how their photoelectrochemical behavior is influenced by surface composition and structure using a combination of electrochemical and surface-science preparation and characterization techniques. The formation of an Ohmic back contact employing an annealed gold layer and the removal of the native oxides using various etchants are studied. It turns out that the latter has a pronounced effect on the surface composition and structure and therefore also on the electronic properties of the interface. The formation of a thin Ga(2)O(3) buffer layer on the p-GaP(100) surface does not lead to a clear improvement in the photoelectrochemical efficiency, neither do Pt nanocatalyst particles deposited on top of the buffer layer. This behavior can be understood by the electronic structure of these layers, which is not well suited for an efficient charge transfer from the absorber to the electrolyte. First experiments show that the efficiency can be considerably improved by employing a thin GaN layer as a buffer layer on top of the p-GaP(100) surface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison of Reflected Solar Radiance Using Aqua Modis and Airborne Remote Sensing (case : Deep Convective Clouds and Cirrus Clouds)

    Science.gov (United States)

    Krisna, T. C.; Ehrlich, A.; Werner, F.; Wendisch, M.

    2015-12-01

    Deep Convective Clouds (DCCs) have key role in the tropical region. Despite they only have small spatial coverage, but they account most of the total precipitation in these region which often make flooding. There are such of aviation accidents caused by strong vertical wind, hailing, icing and lightning inside the clouds. Pollutions caused by biomass burning and land degradation can change the aerosol properties as well as cloud properties, therefore will influence the radiation and formation of the DCCs. Those are the major reasons that better understanding of DCCs formation and life cycle are necessary. Between Sept. 01 - Oct. 14, ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Concevtive Clouds Systems) campaign was conducted over Amazonia. It is suitable area to be the site-study due to has strong contrast environtment (pristine and polluted), regular convection activities and stable meteorological condition. In this study we focus on the 2 satellite validation missions designed to fly collocated but in different altitude with A-TRAIN constellation. In order to study DCCs-solar radiation interaction, we use SMART (Spectral Modular Airborne Radiation Measurements System) installed on HALO (High Altitude and Long-Range Research Aircraft) which measures spectral Irradiance (F) and Radiance (I) at the wavelength between 300-2200 nm corresponding to satellite. Due to the limitation in spatial and temporal, airborne measurements only give snapshots of atmosphere condition and DCCs formation, therefore we use multi-satellite data as DCCs have high vertical and horizontal distance, long temporal development and complex form. The comparison of AQUA MODIS and SMART Radiance at 645 nm (non-absorbing) in the clear-sky condition gives strong agreement, but in the multilayer-cloud condition gives worse and results in high underestimation (-86%) in SMART data especially at lower altitude. The bias is caused by interference from clouds

  15. Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: an investigation of charge transport and shift in the TiO2 conduction band.

    Science.gov (United States)

    Wang, Xiu; Kulkarni, Sneha A; Ito, Bruno Ieiri; Batabyal, Sudip K; Nonomura, Kazuteru; Wong, Chee Cheong; Grätzel, Michael; Mhaisalkar, Subodh G; Uchida, Satoshi

    2013-01-23

    Nanoclay minerals play a promising role as additives in the liquid electrolyte to form a gel electrolyte for quasi-solid-state dye-sensitized solar cells, because of the high chemical stability, unique swelling capability, ion exchange capacity, and rheological properties of nanoclays. Here, we report the improved performance of a quasi-solid-state gel electrolyte that is made from a liquid electrolyte and synthetic nitrate-hydrotalcite nanoclay. Charge transport mechanisms in the gel electrolyte and nanoclay interactions with TiO(2)/electrolyte interface are discussed in detail. The electrochemical analysis reveals that the charge transport is solely based on physical diffusion at the ratio of [PMII]:[I(2)] = 10:1 (where PMII is 1-propyl-3-methylimidazolium iodide). The calculated physical diffusion coefficient shows that the diffusion of redox ions is not affected much by the viscosity of nanoclay gel. The addition of nitrate-hydrotalcite clay in the electrolyte has the effect of buffering the protonation process at the TiO(2)/electrolyte interface, resulting in an upward shift in the conduction band and a boost in open-circuit voltage (V(OC)). Higher V(OC) values with undiminished photocurrent is achieved with nitrate-hydrotalcite nanoclay gel electrolyte for organic as well as for inorganic dye (D35 and N719) systems. The efficiency for hydrotalcite clay gel electrolyte solar cells is increased by 10%, compared to that of the liquid electrolyte. The power conversion efficiency can reach 10.1% under 0.25 sun and 9.6% under full sun. This study demonstrates that nitrate-hydrotalcite nanoclay in the electrolyte not only solidifies the liquid electrolyte to prevent solvent leakage, but also facilitates the improvement in cell efficiency.

  16. TiO 2 Conduction Band Modulation with In 2 O 3 Recombination Barrier Layers in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2013-11-21

    Atomic layer deposition (ALD) was used to grow subnanometer indium oxide recombination barriers in a solid-state dye-sensitized solar cell (DSSC) based on the spiro-OMeTAD hole-transport material (HTM) and the WN1 donor-π-acceptor organic dye. While optimal device performance was achieved after 3-10 ALD cycles, 15 ALD cycles (∼2 Å of In2O 3) was observed to be optimal for increasing open-circuit voltage (VOC) with an average improvement of over 100 mV, including one device with an extremely high VOC of 1.00 V. An unexpected phenomenon was observed after 15 ALD cycles: the increasing VOC trend reversed, and after 30 ALD cycles VOC dropped by over 100 mV relative to control devices without any In2O3. To explore possible causes of the nonmonotonic behavior resulting from In2O3 barrier layers, we conducted several device measurements, including transient photovoltage experiments and capacitance measurements, as well as density functional theory (DFT) studies. Our results suggest that the VOC gains observed in the first 20 ALD cycles are due to both a surface dipole that pulls up the TiO2 conduction band and recombination suppression. After 30 ALD cycles, however, both effects are reversed: the surface dipole of the In2O3 layer reverses direction, lowering the TiO 2 conduction band, and mid-bandgap states introduced by In 2O3 accelerate recombination, leading to a reduced V OC. © 2013 American Chemical Society.

  17. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Directory of Open Access Journals (Sweden)

    Jun-Chin Liu

    2014-01-01

    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  18. Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.

    Science.gov (United States)

    Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong

    2018-02-01

    In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.

  19. Multicolor emission from intermediate band semiconductor ZnO1-xSex

    Science.gov (United States)

    Welna, M.; Baranowski, M.; Linhart, W. M.; Kudrawiec, R.; Yu, K. M.; Mayer, M.; Walukiewicz, W.

    2017-03-01

    Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E- and upper E+ valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emission is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.

  20. Type-II GaSb/GaAs quantum-dot intermediate band with extended optical absorption range for efficient solar cells

    Science.gov (United States)

    Boustanji, Hela; Jaziri, Sihem

    2018-02-01

    GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.

  1. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Achtelik, J.; Sievers, W. [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany); Lindner, J.K.N., E-mail: lindner@physik.uni-paderborn.de [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany)

    2013-05-15

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented.

  2. A BAND SELECTION METHOD FOR SUB-PIXEL TARGET DETECTION IN HYPERSPECTRAL IMAGES BASED ON LABORATORY AND FIELD REFLECTANCE SPECTRAL COMPARISON

    Directory of Open Access Journals (Sweden)

    S. Sharifi hashjin

    2016-06-01

    Full Text Available In recent years, developing target detection algorithms has received growing interest in hyperspectral images. In comparison to the classification field, few studies have been done on dimension reduction or band selection for target detection in hyperspectral images. This study presents a simple method to remove bad bands from the images in a supervised manner for sub-pixel target detection. The proposed method is based on comparing field and laboratory spectra of the target of interest for detecting bad bands. For evaluation, the target detection blind test dataset is used in this study. Experimental results show that the proposed method can improve efficiency of the two well-known target detection methods, ACE and CEM.

  3. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m Reflective Wavelength Bands to Sentinel-2 20-m Resolution

    OpenAIRE

    Zhongbin Li; Hankui K. Zhang; Roy, David P.; Lin Yan; Haiyan Huang; Jian Li

    2017-01-01

    The Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) method to downscale Landsat-8 Operational Land Imager (OLI) 30-m data to Sentinel-2 multi-spectral instrument (MSI) 20-m resolution is presented. The method first downscales the Landsat-8 30-m OLI bands to 15-m using the spatial detail provided by the Landsat-8 15-m panchromatic band and then reprojects and resamples the downscaled 15-m data into registration with Sentinel-2A 20-m data. The LPAD method is demonstrated using pairs of co...

  4. Soiling of building envelope surfaces and its effect on solar reflectance – Part III: Interlaboratory study of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, M; Chen, S; Gilbert, HE; Kirchstetter, TW; Berdahl, P; Bibian, E; Bruckman, LS; Cremona, D; French, RH; Gordon, DA; Emiliani, M; Kable, J; Ma, L; Martarelli, M; Paolini, R; Prestia, M; Renowden, J; Marco Revel, G; Rosseler, O; Shiao, M; Terraneo, G; Yang, T; Yu, L; Zinzi, M; Akbari, H; Levinson, R; Destaillats, H

    2015-09-22

    A laboratory method to simulate natural exposure of roofing materials has been reported in a companion article. Here in the current article, we describe the results of an international, nine-participant interlaboratory study (ILS) conducted in accordance with ASTM Standard E691-09 to establish the precision and reproducibility of this protocol. The accelerated soiling and weathering method was applied four times by each laboratory to replicate coupons of 12 products representing a wide variety of roofing categories (single-ply membrane, factory-applied coating (on metal), bare metal, field-applied coating, asphalt shingle, modified-bitumen cap sheet, clay tile, and concrete tile). Participants reported initial and laboratory-aged values of solar reflectance and thermal emittance. Measured solar reflectances were consistent within and across eight of the nine participating laboratories. Measured thermal emittances reported by six participants exhibited comparable consistency. For solar reflectance, the accelerated aging method is both repeatable and reproducible within an acceptable range of standard deviations: the repeatability standard deviation sr ranged from 0.008 to 0.015 (relative standard deviation of 1.2–2.1%) and the reproducibility standard deviation sR ranged from 0.022 to 0.036 (relative standard deviation of 3.2–5.8%). The ILS confirmed that the accelerated aging method can be reproduced by multiple independent laboratories with acceptable precision. In conclusion, this study supports the adoption of the accelerated aging practice to speed the evaluation and performance rating of new cool roofing materials.

  5. Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong; Angal, Amit; Wu, Aisheng; Geng, Xu

    2017-01-01

    The inter-comparison of MODIS reflective solar bands onboard Aqua and Terra is very important for assessment of each instrument's calibration. One of the limitations is the lack of simultaneous nadir overpasses. Their measurements over a selected Earth view target have significant differences in solar and view angles, which magnify the effects of atmospheric scattering and Bidirectional Reflectance Distribution Function (BRDF). In this work, an intercomparison technique is formulated after correction for site's BRDF and atmospheric effects. The reflectance measurements over Libya desert sites 1, 2, and 4 from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for calibration difference. The ratio between Aqua and Terra reflectance measurements are derived for bands 1 to 9 and the results from different sites show good agreement. For year 2003, the ratios are in the range of 0.985 to1.010 for band 1 to 9. Band 3 shows the lowest ratio 0.985 and band 1 shows the highest ratio 1.010. For the year 2014, the ratio ranges from approximately 0.983 for bands 2 and 1.012 for band 8. The BRDF corrected reflectance for the two instruments are also derived for every year from 2003 to 2014 for stability assessment. Bands 1 and 2 show greater than 1 differences between the two instruments. Aqua bands 1 and 2 show downward trends while Terra bands 1 and 2 show upward trends. Bands 8 and 9 of both Aqua and Terra show large variations of reflectance measurement over time.

  6. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    Directory of Open Access Journals (Sweden)

    D. Hernández-Pinilla

    2016-06-01

    Full Text Available Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]. Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here.

  7. Doped nanocrystalline silicon oxide for use as (intermediate) reflecting layers in thin-film silicon solar cells

    NARCIS (Netherlands)

    Babal, P.

    2014-01-01

    In summary, this thesis shows the development and nanostructure analysis of doped silicon oxide layers. These layers are applied in thin-film silicon single and double junction solar cells. Concepts of intermediate reflectors (IR), consisting of silicon and/or zinc oxide, are applied in tandem

  8. The effectiveness of TiO2 additions to mortar to maintain initial conditions in terms of its reflectance to solar radiation

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto Andrade Dantas

    Full Text Available Abstract Contact of facades with degradation agents and direct incidence of ultraviolet radiation on external coatings make them more opaque over time, affecting their colour and reflectance characteristics. This study evaluated the effect of adding different TiO2 contents to mortars applied in concrete substrates in order to verify the reflectance maintenance on surfaces after exposure over time. Mortar with different concentrations of TiO2 (1%, 5%, 10% were produced in relation to the total dry premix, added as a powder and compared to unpainted mortar without TiO2 (type "A" and painted mortar without TiO2 (type "B", both used as a reference for colour and reflectance. Exposed over 16 months to climate conditions in São Paulo, regarding the maintenance of reflectance and solar radiation, the results showed that type "B" (0%TiO2 painted mortar presented the best performance. Type "C" (1%TiO2 and type "D" (5%TiO2 unpainted mortar remained more stable. Type "A" (0%TiO2 and type "E" (10%TiO2 unpainted mortar showed greater differences according to the Just Noticeable Difference (JND range caused by dirt pick up.

  9. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  10. Strategies for the optimization of organic solar cells. Doped transport layers and novel oligothiophenes with reduced band gap; Strategien zur Optimierung organischer Solarzellen. Dotierte Transportschichten und neuartige Oligothiophene mit reduzierter Bandluecke

    Energy Technology Data Exchange (ETDEWEB)

    Uhrich, Christian

    2008-03-11

    derivatives used as photoactive materials were investigated. By the attachment of electron withdrawing end groups, the ionization potential of the oligothiophenes is increased and the optical band gap is reduced at the same time. The investigated thiophene derivative DCV3T acts as an acceptor in combination with the commonly used donor-materials. A back- and forth-transfer of excitation energy is observed in blends of DCV3T and fullerene C{sub 60}. In these blends, excitons are not separated into free charge carriers. This back and forth transfer leads to an enhancement of the density of triplet excitons on DCV3T. These excitons have a potentially high diffusion length due to the long lifetime of triplet excitons. This effect was utilized in the organic solar cells. (orig.)

  11. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD of the 30-m Reflective Wavelength Bands to Sentinel-2 20-m Resolution

    Directory of Open Access Journals (Sweden)

    Zhongbin Li

    2017-07-01

    Full Text Available The Landsat 15-m Panchromatic-Assisted Downscaling (LPAD method to downscale Landsat-8 Operational Land Imager (OLI 30-m data to Sentinel-2 multi-spectral instrument (MSI 20-m resolution is presented. The method first downscales the Landsat-8 30-m OLI bands to 15-m using the spatial detail provided by the Landsat-8 15-m panchromatic band and then reprojects and resamples the downscaled 15-m data into registration with Sentinel-2A 20-m data. The LPAD method is demonstrated using pairs of contemporaneous Landsat-8 OLI and Sentinel-2A MSI images sensed less than 19 min apart over diverse geographic environments. The LPAD method is shown to introduce less spectral and spatial distortion and to provide visually more coherent data than conventional bilinear and cubic convolution resampled 20-m Landsat OLI data. In addition, results for a pair of Landsat-8 and Sentinel-2A images sensed one day apart suggest that image fusion should be undertaken with caution when the images are acquired under different atmospheric conditions. The LPAD source code is available at GitHub for public use.

  12. Solar house heating system using reflective pyramid optical condensing system. Evaluation of performance, June 1, 1975--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The prototype system, previously built on Westover Road, Stamford, Connecticut, was upgraded, instrumented, and evaluated. It was found to perform essentially as expected, but the open construction was found to have problems. A fully enclosed model Pyramidal Optics house was built by Better Homes of Delaware near Rehoboth, Delaware. After a number of significant improvements were made in the optical concentrating system and the flat plate receiver assembly, the system was monitored throughout the winter of 1976/1977 and found to perform very well. The solar contribution to heating amounted to 70 percent during the severe winter months and is expected to exceed 80 percent throughout the year. The Pyramidal Optics system has been found to have a number of economic and operational advantages. It is planned to evaluate additional systems in other locations and different climatic conditions.

