WorldWideScience

Sample records for reflect prefrontal cortical

  1. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  2. Prefrontal cortex and sensory cortices during working memory: quantity and quality.

    Science.gov (United States)

    Ku, Yixuan; Bodner, Mark; Zhou, Yong-Di

    2015-04-01

    The activity in sensory cortices and the prefrontal cortex (PFC) throughout the delay interval of working memory (WM) tasks reflect two aspects of WM-quality and quantity, respectively. The delay activity in sensory cortices is fine-tuned to sensory information and forms the neural basis of the precision of WM storage, while the delay activity in the PFC appears to represent behavioral goals and filters out irrelevant distractions, forming the neural basis of the quantity of task-relevant information in WM. The PFC and sensory cortices interact through different frequency bands of neuronal oscillation (theta, alpha, and gamma) to fulfill goal-directed behaviors.

  3. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices.

    Science.gov (United States)

    Barbas, H

    2000-07-15

    Distinct domains of the prefrontal cortex in primates have a set of connections suggesting that they have different roles in cognition, memory, and emotion. Caudal lateral prefrontal areas (areas 8 and 46) receive projections from cortices representing early stages in visual or auditory processing, and from intraparietal and posterior cingulate areas associated with oculomotor guidance and attentional processes. Cortical input to areas 46 and 8 is complemented by projections from the thalamic multiform and parvicellular sectors of the mediodorsal nucleus associated with oculomotor functions and working memory. In contrast, caudal orbitofrontal areas receive diverse input from cortices representing late stages of processing within every unimodal sensory cortical system. In addition, orbitofrontal and caudal medial (limbic) prefrontal cortices receive robust projections from the amygdala, associated with emotional memory, and from medial temporal and thalamic structures associated with long-term memory. Prefrontal cortices are linked with motor control structures related to their specific roles in central executive functions. Caudal lateral prefrontal areas project to brainstem oculomotor structures, and are connected with premotor cortices effecting head, limb and body movements. In contrast, medial prefrontal and orbitofrontal limbic cortices project to hypothalamic visceromotor centers for the expression of emotions. Lateral, orbitofrontal, and medial prefrontal cortices are robustly interconnected, suggesting that they participate in concert in central executive functions. Prefrontal limbic cortices issue widespread projections through their deep layers and terminate in the upper layers of lateral (eulaminate) cortices, suggesting a predominant role in feedback communication. In contrast, when lateral prefrontal cortices communicate with limbic areas they issue projections from their upper layers and their axons terminate in the deep layers, suggesting a role in

  4. The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain

    Science.gov (United States)

    Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael

    2011-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal

  5. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  7. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  8. Major Thought Restructuring: The Roles of Different Prefrontal Cortical Regions.

    Science.gov (United States)

    Seyed-Allaei, Shima; Avanaki, Zahra Nasiri; Bahrami, Bahador; Shallice, Tim

    2017-07-01

    An important question for understanding the neural basis of problem solving is whether the regions of human prefrontal cortices play qualitatively different roles in the major cognitive restructuring required to solve difficult problems. However, investigating this question using neuroimaging faces a major dilemma: either the problems do not require major cognitive restructuring, or if they do, the restructuring typically happens once, rendering repeated measurements of the critical mental process impossible. To circumvent these problems, young adult participants were challenged with a one-dimensional Subtraction (or Nim) problem [Bouton, C. L. Nim, a game with a complete mathematical theory. The Annals of Mathematics, 3, 35-39, 1901] that can be tackled using two possible strategies. One, often used initially, is effortful, slow, and error-prone, whereas the abstract solution, once achieved, is easier, quicker, and more accurate. Behaviorally, success was strongly correlated with sex. Using voxel-based morphometry analysis controlling for sex, we found that participants who found the more abstract strategy (i.e., Solvers) had more gray matter volume in the anterior medial, ventrolateral prefrontal, and parietal cortices compared with those who never switched from the initial effortful strategy (i.e., Explorers). Removing the sex covariate showed higher gray matter volume in Solvers (vs. Explorers) in the right ventrolateral prefrontal and left parietal cortex.

  9. Perceived Occupational Stress is associated with Decreased Cortical Activity of the Prefrontal Cortex: A Multichannel Near-infrared Spectroscopy Study.

    Science.gov (United States)

    Chou, Po-Han; Lin, Wei-Hao; Hung, Chao-An; Chang, Chiung-Chih; Li, Wan-Rung; Lan, Tsuo-Hung; Huang, Min-Wei

    2016-12-13

    Despite an increasing number of reports on the associations between chronic occupational stress and structural and functional changes of the brain, the underlying neural correlates of perceived occupational stress is still not clear. Perceived stress reflects the extents to which situations are appraised as stressful at a given point in one's life. Using near-infrared spectroscopy, we investigated the associations between perceived occupational stress and cortical activity over the bilateral frontotemporal regions during a verbal fluency test. Sixty-eight participants (17 men, 51 women), 20-62 years of age were recruited. Perceived occupational stress was measured using the Chinese version of Job Content Questionnaire, and the Chinese version of the Copenhagen Burnout Inventory. We found statistically significant negative associations between occupational burnout and brain cortical activity over the fronto-polar and dorsolateral prefrontal cortex during the VFT (r = -0.343 to -0.464). In conclusion, our research demonstrated a possible neural basis of perceived occupational stress that are distributed across the prefrontal cortex.

  10. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    International Nuclear Information System (INIS)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K + , however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with [ 3 H]-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K + -evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis

  11. Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory.

    Science.gov (United States)

    Hasegawa, I; Fukushima, T; Ihara, T; Miyashita, Y

    1998-08-07

    A perceptual image can be recalled from memory without sensory stimulation. However, the neural origin of memory retrieval remains unsettled. To examine whether memory retrieval can be regulated by top-down processes originating from the prefrontal cortex, a visual associative memory task was introduced into the partial split-brain paradigm in monkeys. Long-term memory acquired through stimulus-stimulus association did not transfer via the anterior corpus callosum, a key part interconnecting prefrontal cortices. Nonetheless, when a visual cue was presented to one hemisphere, the anterior callosum could instruct the other hemisphere to retrieve the correct stimulus specified by the cue. Thus, although visual long-term memory is stored in the temporal cortex, memory retrieval is under the executive control of the prefrontal cortex.

  12. Left Prefrontal Activity Reflects the Ability of Vicarious Fear Learning: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Qingguo Ma

    2013-01-01

    Full Text Available Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants’ hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being was receiving a classical fear conditioning. A neutral colored square paired with shocks (CSshock and another colored square paired with no shocks (CSno-shock were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CSshock compared with that exposed to CSno-shock. In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others’ mental state, is associated with social fear transmission.

  13. Left prefrontal activity reflects the ability of vicarious fear learning: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ma, Qingguo; Huang, Yujing; Wang, Lei

    2013-01-01

    Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants' hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being) was receiving a classical fear conditioning. A neutral colored square paired with shocks (CS(shock)) and another colored square paired with no shocks (CS(no-shock)) were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CS(shock) compared with that exposed to CS(no-shock). In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others' mental state, is associated with social fear transmission.

  14. Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Napolitano, Francesco; Ursini, Gianluca; Di Giorgio, Annabella; Caforio, Grazia; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Attrotto, Maria Teresa; Colagiorgio, Lucia; Todarello, Giovanna; Piva, Francesco; Papazacharias, Apostolos; Masellis, Rita; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Rampino, Antonio; Quarto, Tiziana; Giulietti, Matteo; Lipska, Barbara K; Kleinman, Joel E; Popolizio, Teresa; Weinberger, Daniel R; Usiello, Alessandro; Bertolino, Alessandro

    2013-08-01

    OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.

  15. High social desirability and prefrontal cortical activity in cancer patients: a preliminary study.

    Science.gov (United States)

    Tashiro, Manabu; Juengling, Freimut D; Moser, Ernst; Reinhardt, Michael J; Kubota, Kazuo; Yanai, Kazuhiko; Sasaki, Hidetada; Nitzsche, Egbert U; Kumano, Hiroaki; Itoh, Masatoshi

    2003-04-01

    Social desirability is sometimes associated with poor prognosis in cancer patients. Psycho-neuro-immune interaction has been hypothesized as an underlying mechanism of the negative clinical outcome. Purpose of this study was to examine possible effects of high social desirability on the regional brain activity in patients with malignant diseases. Brain metabolism of 16 patients with various malignant diseases was measured by PET with 18F-fluorodeoxyglucose (FDG). Patients were divided into 2 groups using median split on Marlowe & Crown's Social Desirability Scale (MC), controlling for age, gender, and for severity of depression and anxiety, the possible two major influential factors. A group comparison of the regional cerebral activity was calculated on a voxel-by-voxel basis using statistical parametric mapping (SPM). The subgroup comparison showed that the high social desirability was associated with relatively increased metabolism in the cortical regions in the prefrontal, temporal and occipital lobes as well as in the anterior cingulate gyrus. High social desirability seems to be associated with increased activity in the prefrontal and other cortical areas. The finding is in an accordance with previous studies that demonstrated an association between prefrontal damage and anti-social behavior. Functional neuroimaging seems to be useful not only for psychiatric evaluation of major factors such as depression and anxiety but also for further psychosocial factors in cancer patients.

  16. Cortical thickness of the dorsolateral prefrontal cortex predicts strategic choices in economic games.

    Science.gov (United States)

    Yamagishi, Toshio; Takagishi, Haruto; Fermin, Alan de Souza Rodrigues; Kanai, Ryota; Li, Yang; Matsumoto, Yoshie

    2016-05-17

    Human prosociality has been traditionally explained in the social sciences in terms of internalized social norms. Recent neuroscientific studies extended this traditional view of human prosociality by providing evidence that prosocial choices in economic games require cognitive control of the impulsive pursuit of self-interest. However, this view is challenged by an intuitive prosociality view emphasizing the spontaneous and heuristic basis of prosocial choices in economic games. We assessed the brain structure of 411 players of an ultimatum game (UG) and a dictator game (DG) and measured the strategic reasoning ability of 386. According to the reflective norm-enforcement view of prosociality, only those capable of strategically controlling their selfish impulses give a fair share in the UG, but cognitive control capability should not affect behavior in the DG. Conversely, we support the intuitive prosociality view by showing for the first time, to our knowledge, that strategic reasoning and cortical thickness of the dorsolateral prefrontal cortex were not related to giving in the UG but were negatively related to giving in the DG. This implies that the uncontrolled choice in the DG is prosocial rather than selfish, and those who have a thicker dorsolateral prefrontal cortex and are capable of strategic reasoning (goal-directed use of the theory of mind) control this intuitive drive for prosociality as a means to maximize reward when there are no future implications of choices.

  17. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  18. Centrality of prefrontal and motor preparation cortices to Tourette Syndrome revealed by meta-analysis of task-based neuroimaging studies

    Directory of Open Access Journals (Sweden)

    Liliana Polyanska

    2017-01-01

    The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.

  19. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    Science.gov (United States)

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier

  20. BOLD responses in somatosensory cortices better reflect heat sensation than pain.

    Science.gov (United States)

    Moulton, Eric A; Pendse, Gautam; Becerra, Lino R; Borsook, David

    2012-04-25

    The discovery of cortical networks that participate in pain processing has led to the common generalization that blood oxygen level-dependent (BOLD) responses in these areas indicate the processing of pain. Physical stimuli have fundamental properties that elicit sensations distinguishable from pain, such as heat. We hypothesized that pain intensity coding may reflect the intensity coding of heat sensation during the presentation of thermal stimuli during fMRI. Six 3T fMRI heat scans were collected for 16 healthy subjects, corresponding to perceptual levels of "low innocuous heat," "moderate innocuous heat," "high innocuous heat," "low painful heat," "moderate painful heat," and "high painful heat" delivered by a contact thermode to the face. Subjects rated pain and heat intensity separately after each scan. A general linear model analysis detected different patterns of brain activation for the different phases of the biphasic response to heat. During high painful heat, the early phase was associated with significant anterior insula and anterior cingulate cortex activation. Persistent responses were detected in the right dorsolateral prefrontal cortex and inferior parietal lobule. Only the late phase showed significant correlations with perceptual ratings. Significant heat intensity correlated activation was identified in contralateral primary and secondary somatosensory cortices, motor cortex, and superior temporal lobe. These areas were significantly more related to heat ratings than pain. These results indicate that heat intensity is encoded by the somatosensory cortices, and that pain evaluation may either arise from multimodal evaluative processes, or is a distributed process.

  1. Differential Motor and Prefrontal Cerebello-Cortical Network Development: Evidence from Multimodal Neuroimaging

    Science.gov (United States)

    Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.

    2015-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125

  2. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  3. The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory.

    Science.gov (United States)

    Chung, Sung Wook; Rogasch, Nigel C; Hoy, Kate E; Fitzgerald, Paul B

    With an increasing interest in the use of theta burst stimulation (TBS) as a cognitive enhancer and a potential therapeutic tool for psychiatric disorders, there is a need to identify optimal parameters of TBS in the prefrontal cortex. This study examined the effect of two blocks of prefrontal intermittent TBS (iTBS) on cortical reactivity and working memory performance, compared to one block of iTBS and sham stimulation. We hypothesized that greater cortical effects would be obtained with two blocks of iTBS. Eighteen healthy participants attended three experimental sessions and received either sham, one block or two blocks of iTBS with a 15-min interval. Concurrent transcranial magnetic stimulation with electroencephalography (TMS-EEG) was used to assess the change in cortical reactivity via TMS-evoked potentials. Working memory performance was assessed using the N-back task. Cluster-based permutation statistics and two-way ANOVAs were used for neurophysiological and behavioural data, respectively. Both single and two blocks of iTBS resulted in a significant increase in the amplitude of TMS-evoked N100 and P200. No significant differences were observed between active conditions in either neurophysiological changes or working memory performance, and both failed to improve working memory performance relative to sham. Two blocks of iTBS did not result in stronger measured effects as compared to one block of iTBS. Future studies are needed to identify the optimal stimulation pattern in order to achieve a desired effect. It is also important to establish the best approach in quantifying neuromodulatory effects targeting the prefrontal cortex. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Stress amplifies sex differences in primate prefrontal profiles of gene expression.

    Science.gov (United States)

    Lee, Alex G; Hagenauer, Megan; Absher, Devin; Morrison, Kathleen E; Bale, Tracy L; Myers, Richard M; Watson, Stanley J; Akil, Huda; Schatzberg, Alan F; Lyons, David M

    2017-11-02

    Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults. Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys. Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex. Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.

  5. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  6. Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder.

    Science.gov (United States)

    Hassel, Stefanie; Almeida, Jorge R; Frank, Ellen; Versace, Amelia; Nau, Sharon A; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2009-11-01

    The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. BD individuals scored significantly higher on these spectrum measures than healthy individuals (pright PFC activity to intense happy faces (pright caudate nucleus activity to neutral faces (pright ventral putamen activity to intense happy (pabuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD.

  7. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  8. I find you more attractive … after (prefrontal cortex) stimulation

    NARCIS (Netherlands)

    Ferrari, C.; Lega, C.; Tamietto, M.; Nadal, M.; Cattaneo, Z.

    2015-01-01

    Facial attractiveness seems to be perceived immediately. Neuroimaging evidence suggests that the appraisal of facial attractiveness is mediated by a network of cortical and subcortical regions, mainly encompassing the reward circuit, but also including prefrontal cortices. The prefrontal cortex is

  9. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex.

    Science.gov (United States)

    Prat, Chantel S; Stocco, Andrea; Neuhaus, Emily; Kleinhans, Natalia M

    2016-10-01

    Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying

  10. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  11. Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment.

    Science.gov (United States)

    Tomoda, Akemi; Suzuki, Hanako; Rabi, Keren; Sheu, Yi-Shin; Polcari, Ann; Teicher, Martin H

    2009-08-01

    Harsh corporal punishment (HCP) during childhood is a chronic, developmental stressor associated with depression, aggression and addictive behaviors. Exposure to traumatic stressors, such as sexual abuse, is associated with alteration in brain structure, but nothing is known about the potential neurobiological consequences of HCP. The aim of this study was to investigate whether HCP was associated with discernible alterations in gray matter volume (GMV) using voxel-based morphometry (VBM). 1455 young adults (18-25 years) were screened to identify 23 with exposure to HCP (minimum 3 years duration, 12 episodes per year, frequently involving objects) and 22 healthy controls. High-resolution T1-weighted MRI datasets were obtained using Siemens 3 T trio scanner. GMV was reduced by 19.1% in the right medial frontal gyrus (medial prefrontal cortex; MPFC, BA10) (P=0.037, corrected cluster level), by 14.5% in the left medial frontal gyrus (dorsolateral prefrontal cortex; DLPFC, BA9) (P=0.015, uncorrected cluster level) and by 16.9% in the right anterior cingulate gyrus (BA24) (P<0.001, uncorrected cluster level) of HCP subjects. There were significant correlations between GMV in these identified regions and performance IQ on the WAIS-III. Exposing children to harsh HCP may have detrimental effects on trajectories of brain development. However, it is also conceivable that differences in prefrontal cortical development may increase risk of exposure to HCP.

  12. Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control

    Directory of Open Access Journals (Sweden)

    Patrono Enrico

    2010-02-01

    Full Text Available Abstract Background Eating disorders are multifactorial psychiatric disorders. Chronic stressful experiences and caloric restriction are the most powerful triggers of eating disorders in human and animals. Although compulsive behavior is considered to characterize pathological excessive food intake, to our knowledge, no evidence has been reported of continued food seeking/intake despite its possible harmful consequences, an index of compulsive behavior. Brain monoamine transmission is considered to have a key role in vulnerability to eating disorders, and norepinephrine in medial prefrontal cortex has been shown to be critical for food-related motivated behavior. Here, using a new paradigm of conditioned suppression, we investigated whether the ability of a foot-shock-paired conditioned stimulus to suppress chocolate-seeking behavior was reversed by previous exposure to a food restriction experience, thus modeling food seeking in spite of harmful consequences in mice. Moreover, we assessed the effects of selective norepinephrine inactivation in medial prefrontal cortex on conditioned suppression test in stressed and caloric restricted mice. Results While Control (non food deprived animals showed a profound conditioned suppression of chocolate seeking during presentation of conditioned stimulus, previously food restricted animals showed food seeking/intake despite its possible harmful consequences. Moreover, food seeking in spite of harmful consequences was prevented by selective norepinephrine inactivation, thus showing that prefrontal cortical norepinephrine is critical also for maladaptive food-related behavior. Conclusions These findings indicate that adaptive food seeking/intake can be transformed into maladaptive behaviors and point to "top-down" influence on eating disturbances and to new targets for therapy of aberrant eating behaviors.

  13. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research.

    Science.gov (United States)

    Tse, Maric T; Piantadosi, Patrick T; Floresco, Stan B

    2015-06-01

    Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients.

    Directory of Open Access Journals (Sweden)

    Meredith G Banigan

    Full Text Available Exosomes are cellular secretory vesicles containing microRNAs (miRNAs. Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ and bipolar disorder (BD might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center, BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe and Boston Medical Center (BMC. Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD.

  15. Medial prefrontal cortex subserves diverse forms of self-reflection.

    Science.gov (United States)

    Jenkins, Adrianna C; Mitchell, Jason P

    2011-01-01

    The ability to think about oneself--to self--reflect--is one of the defining features of the human mind. Recent research has suggested that this ability may be subserved by a particular brain region: the medial prefrontal cortex (MPFC). However, although humans can contemplate a variety of different aspects of themselves, including their stable personality traits, current feelings, and physical attributes, no research has directly examined the extent to which these different forms of self-reflection are subserved by common mechanisms. To address this question, participants were scanned using functional magnetic resonance imaging (fMRI) while making judgments about their own personality traits, current mental states, and physical attributes as well as those of another person. Whereas some brain regions responded preferentially during only one form of self-reflection, a robust region of MPFC was engaged preferentially during self-reflection across all three types of judgment. These results suggest that--although dissociable--diverse forms of self-referential thought draw on a shared cognitive process subserved by MPFC.

  16. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  17. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  18. Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions

    DEFF Research Database (Denmark)

    Karstensen, Helena Gásdal; Vestergaard, Martin; Baaré, William F C

    2018-01-01

    differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI...... in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the "Sniffin' Sticks...... piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory....

  19. Increased Cortical Thickness in Professional On-Line Gamers

    Science.gov (United States)

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  20. The Development of the Ventral Prefrontal Cortex and Social Flexibility

    Science.gov (United States)

    Nelson, Eric E.; Guyer, Amanda E.

    2011-01-01

    Over the last several years a number of studies in both humans and animals have suggested that the orbitofrontal and ventrolateral prefrontal cortices play an important role in generating flexible behavior. We suggest that input from these brain regions contribute to three functions involved in generating flexible behavior within social contexts: valuation, inhibition, and rule use. Recent studies have also demonstrated that the prefrontal cortex undergoes a prolonged course of maturation that extends well after puberty. Here, we review evidence that the prolonged development of these prefrontal regions parallels a slowly emerging ability for flexible social behavior. We also speculate on the possibility that sensitive periods for organizing social behavior may be embedded within this developmental time-fame. Finally, we discuss the role of prefrontal cortex in adolescent mood and anxiety disorders, particularly as orbitofrontal and ventrolateral prefrontal cortices are engaged in a social context. PMID:21804907

  1. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  2. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  3. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Na-Young [The Catholic University of Korea, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Hong, Jinwoo; Yoon, Uicheul [Catholic University of Daegu, Department of Biomedical Engineering, College of Health and Medical Science, Gyeongsan-si, Gyeongbuk (Korea, Republic of); Choi, Jun Yong [Yonsei University College of Medicine, Department of Internal Medicine and AIDS Research Institute, Seoul (Korea, Republic of); Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lim, Soo Mee [Ewha Womans University, School of Medicine, Department of Radiology, Seoul (Korea, Republic of)

    2017-11-15

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  4. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    International Nuclear Information System (INIS)

    Shin, Na-Young; Hong, Jinwoo; Yoon, Uicheul; Choi, Jun Yong; Lee, Seung-Koo; Lim, Soo Mee

    2017-01-01

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  5. Monetary reward activates human prefrontal cortex

    International Nuclear Information System (INIS)

    Thut, G.; Roelcke, U.; Nienhusmeier, M.; Missimer, J.; Maguire, R.P.; Leenders, K.L.; Schultz, W.

    1997-01-01

    We present a rCBF PET activation study, in which we demonstrated that reward processing in humans activates a cortical-subcortical network including dorsolateral prefrontal, orbital frontal, thalamic and midbrain regions. It is suggested that, as found for non-human primates, the basal ganglia-thalamo-cortical system is implicated in reward processing. (author) 1 fig., 3 refs

  6. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  8. Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation.

    Directory of Open Access Journals (Sweden)

    Armita Golkar

    Full Text Available The lateral prefrontal and orbitofrontal cortices have both been implicated in emotion regulation, but their distinct roles in regulation of negative emotion remain poorly understood. To address this issue we enrolled 58 participants in an fMRI study in which participants were instructed to reappraise both negative and neutral stimuli. This design allowed us to separately study activations reflecting cognitive processes associated with reappraisal in general and activations specifically related to reappraisal of negative emotion. Our results confirmed that both the dorsolateral prefrontal cortex (DLPFC and the lateral orbitofrontal cortex (OFC contribute to emotion regulation through reappraisal. However, activity in the DLPFC was related to reappraisal independently of whether negative or neutral stimuli were reappraised, whereas the lateral OFC was uniquely related to reappraisal of negative stimuli. We suggest that relative to the lateral OFC, the DLPFC serves a more general role in emotion regulation, perhaps by reflecting the cognitive demand that is inherent to the regulation task.

  9. SKA2 Methylation is associated with Decreased Prefrontal Cortical Thickness and Greater PTSD Severity among Trauma-Exposed Veterans

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M.; Logue, Mark W.; Wolf, Erika J.; Smith, Alicia K.; Lusk, Joanna; Hayes, Jasmeet P.; Sperbeck, Emily; Milberg, William P.; McGlinchey, Regina E.; Salat, David H.; Carter, Weleetka C.; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald E.; Miller, Mark W.

    2015-01-01

    Methylation of the SKA2 gene has recently been identified as a promising biomarker of suicide risk. Based on this finding, we examined associations between SKA2 methylation, cortical thickness, and psychiatric phenotypes linked to suicide in trauma-exposed veterans. 200 trauma-exposed white non-Hispanic veterans of the recent conflicts in Iraq and Afghanistan (91% male) underwent clinical assessment and had blood drawn for genotyping and methylation analysis. 145 participants also had neuroimaging data available. Based on previous research, we examined DNA methylation at the CpG locus cg13989295 as well as DNA methylation adjusted for genotype at the methylation-associated SNP (rs7208505) in relationship to whole-brain cortical thickness, posttraumatic stress disorder symptoms (PTSD), and depression symptoms. Whole-brain vertex-wise analyses identified three clusters in prefrontal cortex that were associated with genotype-adjusted SKA2 DNA methylation (methylationadj). Specifically, DNA methylationadj was associated with bilateral reductions of cortical thickness in frontal pole and superior frontal gyrus, and similar effects were found in the right orbitofrontal cortex and right inferior frontal gyrus. PTSD symptom severity was positively correlated with SKA2 DNA methylationadj and negatively correlated with cortical thickness in these regions. Mediation analyses showed a significant indirect effect of PTSD on cortical thickness via SKA2 methylation status. Results suggest that DNA methylationadj of SKA2 in blood indexes stress-related psychiatric phenotypes and neurobiology, pointing to its potential value as a biomarker of stress exposure and susceptibility. PMID:26324104

  10. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Cortical oscillatory activity during spatial echoic memory.

    Science.gov (United States)

    Kaiser, Jochen; Walker, Florian; Leiberg, Susanne; Lutzenberger, Werner

    2005-01-01

    In human magnetoencephalogram, we have found gamma-band activity (GBA), a putative measure of cortical network synchronization, during both bottom-up and top-down auditory processing. When sound positions had to be retained in short-term memory for 800 ms, enhanced GBA was detected over posterior parietal cortex, possibly reflecting the activation of higher sensory storage systems along the hypothesized auditory dorsal space processing stream. Additional prefrontal GBA increases suggested an involvement of central executive networks in stimulus maintenance. The present study assessed spatial echoic memory with the same stimuli but a shorter memorization interval of 200 ms. Statistical probability mapping revealed posterior parietal GBA increases at 80 Hz near the end of the memory phase and both gamma and theta enhancements in response to the test stimulus. In contrast to the previous short-term memory study, no prefrontal gamma or theta enhancements were detected. This suggests that spatial echoic memory is performed by networks along the putative auditory dorsal stream, without requiring an involvement of prefrontal executive regions.

  12. Postnatal Developmental Trajectories of Neural Circuits in the Primate Prefrontal Cortex: Identifying Sensitive Periods for Vulnerability to Schizophrenia

    Science.gov (United States)

    Hoftman, Gil D.; Lewis, David A.

    2011-01-01

    Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia. PMID:21505116

  13. Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder.

    Science.gov (United States)

    Meier, Timothy B; Drevets, Wayne C; Wurfel, Brent E; Ford, Bart N; Morris, Harvey M; Victor, Teresa A; Bodurka, Jerzy; Teague, T Kent; Dantzer, Robert; Savitz, Jonathan

    2016-03-01

    Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (pdepressive episodes displayed thinner cortex in BA32 (pmediated the relationship between diagnosis and cortical thickness of right BA32

  14. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight.

    Science.gov (United States)

    Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-11-01

    Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with

  15. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly

    Directory of Open Access Journals (Sweden)

    Ruud H. Knols

    2017-11-01

    Full Text Available Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON. Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model were assessed together with measures of the achieved game level, reaction times, (in- correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02% assessed with functional near infrared spectroscopy (fNIRS (n = 5 and EEG power (n = 10 was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1–7 of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8–10, for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1, where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001 lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000, but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25–0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively

  16. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.

    Science.gov (United States)

    Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D

    2008-02-01

    Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.

  17. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons

    Science.gov (United States)

    Nakajima, Miho; Görlich, Andreas; Heintz, Nathaniel

    2014-01-01

    SUMMARY Human imaging studies have revealed that intranasal administration of the “prosocial” hormone oxytocin (OT) activates the frontal cortex, and that this action of OT correlates with enhanced brain function in autism. Here we report the discovery of a population of somatostatin (Sst) positive, regular spiking interneurons that express the oxytocin receptor (OxtrINs). Silencing of OxtrINs in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice specifically during the sexually receptive phase of the estrous cycle. This sociosexual deficit was also present in mice in which the Oxtr gene was conditionally deleted from the mPFC, and in control mice infused with an Oxtr antagonist. Our data demonstrate a gender, cell type and state specific role for OT/Oxtr signaling in the mPFC, and identify a latent cortical circuit element that may modulate other complex social behaviors in response to OT. PMID:25303526

  18. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly.

    Science.gov (United States)

    Knols, Ruud H; Swanenburg, Jaap; De Bon, Dino; Gennaro, Federico; Wolf, Martin; Krüger, Bernard; Bettex, Dominique; de Bruin, Eling D

    2017-01-01

    Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) ( n = 5) and EEG power ( n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1-7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8-10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly ( p games ( p games. EEG recordings of theta power significantly decreased in the averaged ~0.25-0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the

  19. Right prefrontal activity reflects the ability to overcome sleepiness during working memory tasks: a functional near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Motoyasu Honma

    Full Text Available It has been speculated that humans have an inherent ability to overcome sleepiness that counteracts homeostatic sleep pressure. However, it remains unclear which cortical substrate activities are involved in the ability to overcome sleepiness during the execution of cognitive tasks. Here we sought to confirm that this ability to overcome sleepiness in task execution improves performance on cognitive tasks, showing activation of neural substrates in the frontal cortex, by using a modified n-back (2- and 0-back working memory task and functional near-infrared spectroscopy. The change in alertness was just correlated with performances on the 2-back task. Activity in the right prefrontal cortex changed depending on alertness changes on the 2- and 0-back tasks independently, which indicates that activity in this region clearly reflects the ability to overcome sleepiness; it may contribute to the function of providing sufficient activity to meet the task load demands. This study reveals characteristics of the ability to overcome sleepiness during the n-back working memory task which goes beyond the attention-control function traditionally proposed.

  20. Neural mechanisms of memory retrieval: role of the prefrontal cortex.

    Science.gov (United States)

    Hasegawa, I

    2000-01-01

    In the primate brain, long-term memory is stored in the neocortical association area which is also engaged in sensory perception. The coded representation of memory is retrieved via interactions of hierarchically different cortical areas along bottom-up and top-down anatomical connections. The functional significance of the fronto-cortical top-down neuronal projections has been relevantly assessed in a new experimental paradigm using posterior-split-brain monkeys. When the splenium of the corpus callosum and the anterior commissure were selectively split, the bottom-up visual signal originating from the unilateral striate cortex could not reach the contralateral visual cortical areas. In this preparation, long-term memory acquired through visual stimulus-stimulus association learning was prevented from transferring across hemispheres. Nonetheless, following the presentation of a visual cue to one hemisphere, the prefrontal cortex could instruct the contralateral hemisphere to retrieve the correct stimulus specified by the cue. These results support the hypothesis that the prefrontal cortex can regulate memory recall in the absence of bottom-up sensory input. In humans, functional neuroimaging studies have revealed activation of a distributed neural network, including the prefrontal cortex, during memory retrieval tasks. Thus, the prefrontal cortex is consistently involved in retrieval of long-term memory in primates.

  1. Medial prefrontal-perirhinal cortical communication is necessary for flexible response selection.

    Science.gov (United States)

    Hernandez, Abbi R; Reasor, Jordan E; Truckenbrod, Leah M; Lubke, Katelyn N; Johnson, Sarah A; Bizon, Jennifer L; Maurer, Andrew P; Burke, Sara N

    2017-01-01

    The ability to use information from the physical world to update behavioral strategies is critical for survival across species. The prefrontal cortex (PFC) supports behavioral flexibility; however, exactly how this brain structure interacts with sensory association cortical areas to facilitate the adaptation of response selection remains unknown. Given the role of the perirhinal cortex (PER) in higher-order perception and associative memory, the current study evaluated whether PFC-PER circuits are critical for the ability to perform biconditional object discriminations when the rule for selecting the rewarded object shifted depending on the animal's spatial location in a 2-arm maze. Following acquisition to criterion performance on an object-place paired association task, pharmacological blockade of communication between the PFC and PER significantly disrupted performance. Specifically, the PFC-PER disconnection caused rats to regress to a response bias of selecting an object on a particular side regardless of its identity. Importantly, the PFC-PER disconnection did not interfere with the capacity to perform object-only or location-only discriminations, which do not require the animal to update a response rule across trials. These findings are consistent with a critical role for PFC-PER circuits in rule shifting and the effective updating of a response rule across spatial locations. Published by Elsevier Inc.

  2. Preschool anxiety disorders predict different patterns of amygdala-prefrontal connectivity at school-age.

    Directory of Open Access Journals (Sweden)

    Kimberly L H Carpenter

    Full Text Available In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation.Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces.A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces.Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.

  3. Subthalamic Nucleus Deep Brain Stimulation Alters Prefrontal Correlates of Emotion Induction.

    Science.gov (United States)

    Bick, Sarah K B; Folley, Bradley S; Mayer, Jutta S; Park, Sohee; Charles, P David; Camalier, Corrie R; Pallavaram, Srivatsan; Konrad, Peter E; Neimat, Joseph S

    2017-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms in advanced Parkinson's disease. STN DBS may also affect emotion, possibly by impacting a parallel limbic cortico-striatal circuit. The objective of this study was to investigate changes in prefrontal cortical activity related to DBS during an emotion induction task. We used near infrared spectroscopy to monitor prefrontal cortex hemodynamic changes during an emotion induction task. Seven DBS patients were tested sequentially in the stimulation-on and stimulation-off states while on dopaminergic medication. Patients watched a series of positive, negative, and neutral videos. The general linear model was used to compare prefrontal oxygenated hemoglobin concentration between DBS states. Deep brain stimulation was correlated with prefrontal oxygenated hemoglobin changes relative to the stimulation off state in response to both positive and negative videos. These changes were specific to emotional stimuli and were not seen during neutral stimuli. These results suggest that STN stimulation influences the prefrontal cortical representation of positive and negative emotion induction. © 2016 International Neuromodulation Society.

  4. Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression

    Directory of Open Access Journals (Sweden)

    Saha Subhash

    2003-10-01

    Full Text Available Abstract Background Experiencing emotions engages high-order orbitofrontal and medial prefrontal areas, and expressing emotions involves low-level autonomic structures and peripheral organs. How is information from the cortex transmitted to the periphery? We used two parallel approaches to map simultaneously multiple pathways to determine if hypothalamic autonomic centres are a key link for orbitofrontal areas and medial prefrontal areas, which have been associated with emotional processes, as well as low-level spinal and brainstem autonomic structures. The latter innervate peripheral autonomic organs, whose activity is markedly increased during emotional arousal. Results We first determined if pathways linking the orbitofrontal cortex with the hypothalamus overlapped with projection neurons directed to the intermediolateral column of the spinal cord, with the aid of neural tracers injected in these disparate structures. We found that axons from orbitofrontal and medial prefrontal cortices converged in the hypothalamus with neurons projecting to brainstem and spinal autonomic centers, linking the highest with the lowest levels of the neuraxis. Using a parallel approach, we injected bidirectional tracers in the lateral hypothalamic area, an autonomic center, to label simultaneously cortical pathways leading to the hypothalamus, as well as hypothalamic axons projecting to low-level brainstem and spinal autonomic centers. We found densely distributed projection neurons in medial prefrontal and orbitofrontal cortices leading to the hypothalamus, as well as hypothalamic axonal terminations in several brainstem structures and the intermediolateral column of the spinal cord, which innervate peripheral autonomic organs. We then provided direct evidence that axons from medial prefrontal cortex synapse with hypothalamic neurons, terminating as large boutons, comparable in size to the highly efficient thalamocortical system. The interlinked orbitofrontal

  5. Schizophrenia: a tale of two critical periods for prefrontal cortical development

    Science.gov (United States)

    Selemon, L D; Zecevic, N

    2015-01-01

    Schizophrenia is a disease of abnormal brain development. Considerable evidence now indicates that environmental factors have a causative role in schizophrenia. Elevated incidence of the disease has been linked to a wide range of disturbances in the prenatal environment and to social factors and drug intake during adolescence. Here we examine neurodevelopment of the prefrontal cortex in the first trimester of gestation and during adolescence to gain further insight into the neurodevelopmental processes that may be vulnerable in schizophrenia. Early embryonic development of the prefrontal cortex is characterized by cell proliferation, including renewal of progenitor cells, generation of early transient cell populations and neurogenesis of subcortical populations. Animal models show that curtailing early gestational cell proliferation produces schizophrenia-like pathology in the prefrontal cortex and mimics key behavioral and cognitive symptoms of the disease. At the other end of the spectrum, elimination of excitatory synapses is the fundamental process occurring during adolescent maturation in the prefrontal cortex. Adverse social situations that elevate stress increase dopamine stimulation of the mesocortical pathway and may lead to exaggerated synaptic pruning during adolescence. In a non-human primate model, dopamine hyperstimulation has been shown to decrease prefrontal pyramidal cell spine density and to be associated with profound cognitive dysfunction. Development of the prefrontal cortex in its earliest stage in gestation and in its final stage in adolescence represents two critical periods of vulnerability for schizophrenia in which cell proliferation and synaptic elimination, respectively, may be influenced by environmental factors. PMID:26285133

  6. Scaling Up Cortical Control Inhibits Pain

    Directory of Open Access Journals (Sweden)

    Jahrane Dale

    2018-05-01

    Full Text Available Summary: Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain. : Dale et al. find that acute pain increases activity levels in the prefrontal cortex. Chronic pain reduces both basal spontaneous and pain-evoked activity in this region, whereas neurostimulation to restore basal activities can in turn enhance nociception-evoked prefrontal activities to inhibit pain. Keywords: chronic pain, neuromodulation, prefrontal cortex, PFC, cortical gain control

  7. Plasticity in the Prefrontal Cortex of Adult Rats

    Directory of Open Access Journals (Sweden)

    Bryan eKolb

    2015-02-01

    Full Text Available We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions.

