WorldWideScience

Sample records for reference human genome

  1. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  2. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  3. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond; Flicek, Paul; Cunningham, Fiona; Astashyn, Alex; Tully, Raymond E; Proctor, Glenn; Chen, Yuan; McLaren, William M; Larsson, Pontus; Vaughan, Brendan W; Bé roud, Christophe; Dobson, Glen; Lehvä slaiho, Heikki; Taschner, Peter EM; den Dunnen, Johan T; Devereau, Andrew; Birney, Ewan; Brookes, Anthony J; Maglott, Donna R

    2010-01-01

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  4. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  5. Human Contamination in Public Genome Assemblies.

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases.

  6. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  7. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Marschall, T.; Kloosterman, W.P.; Francioli, L.C.; Baaijens, J.A.; Dijkstra, L.J.; Abdellaoui, A.; Koval, V.; Thung, D.T.; Wardenaar, R.; Renkens, I.; Coe, B.P.; Deelen, P.; de Ligt, J.; Lameijer, E.W.; Dijk, F.; Hormozdiari, F.; Uitterlinden, A.G.; van Duijn, C.M.; Eichler, E.E.; Bakker, P.I.W.; Swertz, M.A.; Wijmenga, C.; van Ommen, G.J.B; Slagboom, P.E.; Boomsma, D.I.; Schönhuth, A.; Ye, K.; Guryev, V.

    2016-01-01

    Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic

  8. HGVA: the Human Genome Variation Archive

    OpenAIRE

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gr?f, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-01-01

    Abstract High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic...

  9. VERSE: a novel approach to detect virus integration in host genomes through reference genome customization.

    Science.gov (United States)

    Wang, Qingguo; Jia, Peilin; Zhao, Zhongming

    2015-01-01

    Fueled by widespread applications of high-throughput next generation sequencing (NGS) technologies and urgent need to counter threats of pathogenic viruses, large-scale studies were conducted recently to investigate virus integration in host genomes (for example, human tumor genomes) that may cause carcinogenesis or other diseases. A limiting factor in these studies, however, is rapid virus evolution and resulting polymorphisms, which prevent reads from aligning readily to commonly used virus reference genomes, and, accordingly, make virus integration sites difficult to detect. Another confounding factor is host genomic instability as a result of virus insertions. To tackle these challenges and improve our capability to identify cryptic virus-host fusions, we present a new approach that detects Virus intEgration sites through iterative Reference SEquence customization (VERSE). To the best of our knowledge, VERSE is the first approach to improve detection through customizing reference genomes. Using 19 human tumors and cancer cell lines as test data, we demonstrated that VERSE substantially enhanced the sensitivity of virus integration site detection. VERSE is implemented in the open source package VirusFinder 2 that is available at http://bioinfo.mc.vanderbilt.edu/VirusFinder/.

  10. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Almeida, Mathieu; Juncker, Agnieszka

    2014-01-01

    of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify...

  11. Genomic characterization of large heterochromatic gaps in the human genome assembly.

    Directory of Open Access Journals (Sweden)

    Nicolas Altemose

    2014-05-01

    Full Text Available The largest gaps in the human genome assembly correspond to multi-megabase heterochromatic regions composed primarily of two related families of tandem repeats, Human Satellites 2 and 3 (HSat2,3. The abundance of repetitive DNA in these regions challenges standard mapping and assembly algorithms, and as a result, the sequence composition and potential biological functions of these regions remain largely unexplored. Furthermore, existing genomic tools designed to predict consensus-based descriptions of repeat families cannot be readily applied to complex satellite repeats such as HSat2,3, which lack a consistent repeat unit reference sequence. Here we present an alignment-free method to characterize complex satellites using whole-genome shotgun read datasets. Utilizing this approach, we classify HSat2,3 sequences into fourteen subfamilies and predict their chromosomal distributions, resulting in a comprehensive satellite reference database to further enable genomic studies of heterochromatic regions. We also identify 1.3 Mb of non-repetitive sequence interspersed with HSat2,3 across 17 unmapped assembly scaffolds, including eight annotated gene predictions. Finally, we apply our satellite reference database to high-throughput sequence data from 396 males to estimate array size variation of the predominant HSat3 array on the Y chromosome, confirming that satellite array sizes can vary between individuals over an order of magnitude (7 to 98 Mb and further demonstrating that array sizes are distributed differently within distinct Y haplogroups. In summary, we present a novel framework for generating initial reference databases for unassembled genomic regions enriched with complex satellite DNA, and we further demonstrate the utility of these reference databases for studying patterns of sequence variation within human populations.

  12. Diversity in non-repetitive human sequences not found in the reference genome.

    Science.gov (United States)

    Kehr, Birte; Helgadottir, Anna; Melsted, Pall; Jonsson, Hakon; Helgason, Hannes; Jonasdottir, Adalbjörg; Jonasdottir, Aslaug; Sigurdsson, Asgeir; Gylfason, Arnaldur; Halldorsson, Gisli H; Kristmundsdottir, Snaedis; Thorgeirsson, Gudmundur; Olafsson, Isleifur; Holm, Hilma; Thorsteinsdottir, Unnur; Sulem, Patrick; Helgason, Agnar; Gudbjartsson, Daniel F; Halldorsson, Bjarni V; Stefansson, Kari

    2017-04-01

    Genomes usually contain some non-repetitive sequences that are missing from the reference genome and occur only in a population subset. Such non-repetitive, non-reference (NRNR) sequences have remained largely unexplored in terms of their characterization and downstream analyses. Here we describe 3,791 breakpoint-resolved NRNR sequence variants called using PopIns from whole-genome sequence data of 15,219 Icelanders. We found that over 95% of the 244 NRNR sequences that are 200 bp or longer are present in chimpanzees, indicating that they are ancestral. Furthermore, 149 variant loci are in linkage disequilibrium (r 2 > 0.8) with a genome-wide association study (GWAS) catalog marker, suggesting disease relevance. Additionally, we report an association (P = 3.8 × 10 -8 , odds ratio (OR) = 0.92) with myocardial infarction (23,360 cases, 300,771 controls) for a 766-bp NRNR sequence variant. Our results underline the importance of including variation of all complexity levels when searching for variants that associate with disease.

  13. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  14. A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line

    KAUST Repository

    Benavente, Ernest Diez

    2017-12-16

    Plasmodium knowlesi, a common parasite of macaques, is recognized as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.

  15. A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line

    KAUST Repository

    Benavente, Ernest Diez; de Sessions, Paola Florez; Moon, Robert W.; Grainger, Munira; Holder, Anthony A; Blackman, Michael J.; Roper, Cally; Drakeley, Christopher J.; Pain, Arnab; Sutherland, Colin J.; Hibberd, Martin L.; Campino, Susana; Clark, Taane G

    2017-01-01

    Plasmodium knowlesi, a common parasite of macaques, is recognized as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.

  16. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Inversion variants in human and primate genomes.

    Science.gov (United States)

    Catacchio, Claudia Rita; Maggiolini, Flavia Angela Maria; D'Addabbo, Pietro; Bitonto, Miriana; Capozzi, Oronzo; Signorile, Martina Lepore; Miroballo, Mattia; Archidiacono, Nicoletta; Eichler, Evan E; Ventura, Mario; Antonacci, Francesca

    2018-05-18

    For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates. © 2018 Catacchio et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  19. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  20. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis.

    Science.gov (United States)

    Guo, Yan; Dai, Yulin; Yu, Hui; Zhao, Shilin; Samuels, David C; Shyr, Yu

    2017-03-01

    Analyses of high throughput sequencing data starts with alignment against a reference genome, which is the foundation for all re-sequencing data analyses. Each new release of the human reference genome has been augmented with improved accuracy and completeness. It is presumed that the latest release of human reference genome, GRCh38 will contribute more to high throughput sequencing data analysis by providing more accuracy. But the amount of improvement has not yet been quantified. We conducted a study to compare the genomic analysis results between the GRCh38 reference and its predecessor GRCh37. Through analyses of alignment, single nucleotide polymorphisms, small insertion/deletions, copy number and structural variants, we show that GRCh38 offers overall more accurate analysis of human sequencing data. More importantly, GRCh38 produced fewer false positive structural variants. In conclusion, GRCh38 is an improvement over GRCh37 not only from the genome assembly aspect, but also yields more reliable genomic analysis results. Copyright © 2017. Published by Elsevier Inc.

  1. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.

    Science.gov (United States)

    Nielsen, H Bjørn; Almeida, Mathieu; Juncker, Agnieszka Sierakowska; Rasmussen, Simon; Li, Junhua; Sunagawa, Shinichi; Plichta, Damian R; Gautier, Laurent; Pedersen, Anders G; Le Chatelier, Emmanuelle; Pelletier, Eric; Bonde, Ida; Nielsen, Trine; Manichanh, Chaysavanh; Arumugam, Manimozhiyan; Batto, Jean-Michel; Quintanilha Dos Santos, Marcelo B; Blom, Nikolaj; Borruel, Natalia; Burgdorf, Kristoffer S; Boumezbeur, Fouad; Casellas, Francesc; Doré, Joël; Dworzynski, Piotr; Guarner, Francisco; Hansen, Torben; Hildebrand, Falk; Kaas, Rolf S; Kennedy, Sean; Kristiansen, Karsten; Kultima, Jens Roat; Léonard, Pierre; Levenez, Florence; Lund, Ole; Moumen, Bouziane; Le Paslier, Denis; Pons, Nicolas; Pedersen, Oluf; Prifti, Edi; Qin, Junjie; Raes, Jeroen; Sørensen, Søren; Tap, Julien; Tims, Sebastian; Ussery, David W; Yamada, Takuji; Renault, Pierre; Sicheritz-Ponten, Thomas; Bork, Peer; Wang, Jun; Brunak, Søren; Ehrlich, S Dusko

    2014-08-01

    Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.

  2. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  3. Analyses of Tissue Culture Adaptation of Human Herpesvirus-6A by Whole Genome Deep Sequencing Redefines the Reference Sequence and Identifies Virus Entry Complex Changes.

    Science.gov (United States)

    Tweedy, Joshua G; Escriva, Eric; Topf, Maya; Gompels, Ursula A

    2017-12-31

    Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally "cloned" by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis.

  4. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship.

    Directory of Open Access Journals (Sweden)

    S Hong Lee

    Full Text Available Genomic prediction is emerging in a wide range of fields including animal and plant breeding, risk prediction in human precision medicine and forensic. It is desirable to establish a theoretical framework for genomic prediction accuracy when the reference data consists of information sources with varying degrees of relationship to the target individuals. A reference set can contain both close and distant relatives as well as 'unrelated' individuals from the wider population in the genomic prediction. The various sources of information were modeled as different populations with different effective population sizes (Ne. Both the effective number of chromosome segments (Me and Ne are considered to be a function of the data used for prediction. We validate our theory with analyses of simulated as well as real data, and illustrate that the variation in genomic relationships with the target is a predictor of the information content of the reference set. With a similar amount of data available for each source, we show that close relatives can have a substantially larger effect on genomic prediction accuracy than lesser related individuals. We also illustrate that when prediction relies on closer relatives, there is less improvement in prediction accuracy with an increase in training data or marker panel density. We release software that can estimate the expected prediction accuracy and power when combining different reference sources with various degrees of relationship to the target, which is useful when planning genomic prediction (before or after collecting data in animal, plant and human genetics.

  5. The Release 6 reference sequence of the Drosophila melanogaster genome.

    Science.gov (United States)

    Hoskins, Roger A; Carlson, Joseph W; Wan, Kenneth H; Park, Soo; Mendez, Ivonne; Galle, Samuel E; Booth, Benjamin W; Pfeiffer, Barret D; George, Reed A; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V; Andreyeva, Evgeniya N; Boldyreva, Lidiya V; Marra, Marco; Carvalho, A Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F; Rubin, Gerald M; Karpen, Gary H; Celniker, Susan E

    2015-03-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. © 2015 Hoskins et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Impact of the choice of reference genome on the ability of the core genome SNV methodology to distinguish strains of Salmonella enterica serovar Heidelberg.

    Science.gov (United States)

    Usongo, Valentine; Berry, Chrystal; Yousfi, Khadidja; Doualla-Bell, Florence; Labbé, Genevieve; Johnson, Roger; Fournier, Eric; Nadon, Celine; Goodridge, Lawrence; Bekal, Sadjia

    2018-01-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV) is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.

  7. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  8. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  9. The value of new genome references.

    Science.gov (United States)

    Worley, Kim C; Richards, Stephen; Rogers, Jeffrey

    2017-09-15

    Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology. Copyright © 2016. Published by Elsevier Inc.

  10. De novo assembly of a haplotype-resolved human genome

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang

    2015-01-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-...

  11. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...

  12. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies.

    Science.gov (United States)

    Card, Daren C; Schield, Drew R; Reyes-Velasco, Jacobo; Fujita, Matthew K; Andrew, Audra L; Oyler-McCance, Sara J; Fike, Jennifer A; Tomback, Diana F; Ruggiero, Robert P; Castoe, Todd A

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  13. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies

    Science.gov (United States)

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthre K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (~3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  14. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    Science.gov (United States)

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  15. GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.

    Science.gov (United States)

    Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E

    2015-01-01

    Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Impact of Relationships between Test and Reference Animals and between Reference Animals on Reliability of Genomic Prediction

    DEFF Research Database (Denmark)

    Wu, Xiaoping; Lund, Mogens Sandø; Sun, Dongxiao

    This study investigated reliability of genomic prediction in various scenarios with regard to relationship between test and reference animals and between animals within the reference population. Different reference populations were generated from EuroGenomics data and 1288 Nordic Holstein bulls...... as a common test population. A GBLUP model and a Bayesian mixture model were applied to predict Genomic breeding values for bulls in the test data. Result showed that a closer relationship between test and reference animals led to a higher reliability, while a closer relationship between reference animal...... resulted in a lower reliability. Therefore, the design of reference population is important for improving the reliability of genomic prediction. With regard to model, the Bayesian mixture model in general led to slightly a higher reliability of genomic prediction than the GBLUP model...

  17. Identification of low-confidence regions in the pig reference genome (Sscrofa10.2

    Directory of Open Access Journals (Sweden)

    Amanda eWarr

    2015-11-01

    Full Text Available Many applications of high throughput sequencing rely on the availability of an accurate reference genome. Variant calling often produces large data sets that cannot be realistically validated and which may contain large numbers of false-positives. Errors in the reference assembly increase the number of false-positives. While resources are available to aid in the filtering of variants from human data, for other species these do not yet exist and strict filtering techniques must be employed which are more likely to exclude true-positives. This work assesses the accuracy of the pig reference genome (Sscrofa10.2 using whole genome sequencing reads from the Duroc sow whose genome the assembly was based on. Indicators of structural variation including high regional coverage, unexpected insert sizes, improper pairing and homozygous variants were used to identify low quality (LQ regions of the assembly. Low coverage (LC regions were also identified and analyzed separately. The LQ regions covered 13.85% of the genome, the LC regions covered 26.6% of the genome and combined (LQLC they covered 33.07% of the genome. Over half of dbSNP variants were located in the LQLC regions. Of CNVRs identified in a previous study, 86.3% were located in the LQLC regions. The regions were also enriched for gene predictions from RNA-seq data with 42.98% falling in the LQLC regions. Excluding variants in the LQ, LC or LQLC from future analyses will help reduce the number of false-positive variant calls. Researchers using WGS data should be aware that the current pig reference genome does not give an accurate representation of the copy number of alleles in the original Duroc sow’s genome.

  18. Human-specific HERV-K insertion causes genomic variations in the human genome.

    Directory of Open Access Journals (Sweden)

    Wonseok Shin

    Full Text Available Human endogenous retroviruses (HERV sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.

  19. The "most wanted" taxa from the human microbiome for whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available The goal of the Human Microbiome Project (HMP is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  20. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  1. Comparison of phasing strategies for whole human genomes.

    Science.gov (United States)

    Choi, Yongwook; Chan, Agnes P; Kirkness, Ewen; Telenti, Amalio; Schork, Nicholas J

    2018-04-01

    Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not 'phase' the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available 'Genome-In-A-Bottle' (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays that prepare DNA in unique ways to facilitate phasing as well as purely computational approaches that seek to reconstruct phase information from general sequencing reads and constructs or population-level haplotype frequency information obtained through a reference panel of haplotypes. To assess the performance of the 11 approaches, we used metrics that included, among others, switch error rates, haplotype block lengths, the proportion of fully phase-resolved genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a hybrid or combined approach that leverages: 1. population-based phasing using the SHAPEIT software suite, 2. either genome-wide sequencing read data or parental genotypes, and 3. a large reference panel of variant and haplotype frequencies, provides a fast and efficient way to produce highly accurate phase-resolved individual human genomes. We found that for population-based approaches, phasing performance is enhanced with the addition of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads. Further, we found that the inclusion of parental genotype data within a population-based phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also considered a majority voting scheme for the construction of a

  2. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  3. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  4. Clinical Implications of Human Population Differences in Genome-wide Rates of Functional Genotypes

    Directory of Open Access Journals (Sweden)

    Ali eTorkamani

    2012-11-01

    Full Text Available There have been a number of recent successes in the use of whole genome sequencing and sophisticated bioinformatics techniques to identify pathogenic DNA sequence variants responsible for individual idiopathic congenital conditions. However, the success of this identification process is heavily influenced by the ancestry or genetic background of a patient with an idiopathic condition. This is so because potential pathogenic variants in a patient’s genome must be contrasted with variants in a reference set of genomes made up of other individuals’ genomes of the same ancestry as the patient. We explored the effect of ignoring the ancestries of both an individual patient and the individuals used to construct reference genomes. We pursued this exploration in two major steps. We first considered variation in the per-genome number and rates likely functional derived (i.e., non-ancestral, based on the chimp genome single nucleotide variants and small indels in 52 individual whole human genomes sampled from 10 different global populations. We took advantage of a suite of computational and bioinformatics techniques to predict the functional effect of over 24 million genomic variants, both coding and non-coding, across these genomes. We found that the typical human genome harbors ~5.5-6.1 million total derived variants, of which ~12,000 are likely to have a functional effect (~5000 coding and ~7000 non-coding. We also found that the rates of functional genotypes per the total number of genotypes in individual whole genomes differ dramatically between human populations. We then created tables showing how the use of comparator or reference genome panels comprised of genomes from individuals that do not have the same ancestral background as a patient can negatively impact pathogenic variant identification. Our results have important implications for clinical sequencing initiatives.