  13. Phylogeography of the American woodcock (Scolopax minor): Are management units based on band recovery data reflected in genetically based management units?

    Science.gov (United States)

    Rhymer, J.M.; McAuley, D.G.; Ziel, H.L.

    2005-01-01

    Information on population connectivity throughout the annual cycle has become more crucial, because populations of many migratory birds are in decline. One such species is the American Woodcock (Scolopax minor), which inhabits early-successional forests in eastern North America. Although band recoveries have proved useful for dividing populations of this game bird species into an Eastern Region and Central Region for management purposes, these data do not provide enough detail to determine the breeding population of origin of birds recovered on stopover and wintering areas. To obtain more fine-scale data, we undertook a phylogeographic study of American Woodcock populations throughout their primary breeding range in the eastern United States and Canada using mitochondrial DNA (mtDNA) sequences from the hypervariable control region I (CRI) and ND6 gene. Despite high haplotype diversity, nucleotide diversity was low and there was no phylogeographic structure among American Woodcock populations across the species range, with birds from many states and provinces in both management regions sharing identical haplotypes. Results suggest recent or ongoing gene flow among populations, with asymmetric movement of birds between migration flyways. As has been demonstrated for several other avian species in North America, American Woodcock appear to have undergone a rapid population expansion following the late Pleistocene glacial retreat. Thus, a combination of historical demographic factors and recent or ongoing gene flow mask any population structure based on mtDNA that might accrue from philopatry to breeding areas observed in studies of marked birds.

  14. Combining Observations in the Reflective Solar and Thermal Domains for Improved Mapping of Carbon, Water and Energy FLuxes

    Science.gov (United States)

    Houborg, Rasmus; Anderson, Martha; Kustas, Bill; Rodell, Matthew

    2011-01-01

    This study investigates the utility of integrating remotely sensed estimates of leaf chlorophyll (C(sub ab)) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. Day to day variations in nominal LUE (LUE(sub n)) were assessed for a corn crop field in Maryland U.S.A. through model calibration with CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. Changes in Cab exhibited a curvilinear relationship with corresponding changes in daily calibrated LUE(sub n) values derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio-temporal variations in LUE(sub n). The results demonstrate the synergy between thermal infrared and shortwave reflective wavebands in producing valuable remote sensing data for monitoring of carbon and water fluxes.

  15. Experimental estimation of effective recombination coefficients in the D-region ionosphere at high latitudes during solar eclipses by the method of partial reflections

    Directory of Open Access Journals (Sweden)

    Chernyakov S. M.

    2017-03-01

    Full Text Available The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. Experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. The basis of this method is the idea of Appleton about similarity of the behavior of the linear inductive circuit and variations of the electron concentration in the ionosphere on a fixed height in the absence of the transport processes, the change in the rate of formation of electrons in time and the disappearance of free electrons due to recombination. By analogy with the time constant of the electric circuit Appleton called the reaction of the ionosphere on the process of ionization in the ionosphere as "sluggishness" with a characteristic time constant τ, which is also called the "relaxation time" or "time constant of the ionosphere". During 11 August 1999, 1 August 2008, 11 June 2011, 20 March 2015 solar eclipses at the partial reflection facility of the observatory "Tumanny" (69.0N, 35.7E observations of the amplitudes of reflections of ordinary and extraordinary waves have been carried out. Using the obtained data the two-dimensional (time, height distribution of the electron density ne at altitudes of the D-region ionosphere has been calculated. This has made it possible to obtain the behavior of the electron concentration in time at selected altitudes (temporal profiles of electron density at selected altitudes. Using the obtained experimental profiles, the effective recombination coefficients on the heights of the D-region ionosphere have been evaluated. Transport processes of plasma (for example, propagation of acoustic

  16. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  17. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    Science.gov (United States)

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  18. Band gap engineering of Cu3FexSn(1-x)S4: A potential absorber material for solar energy

    Science.gov (United States)

    Nazari, P.; Yazdani, A.; Shadrokh, Z.; Abdollahi Nejand, B.; Farahani, N.; Seifi, R.

    2017-12-01

    In this work, band gap engineering of quaternary chalcogenides with the general formula of Cu2FexSn(1-x)S4 was conducted by substituting Sn atoms with Fe atoms. The morphology and crystalline structure of the synthesized nanostructured powder were studied by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), respectively. Optical properties of the nanostructured powder were studied by UV-Vis spectroscopy. The results indicate that substitution of Sn atoms with Fe atoms could transfer the tetragonal structure of CTS to tetragonal CFTS structure. The 1.54 eV band gap reached in 80 at.% replacement of Sn atoms with Fe atoms resulting in a tetragonal Cu2FeSnS4 flower-like structure. Moreover, by loading smaller amount of Fe atoms up to 20 at.%, no Fe atoms incorporation in CTS structure was observed.

  19. Low band gap poly-thienopyrazines for solar cells - Introducing the 11-thia-9,13-diaza-cyclopenta[b]triphenylenes

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Martin H.; Hagemann, Ole; Nielsen, Kim T.; Joergensen, Mikkel; Krebs, Frederik C. [Danish Polymer Centre, Risoe National Laboratory, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2007-07-06

    The chemistry of the thienopyrazines has been explored with the aim of producing new low band gap polymers. 5,7-Di-(thiophen-2-yl)-thieno[3,4-b]pyrazines substituted in the pyrazine ring with alkyl groups, aryl groups and fused aromatic rings have been prepared and characterized. The electronic spectra show a great variation in the longest wavelength absorption band as a consequence of this substitution. A special case is the 11-thia-9,13-diaza-cyclopenta[b]triphenylene prepared by condensation of 3',4'-diamino-[2,2',5',2'']terthiophene with phenanthrene-9,10-quinone. Alkyl substitution of the most promising monomers were carried out using the Kumada coupling and these were copolymerized with either 2,5-bis(trimethylstannyl)thiophene or 3-(3,7,11-trimethyl-dodecyl)-2,5-bis-trimethylstannyl-thiophene to form six new low band gap polymers: RISO-GREEN 1-3 and RISO-BROWN 1-3. The band gaps of these polymers were estimated from the UV-visible absorption spectra and found to be ca. 1.3 eV. Preliminary results from photovoltaic device fabrication with mixtures of the six polymers with either [60]PCBM or [70]PCBM gave modest efficiencies of max 0.2% with open circuit voltages V{sub oc} of 0.3 V and short circuit currents J{sub sc} (1000 Wm{sup -2} AM1.5) in the range of 2 mA cm{sup -2}. (author)

  20. A Synthesis of VIIRS Solar and Lunar Calibrations

    Science.gov (United States)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  1. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    Reflection has moved from the margins to the mainstream in supervision. Notions of reflection have become well established since the late 1980s. These notions have provided useful framing devices to help conceptualize some important processes in guidance and counseling. However, some applications...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...

  2. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  3. Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-09-01

    Full Text Available Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS data and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.

  4. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells.

    Science.gov (United States)

    Chen, Zhenhui; Cai, Ping; Chen, Junwu; Liu, Xuncheng; Zhang, Lianjie; Lan, Linfeng; Peng, Junbiao; Ma, Yuguang; Cao, Yong

    2014-04-23

    Absorption spectra of polymer FBT-Th4 (1,4) (M n = 46.4 Kg/mol, E g = 1.62 eV, and HOMO = -5.36 eV) indicate strong interchain aggregation ability. High hole mobilities up to 1.92 cm(2) (V s)(-1) are demonstrated in OFETs fabricated under mild conditions. Inverted solar cells with active layer thicknesses ranging from 100 to 440 nm display PCEs exceeding 6.5%, with the highest efficiency of 7.64% achieved with a 230 nm thick active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study of band gap reduction of TiO{sub 2} thin films with variation in GO contents and use of TiO{sub 2}/Graphene composite in hybrid solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Hareema, E-mail: hareemasaleem@gmail.com; Habib, Amir

    2016-09-15

    We have successfully designed a hybrid solar cell for improved performance of the P3HT based photovoltaic devices by using TiO{sub 2}/Graphene composites. There has been significant improvement in IV characteristics of organic solar cells prepared by this method. The TiO{sub 2}/Graphene composites act as electron collectors in active layer along with P3HT: PCBM in inverted organic photovoltaic devices. The energy bandgap was prominently reduced from 3.00 eV to 2.71 eV as confirmed by cyclic voltametery (CV) and UV–Vis spectroscopy. We have separately synthesized the TiO{sub 2} nanoparticles of size range (15 nm–22 nm) through condensed refluxed sol gel method in which titanium isopropoxide was taken as precursor. Modified Hummer's Method was used for the oxidation of graphite flakes into graphene oxide (GO) using KMnO{sub 4} as an oxidizing agent. TiO{sub 2}/Graphene composites were prepared by the subsequent sonication and heating processes. We have rigorously characterized the sample through various characterization tools. Scanning electron microscopy (SEM) results of TiO{sub 2}/Graphene films reveal the homogenous distribution of graphene nanosheets among the homogenously distributed titanium nanoparticles. X-ray diffraction (XRD) has shown the pure anatase phase peaks of TiO{sub 2} nanoparticles and oxidation of graphite at 11.8°. Fourier transform infrared spectroscopy (FTIR) has been used to study the vibrating modes. The chemical bonding Ti−O−C resulted to enhance the electron transport in obtained TiO{sub 2}/Graphene composite films. UV–Vis spectroscopy has expressed the oxidation peaks of graphite around 216 nm and all composite films were observed in visible region. The significant reduction in band gap and improved performance of hybrid solar cell using TiO{sub 2}/Graphene composite as electron collector in active layer, is attributed to getting better economical power conversion efficiency solar cell. - Highlights: • Reduction of

  6. Tandem resonator reflectance modulator

    Science.gov (United States)

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  7. Half-Heusler compounds with a 1 eV (1.7 eV) direct band gap, lattice-matched to GaAs (Si), for solar cell application: A first-principles study

    KAUST Repository

    Belmiloud, N.

    2016-01-10

    A systematic theoretical study of the structural and electronic properties of new half-Heusler compounds is performed to find the appropriate target key physical parameters for photovoltaic application. As a result, five ternary half-Heusler compounds ScAgC, YCuC, CaZnC, NaAgO, and LiCuS are studied by density functional theory for potential applications in multi-junction solar cells. The calculated formation enthalpies indicate that these materials are thermodynamically stable. Using state-of-the-art modified Becke-Johnson exchange potential approximation, we find a direct band gap close to 1eV (∼1.88eV) for ScAgC, YCuC, CaZnC, NaAgO (LiCuS) being quasi-lattice matched to GaAs (Si). In addition, the band offsets between half-Heusler compounds and GaAs (Si) and their consequences for heterostructures are derived using the modified Tersoff method for the branch-point energy. Furthermore, the elastic constants and phonon dispersion curves are calculated. They indicate the respective mechanical and dynamical stability of these half-Heusler compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Intermediate bands and non radiative recombination

    OpenAIRE

    Tablero Crespo, César; Martí Vega, Antonio; Fuertes Marrón, David; Antolín Fernández, Elisa; Luque López, Antonio

    2009-01-01

    The use of half-filled intermediate band materials has been proposed as a means to implement solar cells with efficiency exceeding that of single gap solar cells. An intermediate band can be regarded, at first, as a mere collection of energy levels within the semiconductor bandgap. However, its recombination properties are expected to be different from those traditionally attributed to deep levels. Hence, while deep centers behave mainly as non-radiative recombination centers, the IB is ...

  9. Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John [3M Company, St. Paul, MN (United States)

    2016-09-16

    The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or other material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.

  10. Dye bonding to TiO2: in situ attenuated total reflection infrared spectroscopy study, simulations, and correlation with dye-sensitized solar cell characteristics.

    Science.gov (United States)

    Völker, Barbara; Wölzl, Florian; Bürgi, Thomas; Lingenfelser, Dominic

    2012-08-07

    Processing dye-sensitized solar cells gains more and more importance as interest in industrial applications grows daily. For large-scale processing and optimizing manufacturing in terms of environmental acceptability as well as time and material saving, a detailed knowledge of certain process steps is crucial. In this paper we concentrate on the sensitizing step of production, i.e., the anchoring of the dye molecules onto the TiO(2) semiconductor. A vacuum-tight attentuated total reflection infrared (ATR-IR) flow-through cell was developed, thus allowing measurements using a vacuum spectrometer to monitor infiltration of dye molecules into the porous TiO(2) film in situ at high sensitivity. In particular, the influence of the anchor and backbone of perylene dye molecules as well as the influence of solvents on the adsorption process was investigated. The experiments clearly show that an anhydride group reacts much slower than an acid group. A significantly lower amount of anhydride dye can be adsorbed on the films. Ex situ transmission experiments furthermore indicate that the availability of OH groups on the TiO(2) surface may limit dye adsorption. Also the backbone and base frame of the dye can influence the adsorption time drastically. Electrical cell characteristics correlate with the amount of adsorbed dye molecules determined by in situ ATR-IR measurements. The latter is also sensitive toward the diffusion of the dye through the porous layer. To gain a deeper understanding of the interplay between diffusion and adsorption, simulations were performed that allowed us to extract diffusion and adsorption constants. Again it was demonstrated that the anchoring group has a strong effect on the adsorption rate. The influence of the solvent was also studied, and it was found that both adsorption and desorption are affected by the solvent. Protic polar solvents are able to remove bound dye molecules, which is a possible pathway of cell degradation. Most importantly

  11. Study of the Mg incorporation in CdTe for developing wide band gap Cd{sub 1-x}Mg{sub x}Te thin films for possible use as top-cell absorber in a tandem solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Omar S. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Universidad Politecnica del Estado de Guerrero, Comunidad de Puente Campuzano, C.P. 40325 Taxco de Alarcon, Guerrero (Mexico); Millan, Aduljay Remolina [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Huerta, L.; Santana, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico. C.P 04510 Mexico D.F. (Mexico); Mathews, N.R.; Ramon-Garcia, M.L.; Morales, Erik R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Mathew, X., E-mail: xm@cie.unam.mx [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Thin films of Cd{sub 1-x}Mg{sub x}Te with high spatial uniformity and band gap in the range of 1.6-1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg. Black-Right-Pointing-Pointer Obtained Cd{sub 1-x}Mg{sub x}Te films have the structural characteristics of the CdTe, evidence of the change in atomic scattering due to incorporation of Mg was observed. Black-Right-Pointing-Pointer XRD and XPS data confirmed the incorporation of Mg in the lattice of CdTe. Black-Right-Pointing-Pointer SEM images revealed the impact of Mg incorporation on the morphology of the films, the changes in grain size and grain morphology are noticeable. - Abstract: Thin films of Cd{sub 1-x}Mg{sub x}Te with band gap in the range of 1.6-1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg on glass substrates heated at 300 Degree-Sign C. Different experimental techniques such as XRD, UV-vis spectroscopy, SEM, and XPS were used to study the effect of Mg incorporation into the lattice of CdTe. The band gap of the films showed a clear tendency to increase as the Mg content in the film is increased. The Cd{sub 1-x}Mg{sub x}Te films maintain all the structural characteristics of the CdTe, however, diminishing of intensity for the XRD patterns is observed due to both change in preferential orientation and change in atomic scattering due to the incorporation of Mg. SEM images showed significant evidences of morphological changes due to the presence of Mg. XRD, UV-vis spectroscopy, and XPS data confirmed the incorporation of Mg in the lattice of CdTe. The significant increase in band gap of CdTe due to incorporation of Mg suggests that the Cd{sub 1-x}Mg{sub x}Te thin film is a candidate material to use as absorber layer in the top-cell of a tandem solar cell.

  12. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Goldberg, David; Menon, Vinod M., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Department of Physics, Queens College and Graduate Center, The City University of New York, Flushing, New York 11367 (United States)

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  13. Changes in reflectance anisotropy of wheat crop during different phenophases

    Science.gov (United States)

    Lunagaria, Manoj M.; Patel, Haridas R.