  8. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Casula, Elias Paolo; Pellicciari, Maria Concetta; Picazio, Silvia; Caltagirone, Carlo; Koch, Giacomo

    2016-12-01

    Changes in the synaptic strength of neural connections are induced by repeated coupling of activity of interconnected neurons with precise timing, a phenomenon known as spike-timing-dependent plasticity (STDP). It is debated if this mechanism exists in large-scale cortical networks in humans. We combined transcranial magnetic stimulation (TMS) with concurrent electroencephalography (EEG) to directly investigate the effects of two paired associative stimulation (PAS) protocols (fronto-parietal and parieto-frontal) of pre and post-synaptic inputs within the human fronto-parietal network. We found evidence that the dorsolateral prefrontal cortex (DLPFC) has the potential to form robust STDP. Long-term potentiation/depression of TMS-evoked cortical activity is prompted after that DLPFC stimulation is followed/preceded by posterior parietal stimulation. Such bidirectional changes are paralleled by sustained increase/decrease of high-frequency oscillatory activity, likely reflecting STDP responsivity. The current findings could be important to drive plasticity of damaged cortical circuits in patients with cognitive or psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices.

    Science.gov (United States)

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2013-11-06

    Previous experience affects our behavior in terms of adjustments. It has been suggested that the conflict monitor-controller system implemented in the prefrontal cortex plays a critical role in such adjustments. Previous studies suggested that there exists multiple conflict monitor-controller systems associated with the level of information (i.e., stimulus and response levels). In this study, we sought to test whether different types of conflicts occur at the same information processing level (i.e., response level) are independently processed. For this purpose, we designed a task paradigm to measure two different types of response conflicts using color-based and location-based conflict stimuli and measured the conflict adaptation effects associated with the two types of conflicts either independently (i.e., single conflict conditions) or simultaneously (i.e., a double-conflict condition). The behavioral results demonstrated that performance on current incongruent trials was faster only when the preceding trial was the same type of response conflict regardless of whether they included a single- or double-conflict. Imaging data also showed that anterior cingulate and dorsolateral prefrontal cortices operate in a task-specific manner. These findings suggest that there may be multiple monitor-controller loops for color-based and location-based conflicts even at the same response level. Importantly, our results suggest that double-conflict processing is qualitatively different from single-conflict processing although double-conflict shares the same sources of conflict with two single-conflict conditions. © 2013 Published by Elsevier B.V.

  10. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  11. Central as well as peripheral attentional bottlenecks in dual-task performance activate lateral prefrontal cortices

    Directory of Open Access Journals (Sweden)

    Andre J Szameitat

    2016-03-01

    Full Text Available Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage as well as peripheral limitations (i.e., bottleneck at response initiation both demand executive functions located in the lateral prefrontal cortex. For this, we re-analysed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP during fMRI. In one study (N=17, the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group. In the other study (N=16, the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group. Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect. Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices. Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns suggest that the executive functions resolving

  12. Decrease in the cortical intensity on T2-weighted magnetic resonance imaging with aging in normal subjects

    International Nuclear Information System (INIS)

    Imon, Yukari; Murata, Yoshio; Kajima, Toshio; Nakamura, Shigenobu; Yamaguchi, Shinya

    1997-01-01

    We reported previously that Low T 2 intensity areas (LIAs) are more common in patients with central nervous system (CNS) diseases than in those with no such diseases, and that the occurrence of LIAs increases with aging. To determine a relationship between the intensity changes and aging, we investigated the intensity of the cerebral cortex in 26 normal Japanese individuals. Measurements of brain MRIs were performed with a Signa Advantage apparatus at 1.5 tesla. T 2 -weighted images were obtained using the spin-echo pulse sequences. On our laboratory console, we measured signal intensities in the regions of interest in the prefrontal, motor, sensory, parietal, temporal, or occipital cortex, and in the frontal white matter. To remove the effect of the system gain settings on signal intensity, that of cerebrospinal fluid was used as reference according to the method of Pujol et al. The average intensity in the temporal and prefrontal cortices was the highest, followed in order by the parietal, sensory, motor, and occipital cortices. The intensity in the temporal and parietal cortices decreased significantly with aging, and that in the motor and sensory cortices had a tendency to decrease with aging. The intensity in the motor and sensory cortices of the elderly subjects and that in the occipital cortex throughout all ages were lower than that in the prefrontal white matter, which would result in the appearance of LIAs. The average intensity of each cerebral cortex was inversely related to the non-heme iron content previously reported. It is likely that the difference in intensity among the cortices reflects variations of the non-heme iron content, and that the change in intensity with aging could be due to the increase in such cortical senile changes as that of microglia, astroglia, and senile plaques, which contain iron or iron-related proteins. The temporal cortex is most susceptible to senile changes. (K.H.)

  13. Deficit in rewarding mechanisms and prefrontal left/right cortical effect in vulnerability for internet addiction.

    Science.gov (United States)

    Balconi, Michela; Finocchiaro, Roberta

    2016-10-01

    The present research explored the cortical correlates of rewarding mechanisms and cortical 'unbalance' effect in internet addiction (IA) vulnerability. Internet Addiction Inventory (IAT) and personality trait (Behavioural Inhibition System, BIS; Behavioural Activation System, BAS) were applied to 28 subjects. Electroencephalographic (EEG, alpha frequency band) and response times (RTs) were registered during a Go-NoGo task execution in response to different online stimuli: gambling videos, videogames or neutral stimuli. Higher-IAT (more than 50 score, with moderate or severe internet addiction) and lower-IAT (internet addiction). Alpha band and RTs were affected by IAT, with significant bias (reduced RTs) for high-IAT in response to gambling videos and videogames; and by BAS, BAS-Reward subscale (BAS-R), since not only higher-IAT, but also BAS and BAS-R values determined an increasing of left prefrontal cortex (PFC) activity (alpha reduction) in response to videogames and gambling stimuli for both Go and NoGo conditions, in addition to decreased RTs for these stimuli categories. The increased PFC responsiveness and the lateralisation (left PFC hemisphere) effect in NoGo condition was explained on the basis of a 'rewarding bias' towards more rewarding cues and a deficit in inhibitory control in higher-IAT and higher-BAS subjects. In contrast lower-IAT and lower-BAS predicted a decreased PFC response and increased RTs for NoGo (inhibitory mechanism). These results may support the significance of personality (BAS) and IAT measures for explaining future internet addiction behaviour based on this observed 'vulnerability'.

  14. Anterior Cortical Development During Adolescence in Bipolar Disorder.

    Science.gov (United States)

    Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A Y; Cox Lippard, Elizabeth T; Pittman, Brian P; Lacadie, Cheryl; Staib, Lawrence H; Papademetris, Xenophon; Blumberg, Hilary P

    2016-02-15

    Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Two high-resolution magnetic resonance imaging scans were obtained approximately 2 years apart for 35 adolescents with bipolar I disorder (BDI) and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula and orbitofrontal, rostral, and dorsolateral prefrontal cortices (p adolescence in BDI in anterior cortices, including altered developmental trajectories of anterior gray and white matter. Published by Elsevier Inc.

  15. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    Science.gov (United States)

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    Directory of Open Access Journals (Sweden)

    Hirosawa R

    2013-07-01

    left and right dorsolateral prefrontal cortex and frontopolar areas. Results: During the verbal fluency task, significant task-related activation was detected in both the OCD group and the controls. Changes in oxygenated hemoglobin concentration in the right dorsolateral prefrontal cortex were significantly smaller in the OCD group than in the controls, but were not statistically significant after correction for multiple comparisons. Conclusion: Patients with OCD have reduced prefrontal, especially right dorsolateral prefrontal, cortical hemodynamic responses as measured by near-infrared spectroscopy during the verbal fluency task. These results support the hypothesis that the dorsolateral prefrontal cortex plays a role in the pathophysiology of OCD. Keywords: functional neuroimaging, near-infrared spectroscopy, obsessive-compulsive disorder, prefrontal hemodynamic response, verbal fluency task, dorsolateral prefrontal cortex

  17. Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent

    OpenAIRE

    Kesteren, M.T.R. van; Beul, S.F.; Takashima, A.; Henson, R.N.; Ruiter, D.J.

    2013-01-01

    Information that is congruent with prior knowledge is generally remembered better than incongruent information. This effect of congruency on memory has been attributed to a facilitatory influence of activated schemas on memory encoding and consolidation processes, and hypothesised to reflect a shift between processing in medial temporal lobes (MTL) towards processing in medial prefrontal cortex (mPFC). To investigate this shift, we used functional magnetic resonance imaging (fMRI) to compare ...

  18. Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: from congruent to incongruent.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Beul, Sarah F; Takashima, Atsuko; Henson, Richard N; Ruiter, Dirk J; Fernández, Guillén

    2013-10-01

    Information that is congruent with prior knowledge is generally remembered better than incongruent information. This effect of congruency on memory has been attributed to a facilitatory influence of activated schemas on memory encoding and consolidation processes, and hypothesised to reflect a shift between processing in medial temporal lobes (MTL) towards processing in medial prefrontal cortex (mPFC). To investigate this shift, we used functional magnetic resonance imaging (fMRI) to compare brain activity during paired-associate encoding across three levels of subjective congruency of the association with prior knowledge. Participants indicated how congruent they found an object-scene pair during scanning, and were tested on item and associative recognition memory for these associations one day later. Behaviourally, we found a monotonic increase in memory performance with increasing congruency for both item and associative memory. Moreover, as hypothesised, encoding-related activity in mPFC increased linearly with increasing congruency, whereas MTL showed the opposite pattern of increasing encoding-related activity with decreasing congruency. Additionally, mPFC showed increased functional connectivity with a region in the ventral visual stream, presumably related to the binding of visual representations. These results support predictions made by a recent neuroscientific framework concerning the effects of schema on memory. Specifically, our findings show that enhanced memory for more congruent information is mediated by the mPFC, which is hypothesised to guide integration of new information into a pre-existing schema represented in cortical areas, while memory for more incongruent information relies instead on automatic encoding of arbitrary associations by the MTL. © 2013 Elsevier Ltd. All rights reserved.

  19. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices.

    Science.gov (United States)

    Rebai, Redouane; Jasmin, Luc; Boudah, Abdennacer

    2017-09-01

    In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats. Rats rendered diabetic after a treatment with streptozotocin (STZ) (60mg/kg) were treated with fluoxetine (15mg/kg), melatonin (10mg/kg), or vehicle for 4 weeks. All animals were tested for signs of depression and anxiety using the elevated plus maze (EPM), open field test (OFT) and the forced swim test (FST). Four groups were compared: (1) normoglycemic, (2) hyperglycemic vehicle treated, and hyperglycemic (3) fluoxetine or (4) melatonin treated rats. On the last day of the study, blood samples were obtained to determine the levels of hemoglobin A1c (HbA1c). Also, brain samples were collected to measure the oxidative stress in the hippocampal and prefrontal cortices using the thiobarbituric acid reactive substances (TBARS) assay. The activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were also measured on the brain samples. The results show that both fluoxetine and melatonin decrease the signs of depression and anxiety in all tests. Concomitantly, the levels of HbA1c were reduced in drug treated rats, and to a greater degree in the fluoxetine group. In the cerebral cortex of diabetic rats, TBARS was increased, while the activity of CAT, GPx and GST were decreased. Fluoxetine and melatonin treatments decreased TBARS in both cortices. In the prefrontal cortex, fluoxetine and melatonin restored the activity of CAT, while only melatonin improved the activity of GPx and GST. In the hippocampus, the activity of GPx alone was restored by melatonin, while fluoxetine had no

  20. Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats.

    Science.gov (United States)

    Dela Peña, Ike; Dela Peña, Irene Joy; de la Peña, June Bryan; Kim, Hee Jin; Shin, Chan Young; Han, Doug Hyun; Kim, Bung-Nyun; Ryu, Jong Hoon; Cheong, Jae Hoon

    2017-09-01

    Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.

  1. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  2. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  3. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms.

    Science.gov (United States)

    Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas

    2014-01-07

    Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.

  4. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  5. [Cortical functional connectivity during retention of affective pictures in working memory: EEG-source theta coherence analysis].

    Science.gov (United States)

    Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V

    2016-01-01

    A pattern of cortical functional connectivity in the source space was studied in a group of right-handed adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years) who retained in their working memory (WM) traces of realistic pictures of positive, neutral, and negative emotional valence while in their working memory (WM) while performing same different task in which participants had to compare an etalon picture against a target picture that followed after a specified delay. A coherence (COH) between pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period of time preceding the etalon stimulus, distinct sets of functional links are found. The links of the first type that presumably reflect the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, links of this type showed strengthening not only during the retention period but also during the period preceding the etalon picture. The links of the second type presumably reflecting a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during retention period. Those links were between parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. An impact of emotional valence onto the strength and topography of the functional links of the second type was found. In the left hemisphere, an increase in the strength of cortical interaction was more pronounced for pictures of positive valence than for pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration

  6. Overweight is not associated with cortical thickness alterations in children

    Directory of Open Access Journals (Sweden)

    Rachel Jane Sharkey

    2015-02-01

    Full Text Available IntroductionSeveral studies report an association between body mass index (BMI and cortical thickness in adults. Some studies demonstrate diffuse cortical thinning in obesity, while others report effects in areas that are associated with self-regulation, such as lateral prefrontal cortex. MethodsThis study used multilevel modelling of data from the NIH Pediatric MRI Data Repository, a mixed longitudinal and cross-sectional database, to examine the relationship between cortical thickness and body weight in children. Cortical thickness was computed at 81,942 vertices of 716 MRI scans from 378 children aged between 4 and 18 years. Body mass index Z score for age was computed for each participant. We preformed vertex-wise statistical analysis of the relationship between cortical thickness and BMI, accounting for age and gender. In addition, cortical thickness was extracted from regions of interest in prefrontal cortex and insula.ResultsNo significant association between cortical thickness and BMI was found, either by statistical parametric mapping or by region of interest analysis. Results remained negative when the analysis was restricted to children aged 12-18.ConclusionsThe correlation between BMI and cortical thickness was not found in this large pediatric sample. The association between BMI and cortical thinning develops after adolescence. This has implications for the nature of the relationship between brain anatomy and weight gain.

  7. Patterns of Neuropsychological Profile and Cortical Thinning in Parkinson's Disease with Punding.

    Directory of Open Access Journals (Sweden)

    Han Soo Yoo

    Full Text Available Punding, one of dopamine replacement treatment related complications, refers to aimless and stereotyped behaviors. To identify possible neural correlates of punding behavior in patients with Parkinson's disease (PD, we investigated the patterns of cognitive profiles and cortical thinning.Of the 186 subjects with PD screened during the study period, we prospectively enrolled 10 PD patients with punding and 43 without punding on the basis of a structured interview. We performed comprehensive neuropsychological tests and voxel-based and regions-of-interest (ROIs-based cortical thickness analysis between PD patients with and without punding.The prevalence of punding in patients with PD was 5.4%. Punding behaviors were closely related to previous occupations or hobbies and showed a temporal relationship to changes of levodopa-equivalent dose (LED. Significant predisposing factors were a long duration of PD and intake of medications of PD, high total daily LED, dyskinesia, and impulse control disorder. Punding severity was correlated with LED (p = 0.029. The neurocognitive assessment revealed that PD patients with punding showed more severe cognitive deficits in the color Stroop task than did those without punding (p = 0.022. Voxel-based analysis showed that PD-punders had significant cortical thinning in the dorsolateral prefrontal area relative to controls. Additionally, ROI-based analysis revealed that cortical thinning in PD-punders relative to PD-nonpunders was localized in the prefrontal cortices, extending into orbitofrontal area.We demonstrated that PD patients with punding performed poorly on cognitive tasks in frontal executive functions and showed severe cortical thinning in the dorsolateral prefrontal and orbitofrontal areas. These findings suggest that prefrontal modulation may be an essential component in the development of punding behavior in patients with PD.

  8. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    Science.gov (United States)

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2017-05-13

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Stimulation in the dorsolateral prefrontal cortex changes subjective evaluation of percepts.

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Chiang

    Full Text Available Nelson and Narens have proposed a metacognition model that dissociates the objective processing of information (object-level and the subjective evaluation of the performance (i.e., the metalevel. Neurophysiological evidence also indicates that the prefrontal cortices (PFC are the brain areas which perform the metalevel function [1]-[3]. A corresponding neural mechanism of Nelson and Narens's model, called dynamic filtering theory [4], [5], indicates that object-level processing is distributed in the posterior cortices and regulated by the prefrontal cortices with a filtering or gating mechanism to select appropriate signals and suppress inappropriate signals and noise. Based on this model, a hypothesis can be developed that, in the case of uncertainty or overloading of object-level processing, the prefrontal cortices will become more active in order to modulate signals and noise. This hypothesis is supported by a recent fMRI study [6] showing that the PFC (Brodmann area 9, BA9 was activated when subjects were overloaded in a bimodal attentional task, compared to a unimodal task. Here, we report a study showing that applying repetitive transmagnetic stimulation (rTMS over the BA9 in order to interfere with its functional activity resulted in significant increas in guessed responses, compared to three other control conditions (i.e., no-TMS, sham TMS on BA9, and rTMS on Cz. The results are compatible with the dynamic filtering theory and suggest that a malfunction of the PFC would weaken the quality of meta-cognitive percepts and increase the number of guessed responses.

  10. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  11. Prefrontal contributions to visual selective attention.

    Science.gov (United States)

    Squire, Ryan F; Noudoost, Behrad; Schafer, Robert J; Moore, Tirin

    2013-07-08

    The faculty of attention endows us with the capacity to process important sensory information selectively while disregarding information that is potentially distracting. Much of our understanding of the neural circuitry underlying this fundamental cognitive function comes from neurophysiological studies within the visual modality. Past evidence suggests that a principal function of the prefrontal cortex (PFC) is selective attention and that this function involves the modulation of sensory signals within posterior cortices. In this review, we discuss recent progress in identifying the specific prefrontal circuits controlling visual attention and its neural correlates within the primate visual system. In addition, we examine the persisting challenge of precisely defining how behavior should be affected when attentional function is lost.

  12. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  13. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms

    Science.gov (United States)

    2014-01-01

    Background Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Results Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Conclusions Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded. PMID:24397347

  14. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar type I disorder using cortical pattern matching

    Science.gov (United States)

    Foland-Ross, Lara C.; Thompson, Paul M.; Sugar, Catherine A.; Madsen, Sarah K.; Shen, Jim K.; Penfold, Conor; Ahlf, Kyle; Rasser, Paul E.; Fischer, Jeffrey; Yang, Yilan; Townsend, Jennifer; Bookheimer, Susan Y.; Altshuler, Lori L.

    2013-01-01

    Objective Several lines of evidence implicate gray matter abnormalities in the prefrontal cortex and anterior cingulate cortex in patients with bipolar disorder. Findings however, have been largely inconsistent across studies. Differences in patients’ medication status or mood state, or the application of traditional volumetric methods that are insensitive to subtle neuroanatomic differences may have contributed to these inconsistent findings. Given this, we used magnetic resonance imaging (MRI) in conjunction with cortical pattern matching methods to assess cortical thickness abnormalities in euthymic bipolar subjects who were not treated with lithium. Method Sixty-five subjects, including 34 lithium-free euthymic subjects with bipolar (type I) disorder and 31 healthy subjects were scanned using magnetic resonance imaging (MRI). Data were processed to measure cortical gray matter thickness. Cortical pattern matching methods associated homologous brain regions across subjects. Spatially normalized thickness maps were analyzed to assess illness effects and associations with clinical variables. Results Relative to healthy subjects, euthymic bipolar I subjects had significantly thinner gray matter in bilateral prefrontal cortex (Brodmann Areas 11, 10, 8 and 44) and left anterior cingulate cortex (Brodmann Areas 24/32). Additionally, thinning in these regions was more pronounced in patients with a history of psychosis. No areas of thicker cortex were detected in bipolar subjects versus healthy subjects. Conclusions Using a technique that is highly sensitive to subtle neuroanatomic differences, significant regional cortical thinning was found in euthymic subjects with bipolar disorder. Clinical implications are discussed. PMID:21285139

  15. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim

    2006-01-01

    In an attempt to delineate the prefrontal cortex (PFC) in the Gottingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers...... the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  16. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  17. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder.

    Science.gov (United States)

    Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung

    2017-01-01

    The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by

  18. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  19. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    Science.gov (United States)

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  1. Self-reflection and positive schizotypy in the adolescent brain.

    Science.gov (United States)

    Debbané, Martin; Vrtička, Pascal; Lazouret, Marine; Badoud, Deborah; Sander, David; Eliez, Stephan

    2014-01-01

    Clinical and phenomenological accounts of schizophrenia suggest that impairments in self-reflective processes significantly contribute to psychopathological expression. Recent imaging studies observe atypical cerebral activation patterns during self-reflection, especially around the cortical midline structures, both in psychosis-prone adults and individuals with schizophrenia. Given that self-reflection processes consolidate during adolescence, and that early transient expression of psychosis (positive schizotypy) also arises during this period, the present study sought to examine whether atypical cerebral activation during self-reflection task could be associated with early schizotypic expression during adolescence. Forty-two neurotypical adolescent participants (19 females) aged from 12 to 19 (15.92±1.9) underwent a self-reflection task using functional neuroimaging (fMRI), where they had to evaluate trait adjectives (1 to 4 ratings) about themselves or their same sex best friend. The Schizotypal Personality Questionnaire (SPQ) was employed to assess positive schizotypic expression. Results showed that positive schizotypy in adolescents significantly correlated with cortical midline activation patterns in the dorsomedial prefrontal cortex (dmPFC) and the posterior cingulate cortex (PCC), as well as the dorsolateral PFC and the lingual gyrus. The results are consistent with previous imaging literature on self-reflection and schizophrenia. They further highlight that the relationship between self-reflection processes and positive schizotypy operates at the trait level of expression and can be observed as early as adolescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  3. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    Science.gov (United States)

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico-cortical

  4. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    Science.gov (United States)

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  5. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition

    Directory of Open Access Journals (Sweden)

    Yuri B Saalmann

    2014-05-01

    Full Text Available The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing.

  6. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    Science.gov (United States)

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  7. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  9. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex.

    Science.gov (United States)

    Neves, Ricardo M; van Keulen, Silvia; Yang, Mingyu; Logothetis, Nikos K; Eschenko, Oxana

    2018-03-01

    The locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored. We previously reported that LC microstimulation caused a transient desynchronization of population activity in the medial prefrontal cortex (mPFC), similar to noxious somatosensory stimuli. The LC receives nociceptive information from the medulla and therefore may mediate sensory signaling to its forebrain targets. Here we performed extracellular recordings in LC and mPFC while presenting noxious stimuli in urethane-anesthetized rats. A brief train of foot shocks produced a robust phasic response in the LC and a transient change in the mPFC power spectrum, with the strongest modulation in the gamma (30-90 Hz) range. The LC phasic response preceded prefrontal gamma power increase, and cortical modulation was proportional to the LC excitation. We also quantitatively characterized distinct cortical states and showed that sensory responses in both LC and mPFC depend on the ongoing cortical state. Finally, cessation of the LC firing by bilateral local iontophoretic injection of clonidine, an α 2 -adrenoreceptor agonist, completely eliminated sensory responses in the mPFC without shifting cortex to a less excitable state. Together, our results suggest that the LC phasic response induces gamma power increase in the PFC and is essential for mediating sensory information along an ascending noxious pathway. NEW & NOTEWORTHY Our study shows linear relationships between locus coeruleus phasic excitation and the amplitude of gamma oscillations in the prefrontal cortex. Results suggest that the locus coeruleus phasic response is essential for mediating sensory information

  10. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  11. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  12. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  13. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  14. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    Science.gov (United States)

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-05-03

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.

    Science.gov (United States)

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.

  16. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    OpenAIRE

    Auger, Meagan L.; Floresco, Stan B.

    2014-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates ...

  17. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    Science.gov (United States)

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of neurodevelopmental disorders.

  19. Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study

    Science.gov (United States)

    Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer

    2014-01-01

    Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (pdysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948

  20. Extensive video-game experience alters cortical networks for complex visuomotor transformations.

    Science.gov (United States)

    Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E

    2010-10-01

    Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.

  1. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  2. Cadherin-8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits.

    Science.gov (United States)

    Friedman, Lauren G; Riemslagh, Fréderike W; Sullivan, Josefa M; Mesias, Roxana; Williams, Frances M; Huntley, George W; Benson, Deanna L

    2015-01-01

    Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex-striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin-8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real-time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High-resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self-avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses. © 2014 Wiley Periodicals, Inc.

  3. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  4. In favor of general probability distributions: lateral prefrontal and insular cortices respond to stimulus inherent, but irrelevant differences.

    Science.gov (United States)

    Mestres-Missé, Anna; Trampel, Robert; Turner, Robert; Kotz, Sonja A

    2016-04-01

    A key aspect of optimal behavior is the ability to predict what will come next. To achieve this, we must have a fairly good idea of the probability of occurrence of possible outcomes. This is based both on prior knowledge about a particular or similar situation and on immediately relevant new information. One question that arises is: when considering converging prior probability and external evidence, is the most probable outcome selected or does the brain represent degrees of uncertainty, even highly improbable ones? Using functional magnetic resonance imaging, the current study explored these possibilities by contrasting words that differ in their probability of occurrence, namely, unbalanced ambiguous words and unambiguous words. Unbalanced ambiguous words have a strong frequency-based bias towards one meaning, while unambiguous words have only one meaning. The current results reveal larger activation in lateral prefrontal and insular cortices in response to dominant ambiguous compared to unambiguous words even when prior and contextual information biases one interpretation only. These results suggest a probability distribution, whereby all outcomes and their associated probabilities of occurrence--even if very low--are represented and maintained.

  5. Neuropsychology of selective attention and magnetic cortical stimulation.

    Science.gov (United States)

    Sabatino, M; Di Nuovo, S; Sardo, P; Abbate, C S; La Grutta, V

    1996-01-01

    Informed volunteers were asked to perform different neuropsychological tests involving selective attention under control conditions and during transcranial magnetic cortical stimulation. The tests chosen involved the recognition of a specific letter among different letters (verbal test) and the search for three different spatial orientations of an appendage to a square (visuo-spatial test). For each test the total time taken and the error rate were calculated. Results showed that cortical stimulation did not cause a worsening in performance. Moreover, magnetic stimulation of the temporal lobe neither modified completion time in both verbal and visuo-spatial tests nor changed error rate. In contrast, magnetic stimulation of the pre-frontal area induced a significant reduction in the performance time of both the verbal and visuo-spatial tests always without an increase in the number of errors. The experimental findings underline the importance of the pre-frontal area in performing tasks requiring a high level of controlled attention and suggest the need to adopt an interdisciplinary approach towards the study of neurone/mind interface mechanisms.

  6. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  7. Prefrontal cortical parvalbumin and somatostatin expression and cell density increase during adolescence and are modified by BDNF and sex.

    Science.gov (United States)

    Du, X; Serena, K; Hwang, W; Grech, A M; Wu, Y W C; Schroeder, A; Hill, R A

    2018-04-01

    Brain-derived neurotrophic factor (BDNF) is known to play a critical role early in the development of cortical GABAergic interneurons. Recently our laboratory and others have shown protracted development of specific subpopulations of GABAergic interneurons extending into adolescence. BDNF expression also changes significantly across adolescent development. However the role of BDNF in regulating GABAergic changes across adolescence remains unclear. Here, we performed a week-by-week analysis of the protein expression and cell density of three major GABAergic interneurons, parvalbumin (PV), somatostatin (SST) and calretinin (Cal) in the medial prefrontal cortex from prepubescence (week 3) to adulthood (week 12). In order to assess how BDNF and sex might influence the adolescent trajectory of GABAergic interneurons we compared WT as well as BDNF heterozygous (+/-) male and female mice. In both males and females PV expression increases during adolescent development in the mPFC. Compared to wild-types, PV expression was reduced in male but not female BDNF+/- mice throughout adolescent development. This reduction in protein expression corresponded with reduced cell density, specifically within the infralimbic prefrontal cortex. SST expression increased in early adolescent WT females and this upregulation was delayed in BDNF+/-. SST cell density also increased in early adolescent mPFC of WT female mice, with BDNF+/- again showing a reduced pattern of expression. Cal protein expression was also sex-dependently altered across adolescence with WT males showing a steady decline but that of BDNF+/- remaining unaltered. Reduced cell density in on the other hand was observed particularly in male BDNF+/- mice. In females, Cal protein expression and cell density remained largely stable. Our results show that PV, SST and calretinin interneurons are indeed still developing into early adolescence in the mPFC and that BDNF plays a critical, sex-specific role in mediating expression and

  8. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making.

    Science.gov (United States)

    Deppe, Michael; Schwindt, Wolfram; Kugel, Harald; Plassmann, Hilke; Kenning, Peter

    2005-04-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate how individual economic decisions are influenced by implicit memory contributions. Twenty-two participants were asked to make binary decisions between different brands of sensorily nearly undistinguishable consumer goods. Changes of brain activity comparing decisions in the presence or absence of a specific target brand were detected by fMRI. Only when the tar get brand was the participant's favorite one did the authors find reduced activation in the dorsolateral prefrontal, posterior parietal, and occipital cortices and the left premotor area (Brodmann areas [BA] 9, 46, 7/19, and 6). Simultaneously, activity was increased in the inferior precuneus and posterior cingulate (BA 7), right superior frontal gyrus (BA 10), right supramarginal gyrus (BA 40), and, most pronounced, in the ventromedial prefrontal cortex (BA 10). For products mainly distinguishable by brand information, the authors revealed a nonlinear winner-take-all effect for a participant's favorite brand characterized, on one hand, by reduced activation in brain areas associated with working memory and reasoning and, on the other hand, increased activation in areas involved in processing of emotions and self-reflections during decision making.

  9. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive.

    Science.gov (United States)

    Goldman-Rakic, P S

    1996-10-29

    The functional architecture of prefrontal cortex is central to our understanding of human mentation and cognitive prowess. This region of the brain is often treated as an undifferentiated structure, on the one hand, or as a mosaic of psychological faculties, on the other. This paper focuses on the working memory processor as a specialization of prefrontal cortex and argues that the different areas within prefrontal cortex represent iterations of this function for different information domains, including spatial cognition, object cognition and additionally, in humans, semantic processing. According to this parallel processing architecture, the 'central executive' could be considered an emergent property of multiple domain-specific processors operating interactively. These processors are specializations of different prefrontal cortical areas, each interconnected both with the domain-relevant long-term storage sites in posterior regions of the cortex and with appropriate output pathways.

  10. Effects of neonatal inferior prefrontal and medial temporal lesions on learning the rule for delayed nonmatching-to-sample.

    Science.gov (United States)

    Málková, L; Bachevalier, J; Webster, M; Mishkin, M

    2000-01-01

    The ability of rhesus monkeys to master the rule for delayed nonmatching-to-sample (DNMS) has a protracted ontogenetic development, reaching adult levels of proficiency around 4 to 5 years of age (Bachevalier, 1990). To test the possibility that this slow development could be due, at least in part, to immaturity of the prefrontal component of a temporo-prefrontal circuit important for DNMS rule learning (Kowalska, Bachevalier, & Mishkin, 1991; Weinstein, Saunders, & Mishkin, 1988), monkeys with neonatal lesions of the inferior prefrontal convexity were compared on DNMS with both normal controls and animals given neonatal lesions of the medial temporal lobe. Consistent with our previous results (Bachevalier & Mishkin, 1994; Málková, Mishkin, & Bachevalier, 1995), the neonatal medial temporal lesions led to marked impairment in rule learning (as well as in recognition memory with long delays and list lengths) at both 3 months and 2 years of age. By contrast, the neonatal inferior convexity lesions yielded no impairment in rule-learning at 3 months and only a mild impairment at 2 years, a finding that also contrasts sharply with the marked effects of the same lesion made in adulthood. This pattern of sparing closely resembles the one found earlier after neonatal lesions to the cortical visual area TE (Bachevalier & Mishkin, 1994; Málková et al., 1995). The functional sparing at 3 months probably reflects the fact that the temporo-prefrontal circuit is nonfunctional at this early age, resulting in a total dependency on medial temporal contributions to rule learning. With further development, however, this circuit begins to provide a supplementary route for learning.

  11. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    Science.gov (United States)

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    Science.gov (United States)

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  13. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  14. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  15. Changes in ventromedial prefrontal and insular cortex support the development of metamemory from childhood into adolescence.

    Science.gov (United States)

    Fandakova, Yana; Selmeczy, Diana; Leckey, Sarah; Grimm, Kevin J; Wendelken, Carter; Bunge, Silvia A; Ghetti, Simona

    2017-07-18

    Metamemory monitoring, or the ability to introspect on the accuracy of one's memories, improves considerably during childhood, but the underlying neural changes and implications for intellectual development are largely unknown. The present study examined whether cortical changes in key brain areas hypothesized to support metacognition contribute to the development of metamemory monitoring from late childhood into early adolescence. Metamemory monitoring was assessed among 7- to 12-y-old children ( n = 145) and adults ( n = 31). Children returned for up to two additional assessments at 8 to 14 y of age ( n = 120) and at 9 to 15 y of age ( n = 107) ( n = 347 longitudinal scans). Results showed that metamemory monitoring continues to improve from childhood into adolescence. More pronounced cortical thinning in the anterior insula and a greater increase in the thickness of the ventromedial prefrontal cortex over the three assessment points predicted these improvements. Thus, performance benefits are linked to the unique patterns of regional cortical change during development. Metamemory monitoring at the first time point predicted intelligence at the third time point and vice versa, suggesting parallel development of these abilities and their reciprocal influence. Together, these results provide insights into the neuroanatomical correlates supporting the development of the capacity to self-reflect, and highlight the role of this capacity for general intellectual development.

  16. Chemokine receptors and cortical interneuron dysfunction in schizophrenia.

    Science.gov (United States)

    Volk, David W; Chitrapu, Anjani; Edelson, Jessica R; Lewis, David A

    2015-09-01

    Alterations in inhibitory (GABA) neurons, including deficiencies in the GABA synthesizing enzyme GAD67, in the prefrontal cortex in schizophrenia are pronounced in the subpopulations of neurons that contain the calcium-binding protein parvalbumin or the neuropeptide somatostatin. The presence of similar illness-related deficits in the transcription factor Lhx6, which regulates prenatal development of parvalbumin and somatostatin neurons, suggests that cortical GABA neuron dysfunction may be related to disturbances in utero. Since the chemokine receptors CXCR4 and CXCR7 guide the migration of cortical parvalbumin and somatostatin neurons from their birthplace in the medial ganglionic eminence to their final destination in the neocortex, we sought to determine whether altered CXCR4 and/or CXCR7 mRNA levels were associated with disturbances in GABA-related markers in schizophrenia. Quantitative PCR was used to quantify CXCR4 and CXCR7 mRNA levels in the prefrontal cortex of 62 schizophrenia and 62 healthy comparison subjects that were previously characterized for markers of parvalbumin and somatostatin neurons and in antipsychotic-exposed monkeys. We found elevated mRNA levels for CXCR7 (+29%; pschizophrenia subjects but not in antipsychotic-exposed monkeys. CXCR7 mRNA levels were inversely correlated with mRNA levels for GAD67, parvalbumin, somatostatin, and Lhx6 in schizophrenia but not in healthy subjects. These findings suggest that higher mRNA levels for CXCR7, and possibly CXCR4, may represent a compensatory mechanism to sustain the migration and correct positioning of cortical parvalbumin and somatostatin neurons in the face of other insults that disrupt the prenatal development of cortical GABA neurons in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci.

    Directory of Open Access Journals (Sweden)

    Hyuk Jin Yun

    Full Text Available Sulcal depth that is one of the quantitative measures of cerebral cortex has been widely used as an important marker for brain morphological studies. Several studies have employed Euclidean (EUD or geodesic (GED algorithms to measure sulcal depth, which have limitations that ignore sulcal geometry in highly convoluted regions and result in under or overestimated depth. In this study, we proposed an automated measurement for sulcal depth on cortical surface reflecting geometrical properties of sulci, which named the adaptive distance transform (ADT. We first defined the volume region of cerebrospinal fluid between the 3D convex hull and the cortical surface, and constructed local coordinates for that restricted region. Dijkstra's algorithm was then used to compute the shortest paths from the convex hull to the vertices of the cortical surface based on the local coordinates, which may be the most proper approach for defining sulcal depth. We applied our algorithm to both a clinical dataset including patients with mild Alzheimer's disease (AD and 25 normal controls and a simulated dataset whose shape was similar to a single sulcus. The mean sulcal depth in the mild AD group was significantly lower than controls (p = 0.007, normal [mean±SD]: 7.29±0.23 mm, AD: 7.11±0.29 and the area under the receiver operating characteristic curve was relatively high, showing the value of 0.818. Results from clinical dataset that were consistent with former studies using EUD or GED demonstrated that ADT was sensitive to cortical atrophy. The robustness against inter-individual variability of ADT was highlighted through simulation dataset. ADT showed a low and constant normalized difference between the depth of the simulated data and the calculated depth, whereas EUD and GED had high and variable differences. We suggest that ADT is more robust than EUD or GED and might be a useful alternative algorithm for measuring sulcal depth.

  18. Age Effects on Cortical Thickness in Cognitively Normal Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Sona Hurtz

    2014-07-01

    Full Text Available Background/Aims: Atrophy in both grey and white matter is found in normal aging. The prefrontal cortex and the frontal lobe white matter are thought to be the most affected regions. Our aim was to examine the effects of normal aging on cortical grey matter using a 3D quantitative cortical mapping method. Methods: We analyzed 1.5-tesla brain magnetic resonance imaging data from 44 cognitively normal elderly subjects using cortical pattern matching and cortical thickness analyses. Linear regression analysis was used to study the effect of age on cortical thickness. 3D map-wide correction for multiple comparisons was conducted with permutation analyses using a threshold of p Results: We found a significant negative association between age and cortical thickness in the right hemisphere (pcorrected = 0.009 and a trend level association in the left hemisphere (pcorrected = 0.081. Age-related changes were greatest in the sensorimotor, bilateral dorsal anterior cingulate and supplementary motor cortices, and the right posterior middle and inferior frontal gyri. Age effects greater in the medial than lateral visual association cortices were also seen bilaterally. Conclusion: Our novel method further validates that normal aging results in diffuse cortical thinning that is most pronounced in the frontal and visual association cortices.