  5. Sharing reference data and including cows in the reference population improve genomic predictions in Danish Jersey.

    Science.gov (United States)

    Su, G; Ma, P; Nielsen, U S; Aamand, G P; Wiggans, G; Guldbrandtsen, B; Lund, M S

    2016-06-01

    Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such like Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing size of reference population in Danish Jersey. The first approach was to include North American Jersey bulls in Danish Jersey reference population. The second was to genotype cows and use them as reference animals. The validation of genomic prediction was carried out on bulls and cows, respectively. In validation on bulls, about 300 Danish bulls (depending on traits) born in 2005 and later were used as validation data, and the reference populations were: (1) about 1050 Danish bulls, (2) about 1050 Danish bulls and about 1150 US bulls. In validation on cows, about 3000 Danish cows from 87 young half-sib families were used as validation data, and the reference populations were: (1) about 1250 Danish bulls, (2) about 1250 Danish bulls and about 1150 US bulls, (3) about 1250 Danish bulls and about 4800 cows, (4) about 1250 Danish bulls, 1150 US bulls and 4800 Danish cows. Genomic best linear unbiased prediction model was used to predict breeding values. De-regressed proofs were used as response variables. In the validation on bulls for eight traits, the joint DK-US bull reference population led to higher reliability of genomic prediction than the DK bull reference population for six traits, but not for fertility and longevity. Averaged over the eight traits, the gain was 3 percentage points. In the validation on cows for six traits (fertility and longevity were not available), the gain from inclusion of US bull in reference population was 6.6 percentage points in average over the six traits, and the gain from inclusion of cows was 8.2 percentage points. However, the gains from cows and US bulls were not accumulative. The total gain of including both US bulls and Danish cows was 10.5 percentage points. The results indicate that sharing reference

  6. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  7. Tempo and mode of genomic mutations unveil human evolutionary history.

    Science.gov (United States)

    Hara, Yuichiro

    2015-01-01

    Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.

  8. Report on the Human Genome Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large. multi-year. multidisciplinary. technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA. major new analytical methods for ordering and sequencing. theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted. broadly based. scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time. single laboratory effort into a coordinated. worldwide. comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude. but so will be the benefit to biological understanding. new technology and the diagnosis and treatment of human disease.

  9. FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies.

    Science.gov (United States)

    Abugessaisa, Imad; Noguchi, Shuhei; Hasegawa, Akira; Harshbarger, Jayson; Kondo, Atsushi; Lizio, Marina; Severin, Jessica; Carninci, Piero; Kawaji, Hideya; Kasukawa, Takeya

    2017-08-29

    The FANTOM5 consortium described the promoter-level expression atlas of human and mouse by using CAGE (Cap Analysis of Gene Expression) with single molecule sequencing. In the original publications, GRCh37/hg19 and NCBI37/mm9 assemblies were used as the reference genomes of human and mouse respectively; later, the Genome Reference Consortium released newer genome assemblies GRCh38/hg38 and GRCm38/mm10. To increase the utility of the atlas in forthcoming researches, we reprocessed the data to make them available on the recent genome assemblies. The data include observed frequencies of transcription starting sites (TSSs) based on the realignment of CAGE reads, and TSS peaks that are converted from those based on the previous reference. Annotations of the peak names were also updated based on the latest public databases. The reprocessed results enable us to examine frequencies of transcription initiations on the recent genome assemblies and to refer promoters with updated information across the genome assemblies consistently.

  10. Short template switch events explain mutation clusters in the human genome.

    Science.gov (United States)

    Löytynoja, Ari; Goldman, Nick

    2017-06-01

    Resequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement and used this to study the role of template switch events in the origin of short mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor and hundreds of events between two independently sequenced human genomes. Although many of these are consistent with a template switch mechanism previously proposed for bacteria, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multinucleotide mutations and compensatory substitutions without invoking positive selection, speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for current mapping and variant calling methods, and we show that many erroneous variant annotations exist in human reference data. Local template switch events may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo assembled genomes will lead to improved understanding of genome variation and evolution. © 2017 Löytynoja and Goldman; Published by Cold Spring Harbor Laboratory Press.

  11. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  12. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.

    Science.gov (United States)

    Schneider, Valerie A; Graves-Lindsay, Tina; Howe, Kerstin; Bouk, Nathan; Chen, Hsiu-Chuan; Kitts, Paul A; Murphy, Terence D; Pruitt, Kim D; Thibaud-Nissen, Françoise; Albracht, Derek; Fulton, Robert S; Kremitzki, Milinn; Magrini, Vincent; Markovic, Chris; McGrath, Sean; Steinberg, Karyn Meltz; Auger, Kate; Chow, William; Collins, Joanna; Harden, Glenn; Hubbard, Timothy; Pelan, Sarah; Simpson, Jared T; Threadgold, Glen; Torrance, James; Wood, Jonathan M; Clarke, Laura; Koren, Sergey; Boitano, Matthew; Peluso, Paul; Li, Heng; Chin, Chen-Shan; Phillippy, Adam M; Durbin, Richard; Wilson, Richard K; Flicek, Paul; Eichler, Evan E; Church, Deanna M

    2017-05-01

    The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health. © 2017 Schneider et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  14. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  15. Genomic characterisation of Leptospira inadai serogroup Lyme isolated from captured rat in Brazil and comparative analysis with human reference strain.

    Science.gov (United States)

    Moreno, Luisa Z; Miraglia, Fabiana; Loureiro, Ana P; Kremer, Frederico S; Eslabao, Marcus R; Dellagostin, Odir A; Lilenbaum, Walter; Vasconcellos, Silvio A; Heinemann, Marcos B; Moreno, Andrea M

    2018-03-12

    Leptospira inadai is classified as a species of the Leptospira intermediate group that has been poorly studied due to its apparent insignificance to human and animal health. Nevertheless, over the last two decades the species has been described in human cases in India and in carrier animals in Ecuador. Here, we present the first identification and genomic characterisation of L. inadai serogroup Lyme isolated from captured rodent in Brazil. Even though the M34/99 strain was not pathogenic for hamsters, it was able to establish renal colonisation. The M34/99 strain presented high similarity with L. inadai serogroup Lyme human reference indicating that animal strain could also infect humans, although it does not represent high risk of severe disease. An extrachromosomal sequence was also identified in M34/99 strain and presented high identity with previously described L. inadai phage LinZ_10, suggesting that phage-like extrachromosomal sequence may be another feature of this understudied species.

  16. Genomic characterisation of Leptospira inadai serogroup Lyme isolated from captured rat in Brazil and comparative analysis with human reference strain

    Science.gov (United States)

    Moreno, Luisa Z; Miraglia, Fabiana; Loureiro, Ana P; Kremer, Frederico S; Eslabao, Marcus R; Dellagostin, Odir A; Lilenbaum, Walter; Vasconcellos, Silvio A; Heinemann, Marcos B; Moreno, Andrea M

    2018-01-01

    Leptospira inadai is classified as a species of the Leptospira intermediate group that has been poorly studied due to its apparent insignificance to human and animal health. Nevertheless, over the last two decades the species has been described in human cases in India and in carrier animals in Ecuador. Here, we present the first identification and genomic characterisation of L. inadai serogroup Lyme isolated from captured rodent in Brazil. Even though the M34/99 strain was not pathogenic for hamsters, it was able to establish renal colonisation. The M34/99 strain presented high similarity with L. inadai serogroup Lyme human reference indicating that animal strain could also infect humans, although it does not represent high risk of severe disease. An extrachromosomal sequence was also identified in M34/99 strain and presented high identity with previously described L. inadai phage LinZ_10, suggesting that phage-like extrachromosomal sequence may be another feature of this understudied species. PMID:29538491

  17. Genomic characterisation of Leptospira inadai serogroup Lyme isolated from captured rat in Brazil and comparative analysis with human reference strain

    Directory of Open Access Journals (Sweden)

    Luisa Z Moreno

    2018-03-01

    Full Text Available Leptospira inadai is classified as a species of the Leptospira intermediate group that has been poorly studied due to its apparent insignificance to human and animal health. Nevertheless, over the last two decades the species has been described in human cases in India and in carrier animals in Ecuador. Here, we present the first identification and genomic characterisation of L. inadai serogroup Lyme isolated from captured rodent in Brazil. Even though the M34/99 strain was not pathogenic for hamsters, it was able to establish renal colonisation. The M34/99 strain presented high similarity with L. inadai serogroup Lyme human reference indicating that animal strain could also infect humans, although it does not represent high risk of severe disease. An extrachromosomal sequence was also identified in M34/99 strain and presented high identity with previously described L. inadai phage LinZ_10, suggesting that phage-like extrachromosomal sequence may be another feature of this understudied species.

  18. De novo assembly of human genomes with massively parallel short read sequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Zhu, Hongmei; Ruan, Jue

    2010-01-01

    genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities...... for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way....

  19. A Secure Alignment Algorithm for Mapping Short Reads to Human Genome.

    Science.gov (United States)

    Zhao, Yongan; Wang, Xiaofeng; Tang, Haixu

    2018-05-09

    The elastic and inexpensive computing resources such as clouds have been recognized as a useful solution to analyzing massive human genomic data (e.g., acquired by using next-generation sequencers) in biomedical researches. However, outsourcing human genome computation to public or commercial clouds was hindered due to privacy concerns: even a small number of human genome sequences contain sufficient information for identifying the donor of the genomic data. This issue cannot be directly addressed by existing security and cryptographic techniques (such as homomorphic encryption), because they are too heavyweight to carry out practical genome computation tasks on massive data. In this article, we present a secure algorithm to accomplish the read mapping, one of the most basic tasks in human genomic data analysis based on a hybrid cloud computing model. Comparing with the existing approaches, our algorithm delegates most computation to the public cloud, while only performing encryption and decryption on the private cloud, and thus makes the maximum use of the computing resource of the public cloud. Furthermore, our algorithm reports similar results as the nonsecure read mapping algorithms, including the alignment between reads and the reference genome, which can be directly used in the downstream analysis such as the inference of genomic variations. We implemented the algorithm in C++ and Python on a hybrid cloud system, in which the public cloud uses an Apache Spark system.

  20. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  1. A hybrid reference-guided de novo assembly approach for generating Cyclospora mitochondrion genomes.

    Science.gov (United States)

    Gopinath, G R; Cinar, H N; Murphy, H R; Durigan, M; Almeria, M; Tall, B D; DaSilva, A J

    2018-01-01

    Cyclospora cayetanensis is a coccidian parasite associated with large and complex foodborne outbreaks worldwide. Linking samples from cyclosporiasis patients during foodborne outbreaks with suspected contaminated food sources, using conventional epidemiological methods, has been a persistent challenge. To address this issue, development of new methods based on potential genomically-derived markers for strain-level identification has been a priority for the food safety research community. The absence of reference genomes to identify nucleotide and structural variants with a high degree of confidence has limited the application of using sequencing data for source tracking during outbreak investigations. In this work, we determined the quality of a high resolution, curated, public mitochondrial genome assembly to be used as a reference genome by applying bioinformatic analyses. Using this reference genome, three new mitochondrial genome assemblies were built starting with metagenomic reads generated by sequencing DNA extracted from oocysts present in stool samples from cyclosporiasis patients. Nucleotide variants were identified in the new and other publicly available genomes in comparison with the mitochondrial reference genome. A consolidated workflow, presented here, to generate new mitochondrion genomes using our reference-guided de novo assembly approach could be useful in facilitating the generation of other mitochondrion sequences, and in their application for subtyping C. cayetanensis strains during foodborne outbreak investigations.

  2. Improving genomic prediction for Danish Jersey using a joint Danish-US reference population

    DEFF Research Database (Denmark)

    Su, Guosheng; Nielsen, Ulrik Sander; Wiggans, G

    Accuracy of genomic prediction depends on the information in the reference population. Achieving an adequate sized reference population is a challenge for genomic prediction in small cattle populations. One way to increase the size of reference population is to combine reference data from different...... populations. The objective of this study was to assess the gain of genomic prediction accuracy when including US Jersey bulls in the Danish Jersey reference population. The data included 1,262 Danish progeny-tested bulls and 1,157 US progeny-tested bulls. Genomic breeding values (GEBV) were predicted using...... a GBLUP model from the Danish reference population and the joint Danish-US reference population. The traits in the analysis were milk yield, fat yield, protein yield, fertility, mastitis, longevity, body conformation, feet & legs, and longevity. Eight of the nine traits benefitted from the inclusion of US...

  3. Reference free phasing and representation of complex variation

    DEFF Research Database (Denmark)

    Jensen, Jacob Malte

    2017-01-01

    High throughput sequencing has revolutionized our ability to interrogate genomes and entire human genomes are sequenced daily across the world. Mapping of short reads to a reference genome has enhanced our ability to detect genetic variation and is currently the most widely used technology....... Therefore, new methods for detecting variation that reduce reference bias are needed including ways of representing genomes that account for the variability within and between populations. The major histocompatibility complex (MHC) region is one of the most diverse and complex regions of the human genome...... to detect and call variation in humans. However, it has become evident that mapping of short reads to a single reference genome is subject to ascertainment bias (reference bias). This bias is especially pronounced in complex regions of the genome and particularly hampers detection of structural variation...

  4. A Reference Genome for US Rice

    Science.gov (United States)

    The development of reference genomes for rice has served as means for understanding the allelic diversity and genetic structure of a cereal grain that feeds half of the world. It has long been understood that Oryza sativa diverged into two major sub-populations Indica and Japonica, over 400 K years ...

  5. Long-range autocorrelations of CpG islands in the human genome.

    Directory of Open Access Journals (Sweden)

    Benjamin Koester

    Full Text Available In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes.

  6. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome......-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set...... or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high...

  7. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome...... or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high......-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set...

  8. Multiple Whole Genome Alignments Without a Reference Organism

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  9. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  10. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  11. Mapping whole genome shotgun sequence and variant calling in mammalian species without their reference genomes [v2; ref status: indexed, http://f1000r.es/2x3

    Directory of Open Access Journals (Sweden)

    Ted Kalbfleisch

    2014-02-01

    Full Text Available Genomics research in mammals has produced reference genome sequences that are essential for identifying variation associated with disease.  High quality reference genome sequences are now available for humans, model species, and economically important agricultural animals.  Comparisons between these species have provided unique insights into mammalian gene function.  However, the number of species with reference genomes is small compared to those needed for studying molecular evolutionary relationships in the tree of life.  For example, among the even-toed ungulates there are approximately 300 species whose phylogenetic relationships have been calculated in the 10k trees project.  Only six of these have reference genomes:  cattle, swine, sheep, goat, water buffalo, and bison.  Although reference sequences will eventually be developed for additional hoof stock, the resources in terms of time, money, infrastructure and expertise required to develop a quality reference genome may be unattainable for most species for at least another decade.  In this work we mapped 35 Gb of next generation sequence data of a Katahdin sheep to its own species’ reference genome (Ovis aries Oar3.1 and to that of a species that diverged 15 to 30 million years ago (Bos taurus UMD3.1.  In total, 56% of reads covered 76% of UMD3.1 to an average depth of 6.8 reads per site, 83 million variants were identified, of which 78 million were homozygous and likely represent interspecies nucleotide differences. Excluding repeat regions and sex chromosomes, nearly 3.7 million heterozygous sites were identified in this animal vs. bovine UMD3.1, representing polymorphisms occurring in sheep.  Of these, 41% could be readily mapped to orthologous positions in ovine Oar3.1 with 80% corroborated as heterozygous.  These variant sites, identified via interspecies mapping could be used for comparative genomics, disease association studies, and ultimately to understand

  12. An integrated catalog of reference genes in the human gut microbiome

    DEFF Research Database (Denmark)

    Li, Junhua; Jia, Huijue; Cai, Xianghang

    2014-01-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly...... signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.......) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial...

  13. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  14. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  15. A framework for annotating human genome in disease context.

    Science.gov (United States)

    Xu, Wei; Wang, Huisong; Cheng, Wenqing; Fu, Dong; Xia, Tian; Kibbe, Warren A; Lin, Simon M

    2012-01-01

    Identification of gene-disease association is crucial to understanding disease mechanism. A rapid increase in biomedical literatures, led by advances of genome-scale technologies, poses challenge for manually-curated-based annotation databases to characterize gene-disease associations effectively and timely. We propose an automatic method-The Disease Ontology Annotation Framework (DOAF) to provide a comprehensive annotation of the human genome using the computable Disease Ontology (DO), the NCBO Annotator service and NCBI Gene Reference Into Function (GeneRIF). DOAF can keep the resulting knowledgebase current by periodically executing automatic pipeline to re-annotate the human genome using the latest DO and GeneRIF releases at any frequency such as daily or monthly. Further, DOAF provides a computable and programmable environment which enables large-scale and integrative analysis by working with external analytic software or online service platforms. A user-friendly web interface (doa.nubic.northwestern.edu) is implemented to allow users to efficiently query, download, and view disease annotations and the underlying evidences.