    2017-04-01

    The canopy structure of wheat changes significantly with growth stages and leads to changes in reflectance anisotropy. Bidirectional reflectance distribution function characterises the reflectance anisotropy of the targets, which can be approximated. Spectrodirectional reflectance measurements on wheat crop were acquired using a field goniometer system. The bidirectional reflectance spectra were acquired at 54 view angles to cover the hemispheric span up to 60° view zenith. The observations were made during early growth stages till maturity of the crop. The anisotropy was not constant for all wavelengths and anisotropic factors clearly revealed spectral dependence, which was more pronounced in near principal plane. In near infrared, wheat canopy expressed less reflectance anisotropy because of higher multiple scattering. The broad hotspot signature was noticeable in reflectance of canopy whenever view and solar angles were close. Distinct changes in bidirectional reflectance distribution function were observed during booting to flowering stages as the canopy achieves more uniformity, height and head emergence. The function clearly reveals bowl shape during heading to early milking growth stages of the crop. Late growth stages show less prominent gap and shadow effects. Anisotropy index revealed that wheat exhibits changes in reflectance anisotropy with phenological development and with spectral bands.

  14. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells

    KAUST Repository

    Yiu, Alan T.

    2012-02-01

    The solution-processability of conjugated polymers in organic solvents has classically been achieved by modulating the size and branching of alkyl substituents appended to the backbone. However, these substituents impact structural order and charge transport properties in thin-film devices. As a result, a trade-off must be found between material solubility and insulating alkyl content. It was recently shown that the substitution of furan for thiophene in the backbone of the polymer PDPP2FT significantly improves polymer solubility, allowing for the use of shorter branched side chains while maintaining high device efficiency. In this report, we use PDPP2FT to demonstrate that linear alkyl side chains can be used to promote thin-film nanostructural order. In particular, linear side chains are shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to a substantial increase in the efficiency of bulk heterojunction solar cells. © 2011 American Chemical Society.

  15. Fixed solar energy concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, A.J.; Knasel, T.M.

    1981-01-20

    An apparatus for the concentration of solar energy upon a fixed array of solar cells is disclosed. A transparent material is overlayed upon the cell array, and a diffuse reflective coating is applied to the surface area of the transparent medium in between cells. Radiant light, which reflects through the transparent layer and does not fall directly incident to a cell surface is reflected by the coating layer in an approximate cosine pattern. Thereafter, such light undergoes internal reflection and rediffusion until subsequently it either strikes a solar cell surface or is lost through the upper surface of the transparent material.

  16. SUMO: Solar Ultraviolet Monitor and Ozone Nanosatellite

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Godin-Beekman, S.; Rogers, D. J.; Bove, P.; Lagage, P. O.; DeWitte, S.

    2014-12-01

    SUMO is an innovative proof-of-concept nanosatellite aiming to measure on the same platform the different components of the Earth radiation budget (ERB), the solar energy input and the energy reemitted at the top of the Earth atmosphere, with a particular focus on the far UV (FUV) part of the spectrum and on the ozone layer. The FUV is the only wavelength band with energy absorbed in the high atmosphere (stratosphere), in the ozone (Herzberg continuum, 200-220 nm) and oxygen bands, and its high variability is most probably at the origin of a climate influence (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and tropopause). A simultaneous observation of incoming FUV and ozone production would bring an invaluable information on this process of solar-climate forcing. Space instruments have already measured the different components of the ERB but this is the first time that all instruments will operate on the same platform. This characteristic by itself guarantees original scientific results. SUMO is a 3.6 kg, 3W, 10x10x30 cm3 nanosatellite ("3U"), with a "1U" payload of nanotechnology ZnO protection barriers to limit contamination from solar panels in the UV and reduce reflection losses in the visible, or MgZnO solar blind detectors (R&D initiatives proposed to CNES).

  17. The reflective learning continuum: reflecting on reflection

    OpenAIRE

    Peltier, J; Hay, A.; Drago, W

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research which considers reflection within the context of both the marketing and general business education literature. This paper describes the use of an instrument which can be used to measure four identified levels of a reflection hierarchy: habitual action, understanding, reflection and intensive reflection and two conditions for reflection: instructor to student interacti...

  18. Durable solar mirror films

    Science.gov (United States)

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  19. Imaging of a Transitional Disk Gap in Reflected Light : Indications of Planet Formation Around the Young Solar Analog LkCa 15

    NARCIS (Netherlands)

    Thalmann, C.; Grady, C.A.; Goto, M.; Wisniewski, J. P.; Janson, M.; Henning, T.; Honda, M.; Mulders, G. D.; Min, M.; Fukagawa, M.; Moro-Martin, A.; McElwain, M. W.; Hodapp, K. W.; Carson, J.; Abe, L.; Brandner, W.; Egner, S.; Feldt, M.; Fukue, T.; Golota, T.; Guyon, O.; Hashimoto, J.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Ishii, M.; Kandori, R.; Knapp, G. R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; Matsuo, T.; Miyama, S.; Morino, J. -I.; Nishimura, T.; Pyo, T. -S.; Serabyn, E.; Shibai, H.; Suto, H.; Suzuki, R.; Takami, M.; Takato, N.; Terada, H.; Tomono, D.; Turner, E. L.; Watanabe, M.; Yamada, T.; Takami, H.; Usuda, T.; Tamura, M.; Fugukawa, M.

    2011-01-01

    We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of

  20. Imaging of a transitional disk gap in reflected light: indications of planet formation around the young solar analog LkCa 15

    NARCIS (Netherlands)

    Thalmann, C.; Grady, C.A.; Gotto, M.; Min, M.

    2010-01-01

    We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of

  1. Reflectance spectroscopy of organic compounds: 1. Alkanes

    Science.gov (United States)

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  2. Reflective Writing

    DEFF Research Database (Denmark)

    Ahrenkiel Jørgensen, Andriette

    2016-01-01

    a contribution to the discussions about the role of reflection in design work and in learning situations at large. By engaging with the dialogic reflection, which is one of the four essential types of reflection, (the three others being descriptive writing, descriptive reflection and critical reflection...

  3. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  4. Nanocrystalline proprieties of TiO2 thin film deposited by ultrasonic spray pulverization as an anti-reflection coating for solar cells applications

    Science.gov (United States)

    Sali, Samira; Kermadi, Salim; Zougar, Lyes; Benzaoui, Bouthina; Saoula, Nadia; Mahdid, Khadija; Aitameur, Fatiha; Boumaour, Messaoud

    2017-12-01

    Titanium oxide (TiO2) films have been synthesized on quartz, silicon and textured silicon substrates by chemical ultrasonic spray deposition. The textured silicon substrate was carried out using Na2CO3 solution. The sample surface exhibits uniform pyramids with an average height of 5 µm. In this paper, particular attention is given to the TiO2 films prepared by spray ultrasonic system using Tetra iso-Propoxide Orthotitanate Titanium (TPOT) as a precursor. The solutions were sprayed onto substrates heated at various temperatures 350 - 550 °C. The properties of films as a function of temperature parameter were investigated using structural and optical analysis. According to XRD, FTIR and Micro-Raman spectroscopies, the anatase phase was found and exhibits nanograins of 9 to 15 nm in size. The indirect and direct bad gap were found to increase by increasing substrate temperature due to the decreasing of nanograins size and were estimated to be around 3.28 and 3.38 eV. A transmittance higher than 80% was found. This paper reports on anti-reflection coating application of TiO2 layers due to its good transparency and appropriate refractive index varies between 2.19 - 2.40 at λ = 632.8 nm as a function of temperature determined by UVVisNIR spectrophotometer and Ellipsometry. To achieve optimum anti-reflection characteristics different anti-reflection designs were experimentally examined with polished and textured substrates. The average reflectance of the polished silicon used in this study is 39%, with TiO2 it decreases to 9%. The textured surface reduces the average reflectance of silicon to be around 14% and it decreases dramatically to 5% after deposition of a single layer of TiO2 as an anti-reflection coating. The gain in density of the short-circuit photocurrent assigned to the reduction of reflection losses up to 44% and 58% were predicted with TiO2 single-coating in polished and textured silicon substrates respectively.

  5. Fisica solare

    CERN Document Server

    Degl’Innocenti, Egidio Landi

    2008-01-01

    Il volume è un'introduzione alla Fisica Solare che si propone lo scopo di illustrare alla persona che intende avvicinarsi a questa disciplina (studenti, dottori di ricerca, ricercatori) i meccanismi fisici che stanno alla base della complessa fenomenologia osservata sulla stella a noi più vicina. Il volume non ha la pretesa di essere esauriente (basta pensare che la fisica solare spazia su un gran numero di discipline, quali la Fisica Nucleare, la Termodinamica, L'Elettrodinamica, la Fisica Atomica e Molecolare, la Spettoscopia in tutte le bande dello spettro elettromagnetico, la Magnetoidrodinamica, la Fisica del Plasma, lo sviluppo di nuova strumentazione, l'Ottica, ecc.). Piuttosto, sono stati scelti un numero di argomenti di rilevanza fondamentale nello studio presente del Sole (soprattutto nei riguardi delle osservazioni da terra con grandi telescopi) e su tali argomenti si è cercato di dare una panoramica generale, inclusiva dell'evoluzione storica, senza scendere in soverchi dettagli. Siccome la Fis...

  6. Band offsets in ITO/Ga2O3 heterostructures

    Science.gov (United States)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  7. Validation of S-NPP VIIRS Day-Night Band and M Bands Performance Using Ground Reference Targets of Libya 4 and Dome C

    Science.gov (United States)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu

    2015-01-01

    This paper provides methodologies developed and implemented by the NASA VIIRS Calibration Support Team (VCST) to validate the S-NPP VIIRS Day-Night band (DNB) and M bands calibration performance. The Sensor Data Records produced by the Interface Data Processing Segment (IDPS) and NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired nearly nadir overpass for Libya 4 desert and Dome C snow surfaces. In the past 3.5 years, the modulated relative spectral responses (RSR) change with time and lead to 3.8% increase on the DNB sensed solar irradiance and 0.1% or less increases on the M4-M7 bands. After excluding data before April 5th, 2013, IDPS DNB radiance and reflectance data are consistent with Land PEATE data with 0.6% or less difference for Libya 4 site and 2% or less difference for Dome C site. These difference are caused by inconsistent LUTs and algorithms used in calibration. In Libya 4 site, the SCIAMACHY spectral and modulated RSR derived top of atmosphere (TOA) reflectance are compared with Land PEATE TOA reflectance and they indicate a decrease of 1.2% and 1.3%, respectively. The radiance of Land PEATE DNB are compared with the simulated radiance from aggregated M bands (M4, M5, and M7). These data trends match well with 2% or less difference for Libya 4 site and 4% or less difference for Dome C. This study demonstrate the consistent quality of DNB and M bands calibration for Land PEATE products during operational period and for IDPS products after April 5th, 2013.

  8. Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters

    Science.gov (United States)

    Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

  9. Gradient and vorticity banding

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2008-01-01

    "Banded structures" of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as "gradient banding" or "vorticity banding,"

  10. Solar collector overheating protection

    NARCIS (Netherlands)

    Slaman, M.J.; Griessen, R.P.

    Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a

  11. On-Orbit Performance of MODIS Solar Diffuser Stability Monitor

    Science.gov (United States)

    Xiong, Xiaoxiong; Angal, Amit; Choi, Taeyoung; Sun, Jungiang; Johnson, Eric

    2014-01-01

    MODIS reflective solar bands (RSB) calibration is provided by an on-board solar diffuser (SD). On-orbit changes in the SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM). The SDSM consists of a solar integration sphere (SIS) with nine detectors covering wavelengths from 0.41 to 0.94 microns. It functions as a ratioing radiometer, making alternate observations of the sunlight through a fixed attenuation screen and the sunlight diffusely reflected from the SD during each scheduled SD/SDSM calibration event. Since launch, Terra and Aqua MODIS SD/SDSM systems have been operated regularly to support the RSB on-orbit calibration. This paper provides an overview of MODIS SDSM design functions, its operation and calibration strategies, and on-orbit performance. Changes in SDSM detector responses over time and their potential impact on tracking SD on-orbit degradation are examined. Also presented in this paper are lessons learned from MODIS SD/SDSM calibration system and improvements made to the VIIRS SD/SDSM system, including preliminary comparisons of MODIS and VIIRS SDSM on-orbit performance.

  12. Diet after gastric banding

    Science.gov (United States)

    Gastric banding surgery - your diet; Obesity - diet after banding; Weight loss - diet after banding ... about any problems you are having with your diet, or about other issues related to your surgery ...

  13. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  14. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    Science.gov (United States)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  15. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  16. Simulation study of the aerosol information content in OMI spectral reflectance measurements

    Directory of Open Access Journals (Sweden)

    B. Veihelmann

    2007-06-01

    Full Text Available The Ozone Monitoring Instrument (OMI is an imaging UV-VIS solar backscatter spectrometer and is designed and used primarily to retrieve trace gases like O3 and NO2 from the measured Earth reflectance spectrum in the UV-visible (270–500 nm. However, also aerosols are an important science target of OMI. The multi-wavelength algorithm is used to retrieve aerosol parameters from OMI spectral reflectance measurements in up to 20 wavelength bands. A Principal Component Analysis (PCA is performed to quantify the information content of OMI reflectance measurements on aerosols and to assess the capability of the multi-wavelength algorithm to discern various aerosol types. This analysis is applied to synthetic reflectance measurements for desert dust, biomass burning aerosols, and weakly absorbing anthropogenic aerosol with a variety of aerosol optical thicknesses, aerosol layer altitudes, refractive indices and size distributions. The range of aerosol parameters considered covers the natural variability of tropospheric aerosols. This theoretical analysis is performed for a large number of scenarios with various geometries and surface albedo spectra for ocean, soil and vegetation. When the surface albedo spectrum is accurately known and clouds are absent, OMI reflectance measurements have 2 to 4 degrees of freedom that can be attributed to aerosol parameters. This information content depends on the observation geometry and the surface albedo spectrum. An additional wavelength band is evaluated, that comprises the O2-O2 absorption band at a wavelength of 477 nm. It is found that this wavelength band adds significantly more information than any other individual band.

  17. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available An attractive and cheaper alternative to siliconbased photovoltaic (PV) cells for the conversion of solar light into electrical energy is to utilise dyeadsorbed, large-band-gap metal oxide materials such as TiO2 to absorb the solar light...

  18. Nanostructured antireflective in-plane solar harvester.

    Science.gov (United States)

    Tippens, Jared; Bagal, Abhijeet; Zhang, Xu A; Chang, Chih-Hao

    2017-08-07

    In this work, we demonstrate a two-dimensional nano-hole array that can reduce reflection losses while passively trapping and harvesting incident light. The surface structure is designed to scavenge a small portion of incident light that would typically be lost due to Fresnel reflection, while the majority of light transmits unobstructed like a regular window. The trapping mechanism is dependent on angle and wavelength, and can be designed to selectively trap narrow wavelength bands using the constructed theoretical models. We demonstrate that structures with periods of 275 nm and 325 nm can trap different wavelength range within the visible spectrum, while simultaneously suppressing reflection losses. The trapping effect can be observed visually, and can be converted to a current output using a photovoltaic (PV) cell on the glass edge. The fabrication of such materials employs a simple replication process, and can be readily scaled up for large-scale manufacturing. The demonstrated solar harvester can be potentially be widely deployed in residential and commercial buildings as multifunctional windows for solar energy harvesting, scavenging, spectra splitting, and anti-glare properties.

  19. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  3. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshiyuki.

    1989-07-06

    In this invention, in a solar cell which has an electrode consisting of a superconductor, the superconductor electrode is partly or entirely covered with a metal or light reflecting material. In the above, the pattern on the substrate at the junction of the electrode and the semiconductor is the same as that of a comb-type electrode formed at the top of the semiconductor. By this, a solar cell was provided wherein a superconductive electrode which is not subject to degradation of the superconductive characteristics even in the light of high intensity, operating stably at high efficiency, indicating very high practical effect. In addition to the use of amorphous silicon as a semiconductor of the soalr cell, such other material as Si-single crystal, Ge and Ge/As can be used. For the superconductor electrode, such other material as YBaCuO can also be used. 2 figs.