  19. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  20. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specificity

    International Nuclear Information System (INIS)

    Berman, K.F.; Illowsky, B.P.; Weinberger, D.R.

    1988-01-01

    In previous studies we found that patients with chronic schizophrenia had lower regional cerebral blood flow (rCBF) in dorsolateral prefrontal cortex (DLPFC) than did normal subjects during performance of the Wisconsin Card Sort Test, an abstract reasoning task linked to DLPFC function. This was not the case during less complex tasks. To examine further whether this finding represented regionally circumscribed pathophysiology or a more general correlate of abstract cognition, 24 medication-free patients and 25 age- and sex-matched normal control subjects underwent rCBF measurements with the xenon 133 technique while they performed two tasks: Raven's Progressive Matrices (RPM) and an active baseline control task. While performing RPM, normal subjects activated posterior cortical areas over baseline, but did not activate DLPFC, as had been seen during the Wisconsin Card Sort Test. Like normal subjects, patients showed maximal rCBF elevations posteriorly and, moreover, they had no significant DLPFC or other cortical deficit while performing RPM. These results suggest that DLPFC dysfunction in schizophrenia is linked to pathophysiology of a regionally specific neural system rather than to global cortical dysfunction, and that this pathophysiology is most apparent under prefrontally specific cognitive demand

  1. Prefrontal cortical GABA modulation of spatial reference and working memory.

    Science.gov (United States)

    Auger, Meagan L; Floresco, Stan B

    2014-10-31

    Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. © The Author 2014. Published by Oxford University Press on behalf of CINP.

  2. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  3. Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F.

    2016-01-01

    The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032

  4. Right prefrontal rTMS treatment for refractory auditory command hallucinations - a neuroSPECT assisted case study.

    Science.gov (United States)

    Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon

    2002-11-30

    Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.

  5. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    Science.gov (United States)

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (psad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing.

    Science.gov (United States)

    Sankarasubramanian, Vishwanath; Cunningham, David A; Potter-Baker, Kelsey A; Beall, Erik B; Roelle, Sarah M; Varnerin, Nicole M; Machado, Andre G; Jones, Stephen E; Lowe, Mark J; Plow, Ela B

    2017-04-01

    The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks

  7. Working Memory in the Prefrontal Cortex

    Science.gov (United States)

    Funahashi, Shintaro

    2017-01-01

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453

  8. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    Science.gov (United States)

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  9. Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding.

    Science.gov (United States)

    Gourley, Shannon L; Swanson, Andrew M; Jacobs, Andrea M; Howell, Jessica L; Mo, Michelle; Dileone, Ralph J; Koleske, Anthony J; Taylor, Jane R

    2012-12-11

    Stressor exposure biases decision-making strategies from those based on the relationship between actions and their consequences to others restricted by stimulus-response associations. Chronic stressor exposure also desensitizes glucocorticoid receptors (GR) and diminishes motivation to acquire food reinforcement, although causal relationships are largely not established. We show that a history of chronic exposure to the GR ligand corticosterone or acute posttraining GR blockade with RU38486 makes rodents less able to perform actions based on their consequences. Thus, optimal GR binding is necessary for the consolidation of new response-outcome learning. In contrast, medial prefrontal (but not striatal) BDNF can account for stress-related amotivation, in that selective medial prefrontal cortical Bdnf knockdown decreases break-point ratios in a progressive-ratio task. Knockdown also increases vulnerability to RU38486. Despite the role of BDNF in dendritic spine reorganization, deep-layer spine remodeling does not obviously parallel progressive-ratio response patterns, but treatment with the Na(+)-channel inhibitor riluzole reverses corticosteroid-induced motivational deficits and restores prefrontal BDNF expression after corticosterone. We argue that when prefrontal neurotrophin systems are compromised, and GR-mediated hypothalamic-pituitary-adrenal axis feedback is desensitized (as in the case of chronic stress hormone exposure), amotivation and inflexible maladaptive response strategies that contribute to stress-related mood disorders result.

  10. Altered cortical processing of motor inhibition in schizophrenia.

    Science.gov (United States)

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding.

    Science.gov (United States)

    Tan, Huibing; Lauzon, Nicole M; Bishop, Stephanie F; Bechard, Melanie A; Laviolette, Steven R

    2010-06-01

    The cannabinoid CB1 receptor system is functionally involved in the processing and encoding of emotionally salient sensory information, learning and memory. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC). In addition, synaptic plasticity in the form of long-term potentiation (LTP) within the BLA > mPFC pathway is an established correlate of exposure to emotionally salient events. We performed a series of in vivo LTP studies by applying tetanic stimulation to the BLA combined with recordings of local field potentials within prelimbic cortical (PLC) region of the rat mPFC. Systemic pretreatment with AM-251 dose dependently blocked LTP along the BLA-PLC pathway and also the behavioral acquisition of conditioned fear memories. We next performed a series of microinfusion experiments wherein CB1 receptor transmission within the BLA > PLC circuit was pharmacologically blocked. Asymmetrical, interhemispheric blockade of CB1 receptor transmission along the BLA > PLC pathway prevented the acquisition of emotionally salient associative memory. Our results indicate that coordinated CB1 receptor transmission within the BLA > PLC pathway is critically involved in the encoding of emotional fear memories and modulates neural plasticity related to the encoding of emotionally salient associative learning.

  12. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults

    Directory of Open Access Journals (Sweden)

    Katherine E. Manning

    2018-01-01

    Full Text Available Prader-Willi syndrome (PWS is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19–27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of

  13. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults.

    Science.gov (United States)

    Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J

    2018-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using

  14. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Brielle R. Ferguson

    2018-05-01

    Full Text Available Elucidating the prefrontal cortical microcircuit has been challenging, given its role in multiple complex behaviors, including working memory, cognitive flexibility, attention, social interaction and emotional regulation. Additionally, previous methodological limitations made it difficult to parse out the contribution of certain neuronal subpopulations in refining cortical representations. However, growing evidence supports a fundamental role of fast-spiking parvalbumin (PV GABAergic interneurons in regulating pyramidal neuron activity to drive appropriate behavioral responses. Further, their function is heavily diminished in the prefrontal cortex (PFC in numerous psychiatric diseases, including schizophrenia and autism. Previous research has demonstrated the importance of the optimal balance of excitation and inhibition (E/I in cortical circuits in maintaining the efficiency of cortical information processing. Although we are still unraveling the mechanisms of information representation in the PFC, the E/I balance seems to be crucial, as pharmacological, chemogenetic and optogenetic approaches for disrupting E/I balance induce impairments in a range of PFC-dependent behaviors. In this review, we will explore two key hypotheses. First, PV interneurons are powerful regulators of E/I balance in the PFC, and help optimize the representation and processing of supramodal information in PFC. Second, diminishing the function of PV interneurons is sufficient to generate an elaborate symptom sequelae corresponding to those observed in a range of psychiatric diseases. Then, using this framework, we will speculate on whether this circuitry could represent a platform for the development of therapeutic interventions in disorders of PFC function.

  15. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    Science.gov (United States)

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Localization of cortical areas activated by thinking.

    Science.gov (United States)

    Roland, P E; Friberg, L

    1985-05-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and

  17. Area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fMRI BOLD time series analysis.

    Directory of Open Access Journals (Sweden)

    Charmaine Demanuele

    Full Text Available Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC, anterior cingulate (ACC and orbitofrontal (OFC cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a "Jumping to Conclusions" probabilistic reasoning task.We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information, while for prefrontal areas a wider multivariate pattern of activity was maximally informative.We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable

  18. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study.

    Science.gov (United States)

    Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young

    2017-08-01

    To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  19. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  20. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    Science.gov (United States)

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

  1. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    Science.gov (United States)

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  3. Infralimbic Prefrontal Cortex Interacts with Nucleus Accumbens Shell to Unmask Expression of Outcome-Selective Pavlovianto- Instrumental Transfer

    Science.gov (United States)

    Keistler, Colby; Barker, Jacqueline M.; Taylor, Jane R.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context…

  4. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    Directory of Open Access Journals (Sweden)

    Nancy Raitano Lee

    2014-07-01

    Full Text Available While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT, relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females, ages 9-14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form. TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing and the difference in time between Trails B and A (number sequencing only. Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  5. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    Science.gov (United States)

    Lee, Nancy Raitano; Wallace, Gregory L.; Raznahan, Armin; Clasen, Liv S.; Giedd, Jay N.

    2014-01-01

    While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT), relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females), ages 9–14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form). TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing) and the difference in time between Trails B and A (number sequencing only). Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT) across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal, and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  6. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    Science.gov (United States)

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  7. Gustatory imagery reveals functional connectivity from the prefrontal to insular cortices traced with magnetoencephalography.

    Directory of Open Access Journals (Sweden)

    Masayuki Kobayashi

    Full Text Available Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the "top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI and demonstrated that gustatory imagery is mediated by the prefrontal (PFC and insular cortices (IC. However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG. Gustatory imagery tasks were presented by words (Letter G-V or pictures (Picture G-V of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8% participants showed activation in the IC with a latency of 401.7±34.7 ms (n = 7 from the onset of word exhibition. In 5/7 (71.4% participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2±56.5 ms (n = 5, which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7% participants, and only 1/9 (11.1% participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC.

  8. Gustatory imagery reveals functional connectivity from the prefrontal to insular cortices traced with magnetoencephalography.

    Science.gov (United States)

    Kobayashi, Masayuki; Sasabe, Tetsuya; Shigihara, Yoshihito; Tanaka, Masaaki; Watanabe, Yasuyoshi

    2011-01-01

    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the "top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7±34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2±56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC.

  9. Impaired Wnt Signaling in the Prefrontal Cortex of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Folke, Jonas; Pakkenberg, Bente; Brudek, Tomasz

    2018-01-01

    Wnt pathway is involved in synaptic plasticity and neuronal survival, and alterations in Wnt signaling have previously been reported both in aging and neurodegenerative diseases, including Alzheimer's disease (AD). This study sought to evaluate Wnt signaling pathway interplay integrity across......, in addition to downstream effects associated with disease progression and cognitive decline. This study is the first that comprehensively evaluates Wnt signaling pathway in the prefrontal cortical lobe structures of AD brains, in relation to age-related coordinated Wnt signaling changes. Our findings further...

  10. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    Science.gov (United States)

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-07-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.

  11. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus.

    Science.gov (United States)

    Khodagholy, Dion; Gelinas, Jennifer N; Buzsáki, György

    2017-10-20

    Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use.

    Science.gov (United States)

    Taurisano, Paolo; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Romano, Raffaella; Porcelli, Annamaria; Masellis, Rita; Colizzi, Marco; Quarto, Tiziana; Torretta, Silvia; Di Giorgio, Annabella; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe

    2016-08-01

    The CB1 cannabinoid receptor is targeted in the brain by endocannabinoids under physiological conditions as well as by delta9-tetrahydrocannabinol under cannabis use. Furthermore, its signaling appears to affect brain cognitive processing. Recent findings highlight a crucial role of cyclooxygenase-2 (COX-2) in the mechanism of intraneuronal CB1 signaling transduction, while others indicate that two single nucleotide polymorphisms (SNPs) (rs1406977 and rs20417) modulate expression of CB1 (CNR1) and COX-2 (PTGS2) coding genes, respectively. Here, our aim was to use fMRI to investigate in healthy humans whether these SNPs interact in modulating prefrontal activity during working memory processing and if this modulation is linked with cannabis use. We recruited 242 healthy subjects genotyped for CNR1 rs1406977 and PTGS2 rs20417 that performed the N-back working memory task during fMRI and were interviewed using the Cannabis Experience Questionnaire (CEQ). We found that the interaction between CNR1 rs1406977 and PTGS2 rs20417 is associated with dorsolateral prefrontal cortex (DLPFC) activity such that specific genotype configurations (CNR1 C carriers/PTGS2 C carriers and CNR1 TT/PTGS2 GG) predict lower cortical response versus others in spite of similar behavioral accuracy. Furthermore, DLPFC activity in the cluster associated with the CNR1 by PTGS2 interaction was negatively correlated with behavioral efficiency and positively correlated with frequency of cannabis use in cannabis users. These results suggest that a genetically modulated balancing of signaling within the CB1-COX-2 pathway may reflect on more or less efficient patterns of prefrontal activity during working memory. Frequency of cannabis use may be a factor for further modulation of CNR1/PTGS2-mediated cortical processing associated with this cognitive process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  14. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

    Science.gov (United States)

    Gobel, Eric W; Parrish, Todd B; Reber, Paul J

    2011-10-15

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study.

    Directory of Open Access Journals (Sweden)

    Yoichi Sawada

    Full Text Available The attentional set-shifting deficit that has been observed in Parkinson's disease (PD has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.

  16. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms.

    Directory of Open Access Journals (Sweden)

    Olle Eriksson

    prefrontal cortices was found to strongly correlate to premenstrual irritability. A causal relationship here seems plausible, and the findings give further support to an underlying frontal brain disturbance in hormonally influenced serotonergic activity in women with PMD. Because of the small number of subjects in the study, these results should be considered preliminary, requiring verification in larger studies.

  17. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala.

    Science.gov (United States)

    Murray, Elisabeth A; Wise, Steven P; Drevets, Wayne C

    2011-06-15

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of "self" underlies the core disorder in MDD; the medial frontal cortex represents "self"; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. Published by Elsevier Inc.

  18. Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events.

    Science.gov (United States)

    Murty, Vishnu P; Adcock, R Alison

    2014-08-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia.

    Science.gov (United States)

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Itakura, Masashi; Yamanashi, Takehiko; Yamada, Sayaka; Masai, Mieko; Miura, Akihiko; Yamauchi, Takahira; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Roberts, David L; Kaneko, Koichi

    2016-03-01

    Social cognition is an important determinant of functional impairment in schizophrenia, but its relationship with the prefrontal functional abnormalities associated with the condition is still unclear. The present study aimed to explore the relationship between social cognition and prefrontal function in patients with schizophrenia using 52-channel near-infrared spectroscopy (NIRS). Twenty-six patients with schizophrenia and 26 age-, gender-, and intelligence quotient-matched healthy controls (HCs) participated in the study. Hemodynamic responses in the prefrontal and superior temporal cortical regions were assessed during a working memory task using NIRS. Social cognition was assessed using the Social Cognition Screening Questionnaire (SCSQ). The observed hemodynamic responses were significantly reduced in the lateral prefrontal cortex (PFC), the frontopolar cortex, and temporal regions in subjects with schizophrenia compared to HCs. Additionally, lateral PFC hemodynamic responses assessed during the working memory task demonstrated a strong positive correlation with the SCSQ theory of mind (ToM) subscale score even after controlling for working memory performance. These results suggest that ToM integrity is closely related to lateral PFC functional abnormalities found in patients with schizophrenia. In addition, this study provides evidence to suggest that NIRS could be used to identify biomarkers of social cognition function in subjects with schizophrenia.

  20. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections

    Directory of Open Access Journals (Sweden)

    Hoang Nam eNguyen

    2015-02-01

    Full Text Available The medial prefrontal cortex (mPFC exerts top-down control of primary visual cortex (V1 activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB, which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL and infralimbic cortices (IL. Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate 1 V1 neurons and 2 HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labelling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labelling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC, which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.

  1. Functional cortical mapping of scale illusion

    International Nuclear Information System (INIS)

    Wang, Li-qun; Kuriki, Shinya

    2011-01-01

    We have studied cortical activation using 1.5 T fMRI during 'Scale Illusion', a kind of auditory illusion, in which subjects perceive smooth melodies while listening to dichotic irregular pitch sequences consisting of scale tones, in repeated phrases composed of eight tones. Four male and four female subjects listened to different stimuli, that including illusion-inducing tone sequence, monaural tone sequence and perceived pitch sequence with a control of white noises delivered to the right and left ears in random order. 32 scans with a repetition time (TR) 3 s Between 3 s interval for each type of the four stimuli were performed. In BOLD signals, activation was observed in the prefrontal and temporal cortices, parietal lobule and occipital areas by first-level group analysis. However, there existed large intersubject variability such that systematic tendency of the activation was not clear. The study will be continued to obtain larger number of subjects for group analysis. (author)

  2. Predicting risk-taking behavior from prefrontal resting-state activity and personality.

    Directory of Open Access Journals (Sweden)

    Bettina Studer

    Full Text Available Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants' trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers' brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.

  3. Predicting Risk-Taking Behavior from Prefrontal Resting-State Activity and Personality

    Science.gov (United States)

    Studer, Bettina; Pedroni, Andreas; Rieskamp, Jörg

    2013-01-01

    Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants’ trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers’ brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior. PMID:24116176

  4. Enhanced pain expectation in migraine: EEG-based evidence for impaired prefrontal function.

    Science.gov (United States)

    Lev, Rina; Granovsky, Yelena; Yarnitsky, David

    2013-01-01

    Dysexcitability characterizes the interictal migraineous brain. The main central expressions of this dysexcitability are decreased habituation and enhanced anticipation and attention to pain and other external sensory stimuli. This study evaluates the effects of anticipation on pain modulation and their neural correlates in migraine. In 39 migraineurs (20 migraine with aura [MWA] and 19 migraine without aura [MOA]) and 22 healthy controls, cortical responses to 2 successive trains of noxious contact-heat stimuli, presented in either predicted or unpredicted manner, were analyzed using standardized low-resolution electromagnetic tomography key. A lack of habituation to repeated predicted pain was associated with significantly increased pain-evoked potential amplitudes in MWAs (increase of 3.9 μV) and unchanged ones in MOAs (1.1 μV) but not in controls (decrease of 5 μV). Repeated unpredicted pain resulted in enhanced pain-evoked potential amplitudes in both MWA and MOA groups (increase of 5.5 μV and 4.4 μV, respectively) compared with controls (decrease of 0.2 μV). Source localization revealed reduced activations in the anterior-medial prefrontal cortices and subsequent increased somatosensory activity in migraineurs (P < .05). The prefrontal-somatosensory dysfunction positively correlated with lifetime headache duration (P < .05) and concern of upcoming migraine attacks (P < .05) in MWAs, and with frequency of migraine attacks in MOAs (P < .05). Our findings of impaired modulation of anticipated pain in migraine suggest a heightened state of anticipatory readiness combined with ineffective recruitment of prefrontal inhibitory pathways during experience of pain; the latter might account for the former, at least partially. In line, less efficient inhibitory capability is a plausible mechanistic explanation for patients' high concern about their upcoming migraine attacks. © 2012 American Headache Society.

  5. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jace B. King

    2016-01-01

    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  6. Developmental trajectories of abuse--an hypothesis for the effects of early childhood maltreatment on dorsolateral prefrontal cortical development.

    Science.gov (United States)

    Burrus, Caley

    2013-11-01

    The United States has a high rate of child maltreatment, with nearly 12 in 1000 children being victims of abuse or neglect. Child abuse strongly predicts negative life outcomes, especially in areas of emotional and mental health. Abused children are also more likely than their peers to engage in violence and enter the juvenile justice system, as well as to become abusive parents themselves. Research has shown that child abuse and trauma can lead to decreased hippocampal volume, which could be indicative of abnormal hippocampal development. Hippocampal development appears to directly affect the development of the dorsolateral prefrontal cortex, a brain area responsible for emotion regulation, cognitive reappraisal, and general executive function. Therefore, I hypothesize that if child abuse results in abnormal hippocampal development, which leads to abnormal dorsolateral prefrontal cortex development, many of the correlated risk factors of child abuse, such as emotionally-laden parenting and unfavorable cognitive distortions regarding children's behaviors, may be in part caused by underdevelopment or abnormal functioning of the dorsolateral prefrontal cortex, as a function of the individual's own experiences with abuse during childhood. If this hypothesis is supported with future research, more targeted, successful, and cost-effective prevention and treatment protocols could ensue. For instance, programs that have been empirically shown to increase the activity of the dorsolateral prefrontal cortex, such as cognitive behavioral therapy, could be effective in decreasing the incidence of intergenerational transfer of abuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Science.gov (United States)

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  8. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood.

    Directory of Open Access Journals (Sweden)

    Hennady P Shulha

    2013-04-01

    Full Text Available Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax and multiple Signal Transducer and Activator of Transcription (STAT motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1 recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal

  9. Does rTMS Alter Neurocognitive Functioning in Patients with Panic Disorder/Agoraphobia? An fNIRS-Based Investigation of Prefrontal Activation during a Cognitive Task and Its Modulation via Sham-Controlled rTMS

    Directory of Open Access Journals (Sweden)

    Saskia Deppermann

    2014-01-01

    Full Text Available Objectives. Neurobiologically, panic disorder (PD is supposed to be characterised by cerebral hypofrontality. Via functional near-infrared spectroscopy (fNIRS, we investigated whether prefrontal hypoactivity during cognitive tasks in PD-patients compared to healthy controls (HC could be replicated. As intermittent theta burst stimulation (iTBS modulates cortical activity, we furthermore investigated its ability to normalise prefrontal activation. Methods. Forty-four PD-patients, randomised to sham or verum group, received 15 iTBS-sessions above the left dorsolateral prefrontal cortex (DLPFC in addition to psychoeducation. Before first and after last iTBS-treatment, cortical activity during a verbal fluency task was assessed via fNIRS and compared to the results of 23 HC. Results. At baseline, PD-patients showed hypofrontality including the DLPFC, which differed significantly from activation patterns of HC. However, verum iTBS did not augment prefrontal fNIRS activation. Solely after sham iTBS, a significant increase of measured fNIRS activation in the left inferior frontal gyrus (IFG during the phonological task was found. Conclusion. Our results support findings that PD is characterised by prefrontal hypoactivation during cognitive performance. However, verum iTBS as an “add-on” to psychoeducation did not augment prefrontal activity. Instead we only found increased fNIRS activation in the left IFG after sham iTBS application. Possible reasons including task-related psychophysiological arousal are discussed.

  10. Does rTMS alter neurocognitive functioning in patients with panic disorder/agoraphobia? An fNIRS-based investigation of prefrontal activation during a cognitive task and its modulation via sham-controlled rTMS.

    Science.gov (United States)

    Deppermann, Saskia; Vennewald, Nadja; Diemer, Julia; Sickinger, Stephanie; Haeussinger, Florian B; Notzon, Swantje; Laeger, Inga; Arolt, Volker; Ehlis, Ann-Christine; Zwanzger, Peter; Fallgatter, Andreas J

    2014-01-01

    Neurobiologically, panic disorder (PD) is supposed to be characterised by cerebral hypofrontality. Via functional near-infrared spectroscopy (fNIRS), we investigated whether prefrontal hypoactivity during cognitive tasks in PD-patients compared to healthy controls (HC) could be replicated. As intermittent theta burst stimulation (iTBS) modulates cortical activity, we furthermore investigated its ability to normalise prefrontal activation. Forty-four PD-patients, randomised to sham or verum group, received 15 iTBS-sessions above the left dorsolateral prefrontal cortex (DLPFC) in addition to psychoeducation. Before first and after last iTBS-treatment, cortical activity during a verbal fluency task was assessed via fNIRS and compared to the results of 23 HC. At baseline, PD-patients showed hypofrontality including the DLPFC, which differed significantly from activation patterns of HC. However, verum iTBS did not augment prefrontal fNIRS activation. Solely after sham iTBS, a significant increase of measured fNIRS activation in the left inferior frontal gyrus (IFG) during the phonological task was found. Our results support findings that PD is characterised by prefrontal hypoactivation during cognitive performance. However, verum iTBS as an "add-on" to psychoeducation did not augment prefrontal activity. Instead we only found increased fNIRS activation in the left IFG after sham iTBS application. Possible reasons including task-related psychophysiological arousal are discussed.

  11. The world according to me: Personal relevance and the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Anna eAbraham

    2013-07-01

    Full Text Available More than a decade of neuroimaging research has established that anterior and posterior cortical midline regions are consistently recruited during self-referential thinking. These regions are engaged under conditions of directed cognition, such as during explicit self-reference tasks, as well as during spontaneous cognition, such as under conditions of rest. One of the many issues that remain to be clarified regarding the relationship between self-referential thinking and cortical midline activity is the functional specificity of these regions with regard to the nature of self-representation and processing. The functional profile associated with the medial prefrontal cortex (mPFC is the focus of the current article. What is specifically explored is the idea that personal relevance or personal significance is a central factor that impacts how brain activity is modulated within this cortical midline region. The proactive, imaginative and predictive nature of function in the mPFC is examined by evaluating studies of spontaneously-directed cognition, which is triggered by stimulus associated personal relevance.

  12. Microstructure of transcallosal motor fibers reflects type of cortical (re-)organization in congenital hemiparesis.

    Science.gov (United States)

    Juenger, Hendrik; Koerte, Inga K; Muehlmann, Marc; Mayinger, Michael; Mall, Volker; Krägeloh-Mann, Ingeborg; Shenton, Martha E; Berweck, Steffen; Staudt, Martin; Heinen, Florian

    2014-11-01

    Early unilateral brain lesions can lead to different types of corticospinal (re-)organization of motor networks. In one group of patients, the contralesional hemisphere exerts motor control not only over the contralateral non-paretic hand but also over the (ipsilateral) paretic hand, as the primary motor cortex is (re-)organized in the contralesional hemisphere. Another group of patients with early unilateral lesions shows "normal" contralateral motor projections starting in the lesioned hemisphere. We investigated how these different patterns of cortical (re-)organization affect interhemispheric transcallosal connectivity in patients with congenital hemiparesis. Eight patients with ipsilateral motor projections (group IPSI) versus 7 patients with contralateral motor projections (group CONTRA) underwent magnetic resonance diffusion tensor imaging (DTI). The corpus callosum (CC) was subdivided in 5 areas (I-V) in the mid-sagittal slice and volumetric information. The following diffusion parameters were calculated: fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD). DTI revealed significantly lower FA, increased trace and RD for group IPSI compared to group CONTRA in area III of the corpus callosum, where transcallosal motor fibers cross the CC. In the directly neighboring area IV, where transcallosal somatosensory fibers cross the CC, no differences were found for these DTI parameters between IPSI and CONTRA. Volume of callosal subsections showed significant differences for area II (connecting premotor cortices) and III, where group IPSI had lower volume. The results of this study demonstrate that the callosal microstructure in patients with congenital hemiparesis reflects the type of cortical (re-)organization. Early lesions disrupting corticospinal motor projections to the paretic hand consecutively affect the development or maintenance of transcallosal motor fibers. Copyright © 2014 European Paediatric Neurology Society

  13. m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Martini, Franciele; Nogueira, Cristina Wayne

    2018-04-05

    The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF 3 -PhSe) 2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF 3 -PhSe) 2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF 3 -PhSe) 2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF 3 -PhSe) 2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.

  14. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task.

    Science.gov (United States)

    Asinof, Samuel K; Paine, Tracie A

    2013-02-01

    Attention deficits are a core cognitive symptom of schizophrenia; the neuropathology underlying these deficits is not known. Attention is regulated, at least in part, by the prefrontal cortex (PFC), a brain area in which pathology of γ-aminobutyric acid (GABA) neurons has been consistently observed in post-mortem analysis of the brains of people with schizophrenia. Specifically, expression of the 67-kD isoform of the GABA synthesis enzyme glutamic acid decarboxylase (GAD67) is reduced in parvalbumin-containing fast-spiking GABA interneurons. Thus it is hypothesized that reduced cortical GABA synthesis and release may contribute to the attention deficits in schizophrenia. Here the effect of reducing cortical GABA synthesis with l-allylglycine (LAG) on attention was tested using three different versions of the 5-choice serial reaction time task (5CSRTT). Because 5CSRTT performance can be affected by locomotor activity, we also measured this behavior in an open field. Finally, the expression of Fos protein was used as an indirect measure of reduced GABA synthesis. Intra-cortical LAG (10 μg/0.5 μl/side) infusions increased Fos expression and resulted in hyperactivity in the open field. Intra-cortical LAG infusions did not affect attention in any version of the 5CSRTT. These results suggest that a general decrease in GABA synthesis is not sufficient to cause attention deficits. It remains to be tested whether a selective decrease in GABA synthesis in parvalbumin-containing GABA neurons could cause attention deficits. Decreased cortical GABA synthesis did increase locomotor activity; this may reflect the positive symptoms of schizophrenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Daniel W. Sparks

    2018-01-01

    Full Text Available Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh and serotonin (5-HT have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  16. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex.

    Science.gov (United States)

    Sparks, Daniel W; Tian, Michael K; Sargin, Derya; Venkatesan, Sridevi; Intson, Katheron; Lambe, Evelyn K

    2017-01-01

    Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  17. Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making.

    Science.gov (United States)

    Clarke, Hannah F; Horst, Nicole K; Roberts, Angela C

    2015-03-31

    Dysregulation of the orbitofrontal and ventrolateral prefrontal cortices is implicated in anxiety and mood disorders, but the specific contributions of each region are unknown, including how they gate the impact of threat on decision making. To address this, the effects of GABAergic inactivation of these regions were studied in marmoset monkeys performing an instrumental approach-avoidance decision-making task that is sensitive to changes in anxiety. Inactivation of either region induced a negative bias away from punishment that could be ameliorated with anxiolytic treatment. However, whereas the effects of ventrolateral prefrontal cortex inactivation on punishment avoidance were seen immediately, those of orbitofrontal cortex inactivation were delayed and their expression was dependent upon an amygdala-anterior hippocampal circuit. We propose that these negative biases result from deficits in attentional control and punishment prediction, respectively, and that they provide the basis for understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity of anxiety disorders with implications for cognitive-behavioral treatment strategies.

  18. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder.

    Science.gov (United States)

    Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy

    2013-08-01

    Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.

  19. Neural activity associated with self-reflection.

    Science.gov (United States)

    Herwig, Uwe; Kaffenberger, Tina; Schell, Caroline; Jäncke, Lutz; Brühl, Annette B

    2012-05-24

    Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the "other"-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing.

  20. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Science.gov (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely

  1. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Directory of Open Access Journals (Sweden)

    Dávid Csabai

    2018-01-01

    Full Text Available Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I and symmetric (Type II synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network

  2. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268.

    Science.gov (United States)

    Kimoto, Sohei; Bazmi, H Holly; Lewis, David A

    2014-09-01

    Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral prefrontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia.

  3. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex.

    Science.gov (United States)

    Ventura, R; Pascucci, T; Catania, M V; Musumeci, S A; Puglisi-Allegra, S

    2004-09-01

    Fragile X syndrome is an X-linked form of mental retardation including, among others, symptoms such as stereotypic behaviour, hyperactivity, hyperarousal, and cognitive deficits. We hypothesized that hyperactivity and/or compromised attentional, cognitive functions may lead to impaired performance in cognitive tasks in Fmr1 knockout mice, the most widely used animal model of fragile X syndrome, and suggested that psychostimulant treatment may improve performance by acting on one or both components. Since hyperactivity and cognitive functions have been suggested to depend on striatal and prefrontal cortex dopaminergic dysfunction, we assessed whether amphetamine produced beneficial, positive effects by acting on dopaminergic corticostriatal systems. Our results show that Fmr1 knockout mice are not able to discriminate between a familiar object and a novel one in the object recognition test, thus showing a clear-cut cognitive impairment that, to date, has been difficult to demonstrate in other cognitive tasks. Amphetamine improved performance of Fmr1 knockout mice, leading to enhanced ability to discriminate novel versus familiar objects, without significantly affecting locomotor activity. In agreement with behavioural data, amphetamine produced a greater increase in dopamine release in the prefrontal cortex of Fmr1 knockout compared with the wild-type mice, while a weak striatal dopaminergic response was observed in Fmr1 knockout mice. Our data support the view that the psychostimulant ameliorates performance in Fmr1 knockout mice by improving merely cognitive functions through its action on prefrontal cortical dopamine, irrespective of its action on motor hyperactivity. These results indicate that prefrontal cortical dopamine plays a major role in cognitive impairments characterizing Fmr1 knockout mice, thus pointing to an important aetiological factor in the fragile X syndrome.

  4. Cell-Type Specific Development of the Hyperpolarization-Activated Current, Ih, in Prefrontal Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sha-Sha Yang

    2018-05-01

    Full Text Available H-current, also known as hyperpolarization-activated current (Ih, is an inward current generated by the hyperpolarization-activated cyclic nucleotide-gated (HCN cation channels. Ih plays an essential role in regulating neuronal properties, synaptic integration and plasticity, and synchronous activity in the brain. As these biological factors change across development, the brain undergoes varying levels of vulnerability to disorders like schizophrenia that disrupt prefrontal cortex (PFC-dependent function. However, developmental changes in Ih in PFC neurons remains untested. Here, we examine Ih in pyramidal neurons vs. gamma-aminobutyric acid (GABAergic parvalbumin-expressing (PV+ interneurons in developing mouse PFC. Our findings show that the amplitudes of Ih in these cell types are identical during the juvenile period but differ at later time points. In pyramidal neurons, Ih amplitude significantly increases from juvenile to adolescence and follows a similar trend into adulthood. In contrast, the amplitude of Ih in PV+ interneurons decreases from juvenile to adolescence, and does not change from adolescence to adulthood. Moreover, the kinetics of HCN channels in pyramidal neurons is significantly slower than in PV+ interneurons, with a gradual decrease in pyramidal neurons and a gradual increase in PV+ cells across development. Our study reveals distinct developmental trajectories of Ih in pyramidal neurons and PV+ interneurons. The cell-type specific alteration of Ih during the critical period from juvenile to adolescence reflects the contribution of Ih to the maturation of the PFC and PFC-dependent function. These findings are essential for a better understanding of normal PFC function, and for elucidating Ih’s crucial role in the pathophysiology of neurodevelopmental disorders.

  5. Development of temperamental effortful control mediates the relationship between maturation of the prefrontal cortex and psychopathology during adolescence: A 4-year longitudinal study

    Directory of Open Access Journals (Sweden)

    Nandita Vijayakumar

    2014-07-01

    Full Text Available This study investigated the relationship between the development of effortful control (EC, a temperamental measure of self-regulation, and concurrent development of three regions of the prefrontal cortex (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, dlPFC; ventrolateral prefrontal cortex, vlPFC between early- and mid-adolescence. It also examined whether development of EC mediated the relationship between cortical maturation and emotional and behavioral symptoms. Ninety-two adolescents underwent baseline assessments when they were approximately 12 years old and follow-up assessments approximately 4 years later. At each assessment, participants had MRI scans and completed the Early Adolescent Temperament Questionnaire-Revised, as well as measures of depressive and anxious symptoms, and aggressive and risk taking behavior. Cortical thicknesses of the ACC, dlPFC and vlPFC, estimated using the FreeSurfer software, were found to decrease over time. EC also decreased over time in females. Greater thinning of the left ACC was associated with less reduction in EC. Furthermore, change in effortful control mediated the relationship between greater thinning of the left ACC and improvements in socioemotional functioning, including reductions in psychopathological symptoms. These findings highlight the dynamic association between EC and the maturation of the anterior cingulate cortex, and the importance of this relationship for socioemotional functioning during adolescence.

  6. Impaired decision-making and selective cortical frontal thinning in Cushing's syndrome.

    Science.gov (United States)

    Crespo, Iris; Esther, Granell-Moreno; Santos, Alicia; Valassi, Elena; Yolanda, Vives-Gilabert; De Juan-Delago, Manel; Webb, Susan M; Gómez-Ansón, Beatriz; Resmini, Eugenia

    2014-12-01

    Cushing's syndrome (CS) is caused by a glucocorticoid excess. This hypercortisolism can damage the prefrontal cortex, known to be important in decision-making. Our aim was to evaluate decision-making in CS and to explore cortical thickness. Thirty-five patients with CS (27 cured, eight medically treated) and thirty-five matched controls were evaluated using Iowa gambling task (IGT) and 3 Tesla magnetic resonance imaging (MRI) to assess cortical thickness. The IGT evaluates decision-making, including strategy and learning during the test. Cortical thickness was determined on MRI using freesurfer software tools, including a whole-brain analysis. There were no differences between medically treated and cured CS patients. They presented an altered decision-making strategy compared to controls, choosing a lower number of the safer cards (P behaviour was driven by short-term reward and long-term punishment, indicating learning problems because they did not use previous experience as a feedback factor to regulate their choices. These alterations in decision-making and the decreased cortical thickness in frontal areas suggest that chronic hypercortisolism promotes brain changes which are not completely reversible after endocrine remission. © 2014 John Wiley & Sons Ltd.

  7. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    Science.gov (United States)

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  8. Amodal processing in human prefrontal cortex.

    Science.gov (United States)

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  9. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    Science.gov (United States)

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  10. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    Science.gov (United States)

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-05-10

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.