  16. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao

    2011-08-28

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  17. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao; Stegle, Oliver; Behr, Jonas; Steffen, Joshua G.; Drewe, Philipp; Hildebrand, Katie L.; Lyngsoe, Rune; Schultheiss, Sebastian J.; Osborne, Edward J.; Sreedharan, Vipin T.; Kahles, André ; Bohnert, Regina; Jean, Gé raldine; Derwent, Paul; Kersey, Paul; Belfield, Eric J.; Harberd, Nicholas P.; Kemen, Eric; Toomajian, Christopher; Kover, Paula X.; Clark, Richard M.; Rä tsch, Gunnar; Mott, Richard

    2011-01-01

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  18. Genomics and the human genome project: implications for psychiatry

    OpenAIRE

    Kelsoe, J R

    2004-01-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project h...

  19. Genomic prediction by single-step genomic BLUP using cow reference population in Holstein crossbred cattle in India

    DEFF Research Database (Denmark)

    Nayee, Nilesh Kumar; Su, Guosheng; Gajjar, Swapnil

    2018-01-01

    Advantages of genomic selection in breeds with limited numbers of progeny tested bulls have been demonstrated by adding genotypes of females to the reference population (Thomasen et al., 2014). The current study was conducted to explore the feasibility of implementing genomic selection in a Holst......Advantages of genomic selection in breeds with limited numbers of progeny tested bulls have been demonstrated by adding genotypes of females to the reference population (Thomasen et al., 2014). The current study was conducted to explore the feasibility of implementing genomic selection...... in a Holstein Friesian crossbred population with cows kept under small holder conditions using test day records and single step genomic BLUP (ssGBLUP). Milk yield records from 10,797 daughters sired by 258 bulls were used Of these 2194 daughters and 109 sires were genotyped with customized genotyping chip...

  20. Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets.

    Science.gov (United States)

    Kline, Margaret C; Romsos, Erica L; Duewer, David L

    2016-02-16

    Polymerase chain reaction (PCR) multiplexed assays perform best when the input quantity of template DNA is controlled to within about a factor of √2. To help ensure that PCR assays yield consistent results over time and place, results from methods used to determine DNA quantity need to be metrologically traceable to a common reference. Many DNA quantitation systems can be accurately calibrated with solutions of DNA in aqueous buffer. Since they do not require external calibration, end-point limiting dilution technologies, collectively termed "digital PCR (dPCR)", have been proposed as suitable for value assigning such DNA calibrants. The performance characteristics of several commercially available dPCR systems have recently been documented using plasmid, viral, or fragmented genomic DNA; dPCR performance with more complex materials, such as human genomic DNA, has been less studied. With the goal of providing a human genomic reference material traceably certified for mass concentration, we are investigating the measurement characteristics of several dPCR systems. We here report results of measurements from multiple PCR assays, on four human genomic DNAs treated with four endonuclease restriction enzymes using both chamber and droplet dPCR platforms. We conclude that dPCR does not estimate the absolute number of PCR targets in a given volume but rather the number of accessible and amplifiable targets. While enzymatic restriction of human genomic DNA increases accessibility for some assays, in well-optimized PCR assays it can reduce the number of amplifiable targets and increase assay variability relative to uncut sample.

  1. Reference genome sequence of the model plant Setaria.

    Science.gov (United States)

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chu-Yu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela C; Panaud, Olivier; Kellogg, Elizabeth A; Brutnell, Thomas P; Doust, Andrew N; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-05-13

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ∼400-Mb assembly covers ∼80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  2. Reference genome sequence of the model plant Setaria

    Energy Technology Data Exchange (ETDEWEB)

    Bennetzen, Jeffrey L [ORNL; Schmutz, Jeremy [Hudson Alpha Institute of Biotechnology; Wang, Hao [University of Georgia, Athens, GA; Percifield, Ryan [University of Georgia, Athens, GA; Hawkins, Jennifer [University of Georgia, Athens, GA; Pontaroli, Ana C. [University of Georgia, Athens, GA; Estep, Matt [University of Georgia, Athens, GA; Feng, Liang [University of Georgia, Athens, GA; Vaughn, Justin N [ORNL; Grimwood, Jane [Hudson Alpha Institute of Biotechnology; Jenkins, Jerry [Hudson Alpha Institute of Biotechnology; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Lindquist, Erika [U.S. Department of Energy, Joint Genome Institute; Hellsten, Uffe [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Wang, Xuewen [University of Georgia, Athens, GA; Wu, Xiaomei [University of Georgia, Athens, GA; Mitros, Therese [University of California, Berkeley; Triplett, Jimmy [University of Missouri, St. Louis; Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Mauro-Herrera, Margarita [Oklahoma State University; Wang, Lin [Cornell University; Li, Pinghua [Cornell University; Sharma, Manoj [University of California, Davis; Sharma, Rita [University of California, Davis; Ronald, Pamela [University of California, Davis; Panaud, Olivier [Universite de Perpignan, Perpignan, France; Kellogg, Elizabeth A. [University of Missouri, St. Louis; Brutnell, Thomas P. [Cornell University; Doust, Andrew N. [Oklahoma State University; Tuskan, Gerald A [ORNL; Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Devos, Katrien M [ORNL

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  3. Reference genome sequence of the model plant Setaria

    Energy Technology Data Exchange (ETDEWEB)

    Bennetzen, Jeffrey L [ORNL; Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tuskan, Gerald A [ORNL

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  4. The human genome project

    International Nuclear Information System (INIS)

    Worton, R.

    1996-01-01

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  5. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus.

    Science.gov (United States)

    Coughlan, Simone; Taylor, Ali Shirley; Feane, Eoghan; Sanders, Mandy; Schonian, Gabriele; Cotton, James A; Downing, Tim

    2018-04-01

    The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. ( Viannia ) braziliensis and L. ( V. ) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. ( V. ) naiffi and L. ( V. ) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia : aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia , there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni , L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3' end of chromosome 34 . This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance.

  6. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  7. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics

    DEFF Research Database (Denmark)

    Gopalakrishnan, Shyam; Samaniego Castruita, Jose Alfredo; Sinding, Mikkel Holger Strander

    2017-01-01

    Background An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data - that of a......Background An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data...... that regardless of the reference genome choice, most evolutionary genomic analyses yield qualitatively similar results, including those exploring the structure between the wolves and dogs using admixture and principal component analysis. However, we do observe differences in the genomic coverage of re-mapped...

  8. Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

    Science.gov (United States)

    Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M

    2015-01-01

    Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

  9. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  10. De novo assembly and phasing of a Korean human genome.

    Science.gov (United States)

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  11. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  12. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  13. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  14. Human genome I

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    An international conference, Human Genome I, was held Oct. 2-4, 1989 in San Diego, Calif. Selected speakers discussed: Current Status of the Genome Project; Technique Innovations; Interesting regions; Applications; and Organization - Different Views of Current and Future Science and Procedures. Posters, consisting of 119 presentations, were displayed during the sessions. 119 were indexed for inclusion to the Energy Data Base

  15. A reference genome of the European beech (Fagus sylvatica L.).

    Science.gov (United States)

    Mishra, Bagdevi; Gupta, Deepak K; Pfenninger, Markus; Hickler, Thomas; Langer, Ewald; Nam, Bora; Paule, Juraj; Sharma, Rahul; Ulaszewski, Bartosz; Warmbier, Joanna; Burczyk, Jaroslaw; Thines, Marco

    2018-06-01

    The European beech is arguably the most important climax broad-leaved tree species in Central Europe, widely planted for its valuable wood. Here, we report the 542 Mb draft genome sequence of an up to 300-year-old individual (Bhaga) from an undisturbed stand in the Kellerwald-Edersee National Park in central Germany. Using a hybrid assembly approach, Illumina reads with short- and long-insert libraries, coupled with long Pacific Biosciences reads, we obtained an assembled genome size of 542 Mb, in line with flow cytometric genome size estimation. The largest scaffold was of 1.15 Mb, the N50 length was 145 kb, and the L50 count was 983. The assembly contained 0.12% of Ns. A Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis retrieved 94% complete BUSCO genes, well in the range of other high-quality draft genomes of trees. A total of 62,012 protein-coding genes were predicted, assisted by transcriptome sequencing. In addition, we are reporting an efficient method for extracting high-molecular-weight DNA from dormant buds, by which contamination by environmental bacteria and fungi was kept at a minimum. The assembled genome will be a valuable resource and reference for future population genomics studies on the evolution and past climate change adaptation of beech and will be helpful for identifying genes, e.g., involved in drought tolerance, in order to select and breed individuals to adapt forestry to climate change in Europe. A continuously updated genome browser and download page can be accessed from beechgenome.net, which will include future genome versions of the reference individual Bhaga, as new sequencing approaches develop.

  16. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    DEFF Research Database (Denmark)

    de Vries, Paul S; Sabater-Lleal, Maria; Chasman, Daniel I

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In...

  17. Genotype Imputation for Latinos Using the HapMap and 1000 Genomes Project Reference Panels

    Directory of Open Access Journals (Sweden)

    Xiaoyi eGao

    2012-06-01

    Full Text Available Genotype imputation is a vital tool in genome-wide association studies (GWAS and meta-analyses of multiple GWAS results. Imputation enables researchers to increase genomic coverage and to pool data generated using different genotyping platforms. HapMap samples are often employed as the reference panel. More recently, the 1000 Genomes Project resource is becoming the primary source for reference panels. Multiple GWAS and meta-analyses are targeting Latinos, the most populous and fastest growing minority group in the US. However, genotype imputation resources for Latinos are rather limited compared to individuals of European ancestry at present, largely because of the lack of good reference data. One choice of reference panel for Latinos is one derived from the population of Mexican individuals in Los Angeles contained in the HapMap Phase 3 project and the 1000 Genomes Project. However, a detailed evaluation of the quality of the imputed genotypes derived from the public reference panels has not yet been reported. Using simulation studies, the Illumina OmniExpress GWAS data from the Los Angles Latino Eye Study and the MACH software package, we evaluated the accuracy of genotype imputation in Latinos. Our results show that the 1000 Genomes Project AMR+CEU+YRI reference panel provides the highest imputation accuracy for Latinos, and that also including Asian samples in the panel can reduce imputation accuracy. We also provide the imputation accuracy for each autosomal chromosome using the 1000 Genomes Project panel for Latinos. Our results serve as a guide to future imputation-based analysis in Latinos.

  18. The Arab genome: Health and wealth.

    Science.gov (United States)

    Zayed, Hatem

    2016-11-05

    The 22 Arab nations have a unique genetic structure, which reflects both conserved and diverse gene pools due to the prevalent endogamous and consanguineous marriage culture and the long history of admixture among different ethnic subcultures descended from the Asian, European, and African continents. Human genome sequencing has enabled large-scale genomic studies of different populations and has become a powerful tool for studying disease predictions and diagnosis. Despite the importance of the Arab genome for better understanding the dynamics of the human genome, discovering rare genetic variations, and studying early human migration out of Africa, it is poorly represented in human genome databases, such as HapMap and the 1000 Genomes Project. In this review, I demonstrate the significance of sequencing the Arab genome and setting an Arab genome reference(s) for better understanding the molecular pathogenesis of genetic diseases, discovering novel/rare variants, and identifying a meaningful genotype-phenotype correlation for complex diseases. Copyright © 2016. Published by Elsevier B.V.

  19. Origins of the Human Genome Project.

    Science.gov (United States)

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  20. Reference in human and non-human primate communication: What does it take to refer?

    Science.gov (United States)

    Sievers, Christine; Gruber, Thibaud

    2016-07-01

    The concept of functional reference has been used to isolate potentially referential vocal signals in animal communication. However, its relatedness to the phenomenon of reference in human language has recently been brought into question. While some researchers have suggested abandoning the concept of functional reference altogether, others advocate a revision of its definition to include contextual cues that play a role in signal production and perception. Empirical and theoretical work on functional reference has also put much emphasis on how the receiver understands the referential signal. However, reference, as defined in the linguistic literature, is an action of the producer, and therefore, any definition describing reference in non-human animals must also focus on the producer. To successfully determine whether a signal is used to refer, we suggest an approach from the field of pragmatics, taking a closer look at specific situations of signal production, specifically at the factors that influence the production of a signal by an individual. We define the concept of signaller's reference to identify intentional acts of reference produced by a signaller independently of the communicative modality, and illustrate it with a case study of the hoo vocalizations produced by wild chimpanzees during travel. This novel framework introduces an intentional approach to referentiality. It may therefore permit a closer comparison of human and non-human animal referential behaviour and underlying cognitive processes, allowing us to identify what may have emerged solely in the human lineage.

  1. AGORA : Organellar genome annotation from the amino acid and nucleotide references.

    Science.gov (United States)

    Jung, Jaehee; Kim, Jong Im; Jeong, Young-Sik; Yi, Gangman

    2018-03-29

    Next-generation sequencing (NGS) technologies have led to the accumulation of highthroughput sequence data from various organisms in biology. To apply gene annotation of organellar genomes for various organisms, more optimized tools for functional gene annotation are required. Almost all gene annotation tools are mainly focused on the chloroplast genome of land plants or the mitochondrial genome of animals.We have developed a web application AGORA for the fast, user-friendly, and improved annotations of organellar genomes. AGORA annotates genes based on a BLAST-based homology search and clustering with selected reference sequences from the NCBI database or user-defined uploaded data. AGORA can annotate the functional genes in almost all mitochondrion and plastid genomes of eukaryotes. The gene annotation of a genome with an exon-intron structure within a gene or inverted repeat region is also available. It provides information of start and end positions of each gene, BLAST results compared with the reference sequence, and visualization of gene map by OGDRAW. Users can freely use the software, and the accessible URL is https://bigdata.dongguk.edu/gene_project/AGORA/.The main module of the tool is implemented by the python and php, and the web page is built by the HTML and CSS to support all browsers. gangman@dongguk.edu.

  2. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  3. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  4. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  5. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  6. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  7. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  8. Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains

    Science.gov (United States)

    Suárez-Esquivel, Marcela; Ruiz-Villalobos, Nazareth; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Roop II, R. Martin; Comerci, Diego J.; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Caswell, Clayton C.; Baker, Kate S.; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo; Letesson, Jean J.; De Bolle, Xavier; Guzmán-Verri, Caterina

    2016-01-01

    Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised. PMID:27746773

  9. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  10. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... to human genomic variation is discussed........ In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located...

  11. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project.

    Science.gov (United States)

    Konkel, Miriam K; Walker, Jerilyn A; Hotard, Ashley B; Ranck, Megan C; Fontenot, Catherine C; Storer, Jessica; Stewart, Chip; Marth, Gabor T; Batzer, Mark A

    2015-08-29

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Acquiring Reference Genomes from Uncultured Microbes by Micromanipulation and Low-complexity Metagenomics

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Albertsen, Mads; Nielsen, Jeppe Lund

    A pre-requisite for many of the –omics approaches applied in environmental microbiology today are high quality reference genomes. Until recently such genomes have been difficult to obtain from unculturable, complex microbial communities. However, lately the ‘single cell genomics’ approach based...... on isolation and amplification of genomic DNA from a single or few clonal cells has proven efficient for this purpose although very tedious. The aim of this study was to apply the methodology of single cell genomics to filamentous organisms and microcolonies of specific species from microbial communities...

  13. The Mosaic Ancestry of the Drosophila Genetic Reference Panel and the D. melanogaster Reference Genome Reveals a Network of Epistatic Fitness Interactions

    Science.gov (United States)

    Pool, John E.

    2015-01-01

    North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa–Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. PMID:26354524

  14. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Transposable element activity, genome regulation and human health.

    Science.gov (United States)

    Wang, Lu; Jordan, I King

    2018-03-02

    A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Brucella abortus strain 2308 Wisconsin genome: importance of the definition of reference strains

    Directory of Open Access Journals (Sweden)

    Marcela Suárez-Esquivel

    2016-09-01

    Full Text Available Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing (WGS analysis of the reference strain Brucella abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version at www.wikipedia.Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised.

  17. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute’s genomic medicine portfolio

    Science.gov (United States)

    Manolio, Teri A.

    2016-01-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual’s genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of “Genomic Medicine Meetings,” under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and diffficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI’s genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. PMID:27612677

  18. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  19. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  20. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  1. Opening plenary speaker: Human genomics, precision medicine, and advancing human health.

    Science.gov (United States)

    Green, Eric D

    2016-08-01

    Starting with the launch of the Human Genome Project in 1990, the past quarter-century has brought spectacular achievements in genomics that dramatically empower the study of human biology and disease. The human genomics enterprise is now in the midst of an important transition, as the growing foundation of genomic knowledge is being used by researchers and clinicians to tackle increasingly complex problems in biomedicine. Of particular prominence is the use of revolutionary new DNA sequencing technologies for generating prodigious amounts of DNA sequence data to elucidate the complexities of genome structure, function, and evolution, as well as to unravel the genomic bases of rare and common diseases. Together, these developments are ushering in the era of genomic medicine. Augmenting the advances in human genomics have been innovations in technologies for measuring environmental and lifestyle information, electronic health records, and data science; together, these provide opportunities of unprecedented scale and scope for investigating the underpinnings of health and disease. To capitalize on these opportunities, U.S. President Barack Obama recently announced a major new research endeavor - the U.S. Precision Medicine Initiative. This bold effort will be framed around several key aims, which include accelerating the use of genomically informed approaches to cancer care, making important policy and regulatory changes, and establishing a large research cohort of >1 million volunteers to facilitate precision medicine research. The latter will include making the partnership with all participants a centerpiece feature in the cohort's design and development. The Precision Medicine Initiative represents a broad-based research program that will allow new approaches for individualized medical care to be rigorously tested, so as to establish a new evidence base for advancing clinical practice and, eventually, human health.

  2. Analysing human genomes at different scales

    DEFF Research Database (Denmark)

    Liu, Siyang

    The thriving of the Next-Generation sequencing (NGS) technologies in the past decade has dramatically revolutionized the field of human genetics. We are experiencing a wave of several large-scale whole genome sequencing studies of humans in the world. Those studies vary greatly regarding cohort...... will be reflected by the analysis of real data. This thesis covers studies in two human genome sequencing projects that distinctly differ in terms of studied population, sample size and sequencing depth. In the first project, we sequenced 150 Danish individuals from 50 trio families to 78x coverage....... The sophisticated experimental design enables high-quality de novo assembly of the genomes and provides a good opportunity for mapping the structural variations in the human population. We developed the AsmVar approach to discover, genotype and characterize the structural variations from the assemblies. Our...