  4. In-situ analyses of triiodide formation in an iodine-free electrolyte for dye-sensitized solar cells using electro-diffuse-reflection spectroscopy (EDRS)

    Science.gov (United States)

    Seo, Seok-Jun; Bialecka, Katarzyna Anna; Kang, Moon-Sung; Hinsch, Andreas; Moon, Seung-Hyeon

    2015-02-01

    An in-situ analysis of I3- formation in an iodine-free electrolyte is carried out using electro-diffuse-reflection spectroscopy (EDRS). Using EDRS, a monochromatic blue laser source irradiates the photo-anode at an incident angle of 45°. The intensity of scattered light is varied by modulating the cell potential. This novel EDRS method enables the detection of variations in I3- concentration in the vicinity of the TiO2 layer even without adding iodine into the electrolyte. Thus, the formation and existence of I3- in an iodine-free electrolyte is empirically revealed for the first time. Interestingly, EDRS results for NaI-free electrolytes show no significant peaks for the I3- formation, confirming electron transport occurs without forming I3- in the elelctrolyte. It is hypothesized that electrons directly propagate through the iodide media by forming diiodide radicals under the harsh electrolyte conditions in which no I2 or NaI are added. Additionally, J-V curves and a.c. impedance are measured to determine the effects of iodine concentration for the iodine-free electrolyte. In conclusion, the EDRS method is to be used for the development of alternative redox couples by examining their transport phenomena for future DSSCs.

  5. Berlin Reflectance Spectral Library (BRSL)

    Science.gov (United States)

    Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.

    2017-09-01

    The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.

  6. Suomi-NPP VIIRS Solar Diffuser Stability Monitor Performance

    Science.gov (United States)

    Fulbright, Jon; Lei, Ning; Efremova, Boryana; Xiong, Xiaoxiong

    2015-01-01

    When illuminated by the Sun, the onboard solar diffuser (SD) panel provides a known spectral radiance source to calibrate the reflective solar bands of the Visible Infrared Imaging Radiometer Suite on the Suomi-NPP satellite. The SD bidirectional reflectance distribution function (BRDF) degrades over time due to solar exposure, and this degradation is measured using the SD stability monitor (SDSM). The SDSM acts as a ratioing radiometer, comparing solar irradiance measurements off the SD panel to those from a direct Sun view. We discuss the design and operations of the SDSM, the SDSM data analysis, including improvements incorporated since launch, and present the results through 1000 days after launch. After 1000 days, the band-dependent H-factors, a quantity describing the relative degradation of the BRDF of the SD panel since launch, range from 0.716 at 412 nanometers to 0.989 at 926 nanometers. The random uncertainty of these H-factors is about 0.1 percent, which is confirmed by the similar standard deviation values computed from the residuals of quadratic exponential fits to the H-factor time trends. The SDSM detector gains have temperature sensitivity of up to about 0.36 percent per kelvin, but this does not affect the derived H-factors. An initial error in the solar vector caused a seasonal bias to the H-factors of up to 0.5 percent. The total exposure of the SD panel to UV light after 1000 orbits is equivalent to about 100 hours of direct sunlight illumination perpendicular to the SD panel surface.

  7. Interpretation of the distortion of ground-penetrating radar propagated and reflected waves - development of a multi-frequency tomography; Interpretation de la distorsion des signaux georadar propages et reflechis. Developpement d'une tomographie par bandes de frequence

    Energy Technology Data Exchange (ETDEWEB)

    Hollender, F

    1999-07-01

    Within the framework of research for waste disposal in deep geological formations, the French agency for nuclear waste management (ANDRA) has to dispose of non-destructive investigation methods to characterize the medium. Ground penetrating radar (GPR) could be used for this purpose in the case of granitic sites. The work presented here deals with this geophysical method. The classical interpretation of GPR data consists in the localization of geological discontinuities by signal amplitude or arrival time analysis. The main objective of our studies is the interpretation of the radar wave distortion (due to propagation and reflection phenomena), not only to localize discontinuities but also to contribute to their identification. Three preliminary studies have been carried out in order to understand on the one hand, the complexity of the electromagnetic phenomena in the geological medium at radar frequency, and on the other hand, the radar equipment constraints. First, the dispersion and the attenuation characterized by a Q variable factor of the GPR waves are shown with the support of dielectric laboratory measurements. A model, which only requires three parameters, is proposed in order to describe this behavior. Second, the radiation patterns of borehole radar antenna are studied. We show that the amplitude and frequency content of the emitted signal are variable versus the emission angle. An analytical method is proposed to study these phenomena. Finally, instrumental drifts of GPR equipment are studied. Emission time, sampling frequency and amplitude fluctuations are described. These elements are taken into account for the processing of propagated signals by tomographic inversion. Medium anisotropy and borehole trajectory errors are inserted in algorithms in order to cancel artifacts which compromised the previous interpretation. A pre-processing method, based on wave separation algorithm, is applied on data in order to increase tomogram resolution. A new

  8. Water Quality Models with Different Functions of Exotech Radiometer Bands

    OpenAIRE

    Rao, K. R.; Krishnan, R.; Chakraborty, A. K.; Deekshatulu, B. L.

    1981-01-01

    Surveillance of water quality by remote sensing technique can be pursued with advantage. An attempt has been made in this paper to obtain regional models of water quality of inland tanks and lakes. Stepwise multiple linear regression analysis between water quality parameters and several functions of Exotech radiometer band reflectance values, namely, bands alone, bands and their ratios, and, bands and their products are evaluated with respect to performance of the regression parameters. It is...

  9. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  10. Quantifying Reflection

    DEFF Research Database (Denmark)

    Alcock, Gordon Lindsay

    2013-01-01

    This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning...

  11. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  12. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  13. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  14. Light Trapping for Silicon Solar Cells: Theory and Experiment

    Science.gov (United States)

    Zhao, Hui

    Crystalline silicon solar cells have been the mainstream technology for photovoltaic energy conversion since their invention in 1954. Since silicon is an indirect band gap material, its absorption coefficient is low for much of the solar spectrum, and the highest conversion efficiencies are achieved only in cells that are thicker than about 0.1 mm. Light trapping by total internal reflection is important to increase the optical absorption in silicon layers, and becomes increasingly important as the layers are thinned. Light trapping is typically characterized by the enhancement of the absorptance of a solar cell beyond the value for a single pass of the incident beam through an absorbing semiconductor layer. Using an equipartition argument, in 1982 Yablonovitch calculated an enhancement of 4n2 , where n is the refractive index. We have extracted effective light-trapping enhancements from published external quantum efficiency spectra in several dozen silicon solar cells. These results show that this "thermodynamic" enhancement has never been achieved experimentally. The reasons for incomplete light trapping could be poor anti-reflection coating, inefficient light scattering, and parasitic absorption. We report the light-trapping properties of nanocrystalline silicon nip solar cells deposited onto two types of Ag/ZnO backreflectors at United Solar Ovonic, LLC. We prepared the first type by first making silver nanparticles onto a stainless steel substrate, and then overcoating the nanoparticles with a second silver layer. The second type was prepared at United Solar using a continuous silver film. Both types were then overcoated with a ZnO film. The root mean square roughness varied from 27 to 61 nm, and diffuse reflectance at 1000 nm wavelength varied from 0.4 to 0.8. The finished cells have a thin, indium-tin oxide layer on the top that acts as an antireflection coating. For both backreflector types, the short-circuit photocurrent densities J SC for solar

  15. Reflection ciphers

    DEFF Research Database (Denmark)

    Boura, Christina; Canteaut, Anne; Knudsen, Lars Ramkilde

    2017-01-01

    study the necessary properties for this coupling permutation. Special care has to be taken of some related-key distinguishers since, in the context of reflection ciphers, they may provide attacks in the single-key setting.We then derive some criteria for constructing secure reflection ciphers...... and analyze the security properties of different families of coupling permutations. Finally, we concentrate on the case of reflection block ciphers and, as an illustration, we provide concrete examples of key schedules corresponding to several coupling permutations, which lead to new variants of the block...

  16. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...

  17. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  18. Lunar calibration improvements for the short-wave infrared bands in Aqua and Terra MODIS

    Science.gov (United States)

    Wilson, Truman; Angal, Amit; Shrestha, Ashish; Xiong, Xiaoxiong

    2017-09-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among a suite of remote sensing instruments on board the Terra and Aqua spacecrafts. Since the beginning of each mission, regularly scheduled lunar observations have been used in order to track the on-orbit gain changes of the reflective solar bands. However, for the short-wave infrared bands, 5-7 and 26, the measured signal is contaminated by both electronic crosstalk and an out-of-band response due to transmission through the MODIS filters at undesired wavelengths. These contaminating signals cause significant oscillations in the derived gain from lunar observations for these bands, which limits their use in determining the scan mirror response versus scan angle at these wavelengths. In this paper, we show a strategy for correcting the electronic crosstalk contamination using lunar observations, where the magnitude and the source of the contaminating signal is clear. For Aqua MODIS, we find that the magnitude of the electronic crosstalk contamination is small, and the lunar calibration remains relatively unaffected. For Terra MODIS, the contamination is more significant, and the electronic crosstalk correction shows a significant reduction in the oscillations of the lunar calibration results.

  19. Zn x Cd1‑x S tunable band structure-directing photocatalytic activity and selectivity of visible-light reduction of CO2 into liquid solar fuels

    Science.gov (United States)

    Tang, Lanqin; Kuai, Libang; Li, Yichang; Li, Haijin; Zhou, Yong; Zou, Zhigang

    2018-02-01

    A series of Zn x Cd1‑x S monodispersed nanospheres were successfully synthesized with tunable band structures. As-prepared Zn x Cd1‑x S solid solutions show much enhanced photocatalytic efficiency for CO2 photoreduction in aqueous solutions under visible light irradiation, relative to pure CdS analog. Methanol (CH3OH) and acetaldehyde (CH3CHO) are the major products of CO2 photoreduction for the solid solutions with x = 0, 0.2, and 0.5. Interestingly, Zn0.8Cd0.2S photocatalyst with a wide band gap can also additionally generate ethanol (CH3CH2OH) besides CH3OH and CH3CHO. The balance between the band structure-directing redox capacity and light absorption should be considered to influence both product yield and selectivity of CO2 photoreduction. The possible photoreduction mechanism was tentatively proposed.

  20. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  1. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Anup, E-mail: a-dey2002@yahoo.com [Electronics and Communication Engineering Department, Kalyani Government Engineering College, Kalyani 741235 (India); Maiti, Biswajit [Physics Department, Kalyani Government Engineering College, Kalyani 741235 (India); Chanda, Debasree [Department of Engineering and Technological Studies, Kalyani University, Kalyani 741235 (India)

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  2. Anti reflective coating for silicon solar cells

    Directory of Open Access Journals (Sweden)

    М.Г. Білоус

    2009-02-01

    Full Text Available  In the given work results on research of an opportunity of use antireflection coverings (ARC converter photo-electric as coverages on a basis, received are resulted at the help liquid- face processes with their subsequent formation by a method centrifugation and high-temperature heat treatment. It is shown, that such АRC meet the basic requirements and behind the characteristics do not concede to the coverings received by other technological processes. The offered technology essentially easy and more economically in comparison with other ways, easily adapts up to requirements of industrial production and consequently is perspective for wide implementation.

  3. Variations in meteor heights at 22.7° S during solar cycle 23

    Science.gov (United States)

    Lima, Lourivaldo; Takahashi, Hisao; Clemesha, Barclay; Batista, Paulo; Rodrigues de Araujo, Luciana; Alves, Edvaldo de O.

    Meteoroids impinging on Earth’s upper atmosphere ablate and form meteor ionized trails, which are able to reflect and scatter incident radio waves in the high frequency (HF) and very high frequency (VHF) bands. From radar measurements it is possible to determinate meteor trails and atmospheric characteristics in the MLT region. In this work, measurements obtained at Cachoeira Paulista (22.7° S, 45.0° W) by SKiYMET radar system, has been used to investigate long-term trends in the peak altitude of the meteor layer during solar cycle 23. The peak heights were analyzed with respect to a possible long-term trend and solar activity-induced variations by linear fitting and the results have revealed a linear decadal decrease of about 1.1 km for meteor peak heights. In this paper will discuss the possible solar effect in the meteor peak height variations.

  4. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance

    Directory of Open Access Journals (Sweden)

    Ahmed Elsayed Ghitas

    2012-12-01

    Full Text Available Solar spectral variation is important in characterization of photovoltaic devices. We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of multicrystalline silicon photovoltaic module. The investigation concentrate on the analysis of outdoor solar spectral measurements carried out at 1 min intervals on clear sky days. Short circuit current and open circuit voltage have been measured to describe the module electrical performance. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of the module. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effect of the spectral variation on the performance of the photovoltaic module is reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the radiation spectra account for the decreased current collection and hence power of the module.

  5. Reflective Learning

    African Journals Online (AJOL)

    dell

    students who used learning log and those who did not especially for the course Pschopharmacology, but the mean scores did not show a significant difference for the course Psychology of Gender. The reflective reports of the students also roughly indicated that the students developed positive attitudes towards using ...

  6. PERSONAL REFLECTIONS

    Indian Academy of Sciences (India)

    IAS Admin

    Resonance journal of science education. April 2015 Volume 20 Number 4. GENERALARTICLES ... Development of. Probability Theory. K B Athreya. Classroom. Tutorial on Phyloge- netic Inference –1. Felix Bast. 360. 346. 286. PERSONAL REFLECTIONS. 368 The Road to IISc. M L Munjal (Transcribed by Maneesh Kunte).

  7. InAs quantum dot growth on Al{sub x}Ga{sub 1−x}As by metalorganic vapor phase epitaxy for intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jakomin, R., E-mail: robertojakomin@xerem.ufrj.br [Campus de Xerém, Universidade Federal do Rio de Janeiro, UFRJ, Duque de Caxias-RJ (Brazil); Campus de Xerém, Universidade Federal do Rio de Janeiro, UFRJ, Duque de Caxias-RJ (Brazil); Kawabata, R. M. S.; Souza, P. L. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22452-900 RJ (Brazil); Mourão, R. T.; Pires, M. P. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Instituto de Física, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro-RJ (Brazil); Micha, D. N. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Instituto de Física, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro-RJ (Brazil); Coordenação de Licenciatura em Física, CEFET/RJ, Petrópolis-RJ (Brazil); Xie, H.; Fischer, A. M.; Ponce, F. A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2014-09-07

    InAs quantum dot multilayers have been grown using Al{sub x}Ga{sub 1−x}As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminium composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure.

  8. Analysis of the Electronic Structure of Modified CuGaS2 with Selected Substitutional Impurities: Prospects for Intermediate-Band Thin-Film Solar Cells Based on Cu-Containing Chalcopyrites

    OpenAIRE

    Tablero, C.; Fuertes Marron, D.

    2010-01-01

    The electronic structure of modified CuGaS2, which belongs to the family of Cu-containing chalcopyrites, has been analyzed from first principles within the density functional theory. The chalcopyrite matrix has been modified by introducing a high concentration of atomic impurities that included transition metals and elements of group IVa at substitutional sites of the lattice host. For selected cases, an intermediate band has been found that potentially fulfills the requirements as stated for...

  9. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  10. Band structure engineering in organic semiconductors

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-01

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

  11. X-ray induced optical reflectivity

    Directory of Open Access Journals (Sweden)

    Stephen M. Durbin

    2012-12-01

    Full Text Available The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity. Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4, a semiconductor (gallium arsenide, GaAs, and a metal (gold, Au, obtained with ∼100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  12. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  13. Experimental advances in the next generation of solar cells

    OpenAIRE

    Martí Vega, Antonio; Luque López, Antonio

    2010-01-01

    We consider next generation solar cells concepts those that have the potential to exceed the limiting efficiency calculated by Shockley and Queisser for single gap solar cells (40.7 %) and still have not been commercialized. Among these concepts, this paper deals with the multiple exciton generation (or impact ionization or multiple carrier generation) solar cell, the intermediate band solar cell and the hot carrier solar cell. These concepts were proposed theoretically more than ten yea...

  14. Singing with the Band

    Science.gov (United States)

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  15. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric

  16. Utility rates and solar commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, R.J.

    Electricity is likely to be the most popular backup for solar heating and cooling and hot water heating and for solar-produced electricity during periods of unfavorable weather. The rates at which that electricity is supplied will affect the economic feasibility of solar applications. The essential principle of rate regulation is that, in giving the utility a fair return on its investment, rates should reflect the cost of providing service. Some utilities claim that solar systems are expensive to serve. They are afraid that solar houses, which use electricity intermittently, will impose the same amount of demand on the utility at peak periods as all-electric houses, thus requiring the utility to have just as much plant standing by, while reducing the overall use of that plant and reducing utility revenues because solar buildings use less overall electricity. Studies have yielded conflicting results, but offpeak solar storage appears to reduce utility costs. Studies underway, particularly those by the industry's Electric Power Research Institute, may give a better answer. Higher rates charged for solar backup service by some utilities have negative effects on solar system economics. Most utilities apply standard residential rates to solar backup, and some charge cheaper all-electric rates or low, experimental rates for service used to recharge storage units during offpeak periods. Rates affect solar system design and collector size. The results of utility industry studies on the costs of supplying solar backup should be made public, and federal studies are needed.