  11. Altered frontal cortical volume and decision making in adolescent cannabis users

    Directory of Open Access Journals (Sweden)

    John C Churchwell

    2010-12-01

    Full Text Available Anticipating future outcomes is central to decision making and a failure to consider long-term consequences may lead to impulsive choices. Adolescence is a vulnerable period during which underdeveloped prefrontal cortical systems may contribute to poor judgment, impulsive choices, and substance abuse. Conversely, substance abuse during this period may alter neural systems involved in decision making and lead to greater impulsivity. Although a broad neural network which supports decision making undergoes extensive change during adolescent development, one region that may be critical is the medial prefrontal cortex. Altered functional integrity of this region may be specifically related to reward perception, substance abuse, and dependence. In the present investigation, we acquired structural magnetic resonance images (MRI, using a 3T Siemens Trio scanner, from 18 cannabis abusing adolescents (CA; 2 female and 16 male subjects; mean age, 17.7 years; range 16-19 years and 18 healthy controls (HC; 6 female and 12 male subjects; mean age, 17.2 years; range 16-19 years. In order to measure medial orbital prefrontal cortex (moPFC morphology related to substance abuse and impulsivity, semi-automated cortical reconstruction and volumetric segmentation of MRIs was performed with FreeSurfer. Impulsivity was evaluated with the Barratt Impulsiveness Scale (BIS. Our results indicate that cannabis abusing adolescents have decreased right moPFC volume compared to controls, p =.01, d = .92, CI.95 = .21, 1.59. Cannabis abusing adolescents also show decreased future orientation, as indexed by the BIS nonplanning subscale, when compared to controls, p = .01, d = .89, CI.95 = .23, 1.55. Moreover, total moPFC volume was positively correlated with age of first use (18 = .49, p < .03, suggesting that alterations in this region may be related to initiation of cannabis use or that early initiation may lead to reduced moPFC volume.

  12. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Differential contribution of left and right prefrontal cortex to associative cued-recall memory: a parametric PET study.

    Science.gov (United States)

    Lepage, Martin

    2004-03-01

    Several brain imaging studies have implicated prefrontal regions bilaterally during cued-recall memory tasks and yet the functional significance of these regions remains poorly understood. Using PET, we examined the neural activity in prefrontal regions of 15 subjects while they performed three cued-recall tasks differing in pre-experimental semantic associations between cues and targets. This manipulation produced varying levels of retrieval performance when one member (a semantic category name) of the triad was used as a cue for the retrieval of the other two members. The percentage of items correctly recalled was 10, 46, and 70 in the low, medium, and high cued-recall conditions, respectively. Linear contrast analyses of the PET data identified brain regions where neural activity varied with the number of items retrieved from memory. A left lateral prefrontal region showed maximal activity during the high cued-recall condition, which likely reflects processes involved in retrieval success and possibly in the generation of memory responses. Three right prefrontal regions (anterior and dorsolateral) showed maximal activity during the low cued-recall condition, which likely reflects processes involved in memory search/monitoring. These findings add further support for a bilateral prefrontal contribution to memory cued-recall tasks and point to differential roles of the two hemispheres.

  14. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Sugihara, Tadashi; Diltz, Mark D; Averbeck, Bruno B; Romanski, Lizabeth M

    2006-10-25

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O'Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication.

  15. Prefrontal serotonin transporter availability is positively associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Erritzoe, David; Holst, Klaus Kähler

    2013-01-01

    higher cortisol responses when exposed to psychosocial stressors relative to high expressing 5-HTTLPR variants. However, it is not clear how the relation between SERT and cortisol output is reflected in the adult brain. We investigated the relation between cortisol response to awakening (CAR) and SERT...... binding in brain regions considered relevant to modify the cortisol awakening response. Methods: thirty-two healthy volunteers underwent in vivo SERT imaging with [11C]DASB-Positron Emission Tomography (PET), genotyping, and performed home-sampling of saliva to assess CAR. Results: CAR, defined...... between CAR and prefrontal SERT binding as tested by an interaction analysis (genotype×CAR). Conclusion: prefrontal SERT binding is positively associated with cortisol response to awakening. We speculate that in mentally healthy individuals prefrontal serotonergic neurotransmission may exert an inhibitory...

  16. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

    Science.gov (United States)

    Zhu, Huilin; Li, Jun; Fan, Yuebo; Li, Xinge; Huang, Dan; He, Sailing

    2015-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, characterized by impairments in one’s capacity for joint attention. In this study, functional near-infrared spectroscopy (fNIRS) was applied to study the differences in activation and functional connectivity in the prefrontal cortex between children with autism spectrum disorder (ASD) and typically developing (TD) children. 21 ASD and 20 TD children were recruited to perform joint and non-joint attention tasks. Compared with TD children, children with ASD showed reduced activation and atypical functional connectivity pattern in the prefrontal cortex during joint attention. The atypical development of left prefrontal cortex might play an important role in social cognition defects of children with ASD. PMID:25798296

  17. Heightened amygdala responsiveness in s-carriers of 5-HTTLPR genetic polymorphism reflects enhanced cortical rather than subcortical inputs: An MEG study.

    Science.gov (United States)

    Luo, Qian; Holroyd, Tom; Mitchell, Derek; Yu, Henry; Cheng, Xi; Hodgkinson, Colin; Chen, Gang; McCaffrey, Daniel; Goldman, David; Blair, R James

    2017-09-01

    Short allele carriers (S-carriers) of the serotonin transporter gene (5-HTTLPR) show an elevated amygdala response to emotional stimuli relative to long allele carriers (LL-homozygous). However, whether this reflects increased responsiveness of the amygdala generally or interactions between the amygdala and the specific input systems remains unknown. It is argued that the amygdala receives input via a quick subcortical and a slower cortical pathway. If the elevated amygdala response in S-carriers reflects generally increased amygdala responding, then group differences in amygdala should be seen across the amygdala response time course. However, if the difference is a secondary consequence of enhanced amygdala-cortical interactions, then group differences might only be present later in the amygdala response. Using magnetoencephalography (MEG), we found an enhanced amygdala response to fearful expressions starting 40-50 ms poststimulus. However, group differences in the amygdala were only seen 190-200 ms poststimulus, preceded by increased superior temporal sulcus (STS) responses in S-carriers from 130 to 140 ms poststimulus. An enhanced amygdala response to angry expressions started 260-270 ms poststimulus with group differences in the amygdala starting at 160-170 ms poststimulus onset, preceded by increased STS responses in S-carriers from 150 to 160 ms poststimulus. These suggest that enhanced amygdala responses in S-carriers might reflect enhanced STS-amygdala connectivity in S-carriers. Hum Brain Mapp 38:4313-4321, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients.

    Science.gov (United States)

    Carmi, Lior; Alyagon, Uri; Barnea-Ygael, Noam; Zohar, Joseph; Dar, Reuven; Zangen, Abraham

    Obsessive Compulsive Disorder (OCD) is a chronic and disabling disorder with poor response to pharmacological treatments. Converging evidences suggest that OCD patients suffer from dysfunction of the cortico-striato-thalamo-cortical (CSTC) circuit, including in the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC). To examine whether modulation of mPFC-ACC activity by deep transcranial magnetic stimulation (DTMS) affects OCD symptoms. Treatment resistant OCD participants were treated with either high-frequency (HF; 20 Hz), low-frequency (LF; 1 Hz), or sham DTMS of the mPFC and ACC for five weeks, in a double-blinded manner. All treatments were administered following symptoms provocation, and EEG measurements during a Stroop task were acquired to examine changes in error-related activity. Clinical response to treatment was determined using the Yale-Brown-Obsessive-Compulsive Scale (YBOCS). Interim analysis revealed that YBOCS scores were significantly improved following HF (n = 7), but not LF stimulation (n = 8), compared to sham (n = 8), and thus recruitment for the LF group was terminated. Following completion of the study, the response rate in the HF group (n = 18) was significantly higher than that of the sham group (n = 15) for at least one month following the end of the treatment. Notably, the clinical response in the HF group correlated with increased Error Related Negativity (ERN) in the Stroop task, an electrophysiological component that is attributed to ACC activity. HF DTMS over the mPFC-ACC alleviates OCD symptoms and may be used as a novel therapeutic intervention. Notwithstanding alternative explanations, this may stem from DTMS ability to directly modify ACC activity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Bidirectional modulation of goal-directed actions by prefrontal cortical dopamine.

    Science.gov (United States)

    Hitchcott, Paul K; Quinn, Jennifer J; Taylor, Jane R

    2007-12-01

    Instrumental actions are a vital cognitive asset that endows an organism with sensitivity to the consequences of its behavior. Response-outcome feedback allows responding to be shaped in order to maximize beneficial, and minimize detrimental, outcomes. Lesions of the medial prefrontal cortex (mPFC) result in behavior that is insensitive to changes in outcome value in animals and compulsive behavior in several human psychopathologies. Such insensitivity to changes in outcome value is a defining characteristic of instrumental habits: responses that are controlled by antecedent stimuli rather than goal expectancy. Little is known regarding the neurochemical substrates mediating this sensitivity. The present experiments used sensitivity to posttraining outcome devaluation to index the action-habit status of instrumental responding. Infusions of dopamine into the ventral mPFC (vmPFC), but not dorsal mPFC, restored outcome sensitivity bidirectionally-decreasing responding following outcome devaluation and increasing responding when the outcome was not devalued. This bidirectionality makes the possibility that these infusions nonspecifically dysregulated vmPFC dopamine transmission unlikely. VmPFC dopamine promoted instrumental responding appropriate to outcome value. Reinforcer consumption data indicated that this was not a consequence of altered sensitivity to the reinforcer itself. We suggest that vmPFC dopamine reengages attentional processes underlying goal-directed behavior.

  1. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity.

    Science.gov (United States)

    Ursini, Gianluca; Bollati, Valentina; Fazio, Leonardo; Porcelli, Annamaria; Iacovelli, Luisa; Catalani, Assia; Sinibaldi, Lorenzo; Gelao, Barbara; Romano, Raffaella; Rampino, Antonio; Taurisano, Paolo; Mancini, Marina; Di Giorgio, Annabella; Popolizio, Teresa; Baccarelli, Andrea; De Blasi, Antonio; Blasi, Giuseppe; Bertolino, Alessandro

    2011-05-04

    DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val(158) allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val(158) allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val(158) allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.

  2. The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study

    NARCIS (Netherlands)

    van de Werd, H.J.J.M.; Uylings, H.B.M.

    2008-01-01

    Cytoarchitectonic characterization of borders is necessary for stereological studies (e.g., total cell number estimation), in which particular cortical areas have to be defined. In this study, cytoarchitectonic characteristics are described and illustrated for the rat ventral or orbital frontal

  3. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command.

    Science.gov (United States)

    Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana

    2016-11-01

    When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.

  4. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    Science.gov (United States)

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  5. Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia.

    Science.gov (United States)

    van der Meer, Lisette; Costafreda, Sergi; Aleman, André; David, Anthony S

    2010-05-01

    Several studies have investigated the neural correlates of self-reflection. In the paradigm most commonly used to address this concept, a subject is presented with trait adjectives or sentences and asked whether they describe him or her. Functional neuroimaging research has revealed a set of regions known as Cortical Midline Structures (CMS) appearing to be critically involved in self-reflection processes. Furthermore, it has been shown that patients suffering damage to the CMS, have difficulties in properly evaluating the problems they encounter and often overestimate their capacities and performance. Building on previous work, a meta-analysis of published fMRI and PET studies on self-reflection was conducted. The results showed that two areas within the medial prefrontal cortex (MPFC) are important in reflective processing, namely the ventral (v) and dorsal (d) MPFC. In this paper a model is proposed in which the vMPFC is responsible for tagging information relevant for 'self', whereas the dMPFC is responsible for evaluation and decision-making processes in self- and other-referential processing. Finally, implications of the model for schizophrenia and lack of insight are noted. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Neuron density is decreased in the prefrontal cortex in Williams syndrome.

    Science.gov (United States)

    Lew, Caroline Horton; Brown, Chelsea; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  7. Mirror trends of plasticity and stability indicators in primate prefrontal cortex.

    Science.gov (United States)

    García-Cabezas, Miguel Á; Joyce, Mary Kate P; John, Yohan J; Zikopoulos, Basilis; Barbas, Helen

    2017-10-01

    Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems.

    Science.gov (United States)

    Coppola, Jennifer J; Disney, Anita A

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  9. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems

    Directory of Open Access Journals (Sweden)

    Jennifer J. Coppola

    2018-01-01

    Full Text Available Acetylcholine (ACh is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  10. Evidence accumulator or decision threshold - which cortical mechanism are we observing?

    Directory of Open Access Journals (Sweden)

    Patrick eSimen

    2012-06-01

    Full Text Available Most psychological models of perceptual decision making are of the accumulation-to-threshold variety. The neural basis of accumulation in parietal and prefrontal cortex is therefore a topic of great interest in neuroscience. In contrast, threshold mechanisms have received less attention, and their neural basis has usually been sought in subcortical structures. Here I analyze a model of a decision threshold that can be implemented in the same cortical areas as evidence accumulators, and whose behavior bears on two open questions in decision neuroscience: 1 When ramping activity is observed in a brain region during decision making, does it reflect evidence accumulation? 2 Are changes in speed-accuracy tradeoffs and response biases more likely to be achieved by changes in thresholds, or in accumulation rates and starting points? The analysis suggests that task-modulated ramping activity, by itself, is weak evidence that a brain area mediates evidence accumulation as opposed to threshold readout; and that signs of modulated accumulation are as likely to indicate threshold adaptation as adaptation of starting points and accumulation rates. These conclusions imply that how thresholds are modeled can dramatically impact accumulator-based interpretations of this data.

  11. Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits.

    Science.gov (United States)

    Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana; Compte, Albert

    2016-01-13

    Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics. Here, we examined LFPs recorded from LPFC of macaques while they compared the directions or the speeds of two moving random-dot patterns, S1 and S2, separated by a delay. LFP activity in the theta, beta, and gamma bands tracked consecutive components of the task. In response to motion stimuli, LFP theta and gamma power increased, and beta power decreased, but showed only weak motion selectivity. In the delay, LFP beta power modulation anticipated the onset of S2 and encoded the task-relevant S1 feature, suggesting network dynamics associated with memory maintenance. After S2 onset the difference between the current stimulus S2 and the remembered S1 was strongly reflected in broadband LFP activity, with an early sensory-related component proportional to stimulus difference and a later choice-related component reflecting the behavioral decision buildup. Our results demonstrate that individual LFP bands reflect both sensory and cognitive processes engaged independently during different stages of the task. This activation pattern suggests that during elementary cognitive tasks, the prefrontal network transitions dynamically between states and that these transitions are characterized by the conjunction of LFP rhythms rather than by single LFP bands. Neurons in the brain communicate through electrical impulses and coordinate this activity in ensembles that pulsate rhythmically, very much like musical instruments in an orchestra. These rhythms change with "brain state," from sleep to waking, but also signal with different oscillation frequencies rapid changes

  12. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    Science.gov (United States)

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  13. Guanfacine modulates the emotional biasing of amygdala-prefrontal connectivity for cognitive control.

    Science.gov (United States)

    Schulz, Kurt P; Clerkin, Suzanne M; Newcorn, Jeffrey H; Halperin, Jeffrey M; Fan, Jin

    2014-09-01

    Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  14. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  15. Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials: an event-related potential study.

    Science.gov (United States)

    Guo, Feng; Sun, Yong-Jun; Zhang, Ri-Hui

    2017-02-08

    The aim of this study was to explore the mechanism on perceived exertion during muscle fatigue. A total of 15 individuals in the fatigue group and 13 individuals in the nonfatigue group were recruited into this study, performing 200 intermittent handgrip contractions with 30% maximal voluntary contraction. The force, surface electromyography (sEMG), movement-related cortical potentials (MRCPs), and rating perception of effort (RPE) were combined to evaluate the perceived exertion during muscle fatigue. The maximal handgrip force significantly decreased (Pfatigue. The RPE scores reported by the individuals and the motor potential amplitude of MRCPs in the fatigue group significantly increased (Pfatigue but could also reflect the peripheral local muscle fatigue.

  16. Self-Referential Processing, Rumination, and Cortical Midline Structures in Major Depression

    Science.gov (United States)

    Nejad, Ayna Baladi; Fossati, Philippe; Lemogne, Cédric

    2013-01-01

    Major depression is associated with a bias toward negative emotional processing and increased self-focus, i.e., the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature, and is conceptualized as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasized in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course, and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. Self-referential processing in major depression seems associated with abnormally increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralized task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment. PMID:24124416

  17. Self-referential processing, rumination, and cortical midline structures in major depression

    Directory of Open Access Journals (Sweden)

    Ayna Baladi Nejad

    2013-10-01

    Full Text Available Major depression is associated with a bias towards negative emotional processing and increased self-focus, i.e. the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature and is conceptualised as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasised in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. The literature suggests that self-referential processing in major depression is associated with increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralised task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment.

  18. Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: Relevance for psychiatric disorders.

    Science.gov (United States)

    Piantadosi, Patrick T; Khayambashi, Shahin; Schluter, Magdalen G; Kutarna, Agnes; Floresco, Stan B

    2016-02-01

    The prefrontal cortex (PFC) is critical for higher-order cognitive functions, including decision-making. In psychiatric conditions such as schizophrenia, prefrontal dysfunction co-occurs with pronounced alterations in decision-making ability. These alterations include a diminished ability to utilize probabilistic reinforcement in guiding future choice, and a reduced willingness to expend effort to receive reward. Among the neurochemical abnormalities observed in the PFC of individuals with schizophrenia are alterations in the production and function of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To probe how PFC GABA hypofunction may contribute to alterations in cost/benefit decision-making, we assessed the effects GABAA-receptor antagonist bicuculline (BIC; 50 ng in 0.5 μl saline/hemisphere) infusion in the medial PFC of rats during performance on a series of well-validated cost/benefit decision-making tasks. Intra-PFC BIC reduced risky choice and reward sensitivity during probabilistic discounting and decreased the preference for larger rewards associated with a greater effort cost, similar to the behavioral sequelae observed in schizophrenia. Additional experiments revealed that these treatments did not alter instrumental responding on a progressive ratio schedule, nor did they impair the ability to discriminate between reward and no reward. However, BIC induced a subtle but consistent impairment in preference for larger vs. smaller rewards of equal cost. BIC infusion also increased decision latencies and impaired the ability to "stay on task" as indexed by reduced rates of instrumental responding. Collectively, these results implicate prefrontal GABAergic dysfunction as a key contributing factor to abnormal decision-making observed in schizophrenia and other neuropsychiatric conditions with similar neurobiological and behavioral alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cortical atrophy and language network reorganization associated with a novel progranulin mutation.

    Science.gov (United States)

    Cruchaga, Carlos; Fernández-Seara, Maria A; Seijo-Martínez, Manuel; Samaranch, Lluis; Lorenzo, Elena; Hinrichs, Anthony; Irigoyen, Jaione; Maestro, Cristina; Prieto, Elena; Martí-Climent, Josep M; Arbizu, Javier; Pastor, Maria A; Pastor, Pau

    2009-08-01

    Progressive nonfluent aphasia (PNFA) is an early stage of frontotemporal degeneration. We identified a novel Cys521Tyr progranulin gene variant in a PNFA family that potentially disrupts disulphide bridging causing protein misfolding. To identify early neurodegeneration changes, we performed neuropsychological and neuroimaging studies in 6 family members (MRI [magnetic resonance imaging], fMRI [functional MRI], and 18f-fluorodeoxygenlucose positron emission tomography, including 4 mutation carriers, and in 9 unrelated controls. Voxel-based morphometry (VBM) of the carriers compared with controls showed significant cortical atrophy in language areas. Grey matter loss was distributed mainly in frontal lobes, being more prominent on the left. Clusters were located in the superior frontal gyri, left inferior frontal gyrus, left middle frontal gyrus, left middle temporal gyri and left posterior parietal areas, concordant with (18)FDG-PET hypometabolic areas. fMRI during semantic and phonemic covert word generation (CWGTs) and word listening tasks (WLTs) showed recruitment of attentional and working memory networks in the carriers indicative of functional reorganization. During CWGTs, activation in left prefrontal cortex and bilateral anterior insulae was present whereas WLT recruited mesial prefrontal and anterior temporal cortex. These findings suggest that Cys521Tyr could be associated with early brain impairment not limited to language areas and compensated by recruitment of bilateral auxiliary cortical areas.

  20. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    Science.gov (United States)

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  1. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The topology of connections between rat prefrontal and temporal cortices

    Directory of Open Access Journals (Sweden)

    Stacey eBedwell

    2015-05-01

    Full Text Available Understanding the structural organisation of the prefrontal cortex (PFC is an important step towards determining its functional organisation. Here we investigated the organisation of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100nl and anterograde (Biotinylated dextran amine (BDA or Fluoro-Ruby, 100nl tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labelled neurons and anterogradely labelled axon terminals were then analysed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 and retrograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 connections of PFC. We observed that anterograde and retrograde labelling in ipsilateral temporal cortex (i.e. PFC inputs and outputs often occurred reciprocally (i.e. the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labelling. However, often the same specific columnar temporal cortex regions contained only either labelling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched.

  3. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans.

    Science.gov (United States)

    Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan

    2013-02-01

    New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.

  4. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    Science.gov (United States)

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  5. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    Science.gov (United States)

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  6. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    Science.gov (United States)

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  7. Transcranial Magnetic Stimulation of Medial Prefrontal and Cingulate Cortices Reduces Cocaine Self-Administration: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Diana Martinez

    2018-03-01

    Full Text Available BackgroundPrevious studies have shown that repetitive transcranial magnetic stimulation (rTMS to the dorsolateral prefrontal cortex may serve as a potential treatment for cocaine use disorder (CUD, which remains a public health problem that is refractory to treatment. The goal of this pilot study was to investigate the effect of rTMS on cocaine self-administration in the laboratory. In the self-administration sessions, CUD participants chose between cocaine and an alternative reinforcer (money in order to directly measure cocaine-seeking behavior. The rTMS was delivered with the H7 coil, which provides stimulation to the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC. These brain regions were targeted based on previous imaging studies demonstrating alterations in their activation and connectivity in CUD.MethodsVolunteers with CUD were admitted to an inpatient unit for the entire study and assigned to one of three rTMS groups: high frequency (10 Hz, low frequency (1 Hz, and sham. Six participants were included in each group and the rTMS was delivered on weekdays for 3 weeks. The cocaine self-administration sessions were performed at three time points: at baseline (pre-TMS, session 1, after 4 days of rTMS (session 2, and after 13 days of rTMS (session 3. During each self-administration session, the outcome measure was the number of choices for cocaine.ResultsThe results showed a significant group by time effect (p = 0.02, where the choices for cocaine decreased between sessions 2 and 3 in the high frequency group. There was no effect of rTMS on cocaine self-administration in the low frequency or sham groups.ConclusionTaken in the context of the existing literature, these results contribute to the data showing that high frequency rTMS to the prefrontal cortex may serve as a potential treatment for CUD.

  8. Pronounced prefronto-temporal cortical thinning in schizophrenia: Neuroanatomical correlate of suicidal behavior?

    Science.gov (United States)

    Besteher, Bianca; Wagner, Gerd; Koch, Kathrin; Schachtzabel, Claudia; Reichenbach, Jürgen R; Schlösser, Ralf; Sauer, Heinrich; Schultz, C Christoph

    2016-10-01

    Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (psuicidal patients with non-suicidal patients significant (psuicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Personality correlates (BAS-BIS), self-perception of social ranking, and cortical (alpha frequency band) modulation in peer-group comparison.

    Science.gov (United States)

    Balconi, Michela; Pagani, Silvia

    2014-06-22

    The perception and interpretation of social hierarchies are a key part of our social life. In the present research we considered the activation of cortical areas, mainly the prefrontal cortex, related to social ranking perception in conjunction with some personality components (BAS - Behavioral Activation System - and BIS - Behavioral Inhibition System). In two experiments we manipulated the perceived superior/inferior status during a competitive cognitive task. Indeed, we created an explicit and strongly reinforced social hierarchy based on incidental rating in an attentional task. Specifically, a peer group comparison was undertaken and improved (Experiment 1) or decreased (Experiment 2) performance was artificially manipulated by the experimenter. For each experiment two groups were compared, based on a BAS and BIS dichotomy. Alpha band modulation in prefrontal cortex, behavioral measures (performance: error rate, ER; response times, RTs), and self-perceived ranking were considered. Repeated measures ANOVAs and regression analyses showed in Experiment 1 a significant improved cognitive performance (decreased ER and RTs) and higher self-perceived ranking in high-BAS participants. Moreover, their prefrontal activity was increased within the left side (alpha band decreasing). Conversely, in Experiment 2 a significant decreased cognitive performance (increased ER and RTs) and lower self-perceived ranking was observed in higher-BIS participants. Their prefrontal right activity was increased in comparison with higher BAS. The regression analyses confirmed the significant predictive role of alpha band modulation with respect of subjects' performance and self-perception of social ranking, differently for BAS/BIS components. The present results suggest that social status perception is directly modulated by cortical activity and personality correlates. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks.

    Science.gov (United States)

    van Ackeren, Markus J; Schneider, Till R; Müsch, Kathrin; Rueschemeyer, Shirley-Ann

    2014-10-22

    Research from the previous decade suggests that word meaning is partially stored in distributed modality-specific cortical networks. However, little is known about the mechanisms by which semantic content from multiple modalities is integrated into a coherent multisensory representation. Therefore we aimed to characterize differences between integration of lexical-semantic information from a single modality compared with two sensory modalities. We used magnetoencephalography in humans to investigate changes in oscillatory neuronal activity while participants verified two features for a given target word (e.g., "bus"). Feature pairs consisted of either two features from the same modality (visual: "red," "big") or different modalities (auditory and visual: "red," "loud"). The results suggest that integrating modality-specific features of the target word is associated with enhanced high-frequency power (80-120 Hz), while integrating features from different modalities is associated with a sustained increase in low-frequency power (2-8 Hz). Source reconstruction revealed a peak in the anterior temporal lobe for low-frequency and high-frequency effects. These results suggest that integrating lexical-semantic knowledge at different cortical scales is reflected in frequency-specific oscillatory neuronal activity in unisensory and multisensory association networks. Copyright © 2014 the authors 0270-6474/14/3314318-06$15.00/0.

  11. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence.

    Science.gov (United States)

    Cunningham, Miles Gregory; Bhattacharyya, Sujoy; Benes, Francine Mary

    2002-11-11

    Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood. Copyright 2002 Wiley-Liss, Inc.

  12. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination.

    Science.gov (United States)

    Gerfen, C R

    1989-10-20

    The basal ganglia, of which the striatum is the major component, process inputs from virtually all cerebral cortical areas to affect motor, emotional, and cognitive behaviors. Insights into how these seemingly disparate functions may be integrated have emerged from studies that have demonstrated that the mammalian striatum is composed of two compartments arranged as a mosaic, the patches and the matrix, which differ in their neurochemical and neuroanatomical properties. In this study, projections from prefrontal, cingulate, and motor cortical areas to the striatal compartments were examined with the Phaseolus vulgaris-leucoagglutinin (PHA-L) anterograde axonal tracer in rats. Each cortical area projects to both the patches and the matrix of the striatum; however, deep layer V and layer VI corticostriatal neurons project principally to the patches, whereas superficial layer V and layer III and II corticostriatal neurons project principally to the matrix. The relative contribution of patch and matrix corticostriatal projections varies among the cortical areas examined such that allocortical areas provide a greater number of inputs to the patches than to the matrix, whereas the reverse obtains for neocortical areas. These results demonstrate that the compartmental organization of corticostriatal inputs is related to their laminar origin and secondarily to the cytoarchitectonic area of origin.

  13. Social and Nonsocial Functions of Rostral Prefrontal Cortex: Implications for Education

    Science.gov (United States)

    Gilbert, Sam J.; Burgess, Paul W.

    2008-01-01

    In this article, we discuss the role of rostral prefrontal cortex (approximating Brodmann Area 10) in two domains relevant to education: executive function (particularly prospective memory, our ability to realize delayed intentions) and social cognition (particularly our ability to reflect on our own mental states and the mental states of others).…

  14. Increased Executive Functioning, Attention, and Cortical Thickness in White-Collar Criminals

    Science.gov (United States)

    Raine, Adrian; Laufer, William S.; Yang, Yaling; Narr, Katherine L.; Thompson, Paul; Toga, Arthur W.

    2011-01-01

    Very little is known on white collar crime and how it differs to other forms of offending. This study tests the hypothesis that white collar criminals have better executive functioning, enhanced information processing, and structural brain superiorities compared to offender controls. Using a case-control design, executive functioning, orienting, and cortical thickness was assessed in 21 white collar criminals matched with 21 controls on age, gender, ethnicity, and general level of criminal offending. White collar criminals had significantly better executive functioning, increased electrodermal orienting, increased arousal, and increased cortical gray matter thickness in the ventromedial prefrontal cortex, inferior frontal gyrus, somatosensory cortex, and the temporal-parietal junction compared to controls. Results, while initial, constitute the first findings on neurobiological characteristics of white-collar criminals It is hypothesized that white collar criminals have information-processing and brain superiorities that give them an advantage in perpetrating criminal offenses in occupational settings. PMID:22002326

  15. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Impaired mixed emotion processing in the right ventrolateral prefrontal cortex in schizophrenia: an fMRI study.

    Science.gov (United States)

    Szabó, Ádám György; Farkas, Kinga; Marosi, Csilla; Kozák, Lajos R; Rudas, Gábor; Réthelyi, János; Csukly, Gábor

    2017-12-08

    Schizophrenia has a negative effect on the activity of the temporal and prefrontal cortices in the processing of emotional facial expressions. However no previous research focused on the evaluation of mixed emotions in schizophrenia, albeit they are frequently expressed in everyday situations and negative emotions are frequently expressed by mixed facial expressions. Altogether 37 subjects, 19 patients with schizophrenia and 18 healthy control subjects were enrolled in the study. The two study groups did not differ in age and education. The stimulus set consisted of 10 fearful (100%), 10 happy (100%), 10 mixed fear (70% fear and 30% happy) and 10 mixed happy facial expressions. During the fMRI acquisition pictures were presented in a randomized order and subjects had to categorize expressions by button press. A decreased activation was found in the patient group during fear, mixed fear and mixed happy processing in the right ventrolateral prefrontal cortex (VLPFC) and the right anterior insula (RAI) at voxel and cluster level after familywise error correction. No difference was found between study groups in activations to happy facial condition. Patients with schizophrenia did not show a differential activation between mixed happy and happy facial expression similar to controls in the right dorsolateral prefrontal cortex (DLPFC). Patients with schizophrenia showed decreased functioning in right prefrontal regions responsible for salience signaling and valence evaluation during emotion recognition. Our results indicate that fear and mixed happy/fear processing are impaired in schizophrenia, while happy facial expression processing is relatively intact.

  17. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS

    Directory of Open Access Journals (Sweden)

    Yukifumi Monden

    2015-01-01

    Full Text Available While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD, an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS, which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level.

  18. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.

    Science.gov (United States)

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir

    2016-02-01

    Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased

  19. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  20. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study.

    Science.gov (United States)

    Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A

    2007-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.

  1. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  2. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury.

    Science.gov (United States)

    Yoon, Eun Jin; Kim, Yu Kyeong; Shin, Hyung Ik; Lee, Youngjo; Kim, Sang Eun

    2013-12-02

    Neuropathic pain is one of the major problems of patients with spinal cord injury (SCI), which remains refractory to treatment despite a variety of therapeutic approach. Multimodal neuroimaging could provide complementary information for brain mechanisms underlying neuropathic pain, which could be based on development of more effective treatment strategies. Ten patients suffering from chronic neuropathic pain after SCI and 10 healthy controls underwent FDG-PET, T1-anatomical MRI and diffusion tensor imaging. We found decreases of both metabolism and the gray matter volume in the left dorsolateral prefrontal cortex in patients compared to healthy controls, as well as hypometabolism in the medial prefrontal cortex and gray matter volume loss in bilateral anterior insulae and subgenual anterior cingulate cortices. These brain regions are generally known to participate in pain modulation by affective and cognitive processes. Decreases of mean diffusivity (MD) in the right internal capsule including, cerebral peduncle, pre-and post-central white matter, and prefrontal white matter as components of the corticospinal and thalamocortical tracts were demonstrated in patients. Further, lower MD value of prefrontal white matter was correlated with decreased metabolism of medial prefrontal cortex in patients. These results indicated that white matter changes imply abnormal pain modulation in patients as well as motor impairment. Our study showed the functional and structural multimodal imaging modality commonly identified the possible abnormalities in the brain regions participating pain modulation in neuropathic pain. Multifaceted imaging studies in neuropathic pain could be useful elucidating precise mechanisms of persistent pain, and providing future directions for treatment. © 2013 Elsevier B.V. All rights reserved.

  3. The cortical representation of sensory inputs arising from bone.

    Science.gov (United States)

    Ivanusic, Jason J; Sahai, Vineet; Mahns, David A

    2009-05-07

    In the present study, we show that sensory information from bone reaches the discriminative areas of the somatosensory cortices by electrically stimulating the nerve to the cat humerus and recording evoked potentials on the surface of the primary (SI) and secondary (SII) somatosensory cortex. The SI focus was located over the rostral part of the postcruciate cortex, caudal to the lateral aspect of the cruciate sulcus. The SII focus was identified on the anterior ectosylvian gyrus, lateral to the suprasylvian sulcus. These foci were located adjacent to, or within areas that responded to stimulation of the median, ulnar and/or musculocutaneous nerves. The latency (6-11 ms) to onset of cortical responses in SI and SII were indistinguishable (unpaired t-test; P>0.05), and were consistent with activation of A delta fibers in the peripheral nerve. The amplitudes of the cortical responses were graded as a function of stimulus intensity, and may reflect a mechanism for intensity coding. We did not observe long latency cortical responses (50-300 ms) that would be consistent with C fiber activation in the peripheral nerve, and provide evidence that this may be attributable to inhibition of cortical responsiveness following the initial A delta response. Our finding of discrete, short latency evoked potentials (presumably of A delta origin) in the primary and secondary somatosensory cortices, following stimulation of a nerve innervating bone, may reflect a mechanism for the discriminative component of bone pain.

  4. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Shalini, Suku-Maran; Herr, Deron R; Ong, Wei-Yi

    2017-10-01

    Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

  5. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.

    Directory of Open Access Journals (Sweden)

    Thomas F Giustino

    Full Text Available The medial prefrontal cortex (mPFC plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL and infralimbic (IL subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition. This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both

  6. mGluR5 ablation in cortical glutamatergic neurons increases novelty-induced locomotion.

    Directory of Open Access Journals (Sweden)

    Chris P Jew

    Full Text Available The group I metabotropic glutamate receptor 5 (mGluR5 has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions.

  7. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  8. DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine.

    Science.gov (United States)

    Gelao, Barbara; Fazio, Leonardo; Selvaggi, Pierluigi; Di Giorgio, Annabella; Taurisano, Paolo; Quarto, Tiziana; Romano, Raffaella; Porcelli, Annamaria; Mancini, Marina; Masellis, Rita; Ursini, Gianluca; De Simeis, Giuseppe; Caforio, Grazia; Ferranti, Laura; Lo Bianco, Luciana; Rampino, Antonio; Todarello, Orlando; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2014-06-01

    Pharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks. We used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back). Fifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used. On bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back. These results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.

  9. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    Science.gov (United States)

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  10. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  11. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    Science.gov (United States)

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  12. Sleep-related hippocampo-cortical interplay during emotional memory recollection.

    Directory of Open Access Journals (Sweden)

    Virginie Sterpenich

    2007-10-01

    Full Text Available Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive memories at the macroscopic systems level. Using functional MRI (fMRI, we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate

  13. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia.

    Science.gov (United States)

    Enomoto, Takeshi; Tse, Maric T; Floresco, Stan B

    2011-03-01

    Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2007-08-01

    Full Text Available Our previous studies on scalp-recorded event-related potentials (ERPs showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA to the ERP data, we found independent components (ICs located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC and the primary somatosensory cortex (SI. The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex that are involved in sensation and perception of various stimuli.

  15. CERAD Neuropsychological Total Scores Reflect Cortical Thinning in Prodromal Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    T. Paajanen

    2013-11-01

    Full Text Available Background: Sensitive cognitive global scores are beneficial in screening and monitoring for prodromal Alzheimer's disease (AD. Early cortical changes provide a novel opportunity for validating established cognitive total scores against the biological disease markers. Methods: We examined how two different total scores of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD battery and the Mini-Mental State Examination (MMSE are associated with cortical thickness (CTH in mild cognitive impairment (MCI and prodromal AD. Cognitive and magnetic resonance imaging (MRI data of 22 progressive MCI, 78 stable MCI, and 98 control subjects, and MRI data of 103 AD patients of the prospective multicenter study were analyzed. Results: CERAD total scores correlated with mean CTH more strongly (r = 0.34-0.38, p Conclusion: CERAD total scores are sensitive to the CTH signature of prodromal AD, which supports their biological validity in detecting early disease-related cognitive changes.

  16. Cortical Signatures of Dyslexia and Remediation: An Intrinsic Functional Connectivity Approach

    Science.gov (United States)

    Koyama, Maki S.; Di Martino, Adriana; Kelly, Clare; Jutagir, Devika R.; Sunshine, Jessica; Schwartz, Susan J.; Castellanos, Francisco X.; Milham, Michael P.

    2013-01-01

    This observational, cross-sectional study investigates cortical signatures of developmental dyslexia, particularly from the perspective of behavioral remediation. We employed resting-state fMRI, and compared intrinsic functional connectivity (iFC) patterns of known reading regions (seeds) among three dyslexia groups characterized by (a) no remediation (current reading and spelling deficits), (b) partial remediation (only reading deficit remediated), and (c) full remediation (both reading and spelling deficits remediated), and a group of age- and IQ-matched typically developing children (TDC) (total N = 44, age range = 7–15 years). We observed significant group differences in iFC of two seeds located in the left posterior reading network – left intraparietal sulcus (L.IPS) and left fusiform gyrus (L.FFG). Specifically, iFC between L.IPS and left middle frontal gyrus was significantly weaker in all dyslexia groups, irrespective of remediation status/literacy competence, suggesting that persistent dysfunction in the fronto-parietal attention network characterizes dyslexia. Additionally, relative to both TDC and the no remediation group, the remediation groups exhibited stronger iFC between L.FFG and right middle occipital gyrus (R.MOG). The full remediation group also exhibited stronger negative iFC between the same L.FFG seed and right medial prefrontal cortex (R.MPFC), a core region of the default network These results suggest that behavioral remediation may be associated with compensatory changes anchored in L.FFG, which reflect atypically stronger coupling between posterior visual regions (L.FFG-R.MOG) and greater functional segregation between task-positive and task-negative regions (L.FFG-R.MPFC). These findings were bolstered by significant relationships between the strength of the identified functional connections and literacy scores. We conclude that examining iFC can reveal cortical signatures of dyslexia with particular promise for monitoring

  17. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  18. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    Science.gov (United States)

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Impulse control disorder and response-inhibition alterations in Parkinson's disease. A rare case of totally absent functionality of the medial-prefrontal cortex and review of literature.