  3. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-01

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human

  4. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus.

    Science.gov (United States)

    Yodmeeklin, Arpaporn; Khamrin, Pattara; Chuchaona, Watchaporn; Kumthip, Kattareeya; Kongkaew, Aphisek; Vachirachewin, Ratchaya; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2017-01-01

    Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand. Copyright © 2016. Published by Elsevier B.V.

  5. Assembly and diploid architecture of an individual human genome via single-molecule technologies.

    Science.gov (United States)

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-08-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.

  6. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  7. Human genome and philosophy: what ethical challenge will human genome studies bring to the medical practices in the 21st century?

    Science.gov (United States)

    Renzong, Q

    2001-12-01

    A human being or person cannot be reduced to a set of human genes, or human genome. Genetic essentialism is wrong, because as a person the entity should have self-conscious and social interaction capacity which is grown in an interpersonal relationship. Genetic determinism is wrong too, the relationship between a gene and a trait is not a linear model of causation, but rather a non-linear one. Human genome is a complexity system and functions in a complexity system of human body and a complexity of systems of natural/social environment. Genetic determinism also caused the issue of how much responsibility an agent should take for her/his action, and how much degrees of freedom will a human being have. Human genome research caused several conceptual issues. Can we call a gene 'good' or 'bad', 'superior' of 'inferior'? Is a boy who is detected to have the gene of Huntington's chorea or Alzheimer disease a patient? What should the term 'eugenics' mean? What do the terms such as 'gene therapy', 'treatment' and 'enhancement' and 'human cloning' mean etc.? The research of human genome and its application caused and will cause ethical issues. Can human genome research and its application be used for eugenics, or only for the treatment and prevention of diseases? Must the principle of informed consent/choice be insisted in human genome research and its application? How to protecting gene privacy and combating the discrimination on the basis of genes? How to promote the quality between persons, harmony between ethnic groups and peace between countries? How to establish a fair, just, equal and equitable relationship between developing and developed countries in regarding to human genome research and its application?

  8. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  9. The Mosaic Ancestry of the Drosophila Genetic Reference Panel and the D. melanogaster Reference Genome Reveals a Network of Epistatic Fitness Interactions.

    Science.gov (United States)

    Pool, John E

    2015-12-01

    North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa-Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  11. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  12. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  13. Human genomics projects and precision medicine.

    Science.gov (United States)

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  14. The human noncoding genome defined by genetic diversity.

    Science.gov (United States)

    di Iulio, Julia; Bartha, Istvan; Wong, Emily H M; Yu, Hung-Chun; Lavrenko, Victor; Yang, Dongchan; Jung, Inkyung; Hicks, Michael A; Shah, Naisha; Kirkness, Ewen F; Fabani, Martin M; Biggs, William H; Ren, Bing; Venter, J Craig; Telenti, Amalio

    2018-03-01

    Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.

  15. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    Science.gov (United States)

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  17. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  18. The first draft reference genome of the American mink ( Neovison vison )

    DEFF Research Database (Denmark)

    Cai, Zexi; Petersen, Bent; Sahana, Goutam

    2017-01-01

    The American mink (Neovison vison) is a semiaquatic species of mustelid native to North America. It’s an important animal for the fur industry. Many efforts have been made to locate genes influencing fur quality and color, but this search has been impeded by the lack of a reference genome. Here we...... present the first draft genome of mink. In our study, two mink individuals were sequenced by Illumina sequencing with 797 Gb sequence generated. Assembly yielded 7,175 scaffolds with an N50 of 6.3 Mb and length of 2.4 Gb including gaps. Repeat sequences constitute around 31% of the genome, which is lower...

  19. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  20. Initial genomics of the human nucleolus.

    Directory of Open Access Journals (Sweden)

    Attila Németh

    2010-03-01

    Full Text Available We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.

  1. Initial Genomics of the Human Nucleolus

    Science.gov (United States)

    Németh, Attila; Conesa, Ana; Santoyo-Lopez, Javier; Medina, Ignacio; Montaner, David; Péterfia, Bálint; Solovei, Irina; Cremer, Thomas; Dopazo, Joaquin; Längst, Gernot

    2010-01-01

    We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture. PMID:20361057

  2. A common reference population from four European Holstein populations increases reliability of genomic predictions

    DEFF Research Database (Denmark)

    Lund, Mogens Sandø; de Ross, Sander PW; de Vries, Alfred G

    2011-01-01

    Background Size of the reference population and reliability of phenotypes are crucial factors influencing the reliability of genomic predictions. It is therefore useful to combine closely related populations. Increased accuracies of genomic predictions depend on the number of individuals added to...

  3. Unexplored therapeutic opportunities in the human genome.

    Science.gov (United States)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren; Campbell, Allen; Gan, Gregory N; Gaulton, Anna; Gomez, Shawn M; Guha, Rajarshi; Hersey, Anne; Holmes, Jayme; Jadhav, Ajit; Jensen, Lars Juhl; Johnson, Gary L; Karlson, Anneli; Leach, Andrew R; Ma'ayan, Avi; Malovannaya, Anna; Mani, Subramani; Mathias, Stephen L; McManus, Michael T; Meehan, Terrence F; von Mering, Christian; Muthas, Daniel; Nguyen, Dac-Trung; Overington, John P; Papadatos, George; Qin, Jun; Reich, Christian; Roth, Bryan L; Schürer, Stephan C; Simeonov, Anton; Sklar, Larry A; Southall, Noel; Tomita, Susumu; Tudose, Ilinca; Ursu, Oleg; Vidovic, Dušica; Waller, Anna; Westergaard, David; Yang, Jeremy J; Zahoránszky-Köhalmi, Gergely

    2018-05-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.

  4. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  6. Development and application of Human Genome Epidemiology

    Science.gov (United States)

    Xu, Jingwen

    2017-12-01

    Epidemiology is a science that studies distribution of diseases and health in population and its influencing factors, it also studies how to prevent and cure disease and promote health strategies and measures. Epidemiology has developed rapidly in recent years and it is an intercross subject with various other disciplines to form a series of branch disciplines such as Genetic epidemiology, molecular epidemiology, drug epidemiology and tumor epidemiology. With the implementation and completion of Human Genome Project (HGP), Human Genome Epidemiology (HuGE) has emerged at this historic moment. In this review, the development of Human Genome Epidemiology, research content, the construction and structure of relevant network, research standards, as well as the existing results and problems are briefly outlined.

  7. The Human Genome Project: how do we protect Australians?

    Science.gov (United States)

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  8. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G

    2007-01-01

    , clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome......-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome...

  9. Recent and ongoing selection in the human genome

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hellmann, Ines; Hubisz, Melissa

    2007-01-01

    The recent availability of genome-scale genotyping data has led to the identification of regions of the human genome that seem to have been targeted by selection. These findings have increased our understanding of the evolutionary forces that affect the human genome, have augmented our knowledge...... of gene function and promise to increase our understanding of the genetic basis of disease. However, inferences of selection are challenged by several confounding factors, especially the complex demographic history of human populations, and concordance between studies is variable. Although such studies...

  10. The Human Genome Initiative of the Department of Energy

    Science.gov (United States)

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  11. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus and humans

    Directory of Open Access Journals (Sweden)

    Zsurka Gábor

    2010-09-01

    Full Text Available Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee individuals to assess the detailed mitochondrial DNA (mtDNA phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii A comparison of the ratios of non-synonymous to synonymous changes (dN/dS among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.

  12. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  13. Exploiting a Reference Genome in Terms of Duplications: The Network of Paralogs and Single Copy Genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mara Sangiovanni

    2013-12-01

    Full Text Available Arabidopsis thaliana became the model organism for plant studies because of its small diploid genome, rapid lifecycle and short adult size. Its genome was the first among plants to be sequenced, becoming the reference in plant genomics. However, the Arabidopsis genome is characterized by an inherently complex organization, since it has undergone ancient whole genome duplications, followed by gene reduction, diploidization events and extended rearrangements, which relocated and split up the retained portions. These events, together with probable chromosome reductions, dramatically increased the genome complexity, limiting its role as a reference. The identification of paralogs and single copy genes within a highly duplicated genome is a prerequisite to understand its organization and evolution and to improve its exploitation in comparative genomics. This is still controversial, even in the widely studied Arabidopsis genome. This is also due to the lack of a reference bioinformatics pipeline that could exhaustively identify paralogs and singleton genes. We describe here a complete computational strategy to detect both duplicated and single copy genes in a genome, discussing all the methodological issues that may strongly affect the results, their quality and their reliability. This approach was used to analyze the organization of Arabidopsis nuclear protein coding genes, and besides classifying computationally defined paralogs into networks and single copy genes into different classes, it unraveled further intriguing aspects concerning the genome annotation and the gene relationships in this reference plant species. Since our results may be useful for comparative genomics and genome functional analyses, we organized a dedicated web interface to make them accessible to the scientific community.

  14. Human genome project: revolutionizing biology through leveraging technology

    Science.gov (United States)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  15. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  16. Inclusion of Population-specific Reference Panel from India to the 1000 Genomes Phase 3 Panel Improves Imputation Accuracy.

    Science.gov (United States)

    Ahmad, Meraj; Sinha, Anubhav; Ghosh, Sreya; Kumar, Vikrant; Davila, Sonia; Yajnik, Chittaranjan S; Chandak, Giriraj R

    2017-07-27

    Imputation is a computational method based on the principle of haplotype sharing allowing enrichment of genome-wide association study datasets. It depends on the haplotype structure of the population and density of the genotype data. The 1000 Genomes Project led to the generation of imputation reference panels which have been used globally. However, recent studies have shown that population-specific panels provide better enrichment of genome-wide variants. We compared the imputation accuracy using 1000 Genomes phase 3 reference panel and a panel generated from genome-wide data on 407 individuals from Western India (WIP). The concordance of imputed variants was cross-checked with next-generation re-sequencing data on a subset of genomic regions. Further, using the genome-wide data from 1880 individuals, we demonstrate that WIP works better than the 1000 Genomes phase 3 panel and when merged with it, significantly improves the imputation accuracy throughout the minor allele frequency range. We also show that imputation using only South Asian component of the 1000 Genomes phase 3 panel works as good as the merged panel, making it computationally less intensive job. Thus, our study stresses that imputation accuracy using 1000 Genomes phase 3 panel can be further improved by including population-specific reference panels from South Asia.

  17. 77 FR 2735 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2012-01-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... personal privacy. Name of Committee: National Advisory Council for Human Genome Research. Date: February 13... Extramural Research National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305...

  18. 75 FR 51828 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... personal privacy. Name of Committee: National Advisory Council for Human Genome Research. Date: February 7... Research, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305, Bethesda, MD...

  19. Genomic heterogeneity among human and nonhuman strains of hepatitis A virus

    International Nuclear Information System (INIS)

    Lemon, S.M.; Chao, S.F.; Jansen, R.W.; Binn, L.N.; LeDuc, J.W.

    1987-01-01

    Cloned cDNA probes derived from the P1 and P2 regions of the genome of HM175 virus, a reference strain of human hepatitis A virus (HAV), failed to hybridize under standard stringency criteria with RNA from PA21 and PA33 viruses, two epizootiologically related HAV strains recovered from naturally infected New World owl monkeys. Hybridization of these probes to PA21 RNA was only evident under reduced stringency conditions. However, cDNA representing the 5' nontranslated region of the MH175 genome hybridized equally to HM175 and PA21 RNA under standard stringency conditions, while a probe derived from the 3', 1400 bases of the genome yielded a reduced hybridization signal with PA21 RNA. In contrast, no differences could be discerned between HM175 virus and three other HAV strains of human origin (GR8, LV374, and MS1) in any region of the genome, unless increased stringency conditions were used. These results suggest that PA21 and PA33 are unique among HAV isolates and may represent a virus native to the owl monkey. Despite extremely poor homology within the P1 region, which encodes capsid polypeptides, monoclonal antibody analysis confirmed that the immunodominant neutralization epitopes of HAV were highly conserved between HM175 and PA21 viruses. These data provide molecular evidence for the existence of HAV strains unique to nonhuman species and indicate that strict conservation of antigenic function may accompany substantial genetic divergence in HAV

  20. Mapping of Micro-Tom BAC-End Sequences to the Reference Tomato Genome Reveals Possible Genome Rearrangements and Polymorphisms

    Science.gov (United States)

    Asamizu, Erika; Shirasawa, Kenta; Hirakawa, Hideki; Sato, Shusei; Tabata, Satoshi; Yano, Kentaro; Ariizumi, Tohru; Shibata, Daisuke; Ezura, Hiroshi

    2012-01-01

    A total of 93,682 BAC-end sequences (BESs) were generated from a dwarf model tomato, cv. Micro-Tom. After removing repetitive sequences, the BESs were similarity searched against the reference tomato genome of a standard cultivar, “Heinz 1706.” By referring to the “Heinz 1706” physical map and by eliminating redundant or nonsignificant hits, 28,804 “unique pair ends” and 8,263 “unique ends” were selected to construct hypothetical BAC contigs. The total physical length of the BAC contigs was 495, 833, 423 bp, covering 65.3% of the entire genome. The average coverage of euchromatin and heterochromatin was 58.9% and 67.3%, respectively. From this analysis, two possible genome rearrangements were identified: one in chromosome 2 (inversion) and the other in chromosome 3 (inversion and translocation). Polymorphisms (SNPs and Indels) between the two cultivars were identified from the BLAST alignments. As a result, 171,792 polymorphisms were mapped on 12 chromosomes. Among these, 30,930 polymorphisms were found in euchromatin (1 per 3,565 bp) and 140,862 were found in heterochromatin (1 per 2,737 bp). The average polymorphism density in the genome was 1 polymorphism per 2,886 bp. To facilitate the use of these data in Micro-Tom research, the BAC contig and polymorphism information are available in the TOMATOMICS database. PMID:23227037

  1. 77 FR 2304 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome....S.C. 281(d)(4)), notice is hereby given that the National Human Genome Research Institute (NHGRI... meeting of the National Advisory Council for Human Genome Research. Background materials on the proposed...

  2. 77 FR 64816 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  3. 75 FR 2147 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-01-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Council for Human Genome Research. The meetings will be open to the public as indicated below, with... Extramural Research, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305...

  4. 76 FR 65204 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  5. 75 FR 60467 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2010-09-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  6. The human genome as public: Justifications and implications.

    Science.gov (United States)

    Bayefsky, Michelle J

    2017-03-01

    Since the human genome was decoded, great emphasis has been placed on the unique, personal nature of the genome, along with the benefits that personalized medicine can bring to individuals and the importance of safeguarding genetic privacy. As a result, an equally important aspect of the human genome - its common nature - has been underappreciated and underrepresented in the ethics literature and policy dialogue surrounding genetics and genomics. This article will argue that, just as the personal nature of the genome has been used to reinforce individual rights and justify important privacy protections, so too the common nature of the genome can be employed to support protections of the genome at a population level and policies designed to promote the public's wellbeing. In order for public health officials to have the authority to develop genetics policies for the sake of the public good, the genome must have not only a common, but also a public, dimension. This article contends that DNA carries a public dimension through the use of two conceptual frameworks: the common heritage (CH) framework and the common resource (CR) framework. Both frameworks establish a public interest in the human genome, but the CH framework can be used to justify policies aimed at preserving and protecting the genome, while the CR framework can be employed to justify policies for utilizing the genome for the public benefit. A variety of possible policy implications are discussed, with special attention paid to the use of large-scale genomics databases for public health research. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  8. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter.

    Science.gov (United States)

    Duewer, David L; Kline, Margaret C; Romsos, Erica L; Toman, Blaza

    2018-05-01

    The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.

  9. "Orphan" retrogenes in the human genome.

    Science.gov (United States)

    Ciomborowska, Joanna; Rosikiewicz, Wojciech; Szklarczyk, Damian; Makałowski, Wojciech; Makałowska, Izabela

    2013-02-01

    Gene duplicates generated via retroposition were long thought to be pseudogenized and consequently decayed. However, a significant number of these genes escaped their evolutionary destiny and evolved into functional genes. Despite multiple studies, the number of functional retrogenes in human and other genomes remains unclear. We performed a comparative analysis of human, chicken, and worm genomes to identify "orphan" retrogenes, that is, retrogenes that have replaced their progenitors. We located 25 such candidates in the human genome. All of these genes were previously known, and the majority has been intensively studied. Despite this, they have never been recognized as retrogenes. Analysis revealed that the phenomenon of replacing parental genes with their retrocopies has been taking place over the entire span of animal evolution. This process was often species specific and contributed to interspecies differences. Surprisingly, these retrogenes, which should evolve in a more relaxed mode, are subject to a very strong purifying selection, which is, on average, two and a half times stronger than other human genes. Also, for retrogenes, they do not show a typical overall tendency for a testis-specific expression. Notably, seven of them are associated with human diseases. Recognizing them as "orphan" retrocopies, which have different regulatory machinery than their parents, is important for any disease studies in model organisms, especially when discoveries made in one species are transferred to humans.

  10. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi

    2003-01-01

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  11. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Liron Levin

    Full Text Available RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.

  12. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  13. HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.

    Science.gov (United States)

    Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Satoh, Motonobu; Kohara, Arihiro

    2018-05-17

    Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.