  17. Characterization of InP and InGaN quantum dots for single photon sources and AlGaInAs quantum dots in intermediate band solar cells; Charakterisierung von InP und InGaN Quantenpunkten als Einzelphotonenquellen sowie von AlGaInAs Quantenpunkten in Zwischenband-Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kremling, Stefan

    2014-06-26

    This thesis describes the characterization of semiconductor quantum dots (QDs) in different material systems with potential applications as single photon emitters or intermediate band solar cells. All investigations were carried out by means of optical spectroscopy methods. First, the theoretical background regarding the physics of QDs with respect to their electronic structure and their associated statistical properties are presented. Especially peculiarities of photon statistics of light are explained. Moreover, a closer look at the physics of solar cells and the respective carrier transport is given. Then experimental methods, which were used to characterize the QD-samples, are briefly explained. First, the components and techniques of optical spectroscopy for the study of individual, isolated QDs are described. Second, different experimental technologies for the characterization of solar cells are discussed. The method for measuring the two-photon-absorption process is explained in detail. The section of experimental results begins with studies of individual and spectrally isolated InP QD. Due to the low surface density of one QD per μm{sup 2}, it is possible to study the physical properties of individual QDs optically without additional lateral sample structuring. Based on power and polarization dependent measurements, various luminescence peaks of a single QD were associated with different exciton states. In addition, the QDs were tested subject to an external magnetic field in a Faraday configuration. Finally, the temporal photon statistics of a single QD was tested using autocorrelation measurement. Afterwards, InP QDs manufactured by cyclic material deposition with growth interruptions were investigated by means of PL spectroscopy. Based on excitation power and time-resolved measurements on the QD ensemble, a bimodal QD distribution of type-I and type-II band alignment was observed. In addition, different exciton states were identified on spectrally

  18. Line Intensity and Position Measurements and Derived Band Parameters of the 31103-00001 C-12 O-16(2) Band and its Two Nearby Hot Bands

    Science.gov (United States)

    Giver, Lawrence P.; Kshirsagar, Rohidas J.; Freedman, Richard S.; Chackerian, Charles, Jr.; Wattson, Richard B.; Brown, Linda R.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    A set of CO2 spectra from 4500 to 4780/cm has been obtained an Ames with 1500 m path length using a Bomem DA8 FTS. This spectral region contains a number of weak bands and minor isotopic bands that have been studied at high resolution in the reflection spectrum of Venus by Mandin. Improved laboratory intensity and position measurements should assist modeling the Venus reflection spectra and improve understanding of Venus' upper atmosphere. Also, the laboratory measurements will assist DND intensity computations of weaker bands that cannot be measured, but which are nevertheless significant absorbers in Venus' hot, deep CO2, atmosphere. For example, some of the weaker bands that are members of the same polyads as the bands in this presentation lie in the nearby 2.3 microns emission window in Venus' night-side spectrum.

  19. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  20. High Reflectivity, Broad-Band Silver Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silver coatings for optics greater than 2-meters in diameter are sought by NASA for future space telescope systems. In the Phase I research, Surface Optics...

  1. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  2. The Cassini Ka-band gravitational wave experiments

    CERN Document Server

    Tinto, M

    2002-01-01

    Cassini, a joint American/European interplanetary scientific mission to Saturn, will be continuously and coherently tracked for 40 days during its solar oppositions in the next three years, starting on 26 November 2001. Doppler tracking searches for gravitational waves in the millihertz frequency band will be performed by using newly implemented Ka-band (approx 32 GHz) microwave capabilities on the ground and onboard the spacecraft. Use of the Ka-band coherent microwave link will suppress solar plasma scintillations to levels below those identified by remaining instrumental noise sources, making the Cassini Doppler tracking experiments the most sensitive searches for gravitational waves ever attempted in the millihertz frequency band. This paper provides a short review of the Doppler response to gravitational radiation, the noise sources and their transfer functions into the Doppler observable and estimates of the anticipated Cassini Doppler tracking sensitivities to gravitational radiation.

  3. Anomalously Weak Solar Convection

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  4. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  5. Halogenation of SiC for band-gap engineering and excitonic functionalization.

    Science.gov (United States)

    Drissi, Lalla Btissam; Ramadan, Fatima Zahra; Lounis, Samir

    2017-09-11

    The optical excitation spectra and excitonic resonances are investigated in systematically functionalized SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and show the high stability of the predicted two-dimensional materials. Their realization in laboratory is thus possible. Large band-gaps of the order of 4 eV are found in the so-called GW approximation, with the occurrence of bright excitons, optically active in the four investigated materials. Their binding energies vary from 0.9 eV to 1.75 eV depending on the decoration choice and in one case, a dark exciton is foreseen to exist in the fully chlorinated SiC. The wide variety of opto-electronic properties suggest halogenated SiC as interesting materials with potential not only for solar cell applications, anti-reflection coatings or high-reflective systems but also for a possible realization of excitonic Bose-Einstein condensation. © 2017 IOP Publishing Ltd.

  6. Halogenation of SiC for band-gap engineering and excitonic functionalization

    Science.gov (United States)

    Drissi, L. B.; Ramadan, F. Z.; Lounis, S.

    2017-11-01

    The optical excitation spectra and excitonic resonances are investigated in systematically functionalized SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and show the high stability of the predicted two-dimensional materials. Their realization in laboratory is thus possible. Large band-gaps of the order of 4 eV are found in the so-called GW approximation, with the occurrence of bright excitons, optically active in the four investigated materials. Their binding energies vary from 0.9 eV to 1.75 eV depending on the decoration choice and in one case, a dark exciton is foreseen to exist in the fully chlorinated SiC. The wide variety of opto-electronic properties suggest halogenated SiC as interesting materials with potential not only for solar cell applications, anti-reflection coatings or high-reflective systems but also for a possible realization of excitonic Bose–Einstein condensation.

  7. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    Science.gov (United States)

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  8. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  9. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  10. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  11. Interior design for passive solar homes

    Science.gov (United States)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  12. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    Energy Technology Data Exchange (ETDEWEB)

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T. [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-08-14

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  13. Enhancement of digital images through band ratio techniques for geological applications

    Science.gov (United States)

    Filho, R. A. (Principal Investigator); Vitorello, I.

    1982-01-01

    The fundamentals in the use of band ratio techniques to enhance spectral signatures of geologic interest are discussed. The path radiance, additive term of the measured radiance at any given wavelength, is almost completely eliminated from LANDSAT images by subtracting the smallest value of the radiance measured in each channel, at shadows caused by topographic relief and clouds, and deep clear water bodies. By ratioing successive spectral channels the effect of solar angle of elevation is minimized and the product expresses, to a first approximation, a relationship between reflectances, which are intrinsic characteristics of the targets. Ratios between noncorrelated channels, such as R 7/4, R 7/5, and R 6/4 are useful to show variations in the vegetation cover, probably related to geobotanical associations.

  14. On the Origin of Banded Structure in Dusty Protoplanetary Discs: HL Tau and TW Hya

    Science.gov (United States)

    Boley, Aaron C.

    2017-10-01

    We present simulations of planet-planetesimal interactions that can reproduce major and minor banded structure in the HL Tau and TW Hya discs provided that small grains trace the dynamically cold planetesimal population. The consequences of the model and its limitations will be discussed. In particular, the model requires that planetesimals form throughout the disc at early times, that planetesimal-planetesimal collisions are predominately among the cold population, and that pebble accretion leads to mass redistribution of the small grains onto planetesimals before the grains can undergo significant radial drift. The meteortic record may suggest that a similar process occurred in the Solar System. The model implies that grain size distributions inferred from submm/mm studies may reflect early debris processes rather than grain growth.

  15. Laparoscopic gastric banding - discharge

    Science.gov (United States)

    ... heart disease Gastric bypass surgery Laparoscopic gastric banding Obesity Obstructive sleep apnea - adults Type 2 diabetes Patient Instructions Weight-loss surgery - after - what to ask your doctor Weight- ...

  16. Solar Wind Earth Exchange Project (SWEEP)

    Science.gov (United States)

    2016-10-28

    highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the...Newton, an X-ray astronomical observatory. We use OMNI solar wind conditions, heavy ion composition data from ACE, the Hodges neutral hydrogen model...of SWEEP was to compare theoretical models of X-ray emission in the terrestrial magnetosphere caused by the Solar Wind Charge Exchange

  17. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells

    Science.gov (United States)

    Butler, Keith T.; McKechnie, Scott; Azarhoosh, Pooya; van Schilfgaarde, Mark; Scanlon, David O.; Walsh, Aron

    2016-03-01

    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s2 electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3-5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  18. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); McKechnie, Scott; Azarhoosh, Pooya; Schilfgaarde, Mark van [Department of Physics, Kings College London, London WC2R 2LS (United Kingdom); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-03-14

    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s{sup 2} electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3–5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  19. On Reflection

    DEFF Research Database (Denmark)

    Blasco, Maribel

    2012-01-01

    This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending...... on the concepts of selfhood that prevail and how notions of difference are constructed. First, I discuss how the dominant usages of reflexivity in intercultural education reflect and reproduce a Cartesian view of the self that shapes how ICC is conceptualized and taught. I discuss three assumptions that this view...... in designing learning objectives in intercultural education and in devising ways to attain them. Greater attention is also needed in intercultural education to the ways in which selfhood, and hence also reflexivity and constructions of difference, differ across space and time....

  20. Semiconductor nanowire optical antenna solar absorbers.

    Science.gov (United States)

    Cao, Linyou; Fan, Pengyu; Vasudev, Alok P; White, Justin S; Yu, Zongfu; Cai, Wenshan; Schuller, Jon A; Fan, Shanhui; Brongersma, Mark L

    2010-02-10

    Photovoltaic (PV) cells can serve as a virtually unlimited clean source of energy by converting sunlight into electrical power. Their importance is reflected in the tireless efforts that have been devoted to improving the electrical and structural properties of PV materials. More recently, photon management (PM) has emerged as a powerful additional means to boost energy conversion efficiencies. Here, we demonstrate an entirely new PM strategy that capitalizes on strong broad band optical antenna effects in one-dimensional semiconductor nanostructures to dramatically enhance absorption of sunlight. We show that the absorption of sunlight in Si nanowires (Si NWs) can be significantly enhanced over the bulk. The NW's optical properties also naturally give rise to an improved angular response. We propose that by patterning the silicon layer in a thin film PV cell into an array of NWs, one can boost the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250% increase in the light absorption per unit volume of material). These results significantly advance our understanding of the way sunlight is absorbed by one-dimensional semiconductor nanostructures and provide a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach is universal to any semiconductor and a wide range of nanostructures; as such, it provides a new PV platform technology.

  1. Solar Collectors

    Science.gov (United States)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  2. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  3. High-density InAs/GaAs{sub 1−x}Sb{sub x} quantum-dot structures grown by molecular beam epitaxy for use in intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, M. C., E-mail: mdebnath@cnsi.ucla.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); California NanoSystems Institute and Electrical Engineering Department, University of California-Los Angeles (UCLA), Los Angeles, California 90095 (United States); Mishima, T. D.; Santos, M. B.; Cheng, Y.; Whiteside, V. R.; Sellers, I. R. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Laghumavarapu, R. B.; Liang, B. L.; Huffaker, D. L. [California NanoSystems Institute and Electrical Engineering Department, University of California-Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-03-21

    InAs quantum-dot structures were grown using a GaAs{sub 1−x}Sb{sub x} matrix on a GaAs(001) substrate. The use of GaAs{sub 1−x}Sb{sub x} for the buffer and cap layers effectively suppressed coalescence between dots and significantly increased the dot density. The highest density (∼3.5 × 10{sup 11}/cm{sup 2}) was obtained for a nominal 3.0 monolayer deposition of InAs with an Sb composition of x = 13–14% in the GaAs{sub 1−x}Sb{sub x} matrix. When the Sb composition was increased to 18%, the resulting large photoluminescent red shift (∼90 meV) indicated the release of compressive strain inside the quantum dots. For x > 13%, we observed a significant decrease in photoluminescence intensity and an increase in the carrier lifetime (≥4.0 ns). This is attributed to the type-II band alignment between the quantum dots and matrix material.

  4. Restrictive techniques: gastric banding

    Directory of Open Access Journals (Sweden)

    Katia Cristina da Cunha

    2006-03-01

    Full Text Available Surgery for the treatment of severe obesity has a definite role onthe therapeutic armamentarium all over the world. Initiated 40years ago, bariatric surgery has already a long way thanks tohundred of surgeons, who had constantly searched for the besttechnique for the adequate control of severe obesity. Among theimportant breakthroughs in obesity surgery there is theadjustable gastric band. It is a sylastic band, inflatable andadjustable, which is placed on the top of the stomach in order tocreate a 15-20 cc pouch, with an outlet of 1.3cm. The adjustablegastric band has also a subcutaneous reservoir through whichadjustments can be made, according to the patient evolution.The main feature of the adjustable gastric band is the fact thatis minimal invasive, reversible, adjustable and placedlaparoscopically. Then greatly diminishing the surgical traumato the severe obese patient. Belachew and Favretti’s techniqueof laparoscopic application of the adjustable gastric band isdescribed and the evolution of the technique during this years,as we has been practiced since 1998. The perioperative care ofthe patient is also described, as well as the follow-up and shortand long term controls.

  5. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  6. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering

    KAUST Repository

    Mondal, Rajib

    2009-01-01

    Removing the adjacent thiophene groups around the acceptor core in low band gap polymers significantly enhances solar cell efficiency through increasing the optical absorption and raising the ionization potential of the polymer. © 2009 The Royal Society of Chemistry.

  7. The Solar Tachocline

    Science.gov (United States)

    Hughes, D. W.; Rosner, R.; Weiss, N. O.

    2012-07-01

    Preface; Part I. Setting the Scene: 1. An introduction to the solar tachocline D. O. Gough; 2. Reflections on the solar tachocline E. A. Spiegel; Part II. Observations: 3. Observational results and issues concerning the tachocline J. Christensen-Dalsgaard and M. J. Thompson; Part III. Hydrodynamic Models: 4. Hydrodynamic models of the tachocline J.-P. Zahn; 5. Turbulence in the tachocline M. S. Miesch; 6. Mean field modelling of differential rotation G. Rudiger and L. L. Kitchatinov; Part IV. Hydromagnetic Properties: 7. Magnetic confinement of the solar tachocline P. Garaud; 8. Magnetic confinement and the sharp tachopause M. E. McIntyre; 9. ß-Plane MHD turbulence and dissipation in the solar tachocline P. H. Diamond, K. Itoh, S.-I. Itoh and L. J. Silvers; Part V. Instabilities: 10. Global MHD instabilities of the tachocline P. A. Gilman and P. S. Cally; 11. Magnetic buoyancy instabilities in the tachocline D. W. Hughes; 12. Instabilities, angular momentum transport and magnetohydrodynamic turbulence G. I. Ogilvie; Part VI. Dynamo Action: 13. The solar dynamo and the tachocline S. M. Tobias and N. O. Weiss; Part VII. Overview: 14. On studying the rotating solar interior R. Rosner; Index.

  8. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  9. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  11. Plasmonic band gap engineering of plasmon-exciton coupling.

    Science.gov (United States)

    Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2014-10-01

    Controlling plasmon-exciton coupling through band gap engineering of plasmonic crystals is demonstrated in the Kretschmann configuration. When the flat metal surface is textured with a sinusoidal grating only in one direction, using laser interference lithography, it exhibits a plasmonic band gap because of the Bragg scattering of surface plasmon polaritons on the plasmonic crystals. The contrast of the grating profile determines the observed width of the plasmonic band gap and hence allows engineering of the plasmonic band gap. In this work, resonant coupling between the molecular resonance of a J-aggregate dye and the plasmonic resonance of a textured metal film is extensively studied through plasmonic band gap engineering. Polarization dependent spectroscopic reflection measurements probe the spectral overlap occurring between the molecular resonance and the plasmonic resonance. The results indicate that plasmon-exciton interaction is attenuated in the band gap region along the grating direction.