    Science.gov (United States)

    Palermo, Sara; Morese, Rosalba; Zibetti, Maurizio; Dematteis, Francesca; Sirgiovanni, Stefano; Stanziano, Mario; Valentini, Maria Consuelo; Lopiano, Leonardo

    2017-11-01

    This report illustrates a Parkinson's disease (PD) patient with impulse-control disorder (ICD) and selective impairment in response-inhibition abilities as revealed by the performance in a functional magnetic resonance imaging (fMRI) anterior cingulate cortex - sensitive go-nogo task. In line with hypothesis on the role of response-inhibition disabilities in the arising of impulsivity in PD, the patient completely failed the go-nogo task. Moreover, fMRI acquisition revealed absent task-sensitive activity in the anterior cingulate cortex, medial prefrontal, and orbitofrontal cortices for the contrast nogo versus go, which signifying that a hypo-function of this network could be associated with ICD. A fronto-striatal and cingulo-frontal dysfunction may reflect impairment in metacognitive-executive abilities (such as response-inhibition, action monitoring, and error awareness) and promote compulsive repetition of behavior. Response-inhibition tasks may be useful in PD post-diagnostic phase, to better identify individuals at risk of developing ICD with dopaminergic medication.

  20. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder

    OpenAIRE

    Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy

    2013-01-01

    Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections fro...

  1. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    Science.gov (United States)

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural

  2. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  3. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  4. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-05-01

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  5. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-12

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  6. Infants’ neural responses to facial emotion in the prefrontal cortex are correlated with temperament: A functional near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Miranda M Ravicz

    2015-07-01

    Full Text Available Accurate decoding of facial expressions is critical for human communication, particularly during infancy, before formal language has developed. Different facial emotions elicit distinct neural responses within the first months of life. However, there are broad individual differences in such responses, such that the same emotion can elicit different brain responses in different infants. In this study we sought to investigate such differences in the processing of emotional faces by analyzing infants’ cortical metabolic responses to face stimuli and examining whether individual differences in these responses might vary as a function of infant temperament.Seven-month-old infants (N = 24 were shown photographs of women portraying happy expressions, and neural activity was recorded using functional near-infrared spectroscopy (fNIRS. Temperament data were collected using the Revised Infant Behavior Questionnaire Short Form, which assesses the broad temperament factors of Surgency/Extraversion (S/E, Negative Emotionality (NE, and Orienting/Regulation (O/R. We observed that oxyhemoglobin (oxyHb responses to happy face stimuli were negatively correlated with infant temperament factors in channels over the left prefrontal cortex (uncorrected for multiple comparisons. To investigate the brain activity underlying this association, and to explore the use of fNIRS in measuring cortical asymmetry, we analyzed hemispheric asymmetry with respect to temperament groups. Results showed preferential activation of the left hemisphere in low-NE infants in response to smiling faces.These results suggest that individual differences in temperament are associated with differential prefrontal oxyHb responses to faces. Overall, these analyses contribute to our current understanding of face processing during infancy, demonstrate the use of fNIRS in measuring prefrontal asymmetry, and illuminate the neural correlates of face processing as modulated by temperament.

  7. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation

    OpenAIRE

    Hamidi, Massihullah; Tononi, Giulio; Postle, Bradley R.

    2008-01-01

    The dorsolateral prefrontal cortex (dlPFC) plays an important role in working memory, including the control of memory-guided response. In this study, with 24 subjects, we used high frequency repetitive transcranial magnetic stimulation (rTMS) to evaluate the role of the dlPFC in memory-guided response to two different types of spatial working memory tasks: one requiring a recognition decision about a probe stimulus (operationalized with a yes/no button press), another requiring direct recall ...

  8. Cortical Structures Associated With Sports Participation in Children: A Population-Based Study.

    Science.gov (United States)

    López-Vicente, Mónica; Tiemeier, Henning; Wildeboer, Andrea; Muetzel, Ryan L; Verhulst, Frank C; Jaddoe, Vincent W V; Sunyer, Jordi; White, Tonya

    2017-01-01

    We studied cortical morphology in relation to sports participation and type of sport using a large sample of healthy children (n = 911). Sports participation data was collected through a parent-reported questionnaire. Magnetic resonance scans were acquired, and different morphological brain features were quantified. Global volumetric measures were not associated with sports participation. We observed thicker cortex in motor and premotor areas associated with sports participation. In boys, team sports participation, relative to individual sports, was related to thinner cortex in prefrontal brain areas involved in the regulation of behaviors. This study showed a relationship between sports participation and brain maturation.

  9. Thalamo-cortical activation and connectivity during response preparation in adults with persistent and remitted ADHD.

    Science.gov (United States)

    Clerkin, Suzanne M; Schulz, Kurt P; Berwid, Olga G; Fan, Jin; Newcorn, Jeffrey H; Tang, Cheuk Y; Halperin, Jeffrey M

    2013-09-01

    The neural correlates of stimulus-driven processes, such as response preparation, have been posited to be associated with the onset of attention deficit hyperactivity disorder (ADHD) while being distinct from the neural mechanisms associated with recovery. The authors tested this hypothesis in adults with remitted and persistent ADHD. Thirty-eight young adults who were diagnosed with combined-type ADHD in childhood (probands) and 32 carefully matched comparison subjects were followed longitudinally and scanned with functional MRI while performing an event-related cued reaction time task. Probands were characterized as individuals with persistent or remitted ADHD. Differences in thalamo-cortical activation and functional connectivity during response preparation between comparison subjects and probands and between individuals with persistent ADHD and those with remitted ADHD were assessed by contrasting neural activation and functional connectivity during cue or noncue events. Probands exhibited less cue-related activation than comparison subjects in the thalamus, anterior cingulate cortex, supplementary motor area, inferior parietal lobe, and dorsolateral prefrontal cortex despite similar overall patterns of activation. There were no differences in activation between individuals in the remitted ADHD group and those in the persistent ADHD group in any hypothesized regions. However, cue-related functional connectivity between the right thalamus and brainstem was greater in comparison subjects relative to probands, and cue-related connectivity was greater between the right thalamus and prefrontal regions in individuals with remitted ADHD relative to those with persistent ADHD. Decreased thalamo-cortical activation during response preparation was present in adults diagnosed with ADHD in childhood regardless of symptom remission in adulthood, and may be partly driven by less functional coordination between the brainstem and thalamus. Greater functional integration of the

  10. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection.

    Science.gov (United States)

    Stenner, Max-Philipp; Litvak, Vladimir; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-07-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181-190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. Copyright © 2015 the American Physiological Society.

  11. Prefrontal mediation of emotion regulation in social anxiety disorder during laughter perception.

    Science.gov (United States)

    Kreifelts, Benjamin; Brück, Carolin; Ethofer, Thomas; Ritter, Jan; Weigel, Lena; Erb, Michael; Wildgruber, Dirk

    2017-02-01

    Social anxiety disorder (SAD) is characterized by negatively biased perception of social cues and deficits in emotion regulation. While negatively biased perception is thought to maintain social anxiety, emotion regulation represents an ability necessary to overcome both biased perception and social anxiety. Here, we used laughter as a social threat in a functional magnetic resonance imaging (fMRI) study to identify cerebral mediators linking SAD with attention and interpretation biases and their modification through cognitive emotion regulation in the form of reappraisal. We found that reappraisal abolished the negative laughter interpretation bias in SAD and that this process was directly mediated through activation patterns of the left dorsolateral prefrontal cortex (DLPFC) serving as a cerebral pivot between biased social perception and its normalization through reappraisal. Connectivity analyses revealed reduced prefrontal control over threat-processing sensory cortices (here: the temporal voice area) during cognitive emotion regulation in SAD. Our results indicate a central role for the left DLPFC in SAD which might represent a valuable target for future research on interventions either aiming to directly modulate cognitive emotion regulation in SAD or to evaluate its potential as physiological marker for psychotherapeutic interventions relying on emotion regulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The medial prefrontal cortex and memory of cue location in the rat.

    Science.gov (United States)

    Rawson, Tim; O'Kane, Michael; Talk, Andrew

    2010-01-01

    We developed a single-trial cue-location memory task in which rats experienced an auditory cue while exploring an environment. They then recalled and avoided the sound origination point after the cue was paired with shock in a separate context. Subjects with medial prefrontal cortical (mPFC) lesions made no such avoidance response, but both lesioned and control subjects avoided the cue itself when presented at test. A follow up assessment revealed no spatial learning impairment in either group. These findings suggest that the rodent mPFC is required for incidental learning or recollection of the location at which a discrete cue occurred, but is not required for cue recognition or for allocentric spatial memory. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance.

    Science.gov (United States)

    Chung, Sung Wook; Rogasch, Nigel C; Hoy, Kate E; Sullivan, Caley M; Cash, Robin F H; Fitzgerald, Paul B

    2018-02-01

    Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample. © 2017 Wiley Periodicals, Inc.

  14. Cortical activation during mental rotation in male-to-female and female-to-male transsexuals under hormonal treatment.

    Science.gov (United States)

    Carrillo, Beatriz; Gómez-Gil, Esther; Rametti, Giuseppina; Junque, Carme; Gomez, Angel; Karadi, Kazmer; Segovia, Santiago; Guillamon, Antonio

    2010-09-01

    There is strong evidence of sex differences in mental rotation tasks. Transsexualism is an extreme gender identity disorder in which individuals seek cross-gender treatment to change their sex. The aim of our study was to investigate if male-to-female (MF) and female-to-male (FM) transsexuals receiving cross-sex hormonal treatment have different patterns of cortical activation during a three-dimensional (3D) mental rotation task. An fMRI study was performed using a 3-T scan in a sample of 18 MF and 19 FM under chronic cross-sex hormonal treatment. Twenty-three males and 19 females served as controls. The general pattern of cerebral activation seen while visualizing the rotated and non-rotated figures was similar for all four groups showing strong occipito-parieto-frontal brain activation. However, compared to control males, the activation of MF transsexuals during the task was lower in the superior parietal lobe. Compared to control females, MF transsexuals showed higher activation in orbital and right dorsolateral prefrontal regions and lower activation in the left prefrontal gyrus. FM transsexuals did not differ from either the MF transsexual or control groups. Regression analyses between cerebral activation and the number of months of hormonal treatment showed a significant negative correlation in parietal, occipital and temporal regions in the MF transsexuals. No significant correlations with time were seen in the FM transsexuals. In conclusion, although we did not find a specific pattern of cerebral activation in the FM transsexuals, we have identified a specific pattern of cerebral activation during a mental 3D rotation task in MF transsexuals under cross-sex hormonal treatment that differed from control males in the parietal region and from control females in the orbital prefrontal region. The hypoactivation in MF transsexuals in the parietal region could be due to the hormonal treatment or could reflect a priori cerebral differences between MF transsexual

  15. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  16. Prefrontal-hippocampal interactions for spatial navigation.

    Science.gov (United States)

    Ito, Hiroshi T

    2018-04-01

    Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  17. Premenstrual dysphoric disorder and prefrontal reactivity during anticipation of emotional stimuli.

    Science.gov (United States)

    Gingnell, Malin; Bannbers, Elin; Wikström, Johan; Fredrikson, Mats; Sundström-Poromaa, Inger

    2013-11-01

    Premenstrual disorder (PMDD) affects around 5% of women in childbearing ages. An increased sensitivity in emotion processing areas of the brain to variations in ovarian steroid levels has been suggested as part of the pathophysiology in PMDD, but prior neuroimaging studies of emotion processing are yet inconclusive. Previous behavioral studies of women with PMDD have, however, reported enhanced luteal phase startle responsivity during emotional anticipation. Here we used functional magnetic resonance imaging (fMRI) to investigate central neural circuitry activity during anticipation of, and exposure to, emotional stimuli across the menstrual cycle in women with and without PMDD. As compared to healthy controls, women with PMDD displayed significantly enhanced reactivity in the prefrontal cortex during anticipation of, but not exposure to, negative emotional stimuli during the luteal phase. In PMDD patients, BOLD reactivity during anticipation or viewing of negative emotional stimuli was not dependent on absolute levels of estradiol or progesterone. However, progesterone levels were positively correlated with emotion-induced reactivity in the dorsolateral prefrontal cortex to positive emotional stimuli. These findings suggest that cortical emotional circuitry reactivity during anticipation is altered in PMDD during the luteal phase, which might be part of the pathophysiology behind the emotional symptoms or lack of emotional control reported by women with PMDD. © 2013 Elsevier B.V. and ECNP. All rights reserved.

  18. Interactive effects of dehydroepiandrosterone and testosterone on cortical thickness during early brain development.

    Science.gov (United States)

    Nguyen, Tuong-Vi; McCracken, James T; Ducharme, Simon; Cropp, Brett F; Botteron, Kelly N; Evans, Alan C; Karama, Sherif

    2013-06-26

    Humans and the great apes are the only species demonstrated to exhibit adrenarche, a key endocrine event associated with prepubertal increases in the adrenal production of androgens, most significantly dehydroepiandrosterone (DHEA) and to a certain degree testosterone. Adrenarche also coincides with the emergence of the prosocial and neurobehavioral skills of middle childhood and may therefore represent a human-specific stage of development. Both DHEA and testosterone have been reported in animal and in vitro studies to enhance neuronal survival and programmed cell death depending on the timing, dose, and hormonal context involved, and to potentially compete for the same signaling pathways. Yet no extant brain-hormone studies have examined the interaction between DHEA- and testosterone-related cortical maturation in humans. Here, we used linear mixed models to examine changes in cortical thickness associated with salivary DHEA and testosterone levels in a longitudinal sample of developmentally healthy children and adolescents 4-22 years old. DHEA levels were associated with increases in cortical thickness of the left dorsolateral prefrontal cortex, right temporoparietal junction, right premotor and right entorhinal cortex between the ages of 4-13 years, a period marked by the androgenic changes of adrenarche. There was also an interaction between DHEA and testosterone on cortical thickness of the right cingulate cortex and occipital pole that was most significant in prepubertal subjects. DHEA and testosterone appear to interact and modulate the complex process of cortical maturation during middle childhood, consistent with evidence at the molecular level of fast/nongenomic and slow/genomic or conversion-based mechanisms underlying androgen-related brain development.

  19. Functional Neuroanatomical Correlates of The Frontal Assessment Battery Performance in Alzheimer Disease: A FDG-PET Study.

    Science.gov (United States)

    Lee, Jun Ho; Byun, Min Soo; Sohn, Bo Kyung; Choe, Young Min; Yi, Dahyun; Han, Ji Young; Choi, Hyo Jung; Baek, Hyewon; Woo, Jong Inn; Lee, Dong Young

    2015-09-01

    We aimed to elucidate the functional neuroanatomical correlates of Frontal Assessment Battery (FAB) performances by applying [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET) to a large population of patients with Alzheimer disease (AD). The FAB was administered to 177 patients with AD, and regional cerebral glucose metabolism (rCMglc) was measured by FDG-PET scan. Correlations between FAB scores and rCMglc were explored using both region-of-interest-based (ROI-based) and voxel-based approaches. The ROI-based analysis showed that FAB scores correlated with the rCMglc of the dorsolateral prefrontal cortices. Voxel-based approach revealed significant positive correlations between FAB scores and rCMglc which were in various cortical regions including the temporal and parietal cortices as well as frontal regions, independent of age, gender, and education. After controlling the effect of global disease severity with Mini-Mental State Examination score, significant positive correlation was found only in the bilateral prefrontal regions. Although FAB scores are influenced by temporoparietal dysfunction due to the overall progression of AD, it likely reflects prefrontal dysfunction specifically regardless of global cognitive state or disease severity in patients with AD. © The Author(s) 2015.

  20. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    Science.gov (United States)

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  1. Inactivation of the Medial-Prefrontal Cortex Impairs Interval Timing Precision, but Not Timing Accuracy or Scalar Timing in a Peak-Interval Procedure in Rats

    Directory of Open Access Journals (Sweden)

    Catalin V. Buhusi

    2018-06-01

    Full Text Available Motor sequence learning, planning and execution of goal-directed behaviors, and decision making rely on accurate time estimation and production of durations in the seconds-to-minutes range. The pathways involved in planning and execution of goal-directed behaviors include cortico-striato-thalamo-cortical circuitry modulated by dopaminergic inputs. A critical feature of interval timing is its scalar property, by which the precision of timing is proportional to the timed duration. We examined the role of medial prefrontal cortex (mPFC in timing by evaluating the effect of its reversible inactivation on timing accuracy, timing precision and scalar timing. Rats were trained to time two durations in a peak-interval (PI procedure. Reversible mPFC inactivation using GABA agonist muscimol resulted in decreased timing precision, with no effect on timing accuracy and scalar timing. These results are partly at odds with studies suggesting that ramping prefrontal activity is crucial to timing but closely match simulations with the Striatal Beat Frequency (SBF model proposing that timing is coded by the coincidental activation of striatal neurons by cortical inputs. Computer simulations indicate that in SBF, gradual inactivation of cortical inputs results in a gradual decrease in timing precision with preservation of timing accuracy and scalar timing. Further studies are needed to differentiate between timing models based on coincidence detection and timing models based on ramping mPFC activity, and clarify whether mPFC is specifically involved in timing, or more generally involved in attention, working memory, or response selection/inhibition.

  2. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Science.gov (United States)

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-02-22

    Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  3. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Directory of Open Access Journals (Sweden)

    Alessandro Bertolino

    2010-02-01

    Full Text Available Variation of the gene coding for D2 receptors (DRD2 has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560 predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic and D2L (mainly post-synaptic. However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.Thirty-seven healthy subjects were genotyped for rs1076560 (G>T and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors, as well as BOLD fMRI during N-Back working memory.Subjects carrying the T allele (previously associated with reduced D2S expression had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  4. Differences in prefrontal, limbic, and white matter lesion volumes according to cognitive status in elderly patients with first-onset subsyndromal depression.

    Directory of Open Access Journals (Sweden)

    Jun-Young Lee

    Full Text Available The purpose of this preliminary study was to test the hypothesis that subsyndromal depression is associated with the volume of medial prefrontal regional gray matter and that of white matter lesions (WMLs in the brains of cognitively normal older people. We also explored the relationships between subsyndromal depression and medial prefrontal regional gray matter volume, limbic regional gray matter volume, and lobar WMLs in the brains of patients with mild cognitive impairment (MCI and Alzheimer's disease (AD. We performed a cross-sectional study comparing patients with subsyndromal depression and nondepressed controls with normal cognition (n = 59, MCI (n = 27, and AD (n = 27, adjusting for sex, age, years of education, and results of the Mini-Mental State Examination. Frontal WML volume was greater, and right medial orbitofrontal cortical volume was smaller in cognitively normal participants with subsyndromal depression than in those without subsyndromal depression. No volume differences were observed in medial prefrontal, limbic, or WML volumes according to the presence of subsyndromal depression in cognitively impaired patients. The absence of these changes in patients with MCI and AD suggests that brain changes associated with AD pathology may override the changes associated with subsyndromal depression.

  5. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aldhafeeri, Faten M [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Khalid General Hospital, Ministry of Health, Radiology Department, Hafral-batin (Saudi Arabia); Mackenzie, Ian; Kay, Tony [Aintree University Hospitals NHS Foundation Trust, Liverpool (United Kingdom); Alghamdi, Jamaan [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Abdul Aziz University, Physics Department, Faculty of Sciences, Jeddah (Saudi Arabia); Sluming, Vanessa [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, Liverpool (United Kingdom)

    2012-08-15

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  6. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Aldhafeeri, Faten M.; Mackenzie, Ian; Kay, Tony; Alghamdi, Jamaan; Sluming, Vanessa

    2012-01-01

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  7. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa

    Science.gov (United States)

    Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-01

    Background Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. Methods We collected anatomical MRI data from adolescent girls and women (ages 12–38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. Results We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. Limitations These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Conclusion Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential

  8. Perceptual difficulty in source memory encoding and retrieval: prefrontal versus parietal electrical brain activity.

    Science.gov (United States)

    Kuo, Trudy Y; Van Petten, Cyma

    2008-01-01

    It is well established that source memory retrieval--remembering relationships between a core item and some additional attribute of an event--engages prefrontal cortex (PFC) more than simple item memory. In event-related potentials (ERPs), this is manifest in a late-onset difference over PFC between studied items which mandate retrieval of a second attribute, and unstudied items which can be immediately rejected. Although some sorts of attribute conjunctions are easier to remember than others, the role of source retrieval difficulty on prefrontal activity has received little attention. We examined memory for conjunctions of object shape and color when color was an integral part of the depicted object, and when monochrome objects were surrounded by colored frames. Source accuracy was reliably worse when shape and color were spatially separated, but prefrontal activity did not vary across the object-color and frame-color conditions. The insensitivity of prefrontal ERPs to this perceptual manipulation of difficulty stands in contrast to their sensitivity to encoding task: deliberate voluntary effort to integrate objects and colors during encoding reduced prefrontal activity during retrieval, but perceptual organization of stimuli did not. The amplitudes of ERPs over parietal cortex were larger for frame-color than object-color stimuli during both study and test phases of the memory task. Individual variability in parietal ERPs was strongly correlated with memory accuracy, which we suggest reflects a contribution of visual working memory to long-term memory. We discuss multiple bottlenecks for source memory performance.

  9. Spontaneously emerging cortical representations of visual attributes

    Science.gov (United States)

    Kenet, Tal; Bibitchkov, Dmitri; Tsodyks, Misha; Grinvald, Amiram; Arieli, Amos

    2003-10-01

    Spontaneous cortical activity-ongoing activity in the absence of intentional sensory input-has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

  10. Dissociation of face-selective cortical responses by attention.

    Science.gov (United States)

    Furey, Maura L; Tanskanen, Topi; Beauchamp, Michael S; Avikainen, Sari; Uutela, Kimmo; Hari, Riitta; Haxby, James V

    2006-01-24

    We studied attentional modulation of cortical processing of faces and houses with functional MRI and magnetoencephalography (MEG). MEG detected an early, transient face-selective response. Directing attention to houses in "double-exposure" pictures of superimposed faces and houses strongly suppressed the characteristic, face-selective functional MRI response in the fusiform gyrus. By contrast, attention had no effect on the M170, the early, face-selective response detected with MEG. Late (>190 ms) category-related MEG responses elicited by faces and houses, however, were strongly modulated by attention. These results indicate that hemodynamic and electrophysiological measures of face-selective cortical processing complement each other. The hemodynamic signals reflect primarily late responses that can be modulated by feedback connections. By contrast, the early, face-specific M170 that was not modulated by attention likely reflects a rapid, feed-forward phase of face-selective processing.

  11. TDCS modulates cortical excitability in patients with disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2017-01-01

    Full Text Available Transcranial direct current stimulation (tDCS has been reported to be a promising technique for consciousness improvement for patients with disorders of consciousness (DOC. However, there has been no direct electrophysiological evidence to demonstrate the efficacy of tDCS on patients with DOC. Therefore, we aim to measure the cortical excitability changes induced by tDCS in patients with DOC, to find electrophysiological evidence supporting the therapeutic efficacy of tDCS on patients with DOC. In this study, we enrolled sixteen patients with DOC, including nine vegetative state (VS and seven minimally conscious state (MCS (six females and ten males. TMS-EEG was applied to assess cortical excitability changes after twenty minutes of anodal tDCS of the left dorsolateral prefrontal cortex. Global cerebral excitability were calculated to quantify cortical excitability in the temporal domain: four time intervals (0–100, 100–200, 200–300, 300-400 ms. Then local cerebral excitability in the significantly altered time windows were investigated (frontal, left/right hemispheres, central, and posterior. Compared to baseline and sham stimulation, we found that global cerebral excitability increased in early time windows (0–100 and 100-200 ms for patients with MCS; for the patients with VS, global cerebral excitability increased in the 0-100 ms interval but decreased in the 300-400 ms interval. The local cerebral excitability was significantly different between MCS and VS. The results indicated that tDCS can effectively modulate the cortical excitability of patients with DOC; and the changes in excitability in temporal and spatial domains are different between patients with MCS and those with VS.

  12. Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Thomas E. Chan

    2018-05-01

    Full Text Available Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC. Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain.

  13. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  14. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults

    Directory of Open Access Journals (Sweden)

    Ayaka Ishii-Takahashi

    2014-01-01

    Full Text Available The differential diagnosis of autism spectrum disorders (ASDs and attention deficit hyperactivity disorder (ADHD based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders.

  15. Implicación de la corteza prefrontal de la rata en la ejecución de una tarea de alternancia

    OpenAIRE

    Sañudo Peña, María Clara

    2011-01-01

    El planteamiento del presente trabajo consistió en la utilización de una tarea conductual para cuya correcta ejecución fuese imprescindible la integridad funcional de la corteza prefrontal de la rata, con el fin de estudiar la implicación de los distintos sistemas de neurotransmisores en la funcionalidad de dicho área cortical. Se plantearon los siguientes objetivos: En primer lugar, analizar el efecto que lesiones discretas o la inactivación reversible de diferentes áreas funcionales de la c...

  16. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Impaired behavior on real-world tasks following damage to the ventromedial prefrontal cortex.

    Science.gov (United States)

    Tranel, Daniel; Hathaway-Nepple, Julie; Anderson, Steven W

    2007-04-01

    Patients with damage to the ventromedial prefrontal cortices (VMPC) commonly manifest blatant behavioral navigation defects in the real world, but it has been difficult to measure these impairments in the clinic or laboratory. Using a set of "strategy application" tasks, which were designed by Shallice and Burgess (1991) to be ecologically valid for detecting executive dysfunction, we investigated the hypothesis that VMPC damage would be associated with defective performance on such tasks, whereas damage outside the VMPC region would not. A group of 9 patients with bilateral VMPC damage was contrasted with comparison groups of participants with (a) prefrontal brain damage outside the VMPC region (n = 8); (b) nonprefrontal brain damage (n = 17); and (c) no brain damage (n = 20). We found support for the hypothesis: VMPC patients had more impaired performances on the strategy application tasks, especially on a Multiple Errands Test that required patients to execute a series of unstructured tasks in a real-world setting (shopping mall). The results are consistent with the notion that efficacious behavioral navigation is dependent on the VMPC region. However, the strategy application tasks were relatively time consuming and effortful, and their diagnostic yield over and above conventional executive functioning tests may not be sufficient to warrant their inclusion in standard clinical assessment.

  18. Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.

    Science.gov (United States)

    Druzgal, T Jason; D'Esposito, Mark

    2003-08-15

    Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.

  19. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Science.gov (United States)

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  20. Ethanol modulates cortical activity: direct evidence with combined TMS and EEG.

    Science.gov (United States)

    Kähkönen, S; Kesäniemi, M; Nikouline, V V; Karhu, J; Ollikainen, M; Holi, M; Ilmoniemi, R J

    2001-08-01

    The motor cortex of 10 healthy subjects was stimulated by transcranial magnetic stimulation (TMS) before and after ethanol challenge (0.8 g/kg resulting in blood concentration of 0.77 +/- 0.14 ml/liter). The electrical brain activity resulting from the brief electromagnetic pulse was recorded with high-resolution electroencephalography (EEG) and located using inversion algorithms. Focal magnetic pulses to the left motor cortex were delivered with a figure-of-eight coil at the random interstimulus interval of 1.5-2.5 s. The stimulation intensity was adjusted to the motor threshold of abductor digiti minimi. Two conditions before and after ethanol ingestion (30 min) were applied: (1) real TMS, with the coil pressed against the scalp; and (2) control condition, with the coil separated from the scalp by a 2-cm-thick piece of plastic. A separate EMG control recording of one subject during TMS was made with two bipolar platinum needle electrodes inserted to the left temporal muscle. In each condition, 120 pulses were delivered. The EEG was recorded from 60 scalp electrodes. A peak in the EEG signals was observed at 43 ms after the TMS pulse in the real-TMS condition but not in the control condition or in the control scalp EMG. Potential maps before and after ethanol ingestion were significantly different from each other (P = 0.01), but no differences were found in the control condition. Ethanol changed the TMS-evoked potentials over right frontal and left parietal areas, the underlying effect appearing to be largest in the right prefrontal area. Our findings suggest that ethanol may have changed the functional connectivity between prefrontal and motor cortices. This new noninvasive method provides direct evidence about the modulation of cortical connectivity after ethanol challenge. Copyright 2001 Academic Press.

  1. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  2. Cognitive behavioral therapy changes functional connectivity between medial prefrontal and anterior cingulate cortices.

    Science.gov (United States)

    Yoshimura, Shinpei; Okamoto, Yasumasa; Matsunaga, Miki; Onoda, Keiichi; Okada, Go; Kunisato, Yoshihiko; Yoshino, Atsuo; Ueda, Kazutaka; Suzuki, Shin-Ichi; Yamawaki, Shigeto

    2017-01-15

    Depression is characterized by negative self-cognition. Our previous study (Yoshimura et al. 2014) revealed changes in brain activity after cognitive behavioral therapy (CBT) for depression, but changes in functional connectivity were not assessed. This study included 29 depressive patients and 15 healthy control participants. Functional Magnetic Resonance Imaging was used to investigate possible CBT-related functional connectivity changes associated with negative emotional self-referential processing. Depressed and healthy participants (overlapping with our previous study, Yoshimura et al. 2014) were included. We defined a seed region (medial prefrontal cortex) and coupled region (ACC) based on our previous study, and we examined changes in MPFC-ACC functional connectivity from pretreatment to posttreatment. CBT was associated with reduced functional connectivity between the MPFC and ACC. Symptom change with CBT was positively correlated with change in MPFC-ACC functional connectivity. Patients received pharmacotherapy including antidepressant. The present sample size was quite small and more study is needed. Statistical threshold in fMRI analysis was relatively liberal. CBT for depression may disrupt MPFC-ACC connectivity, with associated improvements in depressive symptoms and dysfunctional cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    Science.gov (United States)

    Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic

  4. Abnormalities in structural covariance of cortical gyrification in schizophrenia.

    Science.gov (United States)

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2015-07-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topological properties of brain networks. Covariance-based graph metrics allow cross-sectional study of coordinated maturational relationship among brain regions. Disrupted gyrification of focal brain regions is a consistent feature of schizophrenia. However, it is unclear if these localized disturbances result from a failure of coordinated development of brain regions in schizophrenia. We studied the structural covariance of gyrification in a sample of 41 patients with schizophrenia and 40 healthy controls by constructing gyrification-based networks using a 3-dimensional index. We found that several key regions including anterior insula and dorsolateral prefrontal cortex show increased segregation in schizophrenia, alongside reduced segregation in somato-sensory and occipital regions. Patients also showed a lack of prominence of the distributed covariance (hubness) of cingulate cortex. The abnormal segregated folding pattern in the right peri-sylvian regions (insula and fronto-temporal cortex) was associated with greater severity of illness. The study of structural covariance in cortical folding supports the presence of subtle deviation in the coordinated development of cortical convolutions in schizophrenia. The heterogeneity in the severity of schizophrenia could be explained in part by aberrant trajectories of neurodevelopment.

  5. Changes of cortical excitability as markers of antidepressant response in bipolar depression: preliminary data obtained by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG).

    Science.gov (United States)

    Canali, Paola; Sferrazza Papa, Giovanna; Casali, Adenauer G; Schiena, Giandomenico; Fecchio, Matteo; Pigorini, Andrea; Smeraldi, Enrico; Colombo, Cristina; Benedetti, Francesco

    2014-12-01

    It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Change in emotional self-concept following socio-cognitive training relates to structural plasticity of the prefrontal cortex.

    Science.gov (United States)

    Lumma, Anna-Lena; Valk, Sofie L; Böckler, Anne; Vrtička, Pascal; Singer, Tania

    2018-04-01

    Self-referential processing is a key component of the emotional self-concept. Previous studies have shown that emotional self-referential processing is related to structure and function of cortical midline areas such as medial prefrontal cortex (mPFC), and that it can be altered on a behavioral level by specific mental training practices. However, it remains unknown how behavioral training-related change in emotional self-concept content relates to structural plasticity. To address this issue, we examined the relationship between training-induced change in participant's emotional self-concept measured through emotional word use in the Twenty Statement Test and change in cortical thickness in the context of a large-scale longitudinal mental training study called the ReSource Project . Based on prior behavioral findings showing increased emotional word use particularly after socio-cognitive training targeting perspective-taking capacities, this study extended these results by revealing that individual differences in the degree to which participants changed their emotional self-concept after training was positively related to cortical thickness change in right mPFC extending to dorsolateral PFC (dlPFC). Furthermore, increased self-related negative emotional word use after training was positively associated with cortical thickness change in left pars orbitalis and bilateral dlPFC. Our findings reveal training-related structural brain change in regions known to be involved in self-referential processing and cognitive control, and could indicate a relationship between restructuring of the emotional self-concept content as well as reappraisal of negative aspects and cortical thickness change. As such, our findings can guide the development of psychological interventions targeted to alter specific facets of the self-concept.

  7. Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity.

    Science.gov (United States)

    Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D; Weber, Peter B; Kuperman, Rachel A; Auguste, Kurtis I; Brunner, Peter; Schalk, Gerwin; Lin, Jack J; Parvizi, Josef; Crone, Nathan E; Dronkers, Nina F; Knight, Robert T

    2017-06-06

    Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.

  8. Interactions between thalamic and cortical rhythms during semantic memory recall in human

    Science.gov (United States)

    Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.

    2002-04-01

    Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.

  9. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  10. Effects of prefrontal rTMS on autonomic reactions to affective pictures.

    Science.gov (United States)

    Berger, Christoph; Domes, Gregor; Balschat, Johannes; Thome, Johannes; Höppner, Jacqueline

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate the excitability of stimulated cortical areas, such as prefrontal areas involved in emotion regulation. Low frequency (LF) rTMS is expected to have inhibitory effects on prefrontal regions, and thereby should disinhibit limbic activity, resulting in enhanced emotional and autonomic reactions. For high frequency (HF) rTMS, the opposite pattern might be assumed. The objective of this study was to determine the effects of different rTMS frequencies applied to the right dlPFC on autonomic functions and on emotional perception. In a crossover design, two groups of 20 healthy young women were either stimulated with one session of LF rTMS (1 Hz) or one session of HF rTMS (10 Hz), compared to sham stimulation. We assessed phasic cardiac responses (PCR), skin conductance reactions (SCR), and emotional appraisal of emotional pictures as well as recognition memory after each rTMS application. After LF rTMS, PCR (heart rate deceleration) during presentation of pictures with negative and neutral valence was significantly increased compared to the presentation of positive pictures. In contrast, the modulatory effect of picture valence and arousal on the cardiac orienting response was absent after HF rTMS. Our results suggest that frontal LF rTMS indirectly activates the ANS via inhibition of the right dlPFC activity, likely by enhancing the sensory processing or attention to aversive and neutral stimuli.

  11. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  12. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Directory of Open Access Journals (Sweden)

    Takehiro Minamoto

    Full Text Available Different people make different responses when they face a frustrating situation: some punish others (extrapunitive, while others punish themselves (intropunitive. Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9 showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9 showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  13. Greater Cortical Thickness in Elderly Female Yoga Practitioners—A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Rui F. Afonso

    2017-06-01

    Full Text Available Yoga, a mind-body activity that requires attentional engagement, has been associated with positive changes in brain structure and function, especially in areas related to awareness, attention, executive functions and memory. Normal aging, on the other hand, has also been associated with structural and functional brain changes, but these generally involve decreased cognitive functions. The aim of this cross-sectional study was to compare brain cortical thickness (CT in elderly yoga practitioners and a group of age-matched healthy non-practitioners. We tested 21 older women who had practiced hatha yoga for at least 8 years and 21 women naive to yoga, meditation or any mind-body interventions who were matched to the first group in age, years of formal education and physical activity level. A T1-weighted MPRAGE sequence was acquired for each participant. Yoga practitioners showed significantly greater CT in a left prefrontal lobe cluster, which included portions of the lateral middle frontal gyrus, anterior superior frontal gyrus and dorsal superior frontal gyrus. We found greater CT in the left prefrontal cortex of healthy elderly women who trained yoga for a minimum of 8 years compared with women in the control group.

  14. Comparable cortical activation with inferior performance in women during a novel cognitive inhibition task.

    Science.gov (United States)

    Halari, R; Kumari, V

    2005-03-07

    Men are hypothesised to perform better than women at tasks requiring cognitive inhibition. The present study applied whole-brain functional magnetic resonance imaging to investigate the neural correlates of cognitive inhibition using a novel task, requiring detection of numbers decreasing in numerical order, in relation to sex. The study involved 19 young healthy subjects (9 men, 10 women). Behavioural sex differences favouring men were found on the inhibition, but not on the automatization (i.e. detection of numbers increasing in numerical order), condition of the task. Significant areas of activation associated with cognitive inhibition included the right inferior prefrontal and bilateral dorsolateral prefrontal cortices, left inferior and superior parietal lobes, and bilateral temporal regions across men and women. No brain region was significantly differently activated in men and women. Our findings demonstrate that (a) cognitive inhibition is dependent on intact processes within frontal and parietal regions, and (b) women show inferior cognitive inhibition despite of comparable activation to men in relevant regions. Equated behavioural performance may elicit sex differences in brain activation.

  15. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling.

    Directory of Open Access Journals (Sweden)

    Saskia Koehler

    Full Text Available Pathological gambling (PG shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum. PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.

  16. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  17. Transcranial direct current stimulation of the medial prefrontal cortex modulates the propensity to help in costly helping behavior.