  14. Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing

    Directory of Open Access Journals (Sweden)

    Monson-Miller Jennifer

    2012-02-01

    Full Text Available Abstract Background The availability of low cost sequencing has spurred its application to discovery and typing of variation, including variation induced by mutagenesis. Mutation discovery is challenging as it requires a substantial amount of sequencing and analysis to detect very rare changes and distinguish them from noise. Also challenging are the cases when the organism of interest has not been sequenced or is highly divergent from the reference. Results We describe the development of a simple method for reduced representation sequencing. Input DNA was digested with a single restriction enzyme and ligated to Y adapters modified to contain a sequence barcode and to provide a compatible overhang for ligation. We demonstrated the efficiency of this method at SNP discovery using rice and arabidopsis. To test its suitability for the discovery of very rare SNP, one control and three mutagenized rice individuals (1, 5 and 10 mM sodium azide were used to prepare genomic libraries for Illumina sequencers by ligating barcoded adapters to NlaIII restriction sites. For genome-dependent discovery 15-30 million of 80 base reads per individual were aligned to the reference sequence achieving individual sequencing coverage from 7 to 15×. We identified high-confidence base changes by comparing sequences across individuals and identified instances consistent with mutations, i.e. changes that were found in a single treated individual and were solely GC to AT transitions. For genome-independent discovery 70-mers were extracted from the sequence of the control individual and single-copy sequence was identified by comparing the 70-mers across samples to evaluate copy number and variation. This de novo "genome" was used to align the reads and identify mutations as above. Covering approximately 1/5 of the 380 Mb genome of rice we detected mutation densities ranging from 0.6 to 4 per Mb of diploid DNA depending on the mutagenic treatment. Conclusions The

  15. Radiation-induced instability of human genome

    International Nuclear Information System (INIS)

    Ryabchenko, N.N.; Demina, Eh.A.

    2014-01-01

    A brief review is dedicated to the phenomenon of radiation-induced genomic instability where the increased level of genomic changes in the offspring of irradiated cells is characteristic. Particular attention is paid to the problems of genomic instability induced by the low-dose radiation, role of the bystander effect in formation of radiation-induced instability, and its relationship with individual radiosensitivity. We believe that in accordance with the paradigm of modern radiobiology the increased human individual radiosensitivity can be formed due to the genome instability onset and is a significant risk factor for radiation-induced cancer

  16. Human Rights: The Essential Reference.

    Science.gov (United States)

    Devine, Carol; Hansen, Carol Rae; Wilde, Ralph; Bronkhorst, Daan; Moritz, Frederic A.; Rolle, Baptiste; Sherman, Rebecca; Southard, Jo Lynn; Wilkinson, Robert; Poole, Hilary, Ed.

    This reference work documents the history of human rights theory, explains each article of the Universal Declaration of Human Rights, explores the contemporary human rights movement, and examines the major human rights issues facing the world today. This book is the first to combine historical and contemporary perspectives on these critical…

  17. A set of BAC clones spanning the human genome.

    NARCIS (Netherlands)

    Krzywinski, M.; Bosdet, I.; Smailus, D.; Chiu, R.; Mathewson, C.; Wye, N.; Barber, S.; Brown-John, M.; Chan, S.; Chand, S.; Cloutier, A.; Girn, N.; Lee, D.; Masson, A.; Mayo, M.; Olson, T.; Pandoh, P.; Prabhu, A.L.; Schoenmakers, E.F.P.M.; Tsai, M.Y.; Albertson, D.; Lam, W.W.; Choy, C.O.; Osoegawa, K.; Zhao, S.; Jong, P.J. de; Schein, J.; Jones, S.; Marra, M.A.

    2004-01-01

    Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human

  18. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  19. Genome-scale portrait and evolutionary significance of human-specific core promoter tri- and tetranucleotide short tandem repeats.

    Science.gov (United States)

    Nazaripanah, N; Adelirad, F; Delbari, A; Sahaf, R; Abbasi-Asl, T; Ohadi, M

    2018-04-05

    While there is an ongoing trend to identify single nucleotide substitutions (SNSs) that are linked to inter/intra-species differences and disease phenotypes, short tandem repeats (STRs)/microsatellites may be of equal (if not more) importance in the above processes. Genes that contain STRs in their promoters have higher expression divergence compared to genes with fixed or no STRs in the gene promoters. In line with the above, recent reports indicate a role of repetitive sequences in the rise of young transcription start sites (TSSs) in human evolution. Following a comparative genomics study of all human protein-coding genes annotated in the GeneCards database, here we provide a genome-scale portrait of human-specific short- and medium-size (≥ 3-repeats) tri- and tetranucleotide STRs and STR motifs in the critical core promoter region between - 120 and + 1 to the TSS and evidence of skewing of this compartment in reference to the STRs that are not human-specific (Levene's test p human-specific transcripts was detected in the tri and tetra human-specific compartments (mid-p genome-scale skewing of STRs at a specific region of the human genome and a link between a number of these STRs and TSS selection/transcript specificity. The STRs and genes listed here may have a role in the evolution and development of characteristics and phenotypes that are unique to the human species.

  20. Helminth Genomics: The Implications for Human Health

    Science.gov (United States)

    Brindley, Paul J.; Mitreva, Makedonka; Ghedin, Elodie; Lustigman, Sara

    2009-01-01

    More than two billion people (one-third of humanity) are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings. PMID:19855829

  1. Draft genomes and reference transcriptomes extend the coding potential of the fish pathogen Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    Angela D. Millar

    2018-05-01

    Full Text Available Background: Draft and complete genome sequences from bacteria are key tools to understand genetic determinants involved in pathogenesis in several disease models. Piscirickettsia salmonis is a Gram-negative bacterium responsible for the Salmon Rickettsial Syndrome (SRS, a bacterial disease that threatens the sustainability of the Chilean salmon industry. In previous reports, complete and draft genome sequences have been generated and annotated. However, the lack of transcriptome data underestimates the genetic potential, does not provide information about transcriptional units and contributes to disseminate annotation errors. Results: Here we present the draft genome and transcriptome sequences of four P. salmonis strains. We have identified the transcriptional architecture of previously characterized virulence factors and trait-specific genes associated to cation uptake, metal efflux, antibiotic resistance, secretion systems and other virulence factors. Conclusions: This data has provided a refined genome annotation and also new insights on the transcriptional structures and coding potential of this fish pathogen.How to cite: Millar AD, Tapia P, Gomez FA, et al. Draft genomes and reference transcriptomes extend the coding potential of the fish pathogen Piscirickettsia salmonis. Electron J Biotechnol 2018;33. https://doi.org/10.1016/j.ejbt.2018.04.002. Keywords: Bacterial genomes, Coding potential, Comparative analysis, Draft genome, Piscirickettsia salmonis, Reference transcriptome, Refined annotation, Salmon Rickettsial Syndrome, Salmonids

  2. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  3. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study.

    Directory of Open Access Journals (Sweden)

    Paul S de Vries

    Full Text Available An increasing number of genome-wide association (GWA studies are now using the higher resolution 1000 Genomes Project reference panel (1000G for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10-8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10-8, the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.

  4. In the Beginning was the Genome: Genomics and the Bi-textuality of Human Existence.

    Science.gov (United States)

    Zwart, H A E Hub

    2018-04-01

    This paper addresses the cultural impact of genomics and the Human Genome Project (HGP) on human self-understanding. Notably, it addresses the claim made by Francis Collins (director of the HGP) that the genome is the language of God and the claim made by Max Delbrück (founding father of molecular life sciences research) that Aristotle must be credited with having predicted DNA as the soul that organises bio-matter. From a continental philosophical perspective I will argue that human existence results from a dialectical interaction between two types of texts: the language of molecular biology and the language of civilisation; the language of the genome and the language of our socio-cultural, symbolic ambiance. Whereas the former ultimately builds on the alphabets of genes and nucleotides, the latter is informed by primordial texts such as the Bible and the Quran. In applied bioethics deliberations on genomics, science is easily framed as liberating and progressive, religious world-views as conservative and restrictive (Zwart 1993). This paper focusses on the broader cultural ambiance of the debate to discern how the bi-textuality of human existence is currently undergoing a transition, as not only the physiological, but also the normative dimension is being reframed in biomolecular and terabyte terms.

  5. From hacking the human genome to editing organs.

    Science.gov (United States)

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  6. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  7. 77 FR 59933 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  8. 76 FR 29772 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... of Scientific Review, National Human Genome Research Institute, National Institutes of Health...

  9. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  10. Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation.

    Science.gov (United States)

    Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D

    2012-10-05

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. 77 FR 5035 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  12. 77 FR 58402 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  13. 78 FR 55752 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-09-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Pozzatti, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  14. 78 FR 56905 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....m. Agenda: To review and evaluate grant applications. Place: National Human Genome Research...

  15. 78 FR 107 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-01-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... evaluate grant applications. Place: National Human Genome Research Institute, 3rd Floor Conference Room....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  16. 75 FR 8374 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  17. 78 FR 64222 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Review, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, 301...

  18. 77 FR 60706 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  19. 77 FR 20646 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Agenda: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  20. 78 FR 21382 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... applications. Place: National Human Genome Research Institute, Suite 4076, 5635 Fisher's Lane, Bethesda, MD..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075...

  1. 78 FR 20933 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... review and evaluate grant applications. Place: National Human Genome Research Institute, Room 3055, 5635...

  2. 76 FR 22112 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  3. 78 FR 31953 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... review and evaluate grant applications. Place: National Human Genome Research Institute, 3rd Floor...

  4. 75 FR 10488 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-03-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research...- 4280, [email protected]gov . Name of Committee: National Human Genome Research Institute Special...

  5. 76 FR 65204 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  6. 75 FR 8373 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  7. 77 FR 12604 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. >Name of Committee: National Human Genome Research... review and evaluate contract proposals. Place: National Human Genome Reseach Institute, 5635 Fishers Lane...

  8. 77 FR 22332 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-04-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... Agenda: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  9. 77 FR 8268 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... applications. Place: National Human Genome Research Institute, 5635 Fisher's Lane, Room 4076, Rockville, MD..., CIDR, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite...

  10. 75 FR 19984 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-04-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  11. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  12. 76 FR 3642 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....nih.gov . Name of Committee: National Human Genome Research Institute Special Emphasis Panel eMERGE...

  13. 76 FR 17930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-03-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  14. 75 FR 52537 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  15. 76 FR 58023 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial..., Scientific Review Officer, Office of Scientific Review, National Human Genome Research Institute, National...

  16. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... D. Nakamura, PhD, Scientific Review Officer, Office of Scientific Review, National Human Genome...

  17. 75 FR 2148 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-01-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  18. 77 FR 28888 - National Human Genome Research Institute Notice of Closed Meeting

    Science.gov (United States)

    2012-05-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 3635...

  19. 78 FR 70063 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... NATIONAL HUMAN GENOME RESEARCH INSTITUTE, including consideration of personnel qualifications and...

  20. 78 FR 9707 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  1. 77 FR 71604 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635...

  2. 76 FR 5390 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Place: National Human Genome Research Institute Special Emphasis... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  3. 75 FR 13558 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  4. 75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... funding cycle. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  5. 78 FR 14806 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome Research...

  6. 75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  7. About human genome Acerca del genoma humano

    Directory of Open Access Journals (Sweden)

    Mojica Tobias

    2000-12-01

    Full Text Available The sequence ofthe human genome, an undertaking ofadvanced countries, is nearly complete. In fact The Human Genome Project has around 85% ofthe genome sequenced 4 times on the average, with an accuracy of roughly 1 in 1000 nucleotides. Celera Genomics, on the other hand, has 99% of the sequence of one person, with an accuracy of slightly less than 1 in 100. The Human Genome project trives to produce a physical map for public consumption following a step by step strategy, in which the researcher sequences short DNA fragments belonging to Iarger fragments of known relative
    position. Celera Genomics wants to have very rapidly a physical map which can be quickly used to develop genetic tests and drugs, which can be later sold. We feel that the sequence ofthe human genome is something, which will widen the gap between advanced and backward countries.En este artículo se revisan los eventos, alrededor del secuenciamiento del genoma humano, que han llevado a tanta excitación en los medios noticiosos y académicos en meses recientes. Se explican las estrategias que han llevado a que tengamos dos borradores diferentes pero complementarios, la estrategia llevada a cabo con el dinero
    de los contribuyentes que consiste en establecer el orden de fragmentos grandes de DNA antes de ser secuenciados y la estrategia llevada a cabo con dineros aportados por la industria privada, con la intención de explotar gananciosamente el conocimiento derivado del genoma humano. El genoma humano a mediados del año 2000 es
    un borrador incompleto que cubre aliededor del 85% de la secuencia con una precisión de un error en 1000 y el 99% de la secuencia con una precisión menor de 1 en 100 nucleótidos, También se discuten algunas de las posibles avenidas

  8. FR-like EBNA1 binding repeats in the human genome

    International Nuclear Information System (INIS)

    D'Herouel, Aymeric Fouquier; Birgersdotter, Anna; Werner, Maria

    2010-01-01

    Epstein-Barr virus (EBV) is widely spread in the human population. EBV nuclear antigen 1 (EBNA1) is a transcription factor that activates viral genes and is necessary for viral replication and partitioning, which binds the EBV genome cooperatively. We identify similar EBNA1 repeat binding sites in the human genome using a nearest-neighbor positional weight matrix. Previously experimentally verified EBNA1 sites in the human genome are successfully recovered by our approach. Most importantly, 40 novel regions are identified in the human genome, constituted of tandemly repeated binding sites for EBNA1. Genes located in the vicinity of these regions are presented as possible targets for EBNA1-mediated regulation. Among these, four are discussed in more detail: IQCB1, IMPG1, IRF2BP2 and TPO. Incorporating the cooperative actions of EBNA1 is essential when identifying regulatory regions in the human genome and we believe the findings presented here are highly valuable for the understanding of EBV-induced phenotypic changes.

  9. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy

    2013-03-01

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on New approaches and technologies to sequence de novo plant reference genomes at the 8th Annual Genomics of Energy Environment Meeting on March 27, 2013 in Walnut Creek, CA.

  10. 76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program No. 93.172, Human Genome Research, National Institutes of...

  11. 76 FR 3917 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville, MD...

  12. 75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS...

  13. 76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  14. 78 FR 24223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 3rd floor...

  15. 76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome...). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  16. 76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  17. 75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  18. 77 FR 74676 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075, Bethesda.... 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 11, 2012. David...

  19. 75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-05-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  20. 75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  1. 78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  2. 77 FR 31863 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Human Genome Research, National Institutes of Health, HHS) Dated: May 22, 2012. Jennifer S. Spaeth...

  3. 76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  4. 76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 21, 2011...

  5. 76 FR 10909 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-02-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076, MSC..., Human Genome Research, National Institutes of Health, HHS). Dated: February 18, 2011. Jennifer S. Spaeth...

  6. 75 FR 52538 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Person: Ken D. Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome...

  7. 76 FR 35223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Person: Rudy O. Pozzatti, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome...

  8. 76 FR 36930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Human Genome Research, National Institutes of Health, HHS) Dated: June 17, 2011. Jennifer S. Spaeth...

  9. 77 FR 35991 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075, Bethesda.... 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: June 8, 2012. Jennifer S...

  10. 77 FR 61770 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) [[Page 61771...

  11. 76 FR 63932 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 7...

  12. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076, MSC..., Human Genome Research, National Institutes of Health, HHS) Dated: February 18, 2010. Jennifer Spaeth...

  13. 75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  14. Unexplored therapeutic opportunities in the human genome

    DEFF Research Database (Denmark)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren

    2018-01-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially d...... as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development....

  15. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  16. Transient Genome-Wide Transcriptional Response to Low-Dose Ionizing Radiation In Vivo in Humans

    International Nuclear Information System (INIS)

    Berglund, Susanne R.; Rocke, David M.; Dai Jian; Schwietert, Chad W.; Santana, Alison; Stern, Robin L.; Lehmann, Joerg; Hartmann Siantar, Christine L.; Goldberg, Zelanna

    2008-01-01

    Purpose: The in vivo effects of low-dose low linear energy transfer ionizing radiation on healthy human skin are largely unknown. Using a patient-based tissue acquisition protocol, we have performed a series of genomic analyses on the temporal dynamics over a 24-hour period to determine the radiation response after a single exposure of 10 cGy. Methods and Materials: RNA from each patient tissue sample was hybridized to an Affymetrix Human Genome U133 Plus 2.0 array. Data analysis was performed on selected gene groups and pathways. Results: Nineteen gene groups and seven gene pathways that had been shown to be radiation responsive were analyzed. Of these, nine gene groups showed significant transient transcriptional changes in the human tissue samples, which returned to baseline by 24 hours postexposure. Conclusions: Low doses of ionizing radiation on full-thickness human skin produce a definable temporal response out to 24 hours postexposure. Genes involved in DNA and tissue remodeling, cell cycle transition, and inflammation show statistically significant changes in expression, despite variability between patients. These data serve as a reference for the temporal dynamics of ionizing radiation response following low-dose exposure in healthy full-thickness human skin

  17. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations

    KAUST Repository

    Diez Benavente, Ernest

    2017-09-18

    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.

  18. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations

    KAUST Repository

    Diez Benavente, Ernest; Florez de Sessions, Paola; Moon, Robert W.; Holder, Anthony A.; Blackman, Michael J.; Roper, Cally; Drakeley, Christopher J.; Pain, Arnab; Sutherland, Colin J.; Hibberd, Martin L.; Campino, Susana; Clark, Taane G.

    2017-01-01

    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.

  19. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  20. 76 FR 66076 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 19...

  1. 78 FR 61851 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-10-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... a.m. to 4:00 p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome...

  2. 75 FR 80509 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-12-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 16...

  3. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  4. Forces shaping the fastest evolving regions in the human genome

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; King, Bryan

    2006-01-01

    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202...... genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements...... contributed to accelerated evolution of the fastest evolving elements in the human genome....

  5. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  6. 78 FR 66752 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... National Human Genome Research Institute Special Emphasis Panel, October 15, 2013, 01:00 p.m. to October 15, 2013, 02:30 p.m., National Human Genome Research Institute, 5635 Fishers Lane, Suite 3055, Rockville...