  12. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  13. Solar Equipment

    Science.gov (United States)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  14. Solar urticaria

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  15. Amniotic band syndrome.

    Science.gov (United States)

    Shetty, Prathvi; Menezes, Leo Theobald; Tauro, Leo Francis; Diddigi, Kumar Arun

    2013-10-01

    Amniotic band syndrome is an uncommon congenital disorder without any genetic or hereditary disposition. It involves fetal entrapment in strands of amniotic tissue and causes an array of deletions and deformations. Primary treatment is plastic and reconstructive surgery after birth with in utero fetal surgery also coming in vogue.

  16. Amniotic Band Syndrome

    OpenAIRE

    Shetty, Prathvi; Menezes, Leo Theobald; Tauro, Leo Francis; Diddigi, Kumar Arun

    2012-01-01

    Amniotic band syndrome is an uncommon congenital disorder without any genetic or hereditary disposition. It involves fetal entrapment in strands of amniotic tissue and causes an array of deletions and deformations. Primary treatment is plastic and reconstructive surgery after birth with in utero fetal surgery also coming in vogue.

  17. Colloquium: Topological band theory

    Science.gov (United States)

    Bansil, A.; Lin, Hsin; Das, Tanmoy

    2016-04-01

    The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.

  18. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Heat blocking gallium arsenide solar cells

    Science.gov (United States)

    Rahman, F.; Farmer, C. D.; Schmidt, C.; Pfaff, G.; Stanley, C. R.

    2008-02-01

    The solar cell industry is witnessing an era of unprecedented growth and this trend is set to continue for the foreseeable future. Here we describe a heat reflection pigment-coated single-junction gallium arsenide solar cell that is capable of reflecting heat-inducing near-infrared radiation. The cell maintains its performance better than non-coated cells when exposed to infrared-rich radiant flux. In situations where solar cells get heated mainly from incident infrared radiation, these cells exhibit superior performance. The heat reflecting pigment, cell structure, coating process and cell performance have been described.

  20. Subcutaneous fascial bands--a qualitative and morphometric analysis.

    Science.gov (United States)

    Li, Weihui; Ahn, Andrew C

    2011-01-01

    Although fascial bands within the subcutaneous (SQ) layer are commonly seen in ultrasound images, little is known about their functional role, much less their structural characteristics. This study's objective is to describe the morphological features of SQ fascial bands and to systematically evaluate the bands using image analyses tools and morphometric measures. In 28 healthy volunteers, ultrasound images were obtained at three body locations: the lateral aspect of the upper arm, medial aspect of the thigh and posterior aspect of lower leg. Using image analytical techniques, the total SQ band area, fascial band number, fascial band thickness, and SQ zone (layer) thickness were determined. In addition, the SQ spatial coherence was calculated based on the eigenvalues associated with the largest and smallest eigenvectors of the images. Fascial bands at these sites were contiguous with the dermis and the epimysium forming an interconnected network within the subcutaneous tissue. Subcutaneous blood vessels were also frequently encased by these fascial bands. The total SQ fascial band area was greater at the thigh and calf compared to the arm and was unrelated to SQ layer (zone) thickness. The thigh was associated with highest average number of fascial bands while calf was associated with the greatest average fascial band thickness. Across body regions, greater SQ zone thickness was associated with thinner fascial bands. SQ coherence was significantly associated with SQ zone thickness and body location (calf with statistically greater coherence compared to arm). Fascial bands are structural bridges that mechanically link the skin, subcutaneous layer, and deeper muscle layers. This cohesive network also encases subcutaneous vessels and may indirectly mediate blood flow. The quantity and morphological characteristics of the SQ fascial band may reflect the composite mechanical forces experienced by the body part.

  1. Subcutaneous fascial bands--a qualitative and morphometric analysis.

    Directory of Open Access Journals (Sweden)

    Weihui Li

    Full Text Available BACKGROUND: Although fascial bands within the subcutaneous (SQ layer are commonly seen in ultrasound images, little is known about their functional role, much less their structural characteristics. This study's objective is to describe the morphological features of SQ fascial bands and to systematically evaluate the bands using image analyses tools and morphometric measures. METHODS: In 28 healthy volunteers, ultrasound images were obtained at three body locations: the lateral aspect of the upper arm, medial aspect of the thigh and posterior aspect of lower leg. Using image analytical techniques, the total SQ band area, fascial band number, fascial band thickness, and SQ zone (layer thickness were determined. In addition, the SQ spatial coherence was calculated based on the eigenvalues associated with the largest and smallest eigenvectors of the images. RESULTS: Fascial bands at these sites were contiguous with the dermis and the epimysium forming an interconnected network within the subcutaneous tissue. Subcutaneous blood vessels were also frequently encased by these fascial bands. The total SQ fascial band area was greater at the thigh and calf compared to the arm and was unrelated to SQ layer (zone thickness. The thigh was associated with highest average number of fascial bands while calf was associated with the greatest average fascial band thickness. Across body regions, greater SQ zone thickness was associated with thinner fascial bands. SQ coherence was significantly associated with SQ zone thickness and body location (calf with statistically greater coherence compared to arm. CONCLUSION: Fascial bands are structural bridges that mechanically link the skin, subcutaneous layer, and deeper muscle layers. This cohesive network also encases subcutaneous vessels and may indirectly mediate blood flow. The quantity and morphological characteristics of the SQ fascial band may reflect the composite mechanical forces experienced by the body part.

  2. The Light-Induced Field-Effect Solar Cell Concept - Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency.

    Science.gov (United States)

    Wang, Yusheng; Xia, Zhouhui; Liu, Lijia; Xu, Weidong; Yuan, Zhongcheng; Zhang, Yupeng; Sirringhaus, Henning; Lifshitz, Yeshayahu; Lee, Shui-Tong; Bao, Qiaoliang; Sun, Baoquan

    2017-05-01

    Solar cell generates electrical energy from light one via pulling excited carrier away under built-in asymmetry. Doped semiconductor with antireflection layer is general strategy to achieve this including crystalline silicon (c-Si) solar cell. However, loss of extra energy beyond band gap and light reflection in particular wavelength range is known to hinder the efficiency of c-Si cell. Here, it is found that part of short wavelength sunlight can be converted into polarization electrical field, which strengthens asymmetry in organic-c-Si heterojunction solar cell through molecule alignment process. The light harvested by organometal trihalide perovskite nanoparticles (NPs) induces molecular alignment on a conducting polymer, which generates positive electrical surface field. Furthermore, a "field-effect solar cell" is successfully developed and implemented by combining perovskite NPs with organic/c-Si heterojunction associating with light-induced molecule alignment, which achieves an efficiency of 14.3%. In comparison, the device with the analogous structure without perovskite NPs only exhibits an efficiency of 12.7%. This finding provides a novel concept to design solar cell by sacrificing part of sunlight to provide "extra" asymmetrical field continuously as to drive photogenerated carrier toward respective contacts under direct sunlight. Moreover, it also points out a method to combine promising perovskite material with c-Si solar cell. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Science.gov (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  4. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  5. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  6. A Reflective Look at Reflecting Teams

    Science.gov (United States)

    Pender, Rebecca L.; Stinchfield, Tracy

    2012-01-01

    This article reviewed existing literature and research on the reflecting team process. There is a dearth of empirical research that explores the reflecting team process and the outcome of counseling that uses reflecting teams. Implications of using reflecting teams for counselors, counselor educators, and clients will be discussed. A call for…

  7. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...... and the main tasks in principle are working and what are important aspects which should influence the concept design in general....

  8. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  9. Estimating soil zinc concentrations using reflectance spectroscopy

    Science.gov (United States)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  10. Band-gap engineering of functional perovskites through quantum confinement and tunneling

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Pandey, Mohnish; Thygesen, Kristian Sommer

    2015-01-01

    An optimal band gap that allows for a high solar-to-fuel energy conversion efficiency is one of the key factors to achieve sustainability. We investigate computationally the band gaps and optical spectra of functional perovskites composed of layers of the two cubic perovskite semiconductors BaSnO3...

  11. Simulations of Solar Jets

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  12. Diluted II-VI oxide semiconductors with multiple band gaps.

    Science.gov (United States)

    Yu, K M; Walukiewicz, W; Wu, J; Shan, W; Beeman, J W; Scarpulla, M A; Dubon, O D; Becla, P

    2003-12-12

    We report the realization of a new mult-band-gap semiconductor. Zn(1-y)Mn(y)OxTe1-x alloys have been synthesized using the combination of oxygen ion implantation and pulsed laser melting. Incorporation of small quantities of isovalent oxygen leads to the formation of a narrow, oxygen-derived band of extended states located within the band gap of the Zn(1-y)Mn(y)Te host. When only 1.3% of Te atoms are replaced with oxygen in a Zn0.88Mn0.12Te crystal the resulting band structure consists of two direct band gaps with interband transitions at approximately 1.77 and 2.7 eV. This remarkable modification of the band structure is well described by the band anticrossing model. With multiple band gaps that fall within the solar energy spectrum, Zn(1-y)Mn(y)OxTe1-x is a material perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%.

  13. Solar Indices Forecasting Tool

    Science.gov (United States)

    Henney, Carl John; Shurkin, Kathleen; Arge, Charles; Hill, Frank

    2016-05-01

    Progress to forecast key space weather parameters using SIFT (Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model is highlighted in this presentation. Using a magnetic flux transport model, ADAPT, we estimate the solar near-side field distribution that is used as input into empirical models for predicting F10.7(solar 10.7 cm, 2.8 GHz, radio flux), the Mg II core-to-wing ratio, and selected bands of solar far ultraviolet (FUV) and extreme ultraviolet (EUV) irradiance. Input to the ADAPT model includes the inferred photospheric magnetic field from the NISP ground-based instruments, GONG & VSM. Besides a status update regarding ADAPT and SIFT models, we will summarize the findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). This work utilizes data produced collaboratively between Air Force Research Laboratory (AFRL) and the National Solar Observatory (NSO). The ADAPT model development is supported by AFRL. The input data utilized by ADAPT is obtained by NISP (NSO Integrated Synoptic Program). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF). The 10.7 cm solar radio flux data service, utilized by the ADAPT/SIFT F10.7 forecasting model, is operated by the National Research Council of Canada and National Resources Canada, with the support of the Canadian Space Agency.

  14. Natural Intermediate Band in I 2 -II-IV-VI4 Quaternary Chalcogenide Semiconductors.

    Science.gov (United States)

    Liu, Qiheng; Cai, Zenghua; Han, Dan; Chen, Shiyou

    2018-01-25

    An intermediate band in the band gap of semiconductors is fundamental to the development of the intermediate band solar cells, but it is usually produced artificially, which imposes technical challenges on the experimental realization. Here we found that there are natural intermediate bands in the band gaps of the I2-II-IV-VI4 quaternary chalcogenide semiconductors such as Cu2ZnSnS4 and Ag2ZnSnSe4, which had been proposed as promising light-absorber semiconductors in thin film solar cells. By first-principles calculations, we found the lowest conduction band of these I2-II-IV-VI4 semiconductors in the kesterite structure is isolated (a lone band, resulting from the energy separation between Sn 5s and 5p states), which can be viewed as a natural intermediate band. The gap between the intermediate band and higher-energy conduction band can be increased through changing the crystal structure from the zincblende-derived kesterite structure to the wurtzite-derived wurtzite-kesterite structure. In contrast, the intermediate-conduction band gap shrinks when the component element Sn is replaced by Ge (Cu2ZnGeS4), and the gap even disappears (intermediate band disappear) when Sn is replaced by Si (Cu2ZnSiS4). Through tuning the intermediate-conduction and intermediate-valence band gaps, we show that the wurtzite-kesterite structured Ag2ZnSnSe4 may be a potential light-absorber semiconductor in intermediate band solar cells.

  15. Thin film solar energy collector

    Science.gov (United States)

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  16. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  17. AMNIOTIC BAND SYNDROME

    Directory of Open Access Journals (Sweden)

    Jovana Đorđević

    2009-04-01

    Full Text Available Amniotic band syndrome (ABS is a set of congenital malformations attributed to amniotic bands that entangle fetal parts during intrauterine life, which results in a broad spectrum of anatomic disturbances - ranging from minor constriction rings and lymphedema of the digits to complex, bizarre multiple congenital anomalies incompatible with life. ABS is not very often, but should be considered in every newborn with congenital anomalies, especially defects of extremities and/or body walls. ABS can be diagnosed prenatally by ultrasound; otherwise, the defects are seen after birth. Child's karyotyping is of great importance, in order to avoid misdiagnosis and incorrect information of recurrence risk. A team of specialists should be included in the treatment and follow-up of children with ABS, according to individual needs of every single patient.The aim of this paper is to point out diagnostic and therapeutic approaches in newborns with ABS trough the report of two cases.

  18. Photoluminescence properties of a-Si:H based thin films and corresponding solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pincik, E.; Kobayashi, H.; Gleskova, H.; Kucera, M.; Ortega, L.; Jergel, M.; Falcony, C.; Brunner, R.; Shimizu, T.; Nadazdy, V.; Zeman, M.; Mikula, M.; Kumeda, M.; Swaaij, R.A.C.M.M. van

    2003-06-02

    Amorphous hydrogenated silicon (a-Si:H) is a well-known semiconductor with metastable properties. Direct surface exposure, as it occurs e.g. in rf plasma equipments, introduces damage due to the charged particle bombardment. The paper deals with photoluminiscence properties of virgin, oxide layer covered and chemically treated (in KCN solutions) surfaces of a-Si:H and corresponding solar cell structures. The cyanide treatment improves the electrical characteristics of MOS structures as well as solar cells. X-ray diffraction at grazing incidence and reflectance spectroscopy complete the study. The photoluminescence measurements were performed at liquid helium temperatures at 6 K using an Ar laser and lock-in signal recording device containing the PbS and Ge photodetectors. Photoluminescence bands were observed as broad luminescent peaks between 1.05-1.7 eV. Two new peaks were detected at 1.38 and 1.42 eV. The evolution of the band at {approx}1.2 eV related to microcrystalline silicon is investigated. The fitting and simulation of photoluminiscence spectra are presented. The surface luminescent properties of a-Si:H based structures (double layers, single thin film solar cells) before and after the passivation are compared with those of very thin oxide layers and chemically treated surfaces.

  19. Solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sommer-Larsen, P.; Krebs, F.C. (Risoe DTU, Roskilde (Denmark)); Plaza, D.M. (Plataforma Solar de Almeria-CIEMAT (Spain))

    2010-11-15

    Solar energy is the most abundant energy resource on earth. In a sustainable future with an ever-increasing demand for energy, we will need to use this resource better. Solar energy technologies either convert sunlight directly into heat and electrical energy or use it to power chemical conversions which create 'solar fuels' or synthetic compounds. Solar heating technologies have developed steadily for many years and solar heating and cooling is one of the world's commonest renewable energy technologies. This chapter, however, focuses on technologies for electricity production and touches more briefly on the prospects for solar fuels. The section on Danish perspectives also discusses solar thermal heating in district heating plants. In recent decades, two technologies for converting solar energy into electrical energy have dominated: photovoltaics (PV) and concentrating solar power (CSP). Today's silicon and thin-film PV technologies are advancing steadily, with new materials and technologies constantly being developed, and there are clear roadmaps for lowering production costs. In the discussion below we assess the maturation potential of currently emerging PV technologies within the next 40 years. Concentrating solar power is already a proven technology, and below we evaluate its potential to become a substantial part of the energy mix by 2050. Solar fuels cover a range of technologies. The chapter is to a great extent based on two recent roadmaps from the International Energy Agency (IEA). Many reports, predictions, scenarios and roadmaps for solar energy deployment exist. The IEA predictions for the penetration of solar energy in the future energy system are low relative to many of the other studies. The IEA roadmaps, however, cover most aspects of the future deployment of the technologies and reference older work. (Author)

  20. Snow, ice and solar radiation

    OpenAIRE

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend mostly on variations in the size of the snow crystals on the surface. Firstly, a radiative transfer model is developed and adapted in order to study the propagation of solar radiation through an at...