    Science.gov (United States)

    Liao, Chong; Wu, Song; Luo, Yue-Jia; Guan, Qing; Cui, Fang

    2018-05-01

    Social decision-making engages traditional decision-making processes (e.g. valuation), as well as social cognition processes (e.g. inferring the affective and mental states of another person). Neuroimaging and neuro-stimulation studies have suggested the involvement of the medial prefrontal cortex (mPFC) in a variety of social decision-making tasks. Yet no study has investigated the effect of the cortical excitability of mPFC in the decision-making of costly helping behavior. Here, we used tDCS to demonstrate the causal relationship between the cortical excitability of mPFC and costly helping decision-making. Subjects assigned to the anodal, cathodal and sham groups were required to decide whether they would like to cost their own money to relieve another subject (a confederate actually) from painful electrical shocks with a certain probability of success. Results showed that the subjects receiving anodal stimulation acted more prosaically than the subjects receiving cathodal stimulation. And this effect was only significant when the probability of success was high. We proposed that tDCS induced modulation of the cortical excitability, targeting the mPFC, can affect the prosocial propensity in costly helping behavior, and the possible underlying mechanisms were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes

    Directory of Open Access Journals (Sweden)

    Sun Qi

    2011-10-01

    Full Text Available Abstract Background Two strains of the silver fox (Vulpes vulpes, with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. Results cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence. Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p Conclusions Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.

  19. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    Science.gov (United States)

    2011-01-01

    Background Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. Results cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p fox transcriptome. Conclusions Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information. PMID:21967120

  20. rTMS on left prefrontal cortex contributes to memories for positive emotional cues: a comparison between pictures and words.

    Science.gov (United States)

    Balconi, M; Cobelli, C

    2015-02-26

    The present research explored the cortical correlates of emotional memories in response to words and pictures. Subjects' performance (Accuracy Index, AI; response times, RTs; RTs/AI) was considered when a repetitive Transcranial Magnetic Stimulation (rTMS) was applied on the left dorsolateral prefrontal cortex (LDLPFC). Specifically, the role of LDLPFC was tested by performing a memory task, in which old (previously encoded targets) and new (previously not encoded distractors) emotional pictures/words had to be recognized. Valence (positive vs. negative) and arousing power (high vs. low) of stimuli were also modulated. Moreover, subjective evaluation of emotional stimuli in terms of valence/arousal was explored. We found significant performance improving (higher AI, reduced RTs, improved general performance) in response to rTMS. This "better recognition effect" was only related to specific emotional features, that is positive high arousal pictures or words. Moreover no significant differences were found between stimulus categories. A direct relationship was also observed between subjective evaluation of emotional cues and memory performance when rTMS was applied to LDLPFC. Supported by valence and approach model of emotions, we supposed that a left lateralized prefrontal system may induce a better recognition of positive high arousal words, and that evaluation of emotional cue is related to prefrontal activation, affecting the recognition memories of emotions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Personality Traits and Cortical Activity Affect Gambling Behavior in Parkinson's Disease.

    Science.gov (United States)

    Balconi, Michela; Siri, Chiara; Meucci, Nicoletta; Pezzoli, Gianni; Angioletti, Laura

    2018-03-26

    Pathological gambling (PG) in Parkinson's disease (PD) manifests as a persistent and uncontrollable gambling behavior, characterized by dysfunctional decision-making and emotional impairment related to high-risk decisions. The aim of this study was to explore the relationship between personality traits and prefrontal cortex activity in PD patients with or without PG. Thus, hemodynamic cortical activity measured by functional near-infrared spectroscopy (fNIRS) and Iowa Gambling Task (IGT) performance were recorded in forty-six PD patients, divided into three groups according to their gambling status: PD patients with active gambling behavior (PDG); PD patients who remitted from PG (PDNG); and a control group (CG) composed by patients with PD only. Results indicates that gambling behavior in PD patients is strongly predictive of dysfunctional cognitive strategy; affecting anomalous cortical response with a left hemispheric unbalance in dorsal areas; and it is related to more reward sensitivity than impulsivity personality components. PDG patients differed from PDNG and CG from both behavioral and brain response to decision-making. Overall, these effects confirm a pathological condition related to cognitive and emotional aspects which makes the patients with PGD victims of their dysfunctional behavior.

  2. The cortical activation pattern by a rehabilitation robotic hand : A functional NIRS study

    Directory of Open Access Journals (Sweden)

    Pyung Hun eChang

    2014-02-01

    Full Text Available Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS, we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin(HbO, deoxy-hemoglobin(HbR and total-hemoglobin(HbT in five regions of interest: the primary sensory-motor cortex (SM1, hand somatotopy of the contralateral SM1, supplementary motor area (SMA, premotor cortex (PMC, and prefrontal cortex (PFC. Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand(uncorrected, pConclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  3. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device

    NARCIS (Netherlands)

    Nieuwhof, F.; Reelick, M.F.; Maidan, I.; Mirelman, A.; Hausdorff, J.M.; Olde Rikkert, M.G.M.; Bloem, B.R.; Muthalib, M.; Claassen, J.A.H.R.

    2016-01-01

    BACKGROUND: Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC)

  4. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala-Prefrontal Circuitry

    Science.gov (United States)

    Gee, Dylan G.; Humphreys, Kathryn L.; Flannery, Jessica; Goff, Bonnie; Telzer, Eva H.; Shapiro, Mor; Hare, Todd A.; Bookheimer, Susan Y.; Tottenham, Nim

    2013-01-01

    Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. While tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4 to 22 years using task-based functional magnetic resonance imaging (fMRI). Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-mPFC functional connectivity was significantly positive (greater than zero) among participants younger than ten, whereas functional connectivity was significantly negative (less than zero) among participants ten years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections. PMID:23467374

  5. Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise.

    Science.gov (United States)

    Vogt, Stefan; Buccino, Giovanni; Wohlschläger, Afra M; Canessa, Nicola; Shah, N Jon; Zilles, Karl; Eickhoff, Simon B; Freund, Hans-Joachim; Rizzolatti, Giacomo; Fink, Gereon R

    2007-10-01

    In this event-related fMRI study, we demonstrate the effects of a single session of practising configural hand actions (guitar chords) on cortical activations during observation, motor preparation and imitative execution. During the observation of non-practised actions, the mirror neuron system (MNS), consisting of inferior parietal and ventral premotor areas, was more strongly activated than for the practised actions. This finding indicates a strong role of the MNS in the early stages of imitation learning. In addition, the left dorsolateral prefrontal cortex (DLPFC) was selectively involved during observation and motor preparation of the non-practised chords. This finding confirms Buccino et al.'s [Buccino, G., Vogt, S., Ritzl, A., Fink, G.R., Zilles, K., Freund, H.-J., Rizzolatti, G., 2004a. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42, 323-334] model of imitation learning: for actions that are not yet part of the observer's motor repertoire, DLPFC engages in operations of selection and combination of existing, elementary representations in the MNS. The pattern of prefrontal activations further supports Shallice's [Shallice, T., 2004. The fractionation of supervisory control. In: Gazzaniga, M.S. (Ed.), The Cognitive Neurosciences, Third edition. MIT Press, Cambridge, MA, pp. 943-956] proposal of a dominant role of the left DLPFC in modulating lower level systems and of a dominant role of the right DLPFC in monitoring operations.

  6. Computational modelling and analysis of hippocampal-prefrontal information coding during a spatial decision-making task

    Directory of Open Access Journals (Sweden)

    Thomas eJahans-Price

    2014-03-01

    Full Text Available We introduce a computational model describing rat behaviour and the interactions of neural populations processing spatial and mnemonic information during a maze-based, decision-making task. The model integrates sensory input and implements a working memory to inform decisions at a choice point, reproducing rat behavioural data and predicting the occurrence of turn- and memory-dependent activity in neuronal networks supporting task performance. We tested these model predictions using a new software toolbox (Maze Query Language, MQL to analyse activity of medial prefrontal cortical (mPFC and dorsal hippocampal (dCA1 neurons recorded from 6 adult rats during task performance. The firing rates of dCA1 neurons discriminated context (i.e. the direction of the previous turn, whilst a subset of mPFC neurons was selective for current turn direction or context, with some conjunctively encoding both. mPFC turn-selective neurons displayed a ramping of activity on approach to the decision turn and turn-selectivity in mPFC was significantly reduced during error trials. These analyses complement data from neurophysiological recordings in non-human primates indicating that firing rates of cortical neurons correlate with integration of sensory evidence used to inform decision-making.

  7. Enhanced prefrontal functional–structural networks to support postural control deficits after traumatic brain injury in a pediatric population

    Directory of Open Access Journals (Sweden)

    Ibai Diez

    2017-06-01

    Full Text Available Traumatic brain injury (TBI affects structural connectivity, triggering the reorganization of structural–functional circuits in a manner that remains poorly understood. We focus here on brain network reorganization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severe TBI, comparing them to young, typically developing control participants. TBI patients (but not controls recruited prefrontal regions to interact with two separated networks: (1 a subcortical network, including parts of the motor network, basal ganglia, cerebellum, hippocampus, amygdala, posterior cingulate gyrus, and precuneus; and (2 a task-positive network, involving regions of the dorsal attention system, together with dorsolateral and ventrolateral prefrontal regions. We also found that the increased prefrontal connectivity in TBI patients was correlated with some postural control indices, such as the amount of body sway, whereby patients with worse balance increased their connectivity in frontal regions more strongly. The increased prefrontal connectivity found in TBI patients may provide the structural scaffolding for stronger cognitive control of certain behavioral functions, consistent with the observations that various motor tasks are performed less automatically following TBI and that more cognitive control is associated with such actions. Using a new hierarchical atlas whose modules are relevant for both structure and function, we found increased structural and functional connectivity in prefrontal regions in TBI patients as compared to controls, in addition to a general pattern of overall decreased connectivity across the TBI brain. Although this increased prefrontal connectivity reflected interactions between brain areas when participants were at rest, the enhanced connectivity was found to be negatively correlated with active behavior such as postural control performance. Thus our findings, obtained

  8. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Science.gov (United States)

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons

  9. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Directory of Open Access Journals (Sweden)

    Maggie L Chow

    Full Text Available Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess

  10. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    Science.gov (United States)

    Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons

  11. Individual Differences in Reasoning and Visuospatial Attention are Associated with Prefrontal and Parietal White Matter Tracts in Healthy Older Adults

    Science.gov (United States)

    Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren

    2016-01-01

    Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750

  12. Working Memory Modulates Glutamate Levels in the Dorsolateral Prefrontal Cortex during 1H fMRS

    Directory of Open Access Journals (Sweden)

    Eric A. Woodcock

    2018-03-01

    Full Text Available Glutamate is involved in excitatory neurotransmission and metabolic processes related to brain function. Previous studies using proton functional magnetic resonance spectroscopy (1H fMRS have demonstrated elevated cortical glutamate levels by 2–4% during visual and motor stimulation, relative to periods of no stimulation. Here, we extended this approach to working memory cognitive task performance, which has been consistently associated with dorsolateral prefrontal cortex (dlPFC activation. Sixteen healthy adult volunteers completed a continuous visual fixation “rest” task followed by a letter 2-back working memory task during 1H fMRS acquisition of the left dlPFC, which encompassed Brodmann areas 45 and 46 over a 4.5-cm3 volume. Using a 100% automated fitting procedure integrated with LCModel, raw spectra were eddy current-, phase-, and shift-corrected prior to quantification resulting in a 32s temporal resolution or 8 averages per spectra. Task compliance was high (95 ± 11% correct and the mean Cramer-Rao Lower Bound of glutamate was 6.9 ± 0.9%. Relative to continuous passive visual fixation, left dlPFC glutamate levels were significantly higher by 2.7% (0.32 mmol/kg wet weight during letter 2-back performance. Elevated dlPFC glutamate levels reflect increased metabolic activity and excitatory neurotransmission driven by working memory-related cognitive demands. These results provide the first in vivo demonstration of elevated dlPFC glutamate levels during working memory.

  13. Cortical networks for encoding near and far space in the non-human primate.

    Science.gov (United States)

    Cléry, Justine; Guipponi, Olivier; Odouard, Soline; Wardak, Claire; Ben Hamed, Suliann

    2018-04-19

    While extra-personal space is often erroneously considered as a unique entity, early neuropsychological studies report a dissociation between near and far space processing both in humans and in monkeys. Here, we use functional MRI in a naturalistic 3D environment to describe the non-human primate near and far space cortical networks. We describe the co-occurrence of two extended functional networks respectively dedicated to near and far space processing. Specifically, far space processing involves occipital, temporal, parietal, posterior cingulate as well as orbitofrontal regions not activated by near space, possibly subserving the processing of the shape and identity of objects. In contrast, near space processing involves temporal, parietal, prefrontal and premotor regions not activated by far space, possibly subserving the preparation of an arm/hand mediated action in this proximal space. Interestingly, this network also involves somatosensory regions, suggesting a cross-modal anticipation of touch by a nearby object. Last, we also describe cortical regions that process both far and near space with a preference for one or the other. This suggests a continuous encoding of relative distance to the body, in the form of a far-to-near gradient. We propose that these cortical gradients in space representation subserve the physically delineable peripersonal spaces described in numerous psychology and psychophysics studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Post-adolescent developmental changes in cortical complexity.

    Science.gov (United States)

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  15. Frontopolar cortical inefficiency may underpin reward and working memory dysfunction in bipolar disorder.

    Science.gov (United States)

    Jogia, Jigar; Dima, Danai; Kumari, Veena; Frangou, Sophia

    2012-12-01

    Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems.

  16. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Directory of Open Access Journals (Sweden)

    Tina eJeon

    2015-12-01

    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  17. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area

    Science.gov (United States)

    Jo, Yong Sang; Lee, Jane; Mizumori, Sheri J.Y.

    2013-01-01

    Dopamine (DA) cells have been suggested to signal discrepancies between expected and actual rewards in reinforcement learning. DA cells in the ventral tegmental area (VTA) receive direct projections from the medial prefrontal cortex (mPFC), a structure that is known as one of the brain areas that represent expected future rewards. To investigate whether the mPFC contributes to generating reward prediction error signals of DA cells, we recorded VTA cells from rats foraging for different amounts of reward in a spatial working memory task. Our results showed that DA cells initially responded after the acquisition of rewards, but over training, they exhibited phasic responses when rats detected sensory cues originating from the rewards before obtaining them. We also observed two separate groups of non-DA cells that were activated in expectation of upcoming rewards or during reward consumption. Bilateral injections of muscimol, a GABAA agonist, into the mPFC significantly decreased the non-DA activity that encoded reward expectation. By contrast, the same manipulation of the mPFC elevated DA responses to reward-predicting cues. However, neither DA nor non-DA responses that were elicited after reward acquisition were affected by mPFC inactivation. These results suggest that the mPFC provides the information about expected rewards to the VTA, and its functional loss elevates DA responses to reward-predicting cues by altering expectations about forthcoming rewards. PMID:23658156

  18. Understanding age-induced cortical porosity in women

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Delaisse, Jean-Marie; van der Eerden, Bram C J

    2018-01-01

    of a histomorphometric analysis of sections of iliac bone specimens from 35 women (age 16-78 years). Firstly, the study shows that the aging-induced cortical porosity reflects an increased pore size rather than an increased pore density. Secondly, it establishes a novel histomorphometric classification of the pores...... initiation of the subsequent bone formation. This article is protected by copyright. All rights reserved....

  19. Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood

    DEFF Research Database (Denmark)

    Bortz, D M; Jørgensen, Christinna Vangsgaard; Mikkelsen, J D

    2014-01-01

    Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious ...

  20. Prefrontal cortex executive processes affected by stress in health and disease.

    Science.gov (United States)

    Girotti, Milena; Adler, Samantha M; Bulin, Sarah E; Fucich, Elizabeth A; Paredes, Denisse; Morilak, David A

    2017-07-06

    Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction. Published by Elsevier Inc.

  1. Converging prefrontal pathways support associative and perceptual features of conditioned stimuli.

    Science.gov (United States)

    Howard, James D; Kahnt, Thorsten; Gottfried, Jay A

    2016-05-04

    Perceptually similar stimuli often predict vastly different outcomes, requiring the brain to maintain specific associations in the face of potential ambiguity. This could be achieved either through local changes in stimulus representations, or through modulation of functional connections between stimulus-coding and outcome-coding regions. Here we test these competing hypotheses using classical conditioning of perceptually similar odours in the context of human fMRI. Pattern-based analyses of odour-evoked fMRI activity reveal that odour category, identity and value are coded in piriform (PC), orbitofrontal (OFC) and ventromedial prefrontal (vmPFC) cortices, respectively. However, we observe no learning-related reorganization of category or identity representations. Instead, changes in connectivity between vmPFC and OFC are correlated with learning-related changes in value, whereas connectivity changes between vmPFC and PC predict changes in perceived odour similarity. These results demonstrate that dissociable neural pathways support associative and perceptual representations of sensory stimuli.

  2. Does gender play a role in functional asymmetry of ventromedial prefrontal cortex?

    Science.gov (United States)

    Tranel, Daniel; Damasio, Hanna; Denburg, Natalie L; Bechara, Antoine

    2005-12-01

    We found previously in a lesion study that the right-sided sector of the ventromedial prefrontal cortices (VMPCs) was critical for social/emotional functioning and decision-making, whereas the left side appeared to be less important. It so happened that all but one of the subjects in that study were men, and the one woman did not fit the pattern very well. This prompted a follow-up investigation, in which we explored the following question: Does gender play a role in the development of defects in social conduct, emotional functioning and decision-making, following unilateral VMPC damage? We culled from our Patient Registry same-sex pairs of men or women patients who had comparable unilateral VMPC damage in either the left or right hemisphere. Two male pairs and one female pair were formed, and we included two additional women with unilateral right VMPC damage (8 patients in all). The domains of measurement covered social conduct, emotional processing and personality, and decision-making. We found a systematic effect of gender on the pattern of left-right asymmetry in VMPC. In men, there were severe defects following unilateral right VMPC damage, but not following left-sided damage. In women, there were defects following unilateral left VMPC damage; following right-sided damage, however, defects were mild or absent. The findings suggest that men and women may use different strategies to solve similar problems--e.g. men may use a more holistic, gestalt-type strategy, and women may use a more analytic, verbally-mediated strategy. Such differences could reflect asymmetric, gender-related differences in the neurobiology of left and right VMPC sectors.

  3. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Vecchio, Fabrizio; Sebastiano, Fabio; Di Gennaro, Giancarlo; Quarato, Pier P; Morace, Roberta; Pavone, Luigi; Soricelli, Andrea; Noce, Giuseppe; Esposito, Vincenzo; Rossini, Paolo Maria; Gallese, Vittorio; Mirabella, Giovanni

    2016-01-01

    In the present study, we tested the hypothesis that both movement execution and observation induce parallel modulations of alpha, beta, and gamma electrocorticographic (ECoG) rhythms in primary somatosensory (Brodmann area 1-2, BA1-2), primary motor (BA4), ventral premotor (BA6), and prefrontal (BA44 and BA45, part of putative human mirror neuron system underlying the understanding of actions of other people) areas. ECoG activity was recorded in drug-resistant epileptic patients during the execution of actions to reach and grasp common objects according to their affordances, as well as during the observation of the same actions performed by an experimenter. Both action execution and observation induced a desynchronization of alpha and beta rhythms in BA1-2, BA4, BA6, BA44 and BA45, which was generally higher in amplitude during the former than the latter condition. Action execution also induced a major synchronization of gamma rhythms in BA4 and BA6, again more during the execution of an action than during its observation. Human primary sensorimotor, premotor, and prefrontal areas do generate alpha, beta, and gamma rhythms and differently modulate them during action execution and observation. Gamma rhythms of motor areas are especially involved in action execution. Oscillatory activity of neural populations in sensorimotor, premotor and prefrontal (part of human mirror neuron system) areas represents and distinguishes own actions from those of other people. This methodological approach might be used for a neurophysiological diagnostic imaging of social cognition in epileptic patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Attention, emotion, and deactivation of default activity in inferior medial prefrontal cortex

    DEFF Research Database (Denmark)

    Geday, Jacob; Gjedde, Albert

    2008-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC...... with positron emission tomography (PET) of labeled water (H(15)2O) uptake in brain of 14 healthy subjects. The subjects performed either a less demanding or a more demanding task of attention while they watched neutral and emotive images of people in realistic indoor or outdoor situations. In the less demanding...... cortices, revealed significant activation in the fusiform gyrus, independently of the task. In contrast, we found no effect of emotional content in the IMPC, where emotions failed to override the effect of the task. The results are consistent with a role of the IMPC in the selection among competitive...

  5. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    Science.gov (United States)

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  6. Altered functional connectivity during self- and close other-reflection in patients with bipolar disorder with past psychosis and patients with schizophrenia.

    Science.gov (United States)

    Zhang, Liwen; Vander Meer, Lisette; Opmeer, Esther M; Marsman, Jan-Bernard C; Ruhé, Henricus G; Aleman, André

    2016-12-01

    Disturbances in implicit self-processing have been reported both in psychotic patients with bipolar disorder (BD) and schizophrenia. It remains unclear whether these two psychotic disorders show disturbed functional connectivity during explicit self-reflection, which is associated with social functioning and illness symptoms. Therefore, we investigated functional connectivity during explicit self-reflection in BD with past psychosis and schizophrenia. Twenty-three BD-patients, 17 schizophrenia-patients and 21 health controls (HC) performed a self-reflection task, including the conditions self-reflection, close other-reflection and semantic control. Functional connectivity was investigated with generalized psycho-physiological interaction (gPPI). During self-reflection compared to semantic, BD-patients had decreased connectivity between several cortical-midline structures (CMS) nodes (i.e., anterior cingulate cortex, ventromedial prefrontal cortex), the insula and the head of the caudate while HC showed increased connectivities. Schizophrenia-patients, during close other-reflection compared to semantic, demonstrated reduced ventral-anterior insula-precuneus/posterior cingulate cortex (PCC) functional connectivity, whereas this was increased in HC. There were no differences between BD and schizophrenia during self- and close other-reflection. We propose that decreased functional connectivity between the CMS nodes/insula and head of the caudate in BD-patients may imply a reduced involvement of the motivational system during self-reflection; and the reduced functional connectivity between the ventral-anterior insula and precuneus/PCC during close other-reflection in schizophrenia-patients may subserve difficulties in information integration of autobiographical memory and emotional awareness in relation to close others. These distinctive impaired patterns of functional connectivity in BD and schizophrenia (compared to HC) deserve further investigation to determine their

  7. Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes.

    Science.gov (United States)

    Headley, Drew B; Kanta, Vasiliki; Paré, Denis

    2017-02-01

    The hippocampus generates population events termed sharp-wave ripples (SWRs) and dentate spikes (DSs). While little is known about DSs, SWR-related hippocampal discharges during sleep are thought to replay prior waking activity, reactivating the cortical networks that encoded the initial experience. During slow-wave sleep, such reactivations likely occur during up-states, when most cortical neurons are depolarized. However, most studies have examined the relationship between SWRs and up-states measured in single neocortical regions. As a result, it is currently unclear whether SWRs are associated with particular patterns of widely distributed cortical activity. Additionally, no such investigation has been carried out for DSs. The present study addressed these questions by recording SWRs and DSs from the dorsal hippocampus simultaneously with prefrontal, sensory (visual and auditory), perirhinal, and entorhinal cortices in naturally sleeping rats. We found that SWRs and DSs were associated with up-states in all cortical regions. Up-states coinciding with DSs and SWRs exhibited increased unit activity, power in the gamma band, and intraregional gamma coherence. Unexpectedly, interregional gamma coherence rose much more strongly in relation to DSs than to SWRs. Whereas the increase in gamma coherence was time locked to DSs, that seen in relation to SWRs was not. These observations suggest that SWRs are related to the strength of up-state activation within individual regions throughout the neocortex but not so much to gamma coherence between different regions. Perhaps more importantly, DSs coincided with stronger periods of interregional gamma coherence, suggesting that they play a more important role than previously assumed. Off-line cortico-hippocampal interactions are thought to support memory consolidation. We surveyed the relationship between hippocampal sharp-wave ripples (SWRs) and dentate spikes (DSs) with up-states across multiple cortical regions. SWRs and

  8. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions

    Science.gov (United States)

    Paneri, Sofia; Gregoriou, Georgia G.

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices. PMID:29033784

  9. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions

    Directory of Open Access Journals (Sweden)

    Sofia Paneri

    2017-09-01

    Full Text Available The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.

  10. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression.

    Science.gov (United States)

    Shajahan, Polash M; Glabus, Mike F; Steele, J Douglas; Doris, Alan B; Anderson, Kay; Jenkins, Jenny A; Gooding, Patricia A; Ebmeier, Klaus P

    2002-06-01

    Transcranial magnetic stimulation (TMS) has been used for over a decade to investigate cortical function. More recently, it has been employed to treat conditions such as major depression. This study was designed to explore the effects of differential treatment parameters, such as stimulation frequency. In addition, the data were examined to determine whether a change in connectivity occurred following TMS. Fifteen patients with major depression were entered into a combined imaging and treatment experiment with single photon emission computed tomography (SPECT) and repetitive transcranial magnetic stimulation (rTMS) over left dorso-lateral prefrontal cortex (DLPFC). Brain perfusion during a verbal fluency task was compared between pre- and poststimulation conditions. Patients were then treated with 80% of motor threshold for a total of 10 days, using 5000 stimuli at 5, 10 or 20 Hz. Tests of cortical excitability and neuropsychological tests were done throughout the trial. Patients generally improved with treatment. There was no perceptible difference between stimulation frequencies, which may have reflected low study power. An increase in rostral anterior cingulate activation after the treatment day was associated with increased functional connectivity in the dorso-lateral frontal loop on the left and the limbic loop on both sides. No noticeable deterioration in neuropsychological function was observed. TMS at the stimulation frequencies used seems to be safe over a course of 5000 stimuli. It appears to have an activating effect in anterior limbic structures and increase functional connectivity in the neuroanatomical networks under the stimulation coil within an hour of stimulation.

  11. Sex Differences in the Relationship Between Conduct Disorder and Cortical Structure in Adolescents.

    Science.gov (United States)

    Smaragdi, Areti; Cornwell, Harriet; Toschi, Nicola; Riccelli, Roberta; Gonzalez-Madruga, Karen; Wells, Amy; Clanton, Roberta; Baker, Rosalind; Rogers, Jack; Martin-Key, Nayra; Puzzo, Ignazio; Batchelor, Molly; Sidlauskaite, Justina; Bernhard, Anka; Martinelli, Anne; Kohls, Gregor; Konrad, Kerstin; Baumann, Sarah; Raschle, Nora; Stadler, Christina; Freitag, Christine; Sonuga-Barke, Edmund J S; De Brito, Stephane; Fairchild, Graeme

    2017-08-01

    Previous studies have reported reduced cortical thickness and surface area and altered gyrification in frontal and temporal regions in adolescents with conduct disorder (CD). Although there is evidence that the clinical phenotype of CD differs between males and females, no studies have examined whether such sex differences extend to cortical and subcortical structure. As part of a European multisite study (FemNAT-CD), structural magnetic resonance imaging (MRI) data were collected from 48 female and 48 male participants with CD and from 104 sex-, age-, and pubertal-status-matched controls (14-18 years of age). Data were analyzed using surface-based morphometry, testing for effects of sex, diagnosis, and sex-by-diagnosis interactions, while controlling for age, IQ, scan site, and total gray matter volume. CD was associated with cortical thinning and higher gyrification in ventromedial prefrontal cortex in both sexes. Males with CD showed lower, and females with CD showed higher, supramarginal gyrus cortical thickness compared with controls. Relative to controls, males with CD showed higher gyrification and surface area in superior frontal gyrus, whereas the opposite pattern was seen in females. There were no effects of diagnosis or sex-by-diagnosis interactions on subcortical volumes. Results are discussed with regard to attention-deficit/hyperactivity disorder, depression, and substance abuse comorbidity, medication use, handedness, and CD age of onset. We found both similarities and differences between males and females in CD-cortical structure associations. This initial evidence that the pathophysiological basis of CD may be partly sex-specific highlights the need to consider sex in future neuroimaging studies and suggests that males and females may require different treatments. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia

    OpenAIRE

    Hashimoto, T; Arion, D; Unger, T; Maldonado-Avilés, JG; Morris, HM; Volk, DW; Mirnics, K; Lewis, DA

    2007-01-01

    In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmis...

  13. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    Science.gov (United States)

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  14. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study.

    Science.gov (United States)

    Moont, Ruth; Crispel, Yonatan; Lev, Rina; Pud, Dorit; Yarnitsky, David

    2011-07-01

    For most healthy subjects, both subjective pain ratings and pain-evoked potentials are attenuated under conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls, or DNIC). Although essentially spinal-bulbar, this inhibition is under cortical control. This is the first study to observe temporal as well as spatial changes in cortical activations under CPM. Specifically, we aimed to investigate the interplay of areas involved in the perception and processing of pain and those involved in controlling descending inhibition. We examined brief consecutive poststimulus time windows of 50 ms using a method of source-localization from pain evoked potentials, sLORETA. This enabled determination of dynamic changes in localized cortical generators evoked by phasic noxious heat stimuli to the left volar forearm in healthy young males, with and without conditioning hot-water pain to the right hand. We found a CPM effect characterized by an initial increased activation in the orbitofrontal cortex (OFC) and amygdala at 250-300 ms poststimulus, which was correlated with the extent of psychophysical pain reduction. This was followed by reduced activations in the primary and secondary somatosensory cortices, supplementary motor area, posterior insula, and anterior cingulate cortex from 400 ms poststimulus. Our findings show that the prefrontal pain-controlling areas of OFC and amygdala increase their activity in parallel with subjective pain reduction under CPM, and that this increased activity occurs prior to reductions in activations of the pain sensory areas. In conclusion, achieving pain inhibition by the CPM process seems to be under control of the OFC and the amygdala. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Cortical connective field estimates from resting state fMRI activity

    NARCIS (Netherlands)

    Gravel, Nicolas; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V.; Dumoulin, Serge O.; Renken, Remco; Curcic-Blake, Branisalava; Cornelissen, Frans W.

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective

  16. Cortical and sub-cortical effects in primate models of cocaine use: implications for addiction and the increased risk of psychiatric illness.

    Science.gov (United States)

    Bradberry, Charles W

    2011-02-01

    Drug abuse is a serious risk factor for the incidence and severity of multiple psychiatric illnesses. Understanding the neurobiological consequences of repeated exposure to abused drugs can help to inform how those risks are manifested in terms of specific neurochemical mechanisms and brain networks. This review examines selective studies in non-human primates that employed a cocaine self-administration model. Neurochemical consequences of chronic exposure appear to differ from observations in rodent studies. Whereas chronic intermittent exposure in the rodent is usually associated with a dose-dependent increase in dopaminergic response to a cocaine challenge, in the rhesus monkey, high cumulative exposure was not observed to cause a sensitized dopamine response. These non-human primate observations are concordant with clinical findings in human users. The results of cue exposure studies on dopaminergic transmission are also reviewed. Direct microdialysis measurements indicate that there is not a sustained increase in dopamine associated with cocaine-linked cues. As an alternative to striatal dopaminergic mechanisms mediating cue effects, single unit studies in prefrontal cortex during self-administration in monkeys suggests the orbitofrontal and anterior cingulate cortex are strongly engaged by cocaine cues. Based on the strong clinical imaging literature on cortical and cognitive dysfunction associated with addiction, it is proposed that the strong engagement of cortical systems during repeated cocaine reinforcement results in maladaptive changes that contribute to the risks of drug use for exacerbation of other psychiatric disorders.

  17. Qualia could arise from information processing in local cortical networks.

    Science.gov (United States)

    Orpwood, Roger

    2013-01-01

    Re-entrant feedback, either within sensory cortex or arising from prefrontal areas, has been strongly linked to the emergence of consciousness, both in theoretical and experimental work. This idea, together with evidence for local micro-consciousness, suggests the generation of qualia could in some way result from local network activity under re-entrant activation. This paper explores the possibility by examining the processing of information by local cortical networks. It highlights the difference between the information structure (how the information is physically embodied), and the information message (what the information is about). It focuses on the network's ability to recognize information structures amongst its inputs under conditions of extensive local feedback, and to then assign information messages to those structures. It is shown that if the re-entrant feedback enables the network to achieve an attractor state, then the message assigned in any given pass of information through the network is a representation of the message assigned in the previous pass-through of information. Based on this ability the paper argues that as information is repeatedly cycled through the network, the information message that is assigned evolves from a recognition of what the input structure is, to what it is like, to how it appears, to how it seems. It could enable individual networks to be the site of qualia generation. The paper goes on to show networks in cortical layers 2/3 and 5a have the connectivity required for the behavior proposed, and reviews some evidence for a link between such local cortical cyclic activity and conscious percepts. It concludes with some predictions based on the theory discussed.

  18. Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex

    Science.gov (United States)

    Smith, Kyle S.; Virkud, Arti; Deisseroth, Karl; Graybiel, Ann M.

    2012-01-01

    Habits tend to form slowly but, once formed, can have great stability. We probed these temporal characteristics of habitual behaviors by intervening optogenetically in forebrain habit circuits as rats performed well-ingrained habitual runs in a T-maze. We trained rats to perform a maze habit, confirmed the habitual behavior by devaluation tests, and then, during the maze runs (ca. 3 s), we disrupted population activity in a small region in the medial prefrontal cortex, the infralimbic cortex. In accordance with evidence that this region is necessary for the expression of habits, we found that this cortical disruption blocked habitual behavior. Notably, however, this blockade of habitual performance occurred on line, within an average of three trials (ca. 9 s of inhibition), and as soon as during the first trial (habit, and, simultaneously, the more recently acquired habit was blocked. These online changes occurred within an average of two trials (ca. 6 s of infralimbic inhibition). Measured changes in generalized performance ability and motivation to consume reward were unaffected. This immediate toggling between breaking old habits and returning to them demonstrates that even semiautomatic behaviors are under cortical control and that this control occurs online, second by second. These temporal characteristics define a framework for uncovering cellular transitions between fixed and flexible behaviors, and corresponding disturbances in pathologies. PMID:23112197

  19. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5

    Directory of Open Access Journals (Sweden)

    Viggiano E

    2016-07-01

    Full Text Available Emanuela Viggiano,1,2 Vincenzo Monda,1 Antonietta Messina,1 Fiorenzo Moscatelli,3 Anna Valenzano,3 Domenico Tafuri,4 Giuseppe Cibelli,3 Bruno De Luca,1 Giovanni Messina,1,3 Marcellino Monda1 1Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples, 2Department of Medicine, University of Padua, Padua, 3Department of Clinical and Experimental Medicine, University of Foggia, Foggia, 4Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy Abstract: Depression of electrocorticogram propagating over the cortex surface results in cortical spreading depression (CSD, which is probably related to the pathophysiology of stroke, epilepsy, and migraine. However, preconditioning with CSD produces neuroprotection to subsequent ischemic episodes. Such effects require the expression or activation of several genes, including neuroprotective ones. Recently, it has been demonstrated that the expression of the uncoupling proteins (UCPs 2 and 5 is amplified during brain ischemia and their expression exerts a long-term effect upon neuron protection. To evaluate the neuroprotective consequence of CSD, the expression of UCP-5 in the brain cortex was measured following CSD induction. CSD was evoked in four samples of rats, which were sacrificed after 2 hours, 4 hours, 6 hours, and 24 hours. Western blot analyses were carried out to measure UCP-5 concentrations in the prefrontal cortices of both hemispheres, and immunohistochemistry was performed to determine the localization of UCP-5 in the brain cortex. The results showed a significant elevation in UCP-5 expression at 24 hours in all cortical strata. Moreover, UCP-5 was triggered by CSD, indicating that UCP-5 production can have a neuroprotective effect. Keywords: cortical spreading depression, neuroprotective effect, uncoupling protein-5

  20. Activation of anterior insula during self-reflection.

    Science.gov (United States)

    Modinos, Gemma; Ormel, Johan; Aleman, André

    2009-01-01

    Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  1. Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Mezzapesa, Domenico Maria; D'Errico, Eustachio; Tortelli, Rosanna; Distaso, Eugenio; Cortese, Rosa; Tursi, Marianna; Federico, Francesco; Zoccolella, Stefano; Logroscino, Giancarlo; Dicuonzo, Franca; Simone, Isabella Laura

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.

  2. Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Domenico Maria Mezzapesa

    Full Text Available Amyotrophic lateral sclerosis (ALS has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.

  3. Age-related changes in prefrontal norepinephrine transporter density: The basis for improved cognitive flexibility after low doses of atomoxetine in adolescent rats

    Science.gov (United States)

    Bradshaw, Sarah E.; Agster, Kara L.; Waterhouse, Barry D.; McGaughy, Jill A.

    2016-01-01

    Adolescence is a period of major behavioral and brain reorganization. As diagnoses and treatment of disorders like attention deficit hyperactivity disorder (ADHD) often occur during adolescence, it is important to understand how the prefrontal cortices change and how these changes may influence the response to drugs during development. The current study uses an adolescent rat model to study the effect of standard ADHD treatments, atomoxetine and methylphenidate on attentional set shifting and reversal learning. While both of these drugs act as norepinephrine reuptake inhibitors, higher doses of atomoxetine and all doses of methylphenidate also block dopamine transporters (DAT). Low doses of atomoxetine, were effective at remediating cognitive rigidity found in adolescents. In contrast, methylphenidate improved performance in rats unable to form an attentional set due to distractibility but was without effect in normal subjects. We also assessed the effects of GBR 12909, a selective DAT inhibitor, but found no effect of any dose on behavior. A second study in adolescent rats investigated changes in norepinephrine transporter (NET) and dopamine beta hydroxylase (DBH) density in five functionally distinct subregions of the prefrontal cortex: infralimbic, prelimbic, anterior cingulate, medial and lateral orbitofrontal cortices. These regions are implicated in impulsivity and distractibility. We found that NET, but not DBH, changed across adolescence in a regionally selective manner. The prelimbic cortex, which is critical to cognitive rigidity, and the lateral orbitofrontal cortex, critical to reversal learning and some forms of response inhibition, showed higher levels of NET at early than mid- to late adolescence. PMID:26774596

  4. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2012-02-01

    Full Text Available Several cortical regions are reported to vary in meditation practitioners. However, since prior analyses were focused on examining gray matter or cortical thickness, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding is an important cerebral characteristic related to the geometry of the brain’s surface. Cortical folding occurs early in development and might be linked to behavioral traits. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n=100 of meditators and controls, carefully matched for sex and age. Cortical gyrification was established via calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an ideal integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary determine the relative contribution of nature and nurture to links between cortical gyrification and meditation.