  7. Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine

    Directory of Open Access Journals (Sweden)

    Wenming Xiao

    2016-04-01

    Full Text Available Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host

  8. High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop.

    Science.gov (United States)

    Tian, Yang; Zeng, Yan; Zhang, Jing; Yang, ChengGuang; Yan, Liang; Wang, XuanJun; Shi, ChongYing; Xie, Jing; Dai, TianYi; Peng, Lei; Zeng Huan, Yu; Xu, AnNi; Huang, YeWei; Zhang, JiaJin; Ma, Xiao; Dong, Yang; Hao, ShuMei; Sheng, Jun

    2015-07-01

    The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome sequence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera may help identify genes related to M. oleifera's high protein content, fast-growth, heat and stress tolerance. This reference genome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and improvement of M. oleifera.

  9. Functional assessment of human enhancer activities using whole-genome STARR-sequencing.

    Science.gov (United States)

    Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P

    2017-11-20

    Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome.  In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.

  10. 75 FR 44800 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... for Human Genome Research. The meeting will be closed to the public in accordance with the provisions... Committee: National Advisory Council for Human Genome Research. Date: August 18, 2010. Time: 1 p.m. to 3 p.m...

  11. Automated whole-genome multiple alignment of rat, mouse, and human

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  12. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  13. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hugenholtz, Philip; Skarshewski, Adam

    2013-01-01

    Reference genomes are required to understand the diverse roles of microorganisms in ecology, evolution, human and animal health, but most species remain uncultured. Here we present a sequence composition–independent approach to recover high-quality microbial genomes from deeply sequenced metageno......Reference genomes are required to understand the diverse roles of microorganisms in ecology, evolution, human and animal health, but most species remain uncultured. Here we present a sequence composition–independent approach to recover high-quality microbial genomes from deeply sequenced...

  14. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  15. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  16. Accuracy of genomic selection for alfalfa biomass yield in different reference populations.

    Science.gov (United States)

    Annicchiarico, Paolo; Nazzicari, Nelson; Li, Xuehui; Wei, Yanling; Pecetti, Luciano; Brummer, E Charles

    2015-12-01

    Genomic selection based on genotyping-by-sequencing (GBS) data could accelerate alfalfa yield gains, if it displayed moderate ability to predict parent breeding values. Its interest would be enhanced by predicting ability also for germplasm/reference populations other than those for which it was defined. Predicting accuracy may be influenced by statistical models, SNP calling procedures and missing data imputation strategies. Landrace and variety material from two genetically-contrasting reference populations, i.e., 124 elite genotypes adapted to the Po Valley (sub-continental climate; PV population) and 154 genotypes adapted to Mediterranean-climate environments (Me population), were genotyped by GBS and phenotyped in separate environments for dry matter yield of their dense-planted half-sib progenies. Both populations showed no sub-population genetic structure. Predictive accuracy was higher by joint rather than separate SNP calling for the two data sets, and using random forest imputation of missing data. Highest accuracy was obtained using Support Vector Regression (SVR) for PV, and Ridge Regression BLUP and SVR for Me germplasm. Bayesian methods (Bayes A, Bayes B and Bayesian Lasso) tended to be less accurate. Random Forest Regression was the least accurate model. Accuracy attained about 0.35 for Me in the range of 0.30-0.50 missing data, and 0.32 for PV at 0.50 missing data, using at least 10,000 SNP markers. Cross-population predictions based on a smaller subset of common SNPs implied a relative loss of accuracy of about 25% for Me and 30% for PV. Genome-wide association analyses based on large subsets of M. truncatula-aligned markers revealed many SNPs with modest association with yield, and some genome areas hosting putative QTLs. A comparison of genomic vs. conventional selection for parent breeding value assuming 1-year vs. 5-year selection cycles, respectively, indicated over three-fold greater predicted yield gain per unit time for genomic selection

  17. Syntenic block overlap multiplicities with a panel of reference genomes provide a signature of ancient polyploidization events.

    Science.gov (United States)

    Zheng, Chunfang; Santos Muñoz, Daniella; Albert, Victor A; Sankoff, David

    2015-01-01

    Following whole genome duplication (WGD), there is a compact distribution of gene similarities within the genome reflecting duplicate pairs of all the genes in the genome. With time, the distribution broadens and loses volume due to variable decay of duplicate gene similarity and to the process of duplicate gene loss. If there are two WGD, the older one becomes so reduced and broad that it merges with the tail of the distributions resulting from more recent events, and it becomes difficult to distinguish them. The goal of this paper is to advance statistical methods of identifying, or at least counting, the WGD events in the lineage of a given genome. For a set of 15 angiosperm genomes, we analyze all 15 × 14 = 210 ordered pairs of target genome versus reference genome, using SynMap to find syntenic blocks. We consider all sets of B ≥ 2 syntenic blocks in the target genome that overlap in the reference genome as evidence of WGD activity in the target, whether it be one event or several. We hypothesize that in fitting an exponential function to the tail of the empirical distribution f (B) of block multiplicities, the size of the exponent will reflect the amount of WGD in the history of the target genome. By amalgamating the results from all reference genomes, a range of values of SynMap parameters, and alternative cutoff points for the tail, we find a clear pattern whereby multiple-WGD core eudicots have the smallest (negative) exponents, followed by core eudicots with only the single "γ" triplication in their history, followed by a non-core eudicot with a single WGD, followed by the monocots, with a basal angiosperm, the WGD-free Amborella having the largest exponent. The hypothesis that the exponent of the fit to the tail of the multiplicity distribution is a signature of the amount of WGD is verified, but there is also a clear complicating factor in the monocot clade, where a history of multiple WGD is not reflected in a small exponent.

  18. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  19. NGS-based approach to determine the presence of HPV and their sites of integration in human cancer genome.

    Science.gov (United States)

    Chandrani, P; Kulkarni, V; Iyer, P; Upadhyay, P; Chaubal, R; Das, P; Mulherkar, R; Singh, R; Dutt, A

    2015-06-09

    Human papilloma virus (HPV) accounts for the most common cause of all virus-associated human cancers. Here, we describe the first graphic user interface (GUI)-based automated tool 'HPVDetector', for non-computational biologists, exclusively for detection and annotation of the HPV genome based on next-generation sequencing data sets. We developed a custom-made reference genome that comprises of human chromosomes along with annotated genome of 143 HPV types as pseudochromosomes. The tool runs on a dual mode as defined by the user: a 'quick mode' to identify presence of HPV types and an 'integration mode' to determine genomic location for the site of integration. The input data can be a paired-end whole-exome, whole-genome or whole-transcriptome data set. The HPVDetector is available in public domain for download: http://www.actrec.gov.in/pi-webpages/AmitDutt/HPVdetector/HPVDetector.html. On the basis of our evaluation of 116 whole-exome, 23 whole-transcriptome and 2 whole-genome data, we were able to identify presence of HPV in 20 exomes and 4 transcriptomes of cervical and head and neck cancer tumour samples. Using the inbuilt annotation module of HPVDetector, we found predominant integration of viral gene E7, a known oncogene, at known 17q21, 3q27, 7q35, Xq28 and novel sites of integration in the human genome. Furthermore, co-infection with high-risk HPVs such as 16 and 31 were found to be mutually exclusive compared with low-risk HPV71. HPVDetector is a simple yet precise and robust tool for detecting HPV from tumour samples using variety of next-generation sequencing platforms including whole genome, whole exome and transcriptome. Two different modes (quick detection and integration mode) along with a GUI widen the usability of HPVDetector for biologists and clinicians with minimal computational knowledge.

  20. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Directory of Open Access Journals (Sweden)

    Maley Carlo C

    2008-10-01

    Full Text Available Abstract Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12 genomes. Virtually all possible (> 98% 12 bp oligomers appear in vertebrate genomes while 98% to D. melanogaster (12–17 bp, C. elegans (11–17 bp, A. thaliana (11–17 bp, S. cerevisiae (10–16 bp and E. coli (9–15 bp. Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to detect

  1. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Science.gov (United States)

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-01-01

    Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while 98% to < 2% of possible oligomers in D. melanogaster (12–17 bp), C. elegans (11–17 bp), A. thaliana (11–17 bp), S. cerevisiae (10–16 bp) and E. coli (9–15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to

  2. Genotyping cows for the reference increase reliability of genomic prediction in a small breed

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind; Sørensen, Anders Christian; Lund, Mogens Sandø

    2013-01-01

    We hypothesized that adding cows to the reference population in a breed with a small number of reference bulls would increase reliabilities of genomic breeding values and genetic gain. We tested this premise by comparing two strategies for maintaining the reference population for genetic gain......, inbreeding and reliabilities of genomic predictions: 1) Adding 60 progeny tested bulls each year (B), and 2) in addition to 60 progeny tested bulls, adding 2,000 genotyped cows per year (C). Two breeding schemes were tested: 1) A turbo scheme (T) with only genotyped young bulls used intensively, and 2...... compared to the H-B, at the same level of ∆F. T-C yielded 15% higher ∆G compared t o T-B. Changing the breeding scheme from H-B to H-C increased ∆G by 5.5%. The lowest ∆F was observed with genotyping of cows. Reliabilities of GEBV in the C schemes showed a steep increase in reliability during the first...

  3. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  4. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  5. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome...... possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence...

  6. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M.; Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  7. Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures.

    Science.gov (United States)

    Bastiaansen, John W M; Coster, Albart; Calus, Mario P L; van Arendonk, Johan A M; Bovenhuis, Henk

    2012-01-24

    Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects. Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations. Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure. The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was

  8. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var. suis.

    Science.gov (United States)

    Mofiz, Ehtesham; Holt, Deborah C; Seemann, Torsten; Currie, Bart J; Fischer, Katja; Papenfuss, Anthony T

    2016-06-02

    The scabies mite, Sarcoptes scabiei, is a parasitic arachnid and cause of the infectious skin disease scabies in humans and mange in other animal species. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where secondary group A streptococcal and Staphylococcus aureus infections of scabies sores are thought to drive the high rate of rheumatic heart disease and chronic kidney disease. We sequenced the genome of two samples of Sarcoptes scabiei var. hominis obtained from unrelated patients with crusted scabies located in different parts of northern Australia using the Illumina HiSeq. We also sequenced samples of Sarcoptes scabiei var. suis from a pig model. Because of the small size of the scabies mite, these data are derived from pools of thousands of mites and are metagenomic, including host and microbiome DNA. We performed cleaning and de novo assembly and present Sarcoptes scabiei var. hominis and var. suis draft reference genomes. We have constructed a preliminary annotation of this reference comprising 13,226 putative coding sequences based on sequence similarity to known proteins. We have developed extensive genomic resources for the scabies mite, including reference genomes and a preliminary annotation.

  9. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  10. Insights into Modern Human Prehistory Using Ancient Genomes.

    Science.gov (United States)

    Yang, Melinda A; Fu, Qiaomei

    2018-03-01

    The genetic relationship of past modern humans to today's populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Swine transcriptome characterization by combined Iso-Seq and RNA-seq for annotating the emerging long read-based reference genome

    Science.gov (United States)

    PacBio long-read sequencing technology is increasingly popular in genome sequence assembly and transcriptome cataloguing. Recently, a new-generation pig reference genome was assembled based on long reads from this technology. To finely annotate this genome assembly, transcriptomes of nine tissues fr...

  12. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    Science.gov (United States)

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

  13. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  14. 78 FR 68856 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. [[Page 68857

  15. Effect of genotyped cows in the reference population on the genomic evaluation of Holstein cattle.

    Science.gov (United States)

    Uemoto, Y; Osawa, T; Saburi, J

    2017-03-01

    This study evaluated the dependence of reliability and prediction bias on the prediction method, the contribution of including animals (bulls or cows), and the genetic relatedness, when including genotyped cows in the progeny-tested bull reference population. We performed genomic evaluation using a Japanese Holstein population, and assessed the accuracy of genomic enhanced breeding value (GEBV) for three production traits and 13 linear conformation traits. A total of 4564 animals for production traits and 4172 animals for conformation traits were genotyped using Illumina BovineSNP50 array. Single- and multi-step methods were compared for predicting GEBV in genotyped bull-only and genotyped bull-cow reference populations. No large differences in realized reliability and regression coefficient were found between the two reference populations; however, a slight difference was found between the two methods for production traits. The accuracy of GEBV determined by single-step method increased slightly when genotyped cows were included in the bull reference population, but decreased slightly by multi-step method. A validation study was used to evaluate the accuracy of GEBV when 800 additional genotyped bulls (POPbull) or cows (POPcow) were included in the base reference population composed of 2000 genotyped bulls. The realized reliabilities of POPbull were higher than those of POPcow for all traits. For the gain of realized reliability over the base reference population, the average ratios of POPbull gain to POPcow gain for production traits and conformation traits were 2.6 and 7.2, respectively, and the ratios depended on heritabilities of the traits. For regression coefficient, no large differences were found between the results for POPbull and POPcow. Another validation study was performed to investigate the effect of genetic relatedness between cows and bulls in the reference and test populations. The effect of genetic relationship among bulls in the reference

  16. Genomic signatures of diet-related shifts during human origins.

    Science.gov (United States)

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  17. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome

    Directory of Open Access Journals (Sweden)

    Dewey Colin N

    2011-08-01

    Full Text Available Abstract Background RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. Results We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. Conclusions RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost

  18. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  19. 77 FR 64816 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Human Genome Research, National Institutes of Health, HHS) Dated: October 16, 2012. David Clary, Program... Conference Call). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human...

  20. 76 FR 9031 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-02-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  1. 75 FR 62548 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  2. 78 FR 11898 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome....172, Human Genome Research, National Institutes of Health, HHS) Dated: February 13, 2013. David Clary... Conference Call). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer CIDR, National Human...

  3. 78 FR 77477 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-12-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Human Genome Research, National Institutes of Health, HHS). Dated: December 17, 2013. David Clary... Conference Call). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human...

  4. Beyond the human genome: Microbes, methaphors and what it means to be human in an interconnected post-genomic world

    NARCIS (Netherlands)

    Nerlich, B.; Hellsten, I.R.

    2009-01-01

    Four years after the completion of the Human Genome Project, the US National Institutes for Health launched the Human Microbiome Project on 19 December 2007. Using metaphor analysis, this article investigates reporting in English-language newspapers on advances in microbiomics from 2003 onwards,

  5. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  6. Dense and accurate whole-chromosome haplotyping of individual genomes

    NARCIS (Netherlands)

    Porubsky, David; Garg, Shilpa; Sanders, Ashley D.; Korbel, Jan O.; Guryev, Victor; Lansdorp, Peter M.; Marschall, Tobias

    2017-01-01

    The diploid nature of the human genome is neglected in many analyses done today, where a genome is perceived as a set of unphased variants with respect to a reference genome. This lack of haplotype-level analyses can be explained by a lack of methods that can produce dense and accurate

  7. Identification and classification of conserved RNA secondary structures in the human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Bejerano, Gill; Siepel, Adam

    2006-01-01

    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars...... for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set......, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization....

  8. Research for genetic instability of human genome

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M. (National Inst. of Radiological Sciences, Chiba (Japan)); Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author).

  9. A genomic point-of-view on environmental factors influencing the human brain methylome.

    Science.gov (United States)

    LaSalle, Janine M

    2011-07-01

    The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental, and epigenetic findings that suggest a new paradigm of "integrative genomics" in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.

  10. Characterization of noncoding regulatory DNA in the human genome.

    Science.gov (United States)

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  11. Both selective and neutral processes drive GC content evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Cagliani Rachele

    2008-03-01

    Full Text Available Abstract Background Mammalian genomes consist of regions differing in GC content, referred to as isochores or GC-content domains. The scientific debate is still open as to whether such compositional heterogeneity is a selected or neutral trait. Results Here we analyze SNP allele frequencies, retrotransposon insertion polymorphisms (RIPs, as well as fixed substitutions accumulated in the human lineage since its divergence from chimpanzee to indicate that biased gene conversion (BGC has been playing a role in within-genome GC content variation. Yet, a distinct contribution to GC content evolution is accounted for by a selective process. Accordingly, we searched for independent evidences that GC content distribution does not conform to neutral expectations. Indeed, after correcting for possible biases, we show that intron GC content and size display isochore-specific correlations. Conclusion We consider that the more parsimonious explanation for our results is that GC content is subjected to the action of both weak selection and BGC in the human genome with features such as nucleosome positioning or chromatin conformation possibly representing the final target of selective processes. This view might reconcile previous contrasting findings and add some theoretical background to recent evidences suggesting that GC content domains display different behaviors with respect to highly regulated biological processes such as developmentally-stage related gene expression and programmed replication timing during neural stem cell differentiation.

  12. 77 FR 50140 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-08-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Human Genome Research, National Institutes of Health, HHS) Dated: August 13, 2012. Anna Snouffer, Deputy..., Bethesda, MD 20892. Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human...

  13. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Conference Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  14. Explaining human uniqueness: genome interactions with environment, behaviour and culture.

    Science.gov (United States)

    Varki, Ajit; Geschwind, Daniel H; Eichler, Evan E

    2008-10-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture - perhaps relaxing allowable thresholds for large-scale genomic diversity.

  15. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Science.gov (United States)

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  16. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Directory of Open Access Journals (Sweden)

    Carmen Yea

    2009-06-01

    Full Text Available Although the human parainfluenza virus 4 (HPIV4 has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada. The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97% with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized.