  1. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....... of the multilayer is found to agree extraordinarily well with theory (assuming an interface roughness of 4.5 Angstrom), while the agreement for the gold film is less, The overall performance of the supermirror is superior to that of gold, extending the band of reflection at least a factor of 2.8 beyond...

  2. METIS-ESA solar orbiter mission internal straylight analysis

    Science.gov (United States)

    Verroi, E.; Da Deppo, V.; Naletto, G.; Fineschi, S.; Antonucci, E.

    2017-11-01

    METIS is the Multi Element Telescope for Imaging and Spectroscopy for the ESA Solar Orbiter. Its target is the solar corona from a near-Sun orbit in two different spectral bands: the HI UV narrow band at 121.6 nm, and the VL visible light band. METIS adopts a novel inverted externally occulted configuration, where the disk light is shielded by an annular occulter, and an annular aspherical mirror M1 collects the signal coming from the corona. After M1 the coronal light passes through an internal occulter and is then reflected by a second annular mirror M2 toward a narrow filter for the 121.6 nm HI line selection. The visible light reflected by the filter is used to feed a visible light (580 - 640 nm) polarimetric channel. The photospheric light passing through the entrance aperture is back-rejected by a spherical rejection mirror. Since the coronal light is enormously fainter than the photospheric one, a very tough suppression is needed for the internal stray light, in particular the requirement for the stray light suppression is more stringent in the VL than in the UV, because the emission of the corona with respect to the disk emission is different in the two cases, and the requirements are a suppression of at least 10-9 times for the VL and a suppression of at least 10-7 times for the UV channel. This paper presents the stray light analysis for this new coronographic configuration. The complexity of the optomechanical design of METIS, combined with the faintness of the coronal light with respect to the solar disk noise, make a standard ray tracing approach not feasible because it is not sufficient to stop at the first generation of scattered rays in order to check the requirements. Also scattered rays down to the fourth generation must be treated as sources of new scattering light, to analyze the required level of accuracy. If used in a standard ray tracing scattering analysis, this approach is absolutely beyond the computational capabilities today available

  3. Solar architecture and solar construction; Solararchitektur und Solares Bauen

    Energy Technology Data Exchange (ETDEWEB)

    Karweger, A. [Economic Forum Ltd., London (United Kingdom)]|[Economic Forum Ltd., Muenchen (Germany)]|[Economic Forum Ltd., Bozen (Italy)

    2008-07-01

    Solar architecture already takes into account solar energy during the design phase: The generation and use of energy as well as the materials for thermal energy storage characterize the planning process from the beginning. Solar houses are already technically feasible since a long time and become more and more interesting in economic respect due to continuously increasing energy prices. However this knowledge is not reflected in the construction practice. Energy-efficient construction is very often understood as a compact, thermally-insulated construction body, which has a small enveloping surface with small windows (principle Thermos bottle). The credo of the architects ''the form follows the task'' is converted into the opposite. The energy concept of a house must take into account its specific location and situation (climate). A uniform building envelope for all building types, locations and uses does not exist. A comprehensive planning and a cross-field dialogue between all participants is necessary in order to develop an comprehensive energy concept for a certain building; Supporting framework, heating, ventilation, construction physics and facade must be considered in dependance of each other. This is the only way to predict future heating and cooling performance and to optimize heating and ventilation plants. (orig.)

  4. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  5. Solar Induced Fluorescence Experiment (SIFLEX-2002): an overview

    Science.gov (United States)

    Davidson, M.; Moya, I.; Ounis, A.; Louis, J.; Ducret, J.-M.; Moreno, J.; Casselles, V.; Sobrino, J.; Alonso, L.; Pedros, R.; Jimenez, J. C.; Gomez, J.-L.; Soria, G.; Niclos, R.; El-Kharraz, J.; Martinez-Lozano, J. A.; Utrillas, M. P.; Miller, J.; Laurila, T.; Thum, T.

    ESA generally organises airborne campaigns to support the preparation and validation of ESA's Earth Observation space missions. Within this context the main goal of the SIFLEX campaign was to understand whether solar induced fluorescence measurements may someday be used to monitor and map the photochemical activity of boreal forests from space. Specific objectives of the campaign were: to measure and quantify solar-induced fluorescence flux in A and B oxygen absorption bands during spring thaw in Boreal forest, to collect complimentary measurements for fluorescence interpretation and radiative modelling purposes e.g. spectral reflectance, solar irradiance etc, to collect CO2 flux dataset for study of linkage between photosynthetic activity indicators (e.g. fluorescence and PRI) and CO2. The main participating institutes in the campaign were LURE (Laboratoire pour l'Utilisation du Rayonnement Electromagnetique), in Paris, France, the University ofValencia, Valencia, Spain and FMI (Finnish Meteorological Institute) in Helsinki, Finland. The campaign took place at the Sondankyla Geophysical Observatory in northern Finlandbetween April 30 and June 10, 2002 and covered the main period of spring recovery of photochemical activity of Scots pine trees. In order to meet the study objectives a vast array of complimentary measurements were carried out during this time. These included solar induced fluorescence of the forest canopy at different scales using instruments developed in-house by LURE, solar radiation measurements to determine and quantify illumination conditions, thermal measurements to measure heat loss by the pine needles and reflectance measurements to obtain a broader picture of the status of the trees. Essential information about the condition of the boreal trees through carbon dioxide, water vapour, air temperature and humidity was collected from a 50-metre high micrometeoological tower adjacent to the experiment site. As a result of the campaign researchers

  6. Reflection and transmission of GMIR shock at the heliopause and their relation to the 2- and 3-kHz radio emissions

    Science.gov (United States)

    Whang, Y. C.; Burlaga, L. F.

    1995-01-01

    We use Voyager 2 plasma and magnetic field data together with a one-fluid MHD model to study the interactions of the 1991 Global Merged Interaction Region (GMIR) shock with the heliopause. The 1991 GMIR is an extraordinarily large global solar wind structure in radial, longitudinal and latitudinal extents. It has a strong shock at the leading edge. After its penetration through the termination shock, the GMIR shock first propagates through the subsonic solar wind, then interacts with the heliopause. The interaction produces a transmitted shock propagating outward in the interstellar medium, and a reflected shock propagating backward in the subsonic solar wind. We identify the reflected shock and the transmitted shock as the possible source of the radio noise detected at Voyagers. The plasma frequency behind the reflected and the transmitted shock can be, respectively, responsible for the 2- and 3-kHz radio emissions. The two bands of radio noise are emitted from sources on both sides of the heliopause starting at about the same time. If the emission is generated by f(sub p)-radiation then the heliopause is located at R approximately 130 AU. If the emission is generated by 2f(sub p)-radiation the n R approximately 150 AU. Because the relative speed of the interstellar plasma with respect to the sun appears to be sub-Alfvenic, it is very unlikely there is a fast-bow shock of the heliosphere.

  7. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  8. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    Science.gov (United States)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  9. Noise exposure in marching bands

    Science.gov (United States)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  10. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi’an 710300 (China); Wang, Ye Feng [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Xue Qing [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-04-30

    Highlights: • PbSe thin film is deposited on FTO glass by a pulse voltage electrodeposition method. • The thin film is used as counter electrode (CE) in quantum dot-sensitized solar cell. • Superior electrocatalytic activity and stability in the polysulfide electrolyte is received. • The narrow band gap characteristics and p-type conductivity enhances the cell efficiency. • An efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells. - Abstract: Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  11. An extremely broad band metamaterial absorber based on destructive interference.

    Science.gov (United States)

    Sun, Jingbo; Liu, Lingyun; Dong, Guoyan; Zhou, Ji

    2011-10-24

    We propose a design of an extremely broad frequency band absorber based on destructive interference mechanism. Metamaterial of multilayered SRRs structure is used to realize a desirable refractive index dispersion spectrum, which can induce a successive anti-reflection in a wide frequency range. The corresponding high absorptance originates from the destructive interference of two reflection waves from the two surfaces of the metamaterial. A strongly absorptive bandwidth of almost 60 GHz is demonstrated in the range of 0 to 70 GHz numerically. This design provides an effective and feasible way to construct broad band absorber in stealth technology, as well as the enhanced transmittance devices. © 2011 Optical Society of America

  12. Challenging Narcissus, or Reflecting on Reflecting.

    Science.gov (United States)

    Achilles, C. M.

    The concept of reflective practice and teaching people to be reflective practitioners is examined. The document begins with a look at professional knowledge according to three prominent professionals in the educational administration field: Schon, Schein, and Achilles. "Reflective" strategies that could be incorporated into courses and…

  13. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are ...

  14. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  15. Analysis of Signal Attenuation in UHF Band

    Directory of Open Access Journals (Sweden)

    Libor Michalek

    2015-01-01

    Full Text Available This paper deals with signal attenuation in ultra-high-frequency bands caused by rain. We focus mainly on the effect of the rain on the radio waves propagation in the frequency band 2.1 GHz. Two exact approaches for investigating this dependency are used. In the first approach, we use the fitting probability density function for determination Rician distribution K-factor. In the second approach, we want to find more concrete rain-rate dependency with using linear regression. The results achieved in our long-term investigation clearly indicate that the strong impact of rain itself is a minor. So-called secondary rain impacts such as scattering of reflections from wet surfaces cause the main attenuation contribution.

  16. Bi-directional reflectance of finite and infinite clouds

    Science.gov (United States)

    Breon, Francois-Marie; Gautier, Catherine

    1991-01-01

    The transfer of solar irradiance in plane parallel and broken cloud fields is modeled using a Monte Carlo method. The angular distribution pattern of radiances exiting the cloud layer is studied with varying cloud geometries, optical thicknesses, cloudiness and solar zenith angles. A rather large anisotropy of the reflected flux is found, usually increasing with solar zenith angle and with patterns that strongly depend on cloud geometry. The main features are: a local maximum of reflected intensity in the forward direction for all cases; a limb darkening for the plane parallel case; and a limb brightening and a local maximum of reflected intensity in the backward direction for broken clouds. The method is used to study the cloud reflectance sensitivity to various parameters. A more precise description of cloud field internal and external structure is needed in order to obtain accurate bi directional reflectance diagrams.

  17. Diffuse electroreflectance of thin-film solar cells: Suppression of interference-related lineshape distortions

    Science.gov (United States)

    Krämmer, Christoph; Huber, Christian; Redinger, Alex; Sperber, David; Rey, Germain; Siebentritt, Susanne; Kalt, Heinz; Hetterich, Michael

    2015-11-01

    Electroreflectance (ER) is a standard method to determine the band gap of semiconductor materials that has also been applied to thin-film solar cells (TFSCs). However, the lineshapes in typical ER spectra of TFSCs are significantly distorted compared to the model lineshapes, which are used for spectrum evaluation. These distortions are mainly due to thin-film interferences in the stratified system. In this letter, we demonstrate that these distortions are significantly suppressed in diffuse ER (D-ER) where the diffuse instead of the specular reflection of TFSCs is evaluated. The existence of an ER signal in the diffuse reflectance is shown by two-dimensional finite-difference time-domain simulations. Experimentally, the suppression of interference-related lineshape distortions is demonstrated on a series of Cu2ZnSnSe4 solar cells with different layer thicknesses and therefore different optical path lengths for interference. The same working principle is demonstrated for a Cu(In,Ga)(S,Se)2 solar cell as well. The resulting lineshapes in D-ER can then be interpreted using standard analysis methods such as Aspnes' Third-Derivative Functional Form.

  18. Dust Accumulation on MER Solar Panels

    Science.gov (United States)

    Guinness, E. A.; Arvidson, R. E.; McEwen, A. S.; Cull, S.

    2011-12-01

    HiRISE acquired in March 2011 a color image of the Spirit Mars Exploration Rover from orbit that shows an exceptionally bright reflection from the rover solar panels. HiRISE data combined with laboratory measurements of MER solar cell reflectance provide a method for constraining the thickness of dust on the solar panels. Spirit is the brightest object in the HiRISE scene with a reflectance that is about 3 times higher at 500 nm and about 1.5 times higher at 700 and 850 nm than bright outcrop and soil near the rover. The rover is also less red than these nearby materials and less red than a typical Mars dust spectrum modeled with the same geometry and seen through similar atmospheric conditions as the HiRISE image. Lighting and viewing angles for the HiRISE image of Spirit are close to a specular reflection geometry when factoring in the rover orientation, the sun position, and the location of HiRISE during image acquisition. Laboratory photometric measurements of clean and dust-coated MER solar cells show a strong specular reflection for dust coating thicknesses up to at least 45 micrometers. The specular reflection was not present in the laboratory data when the solar cell was covered with about a 135 micrometer thick layer. The dust used in the experiments consisted of less than 10 micrometer sized particles derived from a palagonitic tephra from Mauna Kea that is spectrally similar to Mars dust. A survey of MER Pancam color images acquired by Spirit and Opportunity also shows several examples of specular reflections from the solar panels. These examples correspond to times when the solar cells were moderately clean to dusty as inferred from the amount of power generated by the cells. Specular reflections in Pancam images have been observed when the solar cell output was only 45% that of a dust-free cell. Spirit HiRISE data indicate that the rover was not covered by an optical thick layer of dust because some of the reflected light must have come from the

  19. Solar cooking

    Science.gov (United States)

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  20. Cloud geometry from high-resolution airborne solar spectral imagery

    Science.gov (United States)

    Zinner, Tobias; Schwarz, Ulrich; Kölling, Tobias; Höppler, Lucas; Mayer, Bernhard

    2017-04-01

    The spatial distribution of clouds is the most fundamental cloud characteristic. Before successive methods can provide any additional microphysical insight, the cloud geometry has to be identified. The cloud spatial distribution itself has an important effect on the radiation budget and its variability over a cloudy scene and can this way feed back on cloud dynamics. In addition to the impact on the cloud radiative effect, orientation of the cloud surface has an decisive effect on remote sensing of microphysical parameters of inhomogeneous clouds with passive sensors. It is found that knowledge of cloud geometry significantly reduces retrieval uncertainties. With the latter motivation in mind, we will present the derivation of cloud geometry from passive observations of solar radiation reflected by clouds. observations collected during the German HALO aircraft campaigns ACRIDICON in Brazil 2014 for cloud sides as well as nadir observations during the North Atlantic NARVAL-2 and NAWDEX 2016 campaigns are used. Measurements of spectral radiation around the oxygen-A band from the hyperspectral imager specMACS as well as stereographic data collected by a video camera are used. In the spectral method distance between sensor and cloud is derived using the fact that an increase in absorption path length is reflected by a deepening of the oxygen absorption band around 762 nm. Sensitivity of the depth of this absorption band to other parameters like the surface albedo, aerosol content or cloud density (LWC or extinction) is investigated and the related uncertainty is quantified. For validation, results of the spectral method are compared to results from stereographic methods based on visible imagery collected at the same time.

  1. REFLECT: Logiciel de restitution des reflectances au sol pour l'amelioration de la qualite de l'information extraite des images satellitales a haute resolution spatiale

    Science.gov (United States)

    Bouroubi, Mohamed Yacine

    ) and on the dark targets method to estimated the aerosol optical thickness, representing the most difficult factor to correct. Substantial improvements have been made to the existing models. These improvements essentially concern the aerosols properties (integration of a more recent model, improvement of the dark targets selection to estimate the AOD), the adjacency effect, the adaptation to most used high resolution (Landsat TM and ETM+, all HR SPOT 1 to 5, EO-1 ALI and ASTER) and very high resolution (QuickBird et Ikonos) sensors and the correction of topographic effects with a model that separate direct and diffuse solar radiation components and the adaptation of this model to forest canopy. Validation has shown that ground reflectance estimation with REFLECT is performed with an accuracy of approximately +/-0.01 in reflectance units (for in the visible, near-infrared and middle-infrared spectral bands) even for a surface with varying topography. This software has allowed demonstrating, through apparent reflectance simulations, how much parasite factors influencing numerical values of the images may alter the ground reflectance (errors ranging from 10 to 50%). REFLECT has also been used to examine the usefulness of ground reflectance instead of raw data for various common remote sensing applications in domains such as classification, change detection, agriculture and forestry. In most applications (multi-temporal change monitoring, use of vegetation indices, biophysical parameters estimation, etc.) image correction is a crucial step to obtain reliable results. From the computer environment standpoint, REFLECT is organized as a series of menus, corresponding to different steps of: input parameters introducing, gas transmittances calculation, AOD estimation, and finally image correction application, with the possibility of using the fast option witch process an image of 5000 by 5000 pixels in approximately 15 minutes. (Abstract shortened by UMI.)