  5. How well do clinical pain assessment tools reflect pain in infants?

    Science.gov (United States)

    Slater, Rebeccah; Cantarella, Anne; Franck, Linda; Meek, Judith; Fitzgerald, Maria

    2008-06-24

    Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing. Cortical haemodynamic activity was measured in infants, aged 25-43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP) score in the same infant to the same stimulus (n = 12, 33 test occasions). Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32-1.11, p = 0.001; correlation coefficient = 0.57). Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84-1.67, p free.

  6. Cortical Network Dynamics of Perceptual Decision-Making in the Human Brain

    Directory of Open Access Journals (Sweden)

    Markus eSiegel

    2011-02-01

    Full Text Available Goal-directed behavior requires the flexible transformation of sensory evidence about our environment into motor actions. Studies of perceptual decision-making have shown that this transformation is distributed across several widely separated brain regions. Yet, little is known about how decision-making emerges from the dynamic interactions among these regions. Here, we review a series of studies, in which we characterized the cortical network interactions underlying a perceptual decision process in the human brain. We used magnetoencephalography (MEG to measure the large-scale cortical population dynamics underlying each of the sub-processes involved in this decision: the encoding of sensory evidence and action plan, the mapping between the two, and the attentional selection of task-relevant evidence. We found that these sub-processes are mediated by neuronal oscillations within specific frequency ranges. Localized gamma-band oscillations in sensory and motor cortices reflect the encoding of the sensory evidence and motor plan. Large-scale oscillations across widespread cortical networks mediate the integrative processes connecting these local networks: Gamma- and beta-band oscillations across frontal, parietal and sensory cortices serve the selection of relevant sensory evidence and its flexible mapping onto action plans. In sum, our results suggest that perceptual decisions are mediated by oscillatory interactions within overlapping local and large-scale cortical networks.

  7. Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity.

    Science.gov (United States)

    Yurgil, Kate A; Golob, Edward J

    2013-12-01

    This study determined whether auditory cortical responses associated with mechanisms of attention vary with individual differences in working memory capacity (WMC) and perceptual load. The operation span test defined subjects with low versus high WMC, who then discriminated target/nontarget tones while EEG was recorded. Infrequent white noise distracters were presented at midline or ±90° locations, and perceptual load was manipulated by varying nontarget frequency. Amplitude of the N100 to distracters was negatively correlated with WMC. Relative to targets, only high WMC subjects showed attenuated N100 amplitudes to nontargets. In the higher WMC group, increased perceptual load was associated with decreased P3a amplitudes to distracters and longer-lasting negative slow wave to nontargets. Results show that auditory cortical processing is associated with multiple facets of attention related to WMC and possibly higher-level cognition. Copyright © 2013 Society for Psychophysiological Research.

  8. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study.

    Science.gov (United States)

    Chang, Pyung-Hun; Lee, Seung-Hee; Gu, Gwang Min; Lee, Seung-Hyun; Jin, Sang-Hyun; Yeo, Sang Seok; Seo, Jeong Pyo; Jang, Sung Ho

    2014-01-01

    Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  9. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding FMRI.

    Directory of Open Access Journals (Sweden)

    Ella Striem-Amit

    Full Text Available The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature. Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities.

  10. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    Science.gov (United States)

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J

    2015-01-01

    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  11. Controlling the Anchoring Effect through Transcranial Direct Current Stimulation (tDCS to the Right Dorsolateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jianbiao Li

    2017-06-01

    Full Text Available Selective accessibility mechanisms indicate that anchoring effects are results of selective retrieval of working memory. Neuroimaging studies have revealed that the right dorsolateral prefrontal cortex (DLPFC is closely related to memory retrieval and performance. However, no research has investigated the effect of changing the cortical excitability in right DLPFC on anchoring effects. Transcranial direct current stimulation (tDCS can modulate the excitability of the human cerebral cortex, while anodal and cathodal tDCS are postulated to increase or decrease cortical activity, respectively. In this study, we used tDCS to investigate whether effects of increased or decreased right DLPFC excitability influence anchoring effects in willingness to pay (WTP experiments. Ninety participants were first randomly assigned to receive either anodal, cathodal, or sham stimulation of 15 min, then they performed a valuation task regarding WTP. The results showed that anchoring effects were negatively related to activities of right DLPFC: the anodal stimulation diminished anchoring effects while the cathodal stimulation increased anchoring effects. These outcomes provide one of the first instances of neural evidence for the role of the right DLPFC in anchoring effects and support psychological explanations of the selective accessibility mechanisms and cognitive sets.

  12. NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.

    Science.gov (United States)

    Kopf, Juliane; Schecklmann, Martin; Hahn, Tim; Dresler, Thomas; Dieler, Alica C; Herrmann, Martin J; Fallgatter, Andreas J; Reif, Andreas

    2011-08-15

    Nitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference.

    Science.gov (United States)

    Zeithamova, Dagmar; Dominick, April L; Preston, Alison R

    2012-07-12

    Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Cortical correlates of susceptibility to upper limb freezing in Parkinson's disease

    NARCIS (Netherlands)

    Scholten, M.; Govindan, R.B.; Braun, C.; Bloem, B.R.; Plewnia, C.; Kruger, R.; Gharabaghi, A.; Weiss, D.

    2016-01-01

    OBJECTIVE: Freezing behavior is an unmet symptom in Parkinson's disease (PD), which reflects its complex pathophysiology. Freezing behavior can emerge when attentional capacity is reduced, i.e. under dual task interference. In this study, we characterized the cortical network signatures underlying

  15. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task

    Directory of Open Access Journals (Sweden)

    Yuichi Kitaura

    Full Text Available Objectives: The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods: We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”. Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography. Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results: Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more

  16. Protein malnutrition during gestation and early life decreases neuronal size in the medial prefrontal cortex of post-pubertal rats

    Directory of Open Access Journals (Sweden)

    Roelf J. Cruz-Rizzolo

    2017-12-01

    Full Text Available Retrospective studies in human populations indicate that protein deprivation during pregnancy and early life (early protein malnutrition, EPM is associated with cognitive impairments, learning disabilities and may represent a risk factor for the late onset of some psychiatric disorders, fundamentally schizophrenia, a condition where the prefrontal cortex plays an important role. The purpose of this study was to analyze whether EPM affects structural aspects of the rat medial prefrontal cortex (mPFC, such as cortical volume, neuronal density and neuronal soma size, which seem altered in patients with schizophrenia. For this, a rat model of EPM (5% casein from conception to postnatal day 60 was adopted and the rat mPFC volume, total number of neurons and average neuronal volume were evaluated on postnatal day 60 (post-pubertal animals by histo- and immunohistochemical techniques using unbiased stereological analysis. EPM did not alter the number of NeuN+ neurons in the rat mPFC. However, a very significant decrease in mPFC volume and average neuronal size was observed in malnourished rats. Although the present study does not establish causal relationships between malnutrition and schizophrenia, our results may indicate a similar structural phenomenon in these two situations.

  17. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.

    Science.gov (United States)

    Khamassi, Mehdi; Enel, Pierre; Dominey, Peter Ford; Procyk, Emmanuel

    2013-01-01

    Converging evidence suggest that the medial prefrontal cortex (MPFC) is involved in feedback categorization, performance monitoring, and task monitoring, and may contribute to the online regulation of reinforcement learning (RL) parameters that would affect decision-making processes in the lateral prefrontal cortex (LPFC). Previous neurophysiological experiments have shown MPFC activities encoding error likelihood, uncertainty, reward volatility, as well as neural responses categorizing different types of feedback, for instance, distinguishing between choice errors and execution errors. Rushworth and colleagues have proposed that the involvement of MPFC in tracking the volatility of the task could contribute to the regulation of one of RL parameters called the learning rate. We extend this hypothesis by proposing that MPFC could contribute to the regulation of other RL parameters such as the exploration rate and default action values in case of task shifts. Here, we analyze the sensitivity to RL parameters of behavioral performance in two monkey decision-making tasks, one with a deterministic reward schedule and the other with a stochastic one. We show that there exist optimal parameter values specific to each of these tasks, that need to be found for optimal performance and that are usually hand-tuned in computational models. In contrast, automatic online regulation of these parameters using some heuristics can help producing a good, although non-optimal, behavioral performance in each task. We finally describe our computational model of MPFC-LPFC interaction used for online regulation of the exploration rate and its application to a human-robot interaction scenario. There, unexpected uncertainties are produced by the human introducing cued task changes or by cheating. The model enables the robot to autonomously learn to reset exploration in response to such uncertain cues and events. The combined results provide concrete evidence specifying how prefrontal

  18. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  19. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal.

    Science.gov (United States)

    Huang, Hao; Ghosh, Prabhat; van den Pol, Anthony N

    2006-03-01

    The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.

  20. Potential gray matter unpruned in adolescents and young adults dependent on dextromethorphan-containing cough syrups: evidence from cortical and subcortical study.

    Science.gov (United States)

    Qiu, Ying-Wei; Lv, Xiao-Fei; Jiang, Gui-Hua; Su, Huan-Huan; Ma, Xiao-Fen; Tian, Jun-Zhang; Zhuo, Fu-Zhen

    2017-10-01

    Adolescence is a unique period in neurodevelopment. Dextromethorphan (DXM)-containing cough syrups are new addictive drugs used by adolescents and young adults. The effects of chronic DXM abuse on neurodevelopment in adolescents and young adults are still unknown. The aim of this study was to investigate the differences in cortical thickness and subcortical gray matter volumes between DXM-dependent adolescents and young adults and healthy controls, and to explore relationships between alternations in cortical thickness/subcortical volume and DXM duration, initial age of DXM use, as well as impulsive behavior in DXM-dependent adolescents and young adults. Thirty-eight DXM-dependent adolescents and young adults and 18 healthy controls underwent magnetic resonance imaging scanning, and cortical thickness across the continuous cortical surface was compared between the groups. Subcortical volumes were compared on a structure-by-structure basis. DXM-dependent adolescents and young adults exhibited significantly increased cortical thickness in the bilateral precuneus (PreC), left dorsal lateral prefrontal cortex (DLPFC. L), left inferior parietal lobe (IPL. L), right precentral gyrus (PreCG. R), right lateral occipital cortex (LOC. R), right inferior temporal cortex (ITC. R), right lateral orbitofrontal cortex (lOFC. R) and right transverse temporal gyrus (TTG. R) (all p < 0.05, multiple comparison corrected) and increased subcortical volumes of the right thalamus and right pallidum. There was a significant correlation between initial age of DXM use and cortical thickness of the DLPFC. L and PreCG. R. A significant correlation was also found between cortical thickness of the DLPFC. L and impulsive behavior in patients. This was the first study to explore relationships between cortical thickness/subcortical volume and impulsive behavior in adolescents dependent on DXM. These structural changes might explain the neurobiological mechanism of impulsive behavior in

  1. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    Science.gov (United States)

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  2. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Science.gov (United States)

    Luders, Eileen; Kurth, Florian; Mayer, Emeran A.; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2012-01-01

    Several cortical regions are reported to vary in meditation practitioners. However, prior analyses have focused primarily on examining gray matter or cortical thickness. Thus, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding) is an important cerebral characteristic related to the geometry of the brain’s surface. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n = 100) of meditators and controls, carefully matched for sex and age. Cortical gyrification was established by calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum). Positive correlations between gyrification and the number of meditation years were similarly pronounced in the right anterior dorsal insula. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary to determine the relative contribution of nature and nurture to

  3. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory.

    Science.gov (United States)

    Jakovcevski, Mira; Ruan, Hongyu; Shen, Erica Y; Dincer, Aslihan; Javidfar, Behnam; Ma, Qi; Peter, Cyril J; Cheung, Iris; Mitchell, Amanda C; Jiang, Yan; Lin, Cong L; Pothula, Venu; Stewart, A Francis; Ernst, Patricia; Yao, Wei-Dong; Akbarian, Schahram

    2015-04-01

    Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at <50 loci, including the homeodomain transcription factor Meis2. Small RNA-mediated Meis2 knockdown in PFC was associated with working memory defects similar to those elicited by Mll1 deletion. Therefore, mature prefrontal neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion. Copyright © 2015 the authors 0270-6474/15/355097-12$15.00/0.

  4. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    Science.gov (United States)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  5. Cortical Thickness Changes and Their Relationship to Dual-Task Performance following Mild Traumatic Brain Injury in Youth.

    Science.gov (United States)

    Urban, Karolina J; Riggs, Lily; Wells, Greg D; Keightley, Michelle; Chen, Jen-Kai; Ptito, Alain; Fait, Philippe; Taha, Tim; Sinopoli, Katia J

    2017-02-15

    Mild traumatic brain injury (mTBI) is common in youth, especially in those who participate in sport. Recent investigations from our group have shown that asymptomatic children and adolescents with mTBI continue to exhibit alterations in neural activity and cognitive performance compared with those without a history of mTBI. This is an intriguing finding, given that current return-to-learn and return-to-play protocols rely predominately on subjective symptom reports, which may not be sensitive enough to detect subtle injury-related changes. As a result, youth may be at greater risk for re-injury and long-term consequences if they are cleared for activity while their brains continue to be compromised. It is currently unknown whether mTBI also affects brain microstructure in the developing brain, particularly cortical thickness, and whether such changes are also related to cognitive performance. The present study examined cortical thickness in 13 asymptomatic youth (10-14 years old) who had sustained an mTBI 3-8 months prior to testing compared with 14 age-matched typically developing controls. Cortical thickness was also examined in relation to working memory performance during single and dual task paradigms. The results show that youth who had sustained an mTBI had thinner cortices in the left dorsolateral prefrontal region and right anterior and posterior inferior parietal lobes. Additionally, cortical thinning was associated with slower reaction time during the dual-task condition in the injured youth only. The results also point to a possible relationship between functional and structural alterations as a result of mTBI in youth, and lend evidence for neural changes beyond symptom resolution.

  6. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques.

    Science.gov (United States)

    Viswanathan, Pooja; Nieder, Andreas

    2017-12-01

    The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non-uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full-field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi-field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad-spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow-spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto-parietal cortical network. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.

    Science.gov (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D

    2018-03-15

    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  8. Impaired prefrontal hemodynamic maturation in autism and unaffected siblings.

    Directory of Open Access Journals (Sweden)

    Yuki Kawakubo

    Full Text Available BACKGROUND: Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD. Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb] in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs. CONCLUSION/SIGNIFICANCE: Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena.

  9. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  10. A novel locus in the oxidative stress-related gene ALOX12 moderates the association between PTSD and thickness of the prefrontal cortex.

    Science.gov (United States)

    Miller, Mark W; Wolf, Erika J; Sadeh, Naomi; Logue, Mark; Spielberg, Jeffrey M; Hayes, Jasmeet P; Sperbeck, Emily; Schichman, Steven A; Stone, Angie; Carter, Weleetka C; Humphries, Donald E; Milberg, William; McGlinchey, Regina

    2015-12-01

    Oxidative stress has been implicated in many common age-related diseases and is hypothesized to play a role in posttraumatic stress disorder (PTSD)-related neurodegeneration (Miller and Sadeh, 2014). This study examined the influence of the oxidative stress-related genes ALOX 12 and ALOX 15 on the association between PTSD and cortical thickness. Factor analyses were used to identify and compare alternative models of the structure of cortical thickness in a sample of 218 veterans. The best-fitting model was then used for a genetic association analysis in White non-Hispanic participants (n=146) that examined relationships between 33 single nucleotide polymorphisms (SNPs) spanning the two genes, 8 cortical thickness factors, and each SNP×PTSD interaction. Results identified a novel ALOX12 locus (indicated by two SNPs in perfect linkage disequilibrium: rs1042357 and rs10852889) that moderated the association between PTSD and reduced thickness of the right prefrontal cortex. A whole-cortex vertex-wise analysis showed this effect to be localized to clusters spanning the rostral middle frontal gyrus, superior frontal gyrus, rostral anterior cingulate cortex, and medial orbitofrontal cortex. These findings illustrate a novel factor-analytic approach to neuroimaging-genetic analyses and provide new evidence for the possible involvement of oxidative stress in PTSD-related neurodegeneration. Published by Elsevier Ltd.

  11. Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics

    Directory of Open Access Journals (Sweden)

    Marika eCarrieri

    2016-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC in subjects while performing a demanding VR hand-controlled task (HCT. Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3D hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB over a virtual route (VROU reproducing a 42-m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2±37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  12. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics.

    Science.gov (United States)

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  13. Focal Cortical Thickness Correlates of Exceptional Memory Training in Vedic Priests

    Directory of Open Access Journals (Sweden)

    Giridhar Padmanabhan Kalamangalam

    2014-10-01

    Full Text Available The capacity for semantic memory – the ability to acquire and store knowledge of the world - is highly developed in the human brain. In particular, semantic memory assimilated through an auditory route may be a uniquely human capacity. One method of obtaining neurobiological insight into auditory semantic memory mechanisms is through the study of experts. In this work, we study a group of Hindu Vedic priests, whose religious training requires the memorization of vast tracts of scriptural texts through an oral tradition, recalled spontaneously during a lifetime of subsequent spiritual practice. We demonstrate focal increases of cortical thickness in the dominant prefrontal lobe and non-dominant temporal lobe in Vedic priests, in comparison to a group of matched controls. The findings are relevant to current hypotheses regarding cognitive processes underlying storage and recall of long-term declarative memory.

  14. Causal hierarchy within the thalamo-cortical network in spike and wave discharges.

    Directory of Open Access Journals (Sweden)

    Anna E Vaudano

    2009-08-01

    Full Text Available Generalised spike wave (GSW discharges are the electroencephalographic (EEG hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges.We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A, ventromedial prefrontal cortex (model B, and precuneus (model C. Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus, to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was approximately 1.Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus -- an index of awareness -- and the occurrence of pathological discharges in epilepsy.

  15. Reduced Inhibitory Control Mediates the Relationship Between Cortical Thickness in the Right Superior Frontal Gyrus and Body Mass Index.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Bauer, Isabelle E; Cao, Bo; Selvaraj, Sudhakar; Prossin, Alan; Soares, Jair C

    2016-08-01

    Unhealthy eating behaviors often develop in the setting of inadequate inhibitory control, a function broadly ascribed to the prefrontal cortex (PFC). Regulation of inhibitory control by the PFC and its anatomical components and their contribution to increasing body mass index (BMI) are poorly understood. To study the role of PFC in the regulation of inhibitory control and body weight, we examined measures of cortical thickness in PFC sub-regions, inhibitory control (color-word interference task (CWIT)), and BMI in 91 healthy volunteers. We tested the predictive effect of PFC sub-regional cortical thickness on BMI and mediation by inhibitory control measured with CWIT. Measures of depression (BDI-II), anxiety (STAI-T) and trauma-related symptoms (TSC-40) were collected; the disinhibition scale of the three-factor eating questionnaire (TFEQ) was used to assess disinhibited eating. We then tested the relationship between BD-II, STAI-T, TSC-40, TFEQ, CWIT, and BMI with correlation analyses. Right superior frontal gyrus cortical thickness significantly predicted BMI (β=-0.91; t=-3.2; p=0.002). Mediation analysis showed a significant indirect effect of cortical thickness on BMI mediated by inhibitory control (95% CI=-6.1, -0.67). BMI was unrelated to BDI-II, STAI-T, TSC-40, or TFEQ scores. We found an inverse relationship between cortical thickness in the right-superior frontal gyrus and BMI, which was fully mediated by inhibitory control neurocognitive performance. Our results suggest possible targets for neuromodulation in obesity (ie superior frontal gyrus) and a quantifiable mediator of their effects (ie inhibitory control).

  16. Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Beatrix Barth

    2016-12-01

    Full Text Available Neurofeedback is a promising tool for treatment and rehabilitation of several patient groups. In this proof of principle study, near-infrared spectroscopy (NIRS based neurofeedback of frontal cortical areas was investigated in healthy adults. Main aims were the assessment of learning, the effects on performance in a working memory (n-back task and the impact of applied strategies on regulation.13 healthy participants underwent 8 sessions of NIRS based neurofeedback within two weeks to learn to voluntarily up-regulate hemodynamic activity in prefrontal areas. An n-back task in pre-/post measurements was used to monitor neurocognitive changes. Mean oxygenated hemoglobin (O2Hb amplitudes over the course of the sessions as well as during the n-back task were evaluated. 12 out of 13 participants were able to regulate their frontal hemodynamic response via NIRS neurofeedback. However, no systematic learning effects were observed in frontal O2Hb amplitudes over the training course in our healthy sample. We found an impact of applied strategies in only 5 out of 13 subjects. Regarding the n-back task, neurofeedback appeared to induce more focused and specific brain activation compared to pre-training measurement. NIRS based neurofeedback is a feasible and potentially effective method, with an impact on activation patterns in a working memory task. Ceiling effects might explain the lack of a systematic learning pattern in healthy subjects. Clinical studies are needed to show effects in patients exhibiting pathological deviations in prefrontal function.

  17. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; De Raedt, Rudi; Brunoni, Andre R; Campanhã, Camila; Baeken, Chris; Remue, Jonathan; Boggio, Paulo S

    2013-01-01

    Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  18. How well do clinical pain assessment tools reflect pain in infants?

    Directory of Open Access Journals (Sweden)

    Rebeccah Slater

    2008-06-01

    Full Text Available Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing.Cortical haemodynamic activity was measured in infants, aged 25-43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP score in the same infant to the same stimulus (n = 12, 33 test occasions. Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32-1.11, p = 0.001; correlation coefficient = 0.57. Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84-1.67, p < 0.0001; correlation coefficient = 0.74 (n = 12, 33 test occasions. Cortical pain responses were still recorded in some infants who did not display a change in facial expression.While painful stimulation generally evokes parallel cortical and behavioural responses in infants, pain may be processed at the cortical level without producing detectable behavioural changes. As a result, an infant with a low pain score based on behavioural assessment tools alone may not be pain free.

  19. Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Makoto Miyauchi, Carlos; Sassa, Yuko; Kawashima, Ryuta

    2017-05-03

    Working memory training (WMT) induces changes in cognitive function and various neurological systems. Here, we investigated changes in recently developed resting state functional magnetic resonance imaging measures of global information processing [degree of the cortical hub, which may have a central role in information integration in the brain, degree centrality (DC)], the magnitude of intrinsic brain activity [fractional amplitude of low frequency fluctuation (fALFF)], and local connectivity (regional homogeneity) in young adults, who either underwent WMT or received no intervention for 4 weeks. Compared with no intervention, WMT increased DC in the anatomical cluster, including anterior cingulate cortex (ACC), to the medial prefrontal cortex (mPFC). Furthermore, WMT increased fALFF in the anatomical cluster including the right dorsolateral prefrontal cortex (DLPFC), frontopolar area and mPFC. WMT increased regional homogeneity in the anatomical cluster that spread from the precuneus to posterior cingulate cortex and posterior parietal cortex. These results suggest WMT-induced plasticity in spontaneous brain activity and global and local information processing in areas of the major networks of the brain during rest.

  20. Compulsive Sexual Behavior: Prefrontal and Limbic Volume and Interactions

    DEFF Research Database (Denmark)

    Schmidt, Casper; Morris, Laurel S.; Kvamme, Timo L.

    2017-01-01

    prefrontal cortex (whole brain, cluster corrected FWE P motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions...

  1. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  2. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards.

    Science.gov (United States)

    Smith, David V; Clithero, John A; Boltuck, Sarah E; Huettel, Scott A

    2014-12-01

    According to many studies, the ventromedial prefrontal cortex (VMPFC) encodes the subjective value of disparate rewards on a common scale. Yet, a host of other reward factors-likely represented outside of VMPFC-must be integrated to construct such signals for valuation. Using functional magnetic resonance imaging (fMRI), we tested whether the interactions between posterior VMPFC and functionally connected brain regions predict subjective value. During fMRI scanning, participants rated the attractiveness of unfamiliar faces. We found that activation in dorsal anterior cingulate cortex, anterior VMPFC and caudate increased with higher attractiveness ratings. Using data from a post-scan task in which participants spent money to view attractive faces, we quantified each individual's subjective value for attractiveness. We found that connectivity between posterior VMPFC and regions frequently modulated by social information-including the temporal-parietal junction (TPJ) and middle temporal gyrus-was correlated with individual differences in subjective value. Crucially, these additional regions explained unique variation in subjective value beyond that extracted from value regions alone. These findings indicate not only that posterior VMPFC interacts with additional brain regions during valuation, but also that these additional regions carry information employed to construct the subjective value for social reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Attention-dependent modulation of cortical taste circuits revealed by Granger causality with signal-dependent noise.

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2013-10-01

    Full Text Available We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention.

  4. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  5. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization.

    Science.gov (United States)

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-02-28

    The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.

  6. Association between catechol-O-methyltrasferase Val108/158Met genotype and prefrontal hemodynamic response in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ryu Takizawa

    Full Text Available BACKGROUND: "Imaging genetics" studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls. CONCLUSIONS/SIGNIFICANCE: These data suggest that the prefrontal NIRS signals can noninvasively detect the impact

  7. What Can the Organization of the Brain’s Default Mode Network Tell us About Self-Knowledge?

    Science.gov (United States)

    Moran, Joseph M.; Kelley, William M.; Heatherton, Todd F.

    2013-01-01

    Understanding ourselves has been a fundamental topic for psychologists and philosophers alike. In this paper we review the evidence linking specific brain structures to self-reflection. The brain regions most associated with self-reflection are the posterior cingulate and medial prefrontal (mPFC) cortices, together known as the cortical midline structures (CMSs). We review evidence arguing that self-reflection is special in memory, while noting that these brain regions are often engaged when we think about others in our social worlds. Based on the CMSs’ patterns of connectivity and activity, we speculate about three possible interpretations of their role in supporting self-reflection that are somewhat overlapping, and not intended to be mutually exclusive. First, self may be a powerful, but ordinary case for a cognitive system specialized for thinking about people. Second, mPFC may serve as a processing “hub,” binding together information from all sensory modalities with internally generated information. Third, mPFC may serve as a cortical director of thought, helping to guide moment-by-moment conscious processing. Suggestions are made for future research avenues aimed at testing such possibilities. PMID:23882210

  8. Relating normalization to neuronal populations across cortical areas.

    Science.gov (United States)

    Ruff, Douglas A; Alberts, Joshua J; Cohen, Marlene R

    2016-09-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties. Copyright © 2016 the American Physiological Society.

  9. Is Love Right? Prefrontal Resting Brain Asymmetry is Related to the Affiliation Motive

    Directory of Open Access Journals (Sweden)

    Markus eQuirin

    2013-12-01

    Full Text Available Previous research on relationships between affective-motivational traits and hemispheric asymmetries in resting frontal alpha band power as measured by electroencephalography (EEG has focused on individual differences in motivational direction (approach vs. withdrawal or behavioral activation. The present study investigated resting frontal alpha asymmetries in 72 participants as a function of individual differences in the implicit affiliation motive as measured with the operant motive test (OMT and explored the brain source thereof. As predicted, relative right frontal activity as indexed by increased alpha band suppression was related to the implicit affiliation motive. No relationships were found for explicit personality measures. Intracranial current density distributions of alpha based on Variable Resolution Electromagnetic Tomography (VARETA source estimations suggests that the source of cortical alpha distribution is located within the right ventromedial prefrontal cortex (PFC. The present results are discussed with respect to differential roles of the two hemispheres in social motivation.

  10. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    Science.gov (United States)

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  11. Using machine learning and surface reconstruction to accurately differentiate different trajectories of mood and energy dysregulation in youth.

    Science.gov (United States)

    Versace, Amelia; Sharma, Vinod; Bertocci, Michele A; Bebko, Genna; Iyengar, Satish; Dwojak, Amanda; Bonar, Lisa; Perlman, Susan B; Schirda, Claudiu; Travis, Michael; Gill, Mary Kay; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Frazier, Thomas W; Arnold, L Eugene; Fristad, Mary A; Youngstrom, Eric A; Horwitz, Sarah M; Findling, Robert L; Phillips, Mary L

    2017-01-01

    Difficulty regulating positive mood and energy is a feature that cuts across different pediatric psychiatric disorders. Yet, little is known regarding the neural mechanisms underlying different developmental trajectories of positive mood and energy regulation in youth. Recent studies indicate that machine learning techniques can help elucidate the role of neuroimaging measures in classifying individual subjects by specific symptom trajectory. Cortical thickness measures were extracted in sixty-eight anatomical regions covering the entire brain in 115 participants from the Longitudinal Assessment of Manic Symptoms (LAMS) study and 31 healthy comparison youth (12.5 y/o;-Male/Female = 15/16;-IQ = 104;-Right/Left handedness = 24/5). Using a combination of trajectories analyses, surface reconstruction, and machine learning techniques, the present study aims to identify the extent to which measures of cortical thickness can accurately distinguish youth with higher (n = 18) from those with lower (n = 34) trajectories of manic-like behaviors in a large sample of LAMS youth (n = 115; 13.6 y/o; M/F = 68/47, IQ = 100.1, R/L = 108/7). Machine learning analyses revealed that widespread cortical thickening in portions of the left dorsolateral prefrontal cortex, right inferior and middle temporal gyrus, bilateral precuneus, and bilateral paracentral gyri and cortical thinning in portions of the right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, and right parahippocampal gyrus accurately differentiate (Area Under Curve = 0.89;p = 0.03) youth with different (higher vs lower) trajectories of positive mood and energy dysregulation over a period up to 5years, as measured by the Parent General Behavior Inventory-10 Item Mania Scale. Our findings suggest that specific patterns of cortical thickness may reflect transdiagnostic neural mechanisms associated with different temporal trajectories of positive mood and energy dysregulation in youth. This approach has

  12. Using machine learning and surface reconstruction to accurately differentiate different trajectories of mood and energy dysregulation in youth.

    Directory of Open Access Journals (Sweden)

    Amelia Versace

    Full Text Available Difficulty regulating positive mood and energy is a feature that cuts across different pediatric psychiatric disorders. Yet, little is known regarding the neural mechanisms underlying different developmental trajectories of positive mood and energy regulation in youth. Recent studies indicate that machine learning techniques can help elucidate the role of neuroimaging measures in classifying individual subjects by specific symptom trajectory. Cortical thickness measures were extracted in sixty-eight anatomical regions covering the entire brain in 115 participants from the Longitudinal Assessment of Manic Symptoms (LAMS study and 31 healthy comparison youth (12.5 y/o;-Male/Female = 15/16;-IQ = 104;-Right/Left handedness = 24/5. Using a combination of trajectories analyses, surface reconstruction, and machine learning techniques, the present study aims to identify the extent to which measures of cortical thickness can accurately distinguish youth with higher (n = 18 from those with lower (n = 34 trajectories of manic-like behaviors in a large sample of LAMS youth (n = 115; 13.6 y/o; M/F = 68/47, IQ = 100.1, R/L = 108/7. Machine learning analyses revealed that widespread cortical thickening in portions of the left dorsolateral prefrontal cortex, right inferior and middle temporal gyrus, bilateral precuneus, and bilateral paracentral gyri and cortical thinning in portions of the right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, and right parahippocampal gyrus accurately differentiate (Area Under Curve = 0.89;p = 0.03 youth with different (higher vs lower trajectories of positive mood and energy dysregulation over a period up to 5years, as measured by the Parent General Behavior Inventory-10 Item Mania Scale. Our findings suggest that specific patterns of cortical thickness may reflect transdiagnostic neural mechanisms associated with different temporal trajectories of positive mood and energy dysregulation in youth. This

  13. Negative symptoms in schizophrenia are associated with aberrant striato-cortical connectivity in a rewarded perceptual decision-making task.

    Science.gov (United States)

    Reckless, Greg E; Andreassen, Ole A; Server, Andres; Østefjells, Tiril; Jensen, Jimmy

    2015-01-01

    Negative symptoms in schizophrenia have been associated with structural and functional changes in the prefrontal cortex. They often persist after treatment with antipsychotic medication which targets, in particular, the ventral striatum (VS). As schizophrenia has been suggested to arise from dysfunctional connectivity between neural networks, it is possible that residual aberrant striato-cortical connectivity in medicated patients plays a role in enduring negative symptomology. The present study examined the relationship between striato-cortical connectivity and negative symptoms in medicated schizophrenia patients. We manipulated motivation in a perceptual decision-making task during functional magnetic resonance imaging. Comparing healthy controls (n = 21) and medicated patients with schizophrenia (n = 18) we investigated how motivation-mediated changes in VS activation affected functional connectivity with the frontal cortex, and how changes in connectivity strength from the neutral to motivated condition related to negative symptom severity. A pattern of aberrant striato-cortical connectivity was observed in the presence of intact VS, but altered left inferior frontal gyrus (IFG) motivation-mediated activation in patients. The more severe the patient's negative symptoms, the less the connectivity strength between the right VS and left IFG changed from the neutral to the motivated condition. Despite aberrant striato-cortical connectivity and altered recruitment of the left IFG among patients, both patients and healthy controls adopted a more liberal response strategy in the motivated compared to the neutral condition. The present findings suggest that there is a link between dysfunctional striato-cortical connectivity and negative symptom severity, and offer a possible explanation as to why negative symptoms persist after treatment with antipsychotics.

  14. No Effects of Bilateral tDCS over Inferior Frontal Gyrus on Response Inhibition and Aggression.

    Directory of Open Access Journals (Sweden)

    Franziska Dambacher

    Full Text Available Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression. While response inhibition is mostly associated with predominantly right prefrontal activity, the neural components underlying aggression seem to be left-lateralized. These differences in hemispheric dominance are conceptualized in cortical asymmetry theories on motivational direction, which assign avoidance motivation (relevant to inhibit responses to the right and approach motivation (relevant for aggressive actions to the left prefrontal cortex. The current study aimed to directly address the inverse relationship between response inhibition and aggression by assessing them within one experiment. Sixty-nine healthy participants underwent bilateral transcranial Direct Current Stimulation (tDCS to the inferior frontal cortex. In one group we induced right-hemispheric fronto-cortical dominance by means of a combined right prefrontal anodal and left prefrontal cathodal tDCS montage. In a second group we induced left-hemispheric fronto-cortical dominance by means of a combined left prefrontal anodal and right prefrontal cathodal tDCS montage. A control group received sham stimulation. Response inhibition was assessed with a go/no-go task (GNGT and aggression with the Taylor Aggression Paradigm (TAP. We revealed that participants with poorer performance in the GNGT displayed more aggression during the TAP. No effects of bilateral prefrontal tDCS on either response inhibition or aggression were observed. This is at odds with previous brain stimulation studies applying unilateral protocols. Our results failed to provide evidence in support of the prefrontal cortical asymmetry model in the domain of response inhibition and aggression. The absence of t

  15. The neural dynamics of competition resolution for language production in the prefrontal cortex.

    Science.gov (United States)

    Bourguignon, Nicolas J; Ohashi, Hiroki; Nguyen, Don; Gracco, Vincent L

    2018-03-01

    Previous research suggests a pivotal role of the prefrontal cortex (PFC) in word selection during tasks of confrontation naming (CN) and verb generation (VG), both of which feature varying degrees of competition between candidate responses. However, discrepancies in prefrontal activity have also been reported between the two tasks, in particular more widespread and intense activation in VG extending into (left) ventrolateral PFC, the functional significance of which remains unclear. We propose that these variations reflect differences in competition resolution processes tied to distinct underlying lexico-semantic operations: Although CN involves selecting lexical entries out of limited sets of alternatives, VG requires exploration of possible semantic relations not readily evident from the object itself, requiring prefrontal areas previously shown to be recruited in top-down retrieval of information from lexico-semantic memory. We tested this hypothesis through combined independent component analysis of functional imaging data and information-theoretic measurements of variations in selection competition associated with participants' performance in overt CN and VG tasks. Selection competition during CN engaged the anterior insula and surrounding opercular tissue, while competition during VG recruited additional activity of left ventrolateral PFC. These patterns remained after controlling for participants' speech onset latencies indicative of possible task differences in mental effort. These findings have implications for understanding the neural-computational dynamics of cognitive control in language production and how it relates to the functional architecture of adaptive behavior. © 2017 Wiley Periodicals, Inc.

  16. Tactile thermal oral stimulation increases the cortical representation of swallowing

    Directory of Open Access Journals (Sweden)

    Suntrup Sonja

    2009-06-01

    Full Text Available Abstract Background Dysphagia is a leading complication in stroke patients causing aspiration pneumonia, malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one hand modification of eating behaviour or swallowing technique and on the other hand facilitation of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation (TTOS is an established method to treat patients with neurogenic dysphagia especially if caused by sensory deficits. Little is known about the possible mechanisms by which this interventional therapy may work. We employed whole-head MEG to study changes in cortical activation during self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Compared to the normal swallowing task a significantly increased bilateral cortical activation was seen after oropharyngeal stimulation. Analysis of the chronological changes during swallowing suggests facilitation of both the oral and the pharyngeal phase of deglutition. Conclusion In the present study functional cortical changes elicited by oral sensory stimulation could be demonstrated. We suggest that these results reflect short-term cortical plasticity of sensory swallowing areas. These findings facilitate our understanding of the role of cortical reorganization in dysphagia treatment and recovery.

  17. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    Science.gov (United States)

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  18. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

    International Nuclear Information System (INIS)

    Meyer, Philipp T.; Sturz, Laszlo; Schreckenberger, Mathias; Setani, Keyvan S.; Buell, Udalrich; Spetzger, Uwe; Meyer, Georg F.; Sabri, Osama

    2003-01-01

    In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with proposed reorganisation processes, but

  19. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    Science.gov (United States)

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  20. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction.

    Directory of Open Access Journals (Sweden)

    Jörg Lesting

    Full Text Available Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction.