  17. Evolution of the NANOG pseudogene family in the human and chimpanzee genomes

    Directory of Open Access Journals (Sweden)

    Maughan Peter J

    2006-02-01

    Full Text Available Abstract Background The NANOG gene is expressed in mammalian embryonic stem cells where it maintains cellular pluripotency. An unusually large family of pseudogenes arose from it with one unprocessed and ten processed pseudogenes in the human genome. This article compares the NANOG gene and its pseudogenes in the human and chimpanzee genomes and derives an evolutionary history of this pseudogene family. Results The NANOG gene and all pseudogenes except NANOGP8 are present at their expected orthologous chromosomal positions in the chimpanzee genome when compared to the human genome, indicating that their origins predate the human-chimpanzee divergence. Analysis of flanking DNA sequences demonstrates that NANOGP8 is absent from the chimpanzee genome. Conclusion Based on the most parsimonious ordering of inferred source-gene mutations, the deduced evolutionary origins for the NANOG pseudogene family in the human and chimpanzee genomes, in order of most ancient to most recent, are NANOGP6, NANOGP5, NANOGP3, NANOGP10, NANOGP2, NANOGP9, NANOGP7, NANOGP1, and NANOGP4. All of these pseudogenes were fixed in the genome of the human-chimpanzee common ancestor. NANOGP8 is the most recent pseudogene and it originated exclusively in the human lineage after the human-chimpanzee divergence. NANOGP1 is apparently an unprocessed pseudogene. Comparison of its sequence to the functional NANOG gene's reading frame suggests that this apparent pseudogene remained functional after duplication and, therefore, was subject to selection-driven conservation of its reading frame, and that it may retain some functionality or that its loss of function may be evolutionarily recent.

  18. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  19. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.

    Science.gov (United States)

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.

  20. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  1. Forces shaping the fastest evolving regions in the human genome.

    Directory of Open Access Journals (Sweden)

    Katherine S Pollard

    2006-10-01

    Full Text Available Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome.

  2. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  3. Segmenting the human genome based on states of neutral genetic divergence.

    Science.gov (United States)

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  4. The Human Genome Project (HGP): dividends and challenges: a ...

    African Journals Online (AJOL)

    The Human Genome Project (HGP): dividends and challenges: a review. ... Genomic studies have given profound insights into the genetic organization of ... with it will be an essential part of modern medicine and biology for years to come.

  5. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases.

    Science.gov (United States)

    Gundogdu, Aycan; Nalbantoglu, Ufuk

    2017-04-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome-human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis.

  6. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  7. What does it mean to be genomically literate?: National Human Genome Research Institute Meeting Report.

    Science.gov (United States)

    Hurle, Belen; Citrin, Toby; Jenkins, Jean F; Kaphingst, Kimberly A; Lamb, Neil; Roseman, Jo Ellen; Bonham, Vence L

    2013-08-01

    Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public's understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from kindergarten to grade 12 to adult education. The role of the media in disseminating scientific messages and in perpetuating or reducing misconceptions was also discussed. Workshop participants agreed that genomic literacy will be achieved only through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.

  8. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    Science.gov (United States)

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  9. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    Science.gov (United States)

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  11. Human Rhinovirus B and C Genomes from Rural Coastal Kenya

    NARCIS (Netherlands)

    Agoti, Charles N.; Kiyuka, Patience K.; Kamau, Everlyn; Munywoki, Patrick K.; Bett, Anne; van der Hoek, Lia; Kellam, Paul; Nokes, D. James; Cotten, Matthew

    2016-01-01

    Primer-independent agnostic deep sequencing was used to generate three human rhinovirus (HRV) B genomes and one HRV C genome from samples collected in a household respiratory survey in rural coastal Kenya. The study provides the first rhinovirus genomes from Kenya and will help improve the

  12. Genomic Mapping of Human DNA provides Evidence of Difference in Stretch between AT and GC rich regions

    Science.gov (United States)

    Reifenberger, Jeffrey; Dorfman, Kevin; Cao, Han

    Human DNA is a not a polymer consisting of a uniform distribution of all 4 nucleic acids, but rather contains regions of high AT and high GC content. When confined, these regions could have different stretch due to the extra hydrogen bond present in the GC basepair. To measure this potential difference, human genomic DNA was nicked with NtBspQI, labeled with a cy3 like fluorophore at the nick site, stained with YOYO, loaded into a device containing an array of nanochannels, and imaged. Over 473,000 individual molecules of DNA, corresponding to roughly 30x coverage of a human genome, were collected and aligned to the human reference. Based on the known AT/GC content between aligned pairs of labels, the stretch was measured for regions of similar size but different AT/GC content. We found that regions of high GC content were consistently more stretched than regions of high AT content between pairs of labels varying in size between 2.5 kbp and 500 kbp. We measured that for every 1% increase in GC content there was roughly a 0.06% increase in stretch. While this effect is small, it is important to take into account differences in stretch between AT and GC rich regions to improve the sensitivity of detection of structural variations from genomic variations. NIH Grant: R01-HG006851.

  13. The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

    Science.gov (United States)

    Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.

    2016-01-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095

  14. Comparative genomics analysis of Streptococcus agalactiae reveals that isolates from cultured tilapia in China are closely related to the human strain A909.

    Science.gov (United States)

    Liu, Guangjin; Zhang, Wei; Lu, Chengping

    2013-11-11

    Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. The complete genome sequence of the piscine S. agalactiae isolate GD201008-001 was compared with 14 other piscine, human and bovine strains to explore their virulence determinants, evolutionary relationships and the genetic basis of host tropism in S. agalactiae. The pan-genome of S. agalactiae is open and its size increases with the addition of newly sequenced genomes. The core genes shared by all isolates account for 50 ~ 70% of any single genome. The Chinese piscine isolates GD201008-001 and ZQ0910 are phylogenetically distinct from the Latin American piscine isolates SA20-06 and STIR-CD-17, but are closely related to the human strain A909, in the context of the clustered regularly interspaced short palindromic repeats (CRISPRs), prophage, virulence-associated genes and phylogenetic relationships. We identified a unique 10 kb gene locus in Chinese piscine strains. Isolates from cultured tilapia in China have a close genomic relationship with the human strain A909. Our findings provide insight into the pathogenesis and host-associated genome content of piscine S. agalactiae isolated in China.

  15. Repetitive elements may comprise over two-thirds of the human genome.

    Directory of Open Access Journals (Sweden)

    A P Jason de Koning

    2011-12-01

    Full Text Available Transposable elements (TEs are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo "clouds". We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%-69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM, to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp. Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed "element-specific" P-clouds (ESPs to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.

  16. Human genome and open source: balancing ethics and business.

    Science.gov (United States)

    Marturano, Antonio

    2011-01-01

    The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.

  17. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  18. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  19. [Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].

    Science.gov (United States)

    Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B

    2016-01-01

    For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.

  20. A periodic pattern of SNPs in the human genome

    DEFF Research Database (Denmark)

    Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten

    2007-01-01

    By surveying a filtered, high-quality set of SNPs in the human genome, we have found that SNPs positioned 1, 2, 4, 6, or 8 bp apart are more frequent than SNPs positioned 3, 5, 7, or 9 bp apart. The observed pattern is not restricted to genomic regions that are known to cause sequencing...... periodic DNA. Our results suggest that not all SNPs in the human genome are created by independent single nucleotide mutations, and that care should be taken in analysis of SNPs from periodic DNA. The latter may have important consequences for SNP and association studies....... or alignment errors, for example, transposable elements (SINE, LINE, and LTR), tandem repeats, and large duplicated regions. However, we found that the pattern is almost entirely confined to what we define as "periodic DNA." Periodic DNA is a genomic region with a high degree of periodicity in nucleotide usage...

  1. Human genomic disease variants: a neutral evolutionary explanation.

    Science.gov (United States)

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  2. The diploid genome sequence of an Asian individual

    DEFF Research Database (Denmark)

    Wang, Jun; Wang, Wei; Li, Ruiqiang

    2008-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we...... used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP...... identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J...

  3. Within-Host Variations of Human Papillomavirus Reveal APOBEC-Signature Mutagenesis in the Viral Genome.

    Science.gov (United States)

    Hirose, Yusuke; Onuki, Mamiko; Tenjimbayashi, Yuri; Mori, Seiichiro; Ishii, Yoshiyuki; Takeuchi, Takamasa; Tasaka, Nobutaka; Satoh, Toyomi; Morisada, Tohru; Iwata, Takashi; Miyamoto, Shingo; Matsumoto, Koji; Sekizawa, Akihiko; Kukimoto, Iwao

    2018-03-28

    Persistent infection with oncogenic human papillomaviruses (HPVs) causes cervical cancer, accompanied with the accumulation of somatic mutations into the host genome. There are concomitant genetic changes in the HPV genome during viral infection; however, their relevance to cervical carcinogenesis is poorly understood. Here we explored within-host genetic diversity of HPV by performing deep sequencing analyses of viral whole-genome sequences in clinical specimens. The whole genomes of HPV types 16, 52 and 58 were amplified by type-specific PCR from total cellular DNA of cervical exfoliated cells collected from patients with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer (ICC), and were deep-sequenced. After constructing a reference vial genome sequence for each specimen, nucleotide positions showing changes with > 0.5% frequencies compared to the reference sequence were determined for individual samples. In total, 1,052 positions of nucleotide variations were detected in HPV genomes from 151 samples (CIN1, n = 56; CIN2/3, n = 68; ICC, n = 27), with varying numbers per sample. Overall, C-to-T and C-to-A substitutions were the dominant changes observed across all histological grades. While C-to-T transitions were predominantly detected in CIN1, their prevalence was decreased in CIN2/3 and fell below that of C-to-A transversions in ICC. Analysis of the tri-nucleotides context encompassing substituted bases revealed that Tp C pN, a preferred target sequence for cellular APOBEC cytosine deaminases, was a primary site for C-to-T substitutions in the HPV genome. These results strongly imply that the APOBEC proteins are drivers of HPV genome mutation, particularly in CIN1 lesions. IMPORTANCE HPVs exhibit surprisingly high levels of genetic diversity, including a large repertoire of minor genomic variants in each viral genotype. Here, by conducting deep sequencing analyses, we show for the first time a comprehensive snapshot of the "within

  4. Learning about human population history from ancient and modern genomes.

    Science.gov (United States)

    Stoneking, Mark; Krause, Johannes

    2011-08-18

    Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.

  5. 77 FR 67385 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2012-11-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, October 29, 2012, 8:00 a.m. to October 30...

  6. 78 FR 65342 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, October 17, 2013, 08:00 a.m. to October 17...

  7. 76 FR 65738 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, November 29, 2011, 8 a.m. to November 29...

  8. 76 FR 71581 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2011-11-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, November 22, 2011, 12 p.m. to November 22...

  9. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  10. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii genome.

    Directory of Open Access Journals (Sweden)

    Byrappa Venkatesh

    2007-04-01

    Full Text Available Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.

  11. Genome health nutrigenomics and nutrigenetics--diagnosis and nutritional treatment of genome damage on an individual basis.

    Science.gov (United States)

    Fenech, Michael

    2008-04-01

    The term nutrigenomics refers to the effect of diet on gene expression. The term nutrigenetics refers to the impact of inherited traits on the response to a specific dietary pattern, functional food or supplement on a specific health outcome. The specific fields of genome health nutrigenomics and genome health nutrigenetics are emerging as important new research areas because it is becoming increasingly evident that (a) risk for developmental and degenerative disease increases with DNA damage which in turn is dependent on nutritional status and (b) optimal concentration of micronutrients for prevention of genome damage is also dependent on genetic polymorphisms that alter function of genes involved directly or indirectly in uptake and metabolism of micronutrients required for DNA repair and DNA replication. Development of dietary patterns, functional foods and supplements that are designed to improve genome health maintenance in humans with specific genetic backgrounds may provide an important contribution to a new optimum health strategy based on the diagnosis and individualised nutritional treatment of genome instability i.e. Genome Health Clinics.

  12. National human genome projects: an update and an agenda.

    Science.gov (United States)

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions in defined population. This perspective summarizes national genome projects conducted in the past 10 years and introduces case studies to utilize genomic data in genetic research.

  13. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps.

    Science.gov (United States)

    Sharma, Sanjeev Kumar; Bolser, Daniel; de Boer, Jan; Sønderkær, Mads; Amoros, Walter; Carboni, Martin Federico; D'Ambrosio, Juan Martín; de la Cruz, German; Di Genova, Alex; Douches, David S; Eguiluz, Maria; Guo, Xiao; Guzman, Frank; Hackett, Christine A; Hamilton, John P; Li, Guangcun; Li, Ying; Lozano, Roberto; Maass, Alejandro; Marshall, David; Martinez, Diana; McLean, Karen; Mejía, Nilo; Milne, Linda; Munive, Susan; Nagy, Istvan; Ponce, Olga; Ramirez, Manuel; Simon, Reinhard; Thomson, Susan J; Torres, Yerisf; Waugh, Robbie; Zhang, Zhonghua; Huang, Sanwen; Visser, Richard G F; Bachem, Christian W B; Sagredo, Boris; Feingold, Sergio E; Orjeda, Gisella; Veilleux, Richard E; Bonierbale, Merideth; Jacobs, Jeanne M E; Milbourne, Dan; Martin, David Michael Alan; Bryan, Glenn J

    2013-11-06

    The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal "pseudomolecules".

  14. 77 FR 55853 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2012-09-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Advisory Council for Human Genome Research, September 10, 2012, 8:30 a.m. to September 11, 2012, 5...

  15. An Evaluation Framework for Lossy Compression of Genome Sequencing Quality Values

    OpenAIRE

    Alberti, Claudio; Daniels, Noah; Hernaez, Mikel; Voges, Jan; Goldfeder, Rachel L.; Hernandez-Lopez, Ana A.; Mattavelli, Marco; Berger, Bonnie

    2016-01-01

    This paper provides the specification and an initial validation of an evaluation framework for the comparison of lossy compressors of genome sequencing quality values. The goal is to define reference data, test sets, tools and metrics that shall be used to evaluate the impact of lossy compression of quality values on human genome variant calling. The functionality of the framework is validated referring to two state-of-the-art genomic compressors. This work has been spurred by the current act...

  16. High-speed and high-ratio referential genome compression.

    Science.gov (United States)

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  18. Crossed wires: 3D genome misfolding in human disease.

    Science.gov (United States)

    Norton, Heidi K; Phillips-Cremins, Jennifer E

    2017-11-06

    Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We discuss potential mechanisms underlying the link among genome misfolding, genome dysregulation, and aberrant cellular phenotypes. We also discuss cases in which the endogenous 3D genome configurations in healthy cells might be particularly susceptible to mutation or translocation. Together, these data support an emerging model in which genome folding and misfolding is critically linked to the onset and progression of a broad range of human diseases. © 2017 Norton and Phillips-Cremins.

  19. 77 FR 27471 - National Human Genome Research Institute Amended Notice of Meeting

    Science.gov (United States)

    2012-05-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Advisory Council for Human Genome Research, May 21, 2012, 8:30 a.m. to May 22, 2012, 5:00 p.m...

  20. Attitudes towards the Human Genome Project.

    Science.gov (United States)

    Shahroudi, Julie; Shaw, Geraldine

    Attitudes concerning the Human Genome Project were reported by faculty (N=40) and students (N=66) from a liberal arts college. Positive attitudes toward the project involved privacy, insurance and health, economic purposes, reproductive purposes, genetic counseling, religion and overall opinions. Negative attitudes were expressed regarding…

  1. Chromosomal locations of members of a family of novel endogenous human retroviral genomes

    International Nuclear Information System (INIS)

    Horn, T.M.; Huebner, K.; Croce, C.; Callahan, R.

    1986-01-01

    Human cellular DNA contains two distinguishable families of retroviral related sequences. One family shares extensive nucleotide sequence homology with infectious mammalian type C retroviral genomes. The other family contains major regions of homology with the pol genes of infectious type A and B and avian type C and D retroviral genomes. Analysis of the human recombinant clone HLM-2 has shown that the pol gene in the latter family is located within an endogenous proviral genome. The authors show that the proviral genome in HLM-2 and the related recombinant clone HLM-25 are located, respectively, on human chromosomes 1 and 5. Other related proviral genomes are located on chromosomes 7, 8, 11, 14, and 17

  2. The human genome: Some assembly required. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  3. Primary structure of the human follistatin precursor and its genomic organization

    International Nuclear Information System (INIS)

    Shimasaki, Shunichi; Koga, Makoto; Esch, F.

    1988-01-01

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution

  4. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  5. Genomics and the Ark: an ecocentric perspective on human history.

    Science.gov (United States)

    Zwart, Hub; Penders, Bart

    2011-01-01

    Views of ourselves in relationship to the rest of the biosphere are changing. Theocentric and anthropocentric perspectives are giving way to more ecocentric views on the history, present, and future of humankind. Novel sciences, such as genomics, have deepened and broadened our understanding of the process of anthropogenesis, the coming into being of humans. Genomics suggests that early human history must be regarded as a complex narrative of evolving ecosystems, in which human evolution both influenced and was influenced by the evolution of companion species. During the agricultural revolution, human beings designed small-scale artificial ecosystems or evolutionary "Arks," in which networks of plants, animals, and microorganisms coevolved. Currently, our attitude towards this process seems subject to a paradoxical reversal. The boundaries of the Ark have dramatically broadened, and genomics is not only being used to increase our understanding of our ecological past, but may also help us to conserve, reconstruct, or even revivify species and ecosystems to whose degradation or (near) extinction we have contributed. This article explores the role of genomics in the elaboration of a more ecocentric view of ourselves with the help of two examples, namely the renaissance of Paleolithic diets and of Pleistocene parks. It argues that an understanding of the world in ecocentric terms requires new partnerships and mutually beneficial forms of collaboration and convergence between life sciences, social sciences, and the humanities.

  6. The value of cows in reference populations for genomic selection of new functional traits

    DEFF Research Database (Denmark)

    Buch, Line Hjortø; Kargo, Morten; Berg, Peer

    2012-01-01

    Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic...... of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new...... to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls....

  7. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.

    Science.gov (United States)

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.