  2. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Moriaki; Hayashibara, Mitsuo

    1988-08-18

    Concerning the exsisting solar cell utilizing wavelength transition, the area of the solar cell element necessary for unit electric power output can be made small, but transition efficiency of the solar cell as a whole including a plastic plate with phosphor is not high. This invention concerns a solar cell which is appropriate for transferring the light within a wide spectrum range of the sunlight to electricilty efficiently, utilizes wavelength transition and has high efficiency per unit area. In other words, the solar cell of this invention has the feature of providing in parallel with a photoelectric transfer layer a layer of wavelength transitioning material (phosphor) which absorbs the light within the range of wavelength of low photoelectric transfer efficiency at the photoelectric transfer layer and emits the light within the range of wavelength in which the photoelectric transfer rate is high on the light incident side of the photoelectric transfer layer. (5 figs)

  3. Singlet fission: Towards efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  4. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu 5Ta11O30 materials

    KAUST Repository

    Harb, Moussab

    2014-01-01

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu 5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta 11O30. It is confirmed that the Cu(i)-based multi-metal oxides possess a strong contribution of filled Cu(i) states in the valence band and of empty d0 metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications. © the Partner Organisations 2014.

  5. Morphologies of omega band auroras

    Science.gov (United States)

    Sato, Natsuo; Yukimatu, Akira Sessai; Tanaka, Yoshimasa; Hori, Tomoaki

    2017-08-01

    We examined the morphological signatures of 315 omega band aurora events observed using the Time History of Events and Macroscale Interactions during Substorm ground-based all-sky imager network over a period of 8 years. We find that omega bands can be classified into the following three subtypes: (1) classical (O-type) omega bands, (2) torch or tongue (T-type) omega bands, and (3) combinations of classical and torch or tongue (O/T-type) omega bands. The statistical results show that T-type bands occur the most frequently (45%), followed by O/T-type bands (35%) and O-type bands (18%). We also examined the morphologies of the omega bands during their formation, from the growth period to the declining period through the maximum period. Interestingly, the omega bands are not stable, but rather exhibit dynamic changes in shape, intensity, and motion. They grow from small-scale bumps (seeds) at the poleward boundary of preexisting east-west-aligned auroras, rather than via the rotation or shear motion of preexisting east-west-aligned auroras, and do not exhibit any shear motion during the periods of auroral activity growth. Furthermore, the auroral luminosity is observed to increase during the declining period, and the total time from the start of the growth period to the end of the declining period is found to be about 20 min. Such dynamical signatures may be important in determining the mechanism responsible for omega band formation.

  6. 76 FR 21716 - Record of Decision for Issuance of Loan Guarantees to Solar Partners I, LLC; Solar Partners II...

    Science.gov (United States)

    2011-04-18

    ... Conservation Area (CDCA) Plan (1980, as amended), while recognizing the potential compatibility of solar power... tracking system) focusing solar energy on boilers located on centralized power towers. Each heliostat in the field will track the sun throughout the day and reflect the solar energy to a power tower boiler...

  7. Impact of Cirrus Crystal Shape on Solar Spectral Irradiance: A Case Study for Subtropical Cirrus

    Science.gov (United States)

    Wendisch, Manfred; Pilewskie, Peter; Pommier, John; Howard, Steve; Yang, Ping; Heymsfield, Andrew J.; Schmitt, Carl G.; Baumgardner, Darrel; Mayer, Barnhard

    2005-01-01

    Profiles of in situ measurements of ice crystal size distribution of subtropical cirrus were used to calculate solar spectral irradiances above and below the clouds. Spheres and nonspherical ice crystal habits (columns, hollows, plates, bullets, and aggregates) were assumed in the calculations. The simulation results were compared to irradiance measurements from the NASA Solar Spectral Flux Radiometer. The microphysical and radiation data were collected by three aircraft during CRYSTAL-FACE. Two cirrus cases (optical thickness of about 1 and 7) from two mission dates (26 and 23 July 2002) were investigated in detail. The measured downwelling and upwelling irradiance spectra above the cirrus could mostly be reproduced by the radiation model to within +/- 5-10% for most ice crystal habits. Below the cirrus the simulations disagreed with the measured irradiances due to surface albedo variability along the flight track, and nonoptimal colocation between the microphysical and irradiance measurements. The impact of shape characteristics of the crystals was important for the reflected irradiances above the optically thin cirrus, especially for small solar zenith angles, because in this case single-scattering dominated the solar radiation field. For the cirrus of moderate optical thickness the enhanced multiple scattering tended to diminish particular shape features caused by nonspherical single-scattering. Within the ice absorption bands the shape-related differences in the absorption characteristics of the individual nonspherical ice crystals were amplified if multiple scattering prevailed. Furthermore, it was found that below the cloud the shape sensitivity of the downwelling irradiance spectra is larger compared to the nonsphericity effects on reflected irradiances above the cirrus. Finally, it was shown that the calculated cirrus solar radiative forcing could vary by as much as 26% depending on the ice crystal habit.

  8. Efficiency enhancement of semitransparent organic solar cells by using printed dielectric mirrors (Presentation Recording)

    Science.gov (United States)

    Bronnbauer, Carina; Forberich, Karen K.; Guo, Fei; Gasparini, Nicola; Brabec, Christoph J.

    2015-09-01

    Building integrated thin film solar cells are a strategy for future eco-friendly power generation. Such solar cells have to be semi-transparent, long-term stable and show the potential to be fabricated by a low-cost production process. Organic photovoltaics are a potential candidate because an absorber material with its main absorption in the infrared spectral region where the human eye is not sensitive can be chosen. We can increase the number of absorbed photons, at the same time, keep the transparency almost constant by using a dielectric, wavelength-selective mirror. The mirror reflects only in the absorption regime of the active layer material and shows high transparencies in the spectral region around 550 nm where the human eye is most sensitive. We doctor bladed a fully solution processed dielectric mirror at low temperatures below 80 °C. Both inks, which are printed alternatingly are based on nanoparticles and have a refractive index of 1.29 or 1.98, respectively, at 500 nm. The position and the intensity of the main reflection peak can be easily shifted and thus adjusted to the solar cell absorption spectrum. Eventually, the dielectric mirror was combined with different organic solar cells. For instance, the current increases by 20.6 % while the transparency decreases by 23.7 % for the low band gap absorber DPP and silver nanowires as top electrode. Moreover we proved via experiment and optical simulations, that a variation of the active layer thickness and the position of the main reflection peak affect the transparency and the increase in current.

  9. A solar module fabrication process for HALE solar electric UAVs

    Energy Technology Data Exchange (ETDEWEB)

    Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)

    1994-12-12

    We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

  10. Ultraviolet reflectance spectroscopy measurements of carbonaceous meteorites and planetary analog materials

    Science.gov (United States)

    Hibbitts, Charles A.; Stockstill-Cahill, Karen; Takir, Driss

    2017-10-01

    The compositions of airless solar system objects tell us about the origin and evolutionary processes that are responsible for the current state of our solar system and that shape our environment. Spectral reflectance measurements in the ultraviolet are being used more frequently for providing compositional information of airless solid surfaces. Most minerals absorb in the UV making studying surface composition both informative but also challenging [e.g. 1]. The UV region is sensitive to atomic and molecular electronic absorptions such as the ligand-metal charge transfer band that is present in oxides and silicates and the conduction band at vacuum UV wavelengths. At the JHU-APL, bidirectional UV reflectance measurements are obtained under vacuum using a McPherson monochrometer with a PMT detector to achieve measurements over the range from ~ 140 nm to ~ 570 nm. Sample temperature can also be controlled from ~ 100K to ~ 600K, which enables the exploring the interaction of water ice and other volatiles with refractory samples. We have measured the UV spectra of many carbonaceous chondrites, including Mokoia, Vigarano, Warrenton, Orgueil, SaU290, and Essebi. In addition to being dark, some also possess on OMCT band. We have also obtained IR measurement of these meteorites to explore possible correlations between their UV and IR spectral signatures. In addition, we have also measured the UV spectra of low water content lunar analog glasses and have found a correlation between the spectral nature of the OMCT band and the abundance of iron [3]. Also, the spectral signature of mineralic and adsorbed water in the UV has been investigated. While water-ice has a known strong absorption feature near 180 nm (e.g. 4], adsorbed molecular and disassociatively adsorbed OH appear to not be optically active in this spectral region [5]. References: [1] Wagner et al. (1987) Icarus, 69, 14-28.1987; [2] Cloutis et al. (2008) Icarus, 197, 321-347; [3] Greenspon et al. (2012), 43rd LPSC

  11. Characterizing solar mirror materials using portable reflectometers

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, R.B.

    1982-09-01

    Currently available portable instrumentation for hemispherical and specular reflectance measurements of solar mirror materials is discussed. Particular attention is given to the wavelength dependence of the measurement spectrum, which in most cases does not approximate a solar spectral distribution, and to other limitations of each instrument. Because a portable instrument is not available that can determine the solar averaged specular reflectance from a single measurement, two procedures are recommended for obtaining a reasonable estimate for this quantity using the existing portable equipment. Finally, future developments in this area are briefly discussed.

  12. CDTE alloys and their application for increasing solar cell performance

    Science.gov (United States)

    Swanson, Drew E.

    Cadmium Telluride (CdTe) thin film solar is the largest manufactured solar cell technology in the United States and is responsible for one of the lowest costs of utility scale solar electricity at a purchase agreement of $0.0387/kWh. However, this cost could be further reduced by increasing the cell efficiency. To bridge the gap between the high efficiency technology and low cost manufacturing, a research and development tool and process was built and tested. This fully automated single vacuum PV manufacturing tool utilizes multiple inline close space sublimation (CSS) sources with automated substrate control. This maintains the proven scalability of the CSS technology and CSS source design but with the added versatility of independent substrate motion. This combination of a scalable deposition technology with increased cell fabrication flexibility has allowed for high efficiency cells to be manufactured and studied. The record efficiency of CdTe solar cells is lower than fundamental limitations due to a significant deficit in voltage. It has been modeled that there are two potential methods of decreasing this voltage deficiency. The first method is the incorporation of a high band gap film at the back contact to induce a conduction-band barrier that can reduce recombination by reflecting electrons from the back surface. The addition of a Cd1-x MgxTe (CMT) layer at the back of a CdTe solar cell should induce this desired offset and reflect both photoelectrons and forward-current electrons away from the rear surface. Higher collection of photoelectrons will increase the cells current and the reduction of forward current will increase the cells voltage. To have the optimal effect, CdTe must have reasonable carrier lifetimes and be fully depleted. To achieve this experimentally, CdTe layers have been grown sufficiently thin to help produce a fully depleted cell. A variety of measurements including performance curves, transmission electron microscopy, x

  13. Wide Band Artificial Pulsar

    Science.gov (United States)

    Parsons, Zackary

    2017-01-01

    The Wide Band Artificial Pulsar (WBAP) is an instrument verification device designed and built by the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virgina. The site currently operates the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and the Versatile Green Bank Astronomical Spectrometer (VEGAS) digital backends for their radio telescopes. The commissioning and continued support for these sophisticated backends has demonstrated a need for a device capable of producing an accurate artificial pulsar signal. The WBAP is designed to provide a very close approximation to an actual pulsar signal. This presentation is intended to provide an overview of the current hardware and software implementations and to also share the current results from testing using the WBAP.

  14. Low band gap polymers for organic solar cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2008-01-01

    The synthesis of copolymers based on thiophene, benzothiadiazole and benzo-bis-thiadiazole are described. The polymers were obtained by employing Stille cross coupling polymerization. The polymers were characterized by NMR, size exclusion chromatography, UV-vis and ultraviolet photoelectron spect...

  15. Electrical equivalent model of intermediate band solar cell using ...

    Indian Academy of Sciences (India)

    Department of Electronics, University of Kasdi Merbah Ouargla, Ouargla 30000, Algeria; Advanced Electronics Laboratory, University of Batna, Batna 05000, Algeria; Department of Electronics, University of HL El Oued, El oued 39000, Algeria; Centre de développement des technologies avancées CDTA, Baba Hassen ...

  16. Dark Bands on Europa

    Science.gov (United States)

    1996-01-01

    Dark crisscrossing bands on Jupiter's moon Europa represent widespread disruption from fracturing and the possible eruption of gases and rocky material from the moon's interior in this four-frame mosaic of images from NASA's Galileo spacecraft. These and other features suggest that soft ice or liquid water was present below the ice crust at the time of disruption. The data do not rule out the possibility that such conditions exist on Europa today. The pictures were taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996. Many of the dark bands are more than 1,600 kilometers (1,000 miles) long, exceeding the length of the San Andreas fault of California. Some of the features seen on the mosaic resulted from meteoritic impact, including a 30- kilometer (18.5 mile) diameter crater visible as a bright scar in the lower third of the picture. In addition, dozens of shallow craters seen in some terrains along the sunset terminator zone (upper right shadowed area of the image) are probably impact craters. Other areas along the terminator lack craters, indicating relatively youthful surfaces, suggestive of recent eruptions of icy slush from the interior. The lower quarter of the mosaic includes highly fractured terrain where the icy crust has been broken into slabs as large as 30 kilometers (18.5 miles) across. The mosaic covers a large part of the northern hemisphere and includes the north pole at the top of the image. The sun illuminates the surface from the left. The area shown is centered on 20 degrees north latitude and 220 degrees west longitude and is about as wide as the United States west of the Mississippi River. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  17. Solar kites: Small solar sails with no moving parts

    Science.gov (United States)

    Jack, C.; Welch, C. S.

    1997-01-01

    The classical concept of a solar sail is of a large area of silvered plastic deployed to reflect the Sun's rays thus propelling it. This arrangement would, however, be difficult to deploy and control, and impractical to launch from a low Earth orbit. This paper proposes an alternative concept to the classical solar sail — a small sail a few metres in diameter called a solar kite. Such a kite may be steered using very small torque forces and can therefore be controlled without the need for moving parts. Several such attitude control techniques are feasible: using windows of electrochromic material set in the sail; harnessing the effect of differential solar pressure on solar cells that are in or out of circuit; electrically heating wires to alter the geometry. Such solar kites may have a number of applications. Carrying a CCD camera on a chip and a medium gain antenna, a kite could be used for interplanetary mission and return dust samples to Earth. A kite attached to a satellite in LEO could be used for orbit control, reducing the need for thruster propellant. Long strings of kites, effectively large, one-dimensional solar sails, would be easier to deploy and control than two-dimensional ones and could be operated from much lower altitudes, ~ 500 km.

  18. Solar generator

    Energy Technology Data Exchange (ETDEWEB)

    Barkats, G.; Chenin, C.; Foucras, J.; Marnay, L.

    1978-07-18

    The present invention relates to a solar generator for producing electrical energy from solar energy, mounted in particular on board an artificial satellite and constituted by a plurality of pivoted panels, stacked but unfoldable, each of which comprises a thick frame inside which is disposed a thin flexible support carrying solar cells, said frame comprising intermediate stiffeners connecting two opposite sides of the frame, wherein each panel comprises, between two intermediate stiffeners and between the end intermediate stiffeners and the sides of the frame there-opposite, a plurality of wide, flat auxiliary stiffeners, transverse with respect to the intermediate stiffeners and on which said flexible support is fixed at least partially.

  19. A comparison of Solar proxy-magnetometry diagnostics

    NARCIS (Netherlands)

    Leenaarts, J.|info:eu-repo/dai/nl/304837946; Rutten, R.J.|info:eu-repo/dai/nl/074143662; Carlsson, M.; Uitenbroek, H.

    2006-01-01

    Aims. We test various proxy-magnetometry diagnostics, i.e., brightness signatures of small-scale magnetic elements, for studying magnetic field structures in the solar photosphere. Methods. Images are numerically synthesized from a 3D solar magneto-convection simulation for, respectively, the G band

  20. Solar Wind Associated with Near Equatorial Coronal Hole

    Indian Academy of Sciences (India)

    We find a strong association between different parameters of coronal hole and solar wind. For both the wavelength bands, we also compute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength 193 Å, owing to almost similar magnitudes of ...