  1. Developing guinea pig brain as a model for cortical folding.

    Science.gov (United States)

    Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji

    2017-05-01

    The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.

  2. Personality disorder symptomatology is associated with anomalies in striatal and prefrontal morphology.

    Science.gov (United States)

    Payer, Doris E; Park, Min Tae M; Kish, Stephen J; Kolla, Nathan J; Lerch, Jason P; Boileau, Isabelle; Chakravarty, M M

    2015-01-01

    Personality disorder symptomatology (PD-Sx) can result in personal distress and impaired interpersonal functioning, even in the absence of a clinical diagnosis, and is frequently comorbid with psychiatric disorders such as substance use, mood, and anxiety disorders; however, they often remain untreated, and are not taken into account in clinical studies. To investigate brain morphological correlates of PD-Sx, we measured subcortical volume and shape, and cortical thickness/surface area, based on structural magnetic resonance images. We investigated 37 subjects who reported PD-Sx exceeding DSM-IV Axis-II screening thresholds, and 35 age, sex, and smoking status-matched control subjects. Subjects reporting PD-Sx were then grouped into symptom-based clusters: N = 20 into Cluster B (reporting Antisocial, Borderline, Histrionic, or Narcissistic PD-Sx) and N = 28 into Cluster C (reporting Obsessive-Compulsive, Avoidant, or Dependent PD-Sx); N = 11 subjects reported PD-Sx from both clusters, and none reported Cluster A (Paranoid, Schizoid, or Schizotypal) PD-Sx. Compared to control, Cluster C PD-Sx was associated with greater striatal surface area localized to the caudate tail, smaller ventral striatum volumes, and greater cortical thickness in right prefrontal cortex. Both Cluster B and C PD-Sx groups also showed trends toward greater posterior caudate volumes and orbitofrontal surface area anomalies, but these findings did not survive correction for multiple comparisons. The results point to morphological abnormalities that could contribute to Cluster C PD-Sx. In addition, the observations parallel those in substance use disorders, pointing to the importance of considering PD-Sx when interpreting findings in often-comorbid psychiatric disorders.

  3. Anticipation of a mentally effortful task recruits Dorsolateral Prefrontal Cortex: An fNIRS validation study.

    Science.gov (United States)

    Vassena, Eliana; Gerrits, Robin; Demanet, Jelle; Verguts, Tom; Siugzdaite, Roma

    2018-04-26

    Preparing for a mentally demanding task calls upon cognitive and motivational resources. The underlying neural implementation of these mechanisms is receiving growing attention because of its implications for professional, social, and medical contexts. While several fMRI studies converge in assigning a crucial role to a cortico-subcortical network including Anterior Cigulate Cortex (ACC) and striatum, the involvement of Dorsolateral Prefrontal Cortex (DLPFC) during mental effort anticipation has yet to be replicated. This study was designed to target DLPFC contribution to anticipation of a difficult task using functional Near Infrared Spectroscopy (fNIRS), as a more cost-effective tool measuring cortical hemodynamics. We adapted a validated mental effort task, where participants performed easy and difficult mental calculation, and measured DLPFC activity during the anticipation phase. As hypothesized, DLPFC activity increased during anticipation of a hard task as compared to an easy task. Besides replicating previous fMRI work, these results establish fNIRS as an effective tool to investigate cortical contributions to anticipation of effortful behavior. This is especially useful if one requires testing large samples (e.g., to target individual differences), populations with contraindication for functional MRI (e.g., infants or patients with metal implants), or subjects in more naturalistic environments (e.g., work or sport). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Prefrontal glucose deficits in murderers lacking psychosocial deprivation.

    Science.gov (United States)

    Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M

    1998-01-01

    Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.

  5. Selective reductions in prefrontal glucose metabolism in murderers.

    Science.gov (United States)

    Raine, A; Buchsbaum, M S; Stanley, J; Lottenberg, S; Abel, L; Stoddard, J

    1994-09-15

    This study tests the hypothesis that seriously violent offenders pleading not guilty by reason of insanity or incompetent to stand trial are characterized by prefrontal dysfunction. This hypothesis was tested in a group of 22 subjects accused of murder and 22 age-matched and gender-matched controls by measuring local cerebral uptake of glucose using positron emission tomography during the continuous performance task. Murderers had significantly lower glucose metabolism in both lateral and medial prefrontal cortex relative to controls. No group differences were observed for posterior frontal, temporal, and parietal glucose metabolism, indicating regional specificity for the prefrontal deficit. Group differences were not found to be a function of raised levels of left-handedness, schizophrenia, ethnic minority status, head injury, or motivation deficits in the murder group. These preliminary results suggest that deficits localized to the prefrontal cortex may be related to violence in a selected group of offenders, although further studies are needed to establish the generalizability of these findings to violent offenders in the community.

  6. Sensory handedness is not reflected in cortical responses after basic nerve stimulation: a MEG study

    NARCIS (Netherlands)

    Chen, A.C.N.; Theuvenet, P.J.; de Munck, J.C.; Peters, M.J.; van Ree, J.M.; Lopes da Silva, F.L.

    2012-01-01

    Motor dominance is well established, but sensory dominance is much less clear. We therefore studied the cortical evoked magnetic fields using magnetoencephalography (MEG) in a group of 20 healthy right handed subjects in order to examine whether standard electrical stimulation of the median and

  7. Sensory Handedness is not Reflected in Cortical Responses After Basic Nerve Stimulation: A MEG Study

    NARCIS (Netherlands)

    Chen, A.C.N.; Theuvenet, P.J.; de Munck, J.C.; Peters, M.J.L.; van Ree, J.M.; da Silva, F.L.L.

    2012-01-01

    Motor dominance is well established, but sensory dominance is much less clear. We therefore studied the cortical evoked magnetic fields using magnetoencephalography (MEG) in a group of 20 healthy right handed subjects in order to examine whether standard electrical stimulation of the median and

  8. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Directory of Open Access Journals (Sweden)

    Annabella Di Giorgio

    Full Text Available BACKGROUND: Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560 and in the nicotinic receptor α5 gene (CHRNA5, rs16969968 on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. METHODS: A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T and CHNRA5 rs16969968 (G>A on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. RESULTS: We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. CONCLUSIONS: The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  9. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Science.gov (United States)

    Di Giorgio, Annabella; Smith, Ryan M; Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro

    2014-01-01

    Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  10. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.

    Science.gov (United States)

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-10-15

    Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age

  11. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music

    DEFF Research Database (Denmark)

    Green, Anders Christian; Bærentsen, Klaus B.; Stødkilde-Jørgensen, Hans

    2012-01-01

    , participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous...... exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory...

  12. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Directory of Open Access Journals (Sweden)

    Makii Muthalib

    Full Text Available Neuroimaging studies have shown neuromuscular electrical stimulation (NMES-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC, premotor cortex (PMC, supplementary motor area (SMA, and secondary somatosensory area (S2, as well as regions of the prefrontal cortex (PFC known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI, and with reference to voluntary (VOL wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb and deoxygenated (HHb hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2. However, the level and area of contralateral sensorimotor network (including PFC activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  13. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System.

    Science.gov (United States)

    Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G

    2014-01-01

    Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.

  14. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Re, Rebecca; Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro

    2015-01-01

    Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  15. Postnatal Changes in Humerus Cortical Bone Thickness Reflect the Development of Metabolic Bone Disease in Preterm Infants

    Directory of Open Access Journals (Sweden)

    Shuko Tokuriki

    2016-01-01

    Full Text Available Objective. To use cortical bone thickness (CBT of the humerus to identify risk factors for the development of metabolic bone disease in preterm infants. Methods. Twenty-seven infants born at <32 weeks of gestational age, with a birth weight of <1,500 g, were enrolled. Humeral CBT was measured from chest radiographs at birth and at 27-28, 31-32, and 36–44 weeks of postmenstrual age (PMA. The risk factors for the development of osteomalacia were statistically analyzed. Results. The humeral CBT at 36–44 weeks of PMA was positively correlated with gestational age and birth weight and negatively correlated with the duration of mechanical ventilation. CBT increased with PMA, except in six very early preterm infants in whom it decreased. Based on logistic regression analysis, gestational age and duration of mechanical ventilation were identified as risk factors for cortical bone thinning. Conclusions. Humeral CBT may serve as a radiologic marker of metabolic bone disease at 36–44 weeks of PMA in preterm infants. Cortical bones of extremely preterm infants are fragile, even when age is corrected for term, and require extreme care to lower the risk of fractures.

  16. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.

    Science.gov (United States)

    Hashimoto, Takanori; Bazmi, H Holly; Mirnics, Karoly; Wu, Qiang; Sampson, Allan R; Lewis, David A

    2008-04-01

    Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.

  17. Changes in brain morphology in albinism reflect reduced visual acuity.

    Science.gov (United States)

    Bridge, Holly; von dem Hagen, Elisabeth A H; Davies, George; Chambers, Claire; Gouws, Andre; Hoffmann, Michael; Morland, Antony B

    2014-07-01

    Albinism, in humans and many animal species, has a major impact on the visual system, leading to reduced acuity, lack of binocular function and nystagmus. In addition to the lack of a foveal pit, there is a disruption to the routing of the nerve fibers crossing at the optic chiasm, resulting in excessive crossing of fibers to the contralateral hemisphere. However, very little is known about the effect of this misrouting on the structure of the post-chiasmatic visual pathway, and the occipital lobes in particular. Whole-brain analyses of cortical thickness in a large cohort of subjects with albinism showed an increase in cortical thickness, relative to control subjects, particularly in posterior V1, corresponding to the foveal representation. Furthermore, mean cortical thickness across entire V1 was significantly greater in these subjects compared to controls and negatively correlated with visual acuity in albinism. Additionally, the group with albinism showed decreased gyrification in the left ventral occipital lobe. While the increase in cortical thickness in V1, also found in congenitally blind subjects, has been interpreted to reflect a lack of pruning, the decreased gyrification in the ventral extrastriate cortex may reflect the reduced input to the foveal regions of the ventral visual stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics

    Directory of Open Access Journals (Sweden)

    Ji Guangchen

    2012-10-01

    Full Text Available Abstract Background The medial prefrontal cortex (mPFC serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons and regions (infralimbic and prelimbic represent a challenge. This electrophysiological study used optogenetics for the cell- and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. Results Extracellular single-unit recordings were made from infralimbic (IL pyramidal cells, IL interneurons and prelimbic (PL pyramidal cells 2–3 weeks after intra-IL injection of a viral vector encoding channel rhodopsin 2 (ChR2 under the control of the CaMKII promoter (rAAV5/CaMKIIa-ChR2(H134R-EYFP or a control vector that lacked the ChR2 sequence (rAAV5/CaMKIIa-EYFP. Optical stimulation with laser-generated blue light pulses delivered through an optical fiber to the IL increased spontaneous and evoked action potential firing of ChR2 expressing IL pyramidal cells but had no effect on IL interneurons that were distinguished from pyramidal cells based on their higher firing rate and shorter spike duration. Optical activation of IL pyramidal cells also inhibited PL pyramidal cells, suggesting that IL output controls PL output. The effects were light intensity-dependent and reversible. Confocal microscopy confirmed ChR2-EYFP or control vector expression in mPFC pyramidal cells but not in GABAergic cells. Conclusions The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The

  19. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Science.gov (United States)

    Prendergast, Garreth; Limbrick-Oldfield, Eve; Ingamells, Ed; Gathercole, Susan; Baddeley, Alan; Green, Gary G R

    2013-01-01

    The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG). Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  20. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer's disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer's disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Directory of Open Access Journals (Sweden)

    Marie-Anne Vanderhasselt

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation, we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  2. Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Michael Deppe

    2014-01-01

    Conclusion: Whole-brain-averaged cortical extrinsic curvature appears to be a specific and quantitative marker for a WMV–cortex disproportionality and allows us to assess “pure” WMA without being confounded by intracranial volume. WMA seems to be a characteristic symptom in early MS and can already occur in patients with CIS and should thus be considered in future MS research and clinical studies.

  3. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  4. Effects of decreased inhibition on synaptic plasticity and dendritic morphology in the juvenile prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Xanthippi Konstantoudaki

    2014-03-01

    Full Text Available Excitation-inhibition balance is critical for maintaining proper functioning of the cerebral cortex, as evident from electrophysiological and modeling studies, and it is also important for animal behavior (Yizhar et al., 2011. In the cerebral cortex, excitation is provided by glutamate release from pyramidal neurons, while inhibition is provided by GABA release from several types of interneurons. Many neuropsychiatric disorders, such as epilepsy, anxiety, schizophrenia and autism exhibit an imbalance between the excitatory and inhibitory mechanisms of cortical circuits within key brain regions as prefrontal cortex or hippocampus, primarily through dysfunctions in the inhibitory system (Lewis, Volk, & Hashimoto, 2003; Marín, 2012 Given the significant role of GABAergic inhibition in shaping proper function of the cerebral cortex, we used a mouse model of developmentally decreased GABAergic inhibition in order to examine its effects in network properties, namely basal synaptic transmission, synaptic plasticity and dendritic morphology of pyramidal neurons. For our study, we used mice (postnatal day 20-30 in which the Rac1 protein was deleted from Nkx2.1-expressing neurons (Vidaki et al., 2012, (Rac1fl/flNkx2.1 +/cre referred as Rac1 KO mice, and heterozygous (Rac1+/flNkx2.1 +/cre or control (Rac1+/flNkx2.1 +/+ mice. The specific ablation of Rac1 protein from NKx2.1-expressing MGE-derived progenitors leads to a perturbation of their cell cycle exit resulting in decreased number of interneurons in the cortex(Vidaki et al, 2012. We prepared brain slices from the prefrontal cortex and recorded field excitatory postsynaptic potentials (fEPSPs from layer II neurons while stimulating axons in layer II. We find that the evoked fEPSPs are decreased in Rac1 KO mice compared to Rac1 heterozygous or control mice. This could suggest that the decreased GABAergic inhibition causes network alterations that result in reduced glutamatergic function. Furthermore

  5. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous–unemotional traits

    Directory of Open Access Journals (Sweden)

    Graeme Fairchild

    2015-01-01

    Conclusions: Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and adolescence-onset forms of CD.

  6. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    Science.gov (United States)

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.

  7. prefrontal como mecanismo putativo del cambio en psicoterapia

    Directory of Open Access Journals (Sweden)

    Jaime Silva C.

    2005-01-01

    Full Text Available La corteza prefrontal (CPF es definida como la región cerebral cortical que se conecta recíprocamente con el núcleo dorsolateral del tálamo. La visión tradicional en las ciencias del comportamiento atribuye a la CPF un papel en la organización temporal de la conducta. Adicionalmente, estudios convergentes en el campo de la neurociencia afectiva han revelado el papel fundamental que juega la CPF en la determinación del estilo afectivo y en especial de la regulación emocional. El estilo afectivo involucra las diferencias individuales en diferentes parámetros de la reactividad afectiva y el estado de ánimo disposicional (por ejemplo, amplitud de la respuesta emocional, tiempo de recuperación, etc.. Dado que prácticamente todas las alteraciones psicopatológicas incluyen un trastorno en alguno de esos parámetros, proponemos que la modulación de la actividad de la CPF es una variable fundamental del cambio en psicoterapia. Presentamos nuestro modelo putativo, el cual se fundamenta en el control cognitivo en cascada de la CPF. Específicamente, proponemos que la regulación emocional ocurre asociada a la activación de la CPF lateral en un sentido rostralcaudal, donde zonas rostrales involucran formas complejas de control afectivo.

  8. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Garreth Prendergast

    Full Text Available The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG. Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  9. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    International Nuclear Information System (INIS)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P.

    2015-01-01

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [ 11 C]PIB and [ 18 F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [ 11 C]PIB or [ 18 F]FDG PET scans. The [ 11 C]PIB PET scans were quantified using [ 11 C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  11. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Brain Sciences, London (United Kingdom)

    2014-09-30

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [{sup 11}C]PIB and [{sup 18}F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [{sup 11}C]PIB or [{sup 18}F]FDG PET scans. The [{sup 11}C]PIB PET scans were quantified using [{sup 11}C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  12. K -shell decomposition reveals hierarchical cortical organization of the human brain

    International Nuclear Information System (INIS)

    Lahav, Nir; Ksherim, Baruch; Havlin, Shlomo; Ben-Simon, Eti; Maron-Katz, Adi; Cohen, Reuven

    2016-01-01

    In recent years numerous attempts to understand the human brain were undertaken from a network point of view. A network framework takes into account the relationships between the different parts of the system and enables to examine how global and complex functions might emerge from network topology. Previous work revealed that the human brain features ‘small world’ characteristics and that cortical hubs tend to interconnect among themselves. However, in order to fully understand the topological structure of hubs, and how their profile reflect the brain’s global functional organization, one needs to go beyond the properties of a specific hub and examine the various structural layers that make up the network. To address this topic further, we applied an analysis known in statistical physics and network theory as k-shell decomposition analysis. The analysis was applied on a human cortical network, derived from MRI/DSI data of six participants. Such analysis enables us to portray a detailed account of cortical connectivity focusing on different neighborhoods of inter-connected layers across the cortex. Our findings reveal that the human cortex is highly connected and efficient, and unlike the internet network contains no isolated nodes. The cortical network is comprised of a nucleus alongside shells of increasing connectivity that formed one connected giant component, revealing the human brain’s global functional organization. All these components were further categorized into three hierarchies in accordance with their connectivity profile, with each hierarchy reflecting different functional roles. Such a model may explain an efficient flow of information from the lowest hierarchy to the highest one, with each step enabling increased data integration. At the top, the highest hierarchy (the nucleus) serves as a global interconnected collective and demonstrates high correlation with consciousness related regions, suggesting that the nucleus might serve as a

  13. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  14. Prefrontal cortex activation during obstacle negotiation: What's the effect size and timing?

    Science.gov (United States)

    Maidan, Inbal; Shustak, Shiran; Sharon, Topaz; Bernad-Elazari, Hagar; Geffen, Nimrod; Giladi, Nir; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-04-01

    Obstacle negotiation is a daily activity that requires the integration of sensorimotor and cognitive information. Recent studies provide evidence for the important role of prefrontal cortex during obstacle negotiation. We aimed to explore the effects of obstacle height and available response time on prefrontal activation. Twenty healthy young adults (age: 30.1 ± 1.0 years; 50% women) walked in an obstacle course while negotiating anticipated and unanticipated obstacles at heights of 50 mm and 100 mm. Prefrontal activation was measured using a functional near-infrared spectroscopy system. Kinect cameras measured the obstacle negotiation strategy. Prefrontal activation was defined based on mean level of HbO 2 before, during and after obstacle negotiation and the HbO 2 slope from gait initiation and throughout the task. Changes between types of obstacles were assessed using linear-mix models and partial correlation analyses evaluated the relationship between prefrontal activation and the distance between the feet as the subjects traversed the obstacles. Different obstacle heights showed similar changes in prefrontal activation measures (p > 0.210). However, during unanticipated obstacles, the slope of the HbO 2 response was steeper (p = 0.048), as compared to anticipated obstacles. These changes in prefrontal activation during negotiation of unanticipated obstacles were correlated with greater distance of the leading foot after the obstacles (r = 0.831, p = 0.041). These findings are the first to show that the pattern of prefrontal activation depends on the nature of the obstacle. More specifically, during unanticipated obstacles the recruitment of the prefrontal cortex is faster and greater than during negotiating anticipated obstacles. These results provide evidence of the important role of the prefrontal cortex and the ability of healthy young adults to tailor the activation pattern to different types of obstacles. Copyright © 2018

  15. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    Science.gov (United States)

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Personality disorder symptomatology is associated with anomalies in striatal and prefrontal morphology

    Directory of Open Access Journals (Sweden)

    Doris E Payer

    2015-08-01

    Full Text Available Personality disorder symptomatology (PD-Sx can result in personal distress and impaired interpersonal functioning, even in the absence of a clinical diagnosis, and is frequently comorbid with psychiatric disorders such as substance use, mood, and anxiety disorders; however, they often remain untreated, and are not taken into account in clinical studies. To investigate brain morphological correlates of PD-Sx, we measured subcortical volume and shape, and cortical thickness / surface area, based on structural magnetic resonance images. We investigated 37 subjects who reported PD-Sx exceeding DSM-IV Axis-II screening thresholds, and 35 age, sex, and smoking status-matched control subjects. Subjects reporting PD-Sx were then grouped into symptom-based clusters: N=20 into Cluster B (reporting Antisocial, Borderline, Histrionic, or Narcissistic PD-Sx and N=28 into Cluster C (reporting Obsessive-Compulsive, Avoidant, or Dependent PD-Sx; N=11 subjects reported PD-Sx from both clusters, and none reported Cluster A (Paranoid, Schizoid, or Schizotypal PD-Sx. Compared to control, Cluster C PD-Sx was associated with greater striatal surface area localized to the caudate tail, smaller ventral striatum volumes, and greater cortical thickness in right prefrontal cortex. Both Cluster B and C PD-Sx groups also showed trends toward greater posterior caudate volumes and orbitofrontal surface area anomalies, but these findings did not survive correction for multiple comparisons. The results point to morphological abnormalities that could contribute to Cluster C PD-Sx. In addition, the observations parallel those in substance use disorders, pointing to the importance of considering PD-Sx when interpreting findings in often-comorbid psychiatric disorders.

  17. Brain activation in motor sequence learning is related to the level of native cortical excitability.

    Directory of Open Access Journals (Sweden)

    Silke Lissek

    Full Text Available Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi. In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants.

  18. A hierarchy of intrinsic timescales across primate cortex.

    Science.gov (United States)

    Murray, John D; Bernacchia, Alberto; Freedman, David J; Romo, Ranulfo; Wallis, Jonathan D; Cai, Xinying; Padoa-Schioppa, Camillo; Pasternak, Tatiana; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing

    2014-12-01

    Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct evidence for how cortical areas are specialized in the temporal domain. We measured timescales of intrinsic fluctuations in spiking activity across areas and found a hierarchical ordering, with sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. On the basis of our findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant computations over multiple temporal ranges.

  19. Cortical oscillations modulated by congruent and incongruent audiovisual stimuli.

    Science.gov (United States)

    Herdman, A T; Fujioka, T; Chau, W; Ross, B; Pantev, C; Picton, T W

    2004-11-30

    Congruent or incongruent grapheme-phoneme stimuli are easily perceived as one or two linguistic objects. The main objective of this study was to investigate the changes in cortical oscillations that reflect the processing of congruent and incongruent audiovisual stimuli. Graphemes were Japanese Hiragana characters for four different vowels (/a/, /o/, /u/, and /i/). They were presented simultaneously with their corresponding phonemes (congruent) or non-corresponding phonemes (incongruent) to native-speaking Japanese participants. Participants' reaction times to the congruent audiovisual stimuli were significantly faster by 57 ms as compared to reaction times to incongruent stimuli. We recorded the brain responses for each condition using a whole-head magnetoencephalograph (MEG). A novel approach to analysing MEG data, called synthetic aperture magnetometry (SAM), was used to identify event-related changes in cortical oscillations involved in audiovisual processing. The SAM contrast between congruent and incongruent responses revealed greater event-related desynchonization (8-16 Hz) bilaterally in the occipital lobes and greater event-related synchronization (4-8 Hz) in the left transverse temporal gyrus. Results from this study further support the concept of interactions between the auditory and visual sensory cortices in multi-sensory processing of audiovisual objects.

  20. Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice

    Directory of Open Access Journals (Sweden)

    Kyaw Htet eAung

    2016-03-01

    Full Text Available Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although it has been demonstrated that exposure to sodium arsenite (NaAsO2 suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL, which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment.

  1. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  2. White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.

    Science.gov (United States)

    Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano

    2012-01-16

    Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Methylphenidate and Atomoxetine Inhibit Social Play Behavior through Prefrontal and Subcortical Limbic Mechanisms in Rats

    Science.gov (United States)

    Achterberg, E.J. Marijke; van Kerkhof, Linda W.M.; Damsteegt, Ruth; Trezza, Viviana

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111

  4. Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder.

    Science.gov (United States)

    Buchsbaum, Monte S; Nenadic, Igor; Hazlett, Erin A; Spiegel-Cohen, Jacqueline; Fleischman, Michael B; Akhavan, Arash; Silverman, Jeremy M; Siever, Larry J

    2002-03-01

    In an exploration of the schizophrenia spectrum, we compared cortical metabolic rates in unmedicated patients with schizophrenia and schizotypal personality disorder (SPD) with findings in age- and sex-matched normal volunteers. Coregistered magnetic resonance imaging (MRI) and positron emission tomography (PET) scans were obtained in 27 schizophrenic, 13 SPD, and 32 normal volunteers who performed a serial verbal learning test during tracer uptake. A template of Brodmann areas derived from a whole brain histological section atlas was used to analyze PET findings. Significantly lower metabolic rates were found in prefrontal areas 44-46 in schizophrenic patients than in normal volunteers. SPD patients did not differ from normal volunteers in most lateral frontal regions, but they had values intermediate between those of normal volunteers and schizophrenic patients in lateral temporal regions. SPD patients showed higher than normal metabolic rates in both medial frontal and medial temporal areas. Metabolic rates in Brodmann area 10 were distinctly higher in SPD patients than in either normal volunteers or schizophrenic patients.

  5. The neurobiological role of the dorsolateral prefrontal cortex in recovery from trauma. Longitudinal brain imaging study among survivors of the South Korean subway disaster.

    Science.gov (United States)

    Lyoo, In Kyoon; Kim, Jieun E; Yoon, Sujung J; Hwang, Jaeuk; Bae, Sujin; Kim, Dajung J

    2011-07-01

    A multiwave longitudinal neuroimaging study in a cohort of direct survivors of a South Korean subway disaster, most of whom recovered from posttraumatic stress disorder 5 years after trauma, provided a unique opportunity to investigate the brain correlates of recovery from a severe psychological trauma. To investigate region-specific brain mobilization during successful recovery from posttraumatic stress disorder by assessing cortical thickness multiple times from early after trauma to recovery, and to examine whether a brain-derived neurotrophic factor gene polymorphism was associated with this brain mobilization. Five-year follow-up case-control study conducted from 2003-2007. Seoul National University and Hospital. Thirty psychologically traumatized disaster survivors and 36 age- and sex-matched control group members recruited from the disaster registry and local community, respectively, who contributed 156 high-resolution brain magnetic resonance images during 3 waves of assessments. Cerebral cortical thickness measured in high-resolution anatomic magnetic resonance images using a validated cortical thickness analysis tool and its prospective changes from early after trauma to recovery in trauma-exposed individuals and controls. Trauma-exposed individuals had greater dorsolateral prefrontal cortical (DLPFC) thickness 1.42 years after trauma (right DLPFC, 5.4%; left superior frontal cortex, 5.8%; and left inferior frontal cortex, 5.3% [all clusters, P ≤ .01]) relative to controls. Thicknesses gradually normalized over time during recovery. We found a positive linear trend, with trauma-exposed individuals with a valine/valine genotype having the greatest DLPFC cortical thickness, followed by those with a methionine genotype and controls (P < .001 for trend). Greater DLPFC thickness was associated with greater posttraumatic stress disorder symptom reductions and better recovery. The DLPFC region might play an important role in psychological recovery from a

  6. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation.

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B

    2012-01-18

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.

  7. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B.

    2012-01-01

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated timely. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation. PMID:22262879

  8. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    cortical damage within the motor circuit of ALS patients. The functional changes in non-primary motor cortices pertaining to fronto-parietal circuit suggest an over-recruitment of a pre-existing physiological sensory-motor network. However, the concomitant fronto-parietal cortical atrophy arises the possibility that such a hyper-activation reflects cortical hyper-excitability due to loss of inhibitory inter-neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Acupuncture-Evoked Response in Somatosensory and Prefrontal Cortices Predicts Immediate Pain Reduction in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Yumi Maeda

    2013-01-01

    Full Text Available The linkage between brain response to acupuncture and subsequent analgesia remains poorly understood. Our aim was to evaluate this linkage in chronic pain patients with carpal tunnel syndrome (CTS. Brain response to electroacupuncture (EA was evaluated with functional MRI. Subjects were randomized to 3 groups: (1 EA applied at local acupoints on the affected wrist (PC-7 to TW-5, (2 EA at distal acupoints (contralateral ankle, SP-6 to LV-4, and (3 sham EA at nonacupoint locations on the affected wrist. Symptom ratings were evaluated prior to and following the scan. Subjects in the local and distal groups reported reduced pain. Verum EA produced greater reduction of paresthesia compared to sham. Compared to sham EA, local EA produced greater activation in insula and S2 and greater deactivation in ipsilateral S1, while distal EA produced greater activation in S2 and deactivation in posterior cingulate cortex. Brain response to distal EA in prefrontal cortex (PFC and brain response to verum EA in S1, SMA, and PFC were correlated with pain reduction following stimulation. Thus, while greater activation to verum acupuncture in these regions may predict subsequent analgesia, PFC activation may specifically mediate reduced pain when stimulating distal acupoints.

  10. Synapse density and dendritic complexity are reduced in the prefrontal cortex following seven days of forced abstinence from cocaine self-administration.

    Directory of Open Access Journals (Sweden)

    Khampaseuth Rasakham

    Full Text Available Chronic cocaine exposure in both human addicts and in rodent models of addiction reduces prefrontal cortical activity, which subsequently dysregulates reward processing and higher order executive function. The net effect of this impaired gating of behavior is enhanced vulnerability to relapse. Previously we have shown that cocaine-induced increases in brain-derived neurotrophic factor (BDNF expression in the medial prefrontal cortex (PFC is a neuroadaptive mechanism that blunts the reinforcing efficacy of cocaine. As BDNF is known to affect neuronal survival and synaptic plasticity, we tested the hypothesis that abstinence from cocaine self-administration would lead to alterations in neuronal morphology and synaptic density in the PFC. Using a novel technique, array tomography and Golgi staining, morphological changes in the rat PFC were analyzed following 14 days of cocaine self-administration and 7 days of forced abstinence. Our results indicate that overall dendritic branching and total synaptic density are significantly reduced in the rat PFC. In contrast, the density of thin dendritic spines are significantly increased on layer V pyramidal neurons of the PFC. These findings indicate that dynamic structural changes occur during cocaine abstinence that may contribute to the observed hypo-activity of the PFC in cocaine-addicted individuals.

  11. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model.

    Science.gov (United States)

    Hara, Yuta; Takuma, Kazuhiro; Takano, Erika; Katashiba, Keisuke; Taruta, Atsuki; Higashino, Kosuke; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2015-08-01

    Previous studies suggest that dysfunction of neurotransmitter systems is associated with the pathology of autism in humans and the disease model rodents, but the precise mechanism is not known. Rodent offspring exposed prenatally to VPA shows autism-related behavioral abnormalities. The present study examined the effect of prenatal VPA exposure on brain monoamine neurotransmitter systems in male and female mice. The prenatal VPA exposure did not affect the levels of dopamine (DA), noradrenaline (NA), serotonin (5-HT) and their metabolites in the prefrontal cortex and striatum, while it significantly reduced methamphetamine (METH) (1.0 mg/kg)-induced hyperlocomotion in male offspring. In vivo microdialysis study demonstrated that prenatal VPA exposure attenuated METH-induced increases in extracellular DA levels in the prefrontal cortex, while it did not affect those in extracellular NA and 5-HT levels. Prenatal VPA exposure also decreased METH-induced c-Fos expression in the prefrontal cortex and the mRNA levels of DA D1 and D2 receptors in the prefrontal cortex. These effects of VPA were not observed in the striatum. In contrast to male offspring, prenatal VPA exposure did not affect METH-induced increases in locomotor activity and prefrontal DA levels and the D1 and D2 receptor mRNA levels in the prefrontal cortex in female offspring. These findings suggest that prenatal VPA exposure causes hypofunction of prefrontal DA system in a sex-dependent way. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  13. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  14. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study.

    Science.gov (United States)

    Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide

    2015-12-01

    This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Cell and Receptor Type-Specific Alterations in Markers of GABA Neurotransmission in the Prefrontal Cortex of Subjects with Schizophrenia

    OpenAIRE

    Lewis, David A.; Hashimoto, Takanori; Morris, Harvey M.

    2008-01-01

    Impairments in cognitive control, such as those involved in working memory, are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) in individuals with schizophrenia. This dysfunction appears to result, at least in part, from abnormalities in GABA-mediated neurotransmission. In this paper, we review recent findings indicating that the altered DLPFC circuitry in subjects with schizophrenia reflects changes in the expression of genes that encode selective presynaptic and p...

  16. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    Science.gov (United States)

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Differences in prefrontal blood oxygenation during an acute multitasking stressor in ecstasy polydrug users.

    Science.gov (United States)

    Roberts, C A; Wetherell, M A; Fisk, J E; Montgomery, C

    2015-01-01

    Cognitive deficits are well documented in ecstasy (3,4-methylenedioxymethamphetamine; MDMA) users, with such deficits being taken as evidence of dysregulation of the serotonin (5-hydroxytryptamine; 5-HT) system. More recently neuroimaging has been used to corroborate these deficits. The present study aimed to assess multitasking performance in ecstasy polydrug users, polydrug users and drug-naive individuals. It was predicted that ecstasy polydrug users would perform worse than non-users on the behavioural measure and this would be supported by differences in cortical blood oxygenation. In the study, 20 ecstasy-polydrug users, 17 polydrug users and 19 drug-naive individuals took part. On day 1, drug use history was taken and questionnaire measures were completed. On day 2, participants completed a 20-min multitasking stressor while brain blood oxygenation was measured using functional near infrared spectroscopy (fNIRS). There were no significant differences between the three groups on the subscales of the multitasking stressor. In addition, there were no significant differences on self-report measures of perceived workload (NASA Task Load Index). In terms of mood, ecstasy users were significantly less calm and less relaxed compared with drug-naive controls. There were also significant differences at three voxels on the fNIRS, indicating decreased blood oxygenation in ecstasy users compared with drug-naive controls at voxel 2 (left dorsolateral prefrontal cortex), voxel 14 and voxel 16 (right dorsolateral prefrontal cortex), and compared with polydrug controls at V14. The results of the present study provide support for changes in brain activation during performance of demanding tasks in ecstasy polydrug users, which could be related to cerebral vasoconstriction.

  18. Hyperfixation of Tc-99m ECD in subacute cortical infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung; Kweon, Sun Uck; Ryu, Jin Sook; Moon, Dae Hyuk; Lee, Hee Kyung [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of)

    2001-07-01

    It has been known that hyperfixation of Tc-99m ECD (HF) is not shown in subacute cerebral infarction because the brain distribution of Tc-99m ECD reflects not only perfusion but also the metabolic status of brain tissue. However, we observed several cases with HF in the subacute pure cortical infarction. To find out the cause of HF in subacute cortical infarction. We assessed the difference in associated cerebral hemodynamics and clinical findings between the subacute cortical infarctions with and without HF. We reviewed 16 patients (63.8{+-}8.6 yr, M/F: 15/1) with pure cortical infarction not involving adjacent subcortical white matter on MRI. All patients underwent acetazolamide stress brain perfusion SPECT using Tc-99m ECD and MRI at subacute period (7.3{+-}4.4 days from ictus). Uptake of Tc-99m ECD in infarcted cortex was assessed visually comparing the contralateral side. To assess the difference in associate clinical findings between the infarctions with and without HF, rCVR of the cerebral territory including infarcted cortex, extent of Gd-enhancement on MRI. Intervals between SPECT and ictus, and the presence of associated ICA stenosis were evaluated. Infarctions were focal (n=8) or multifocal (n=8) and located in frontoparietal cortices on MRI. Twelve patients were accompanied with ipsilateral ICA stenosis. Resting SPECT showed increased cortical uptake (=HF) in 7 patients and decreased in 9. rCVR of the MCA territory was preserved in all of the 7 patients with HF, compared with 4 of the 9 patients without HF (p=0.03). Gd-enhancement was minimal in all of the 7 patients with HF, compared with of the 0 patients without HF (p=0.03). Presence of ipsilateral ICA stenosis and intervals from ictus were not different (p>0.1) Subacute cerebral cortical infarction with HF was more frequently associated with preserved rCVR and minimal destruction of the blood-brain barrier than that without HF. Our findings suggest that HF may result from luxury perfusion of

  19. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study.

    Science.gov (United States)

    Zhu, Huilin; Xu, Jie; Li, Jiangxue; Peng, Hongjun; Cai, Tingting; Li, Xinge; Wu, Shijing; Cao, Wei; He, Sailing

    2017-10-15

    Affective disorders (AD) have been conceptualized as neural network-level diseases. In this study, we utilized functional near infrared spectroscopy (fNIRS) to investigate the spontaneous hemodynamic activities in the prefrontal cortex (PFC) of the AD patients with or without medications. 42 optical channels were applied to cover the superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG), which constitute one of the most important affective networks of the brain. We performed resting-state measurements on 28 patients who were diagnosed as having AD and 30 healthy controls (HC). Raw fNIRS data were preprocessed with independent component analysis (ICA) and a band-pass filter to remove artifacts and physiological noise. By systematically analyzing the intra-regional, intrahemispheric, and interhemispheric connectivities based on the spontaneous oscillations of Δ[HbO], our results indicated that patients with AD exhibited significantly reduced intra-regional and symmetrically interhemispheric connectivities in the PFC when compared to HC. More specifically, relative to HC, AD patients showed significantly lower locally functional connectivity in the right IFG, and poor long-distance connectivity between bilateral IFG. In addition, AD patients without medication presented more disrupted cortical organizations in the PFC, and the severity of self-reported symptoms of depression was negatively correlated with the strength of intra-regional and symmetrically interhemispheric connectivity in the PFC. Regarding the measuring technique, fNIRS has restricted measurement depth and spatial resolution. During the study, the subgroups of AD, such as major depressive disorder, bipolar, comorbidity, or non-comorbidity, dosage of psychotropic drugs, as well as different types of pharmacological responses were not distinguished and systematically compared. Furthermore, due to the limitation of the research design, it was still not very clear how

  20. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex.

    Science.gov (United States)

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-07-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.