  8. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  9. Unexpected observations after mapping LongSAGE tags to the human genome

    Directory of Open Access Journals (Sweden)

    Duret Laurent

    2007-05-01

    Full Text Available Abstract Background SAGE has been used widely to study the expression of known transcripts, but much less to annotate new transcribed regions. LongSAGE produces tags that are sufficiently long to be reliably mapped to a whole-genome sequence. Here we used this property to study the position of human LongSAGE tags obtained from all public libraries. We focused mainly on tags that do not map to known transcripts. Results Using a published error rate in SAGE libraries, we first removed the tags likely to result from sequencing errors. We then observed that an unexpectedly large number of the remaining tags still did not match the genome sequence. Some of these correspond to parts of human mRNAs, such as polyA tails, junctions between two exons and polymorphic regions of transcripts. Another non-negligible proportion can be attributed to contamination by murine transcripts and to residual sequencing errors. After filtering out our data with these screens to ensure that our dataset is highly reliable, we studied the tags that map once to the genome. 31% of these tags correspond to unannotated transcripts. The others map to known transcribed regions, but many of them (nearly half are located either in antisense or in new variants of these known transcripts. Conclusion We performed a comprehensive study of all publicly available human LongSAGE tags, and carefully verified the reliability of these data. We found the potential origin of many tags that did not match the human genome sequence. The properties of the remaining tags imply that the level of sequencing error may have been under-estimated. The frequency of tags matching once the genome sequence but not in an annotated exon suggests that the human transcriptome is much more complex than shown by the current human genome annotations, with many new splicing variants and antisense transcripts. SAGE data is appropriate to map new transcripts to the genome, as demonstrated by the high rate of cross

  10. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  11. The Human Genome Project: An Imperative for International Collaboration.

    Science.gov (United States)

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  12. [Manipulation of the human genome: ethics and law].

    Science.gov (United States)

    Goulart, Maria Carolina Vaz; Iano, Flávia Godoy; Silva, Paulo Maurício; Sales-Peres, Silvia Helena de Carvalho; Sales-Peres, Arsênio

    2010-06-01

    The molecular biology has provided the basic tool for geneticists deepening in the molecular mechanisms that influence different diseases. It should be noted the scientific and moral responsibility of the researchers, because the scientists should imagine the moral consequences of the commercial application of genetic tests, since this fact involves not only the individual and their families, but the entire population. Besides being also necessary to make a reflection on how this information from the human genome will be used, for good or bad. The objective of this review was to bring the light of knowledge, data on characteristics of the ethical application of molecular biology, linking it with the rights of human beings. After studying literature, it might be observed that the Human Genome Project has generated several possibilities, such as the identification of genes associated with diseases with synergistic properties, but sometimes modifying behavior to genetically intervene in humans, bringing benefits or social harm. The big challenge is to decide what humanity wants on this giant leap.

  13. PCR-SSCP analysis and its application to human genome study

    International Nuclear Information System (INIS)

    Hayashi, Kenshi

    1994-01-01

    A large amount of DNA sequence data are now available owing to the development of the human genome project. These data are deposited in public databases, e.g. DDBJ, GebBank and EMBL, and freely accessible to scientific community. One of the major advantages of having these databases is that we can now detect sequence differences between individuals in a large scale. Using the sequence informations, we can design primer sequences, amplify various target regions of the sample DNA's by PCR and detect abnormal sequence changes from reference, or normal sequences. Detecting sequence changes, or mutations, are essential part of searching genes responsible for hereditary diseases and also DNA diagnosis of hereditary diseases or cancer. We can also measure mutation frequency of the human genome by knowing its variability. Our group has developed and been improving a method, PCR-SSCP analysis, as an extremely rapid and easy technique for detection of sequence differences between sample DNA's. Knowing the sensitivity (percentage detection of mutations) of this technique is important in evaluating usefulness of it for the purposes stated above. Considerable number of experiences on PCR-SSCP analysis of fragments shorter than 300 b.p. are accumulating. We summarize here the sensitivity of PCR-SSCP analysis for various sequence context of this size range examined in various electrophoretic conditions conducted in many laboratories. Data on mutation detection by this technique for longer fragments are limited. We also present oue effort for defining electrophoretic conditions of PCR-SSCP analysis when examining longer (350 to 600 b.p.) fragments. (author)

  14. Reliabilities of genomic prediction using combined reference data of the Nordic Red dairy cattle production

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Rius-Vilarrasa, E; Strandén, I

    2011-01-01

    This study investigated the possibility of increasing the reliability of direct genomic values (DGV) by combining reference opulations. The data were from 3,735 bulls from Danish, Swedish, and Finnish Red dairy cattle populations. Single nucleotide polymorphism markers were fitted as random varia...

  15. [Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].

    Science.gov (United States)

    Liu, Gai-gai; Li, Shuang; Wei, Yu-da; Zhang, Yong-xian; Ding, Qiu-rong

    2015-11-01

    The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.

  16. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  17. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  18. GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.

    Science.gov (United States)

    Yuan, Lina; Yu, Yang; Zhu, Yanmin; Li, Yulai; Li, Changqing; Li, Rujiao; Ma, Qin; Siu, Gilman Kit-Hang; Yu, Jun; Jiang, Taijiao; Xiao, Jingfa; Kang, Yu

    2017-01-25

    Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.

  19. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    Science.gov (United States)

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  20. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  1. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  2. The complete genome sequence and analysis of the human pathogen Campylobacter lari

    DEFF Research Database (Denmark)

    Miller, WG; Wang, G; Binnewies, Tim Terence

    2008-01-01

    Campylobacter lari is a member of the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter group, a clade that includes the human pathogen C. jejuni. Here we present the complete genome sequence of the human clinical isolate, C. lari RM2100. The genome of strain...... RM2100 is approximately 1.53 Mb and includes the 46 kb megaplasmid pCL2100. Also present within the strain RM2100 genome is a 36 kb putative prophage, termed CLIE1, which is similar to CJIE4, a putative prophage present within the C. jejuni RM1221 genome. Nearly all (90%) of the gene content...... in strain RM2100 is similar to genes present in the genomes of other characterized thermotolerant campylobacters. However, several genes involved in amino acid biosynthesis and energy metabolism, identified previously in other Campylobacter genomes, are absent from the C. lari RM2100 genome. Therefore, C...

  3. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  4. The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11

    International Nuclear Information System (INIS)

    Stone, Daniel; Furthmann, Anne; Sandig, Volker; Lieber, Andre

    2003-01-01

    The complete DNA sequence and transcription map of human adenovirus type 11 are reported here. This is the first published sequence for a subgenera B human adenovirus and demonstrates a genome organization highly similar to those of other human adenoviruses. All of the genes from the early, intermediate, and late regions are present in the expected locations of the genome for a human adenovirus. The genome size is 34,794 bp in length and has a GC content of 48.9%. Sequence alignment with genomes of groups A (Ad12), C (Ad5), D (Ad17), E (Simian adenovirus 25), and F (Ad40) revealed homologies of 64, 54, 68, 75, and 52%, respectively. Detailed genomic analysis demonstrated that Ads 11 and 35 are highly conserved in all areas except the hexon hypervariable regions and fiber. Similarly, comparison of Ad11 with subgroup E SAV25 revealed poor homology between fibers but high homology in proteins encoded by all other areas of the genome. We propose an evolutionary model in which functional viruses can be reconstituted following fiber substitution from one serotype to another. According to this model either the Ad11 genome is a derivative of Ad35, from which the fiber was substituted with Ad7, or the Ad35 genome is the product of a fiber substitution from Ad21 into the Ad11 genome. This model also provides a possible explanation for the origin of group E Ads, which are evolutionarily derived from a group C fiber substitution into a group B genome

  5. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus.

    Science.gov (United States)

    Ansari, M Azim; Pedergnana, Vincent; L C Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C A

    2017-05-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control.

  6. Finding Nemo's Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula

    KAUST Repository

    Lehmann, Robert; Lightfoot, Damien J; Schunter, Celia Marei; Michell, Craig T; Ohyanagi, Hajime; Mineta, Katsuhiko; Foret, Sylvain; Berumen, Michael L.; Miller, David J; Aranda, Manuel; Gojobori, Takashi; Munday, Philip L; Ravasi, Timothy

    2018-01-01

    The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that anti-predator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.

  7. Finding Nemo's Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula

    KAUST Repository

    Lehmann, Robert

    2018-03-08

    The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that anti-predator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.

  8. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains.

    Directory of Open Access Journals (Sweden)

    Kathrin Rychli

    Full Text Available The food-borne pathogen Listeria (L. monocytogenes is able to survive for months and even years in food production environments. Strains belonging to sequence type (ST121 are particularly found to be abundant and to persist in food and food production environments. To elucidate genetic determinants characteristic for L. monocytogenes ST121, we sequenced the genomes of 14 ST121 strains and compared them with currently available L. monocytogenes ST121 genomes. In total, we analyzed 70 ST121 genomes deriving from 16 different countries, different years of isolation, and different origins-including food, animal and human ST121 isolates. All ST121 genomes show a high degree of conservation sharing at least 99.7% average nucleotide identity. The main differences between the strains were found in prophage content and prophage conservation. We also detected distinct highly conserved subtypes of prophages inserted at the same genomic locus. While some of the prophages showed more than 99.9% similarity between strains from different sources and years, other prophages showed a higher level of diversity. 81.4% of the strains harbored virtually identical plasmids. 97.1% of the ST121 strains contain a truncated internalin A (inlA gene. Only one of the seven human ST121 isolates encodes a full-length inlA gene, illustrating the need of better understanding their survival and virulence mechanisms.

  9. A BAC clone fingerprinting approach to the detection of human genome rearrangements

    Science.gov (United States)

    Krzywinski, Martin; Bosdet, Ian; Mathewson, Carrie; Wye, Natasja; Brebner, Jay; Chiu, Readman; Corbett, Richard; Field, Matthew; Lee, Darlene; Pugh, Trevor; Volik, Stas; Siddiqui, Asim; Jones, Steven; Schein, Jacquie; Collins, Collin; Marra, Marco

    2007-01-01

    We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements. PMID:17953769

  10. An Evaluation Framework for Lossy Compression of Genome Sequencing Quality Values.

    Science.gov (United States)

    Alberti, Claudio; Daniels, Noah; Hernaez, Mikel; Voges, Jan; Goldfeder, Rachel L; Hernandez-Lopez, Ana A; Mattavelli, Marco; Berger, Bonnie

    2016-01-01

    This paper provides the specification and an initial validation of an evaluation framework for the comparison of lossy compressors of genome sequencing quality values. The goal is to define reference data, test sets, tools and metrics that shall be used to evaluate the impact of lossy compression of quality values on human genome variant calling. The functionality of the framework is validated referring to two state-of-the-art genomic compressors. This work has been spurred by the current activity within the ISO/IEC SC29/WG11 technical committee (a.k.a. MPEG), which is investigating the possibility of starting a standardization activity for genomic information representation.

  11. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A

    2016-01-01

    Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA. Copyright © 2016 John Wiley & Sons, Inc.

  12. Microbial genome-wide association studies: lessons from human GWAS.

    Science.gov (United States)

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  13. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.

    Science.gov (United States)

    González, Federico

    2016-07-01

    Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics. Developmental Dynamics 245:788-806, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  15. Understanding the Human Genome Project: Using Stations to Provide a Comprehensive Overview

    Science.gov (United States)

    Soto, Julio G.

    2005-01-01

    A lesson was designed for lower division general education, non-major biology lecture-only course that included the historical and scientific context, some of the skills used to study the human genome, results, conclusions and ethical consideration. Students learn to examine and compare the published Human Genome maps, and employ the strategies…

  16. Non-genomic effects of vitamin D in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Dissing, Steen

    2012-01-01

    The spectrum for vitamin D (VD) mediated effects has expanded in recent years. Activated VD (1,25(OH)(2)D(3)) binds to the VD receptor (VDR) and mediates non-genomic effects through the alternative ligand binding-pocket (VDR-ap) or regulates gene transcription through the genomic binding......-pocket. VDR and VD-metabolizing enzymes are expressed in human testis, male reproductive tract and mature spermatozoa, and VD is considered important for male reproduction. Expression of the VD-inactivating enzyme CYP24A1 at the annulus of human spermatozoa distinguish normal and infertile men with high...... specificity, and CYP24A1 expression is positively correlated with all semen variables and suggested as a marker for both semen quality and VD responsiveness. Moreover, spermatozoa are transcriptionally silent and are therefore a unique model to study non-genomic effects. 1,25(OH)(2)D(3) induced a rapid...

  17. Report of the second Human Genome Diversity workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The Second Human Genome Diversity Workshop was successfully held at Penn State University from October 29--31, 1992. The Workshop was essentially organized around 7 groups, each comprising approximately 10 participants, representing the sampling issues in different regions of the world. These groups worked independently, using a common format provided by the organizers; this was adjusted as needed by the individual groups. The Workshop began with a presentation of the mandate to the participants, and of the procedures to be followed during the workshop. Dr. Feldman presented a summary of the results from the First Workshop. He and the other organizers also presented brief comments giving their perspective on the objectives of the Second Workshop. Dr. Julia Bodmer discussed the study of European genetic diversity, especially in the context of the HLA experience there, and of plans to extend such studies in the coming years. She also discussed surveys of world HLA laboratories in regard to resources related to Human Genome Diversity. Dr. Mark Weiss discussed the relevance of nonhuman primate studies for understanding how demographic processes, such as mate exchange between local groups, affected the local dispersion of genetic variation. Primate population geneticists have some relevant experience in interpreting variation at this local level, in particular, with various DNA fingerprinting methods. This experience may be relevant to the Human Genome Diversity Project, in terms of practical and statistical issues.

  18. Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution.

    Science.gov (United States)

    Vicente-Salvador, David; Puig, Marta; Gayà-Vidal, Magdalena; Pacheco, Sarai; Giner-Delgado, Carla; Noguera, Isaac; Izquierdo, David; Martínez-Fundichely, Alexander; Ruiz-Herrera, Aurora; Estivill, Xavier; Aguado, Cristina; Lucas-Lledó, José Ignacio; Cáceres, Mario

    2017-02-01

    The growing catalogue of structural variants in humans often overlooks inversions as one of the most difficult types of variation to study, even though they affect phenotypic traits in diverse organisms. Here, we have analysed in detail 90 inversions predicted from the comparison of two independently assembled human genomes: the reference genome (NCBI36/HG18) and HuRef. Surprisingly, we found that two thirds of these predictions (62) represent errors either in assembly comparison or in one of the assemblies, including 27 misassembled regions in HG18. Next, we validated 22 of the remaining 28 potential polymorphic inversions using different PCR techniques and characterized their breakpoints and ancestral state. In addition, we determined experimentally the derived allele frequency in Europeans for 17 inversions (DAF = 0.01-0.80), as well as the distribution in 14 worldwide populations for 12 of them based on the 1000 Genomes Project data. Among the validated inversions, nine have inverted repeats (IRs) at their breakpoints, and two show nucleotide variation patterns consistent with a recurrent origin. Conversely, inversions without IRs have a unique origin and almost all of them show deletions or insertions at the breakpoints in the derived allele mediated by microhomology sequences, which highlights the importance of mechanisms like FoSTeS/MMBIR in the generation of complex rearrangements in the human genome. Finally, we found several inversions located within genes and at least one candidate to be positively selected in Africa. Thus, our study emphasizes the importance of careful analysis and validation of large-scale genomic predictions to extract reliable biological conclusions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The human Genome project and the future of oncology

    International Nuclear Information System (INIS)

    Collins, Francis S.

    1996-01-01

    The Human Genome Project is an ambitious 15-year effort to devise maps and sequence of the 3-billion base pair human genome, including all 100,000 genes. The project is running ahead of schedule and under budget. Already the effects on progress in disease gene discovery have been dramatic, especially for cancer. The most appropriate uses of susceptibility testing for breast, ovarian, and colon cancer are being investigated in research protocols, and the need to prevent genetic discrimination in employment and health insurance is becoming more urgent. In the longer term, these gene discoveries are likely to usher in a new era of therapeutic molecular medicine

  20. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  1. Identification of endogenous retroviral reading frames in the human genome

    Directory of Open Access Journals (Sweden)

    Wiuf Carsten

    2004-10-01

    Full Text Available Abstract Background Human endogenous retroviruses (HERVs comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. Results By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD. Conclusions This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at http://www.retrosearch.dk.

  2. Evolutionary forces shaping genomic islands of population differentiation in humans

    Directory of Open Access Journals (Sweden)

    Hofer Tamara

    2012-03-01

    Full Text Available Abstract Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM. A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i as much as 20% of islands are in non-genic regions ii these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii most loci are

  3. Genome-wide survey in African Americans demonstrates potential epistasis of fitness in the human genome.

    Science.gov (United States)

    Wang, Heming; Choi, Yoonha; Tayo, Bamidele; Wang, Xuefeng; Morris, Nathan; Zhang, Xiang; Broeckel, Uli; Hanis, Craig; Kardia, Sharon; Redline, Susan; Cooper, Richard S; Tang, Hua; Zhu, Xiaofeng

    2017-02-01

    The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated for many years and the existing evidence has been mainly accumulated from model organisms. In model organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic values between loci in a population and confirmed through examining the number of offspring produced in two-locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis by testing the correlation between local ancestries on different chromosomes in an admixed population. We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (P-value = 4.01 × 10 -8 ) that can be potentially attributed to fitness epistasis. However, we also observed substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human genome. © 2016 WILEY PERIODICALS, INC.

  4. CRISPR/Cas9 for Human Genome Engineering and Disease Research.

    Science.gov (United States)

    Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S

    2016-08-31

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.

  5. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas.

    Science.gov (United States)

    McNeil, Nicole E; Padilla-Nash, Hesed M; Buishand, Floryne O; Hue, Yue; Ried, Thomas

    2017-03-01

    Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. An advanced reference genome of Trifolium subterraneum L. reveals genes related to agronomic performance

    Czech Academy of Sciences Publication Activity Database

    Kaur, P.; Bayer, P.E.; Milec, Zbyněk; Vrána, Jan; Yuan, Y.; Appels, R.; Edwards, D.; Batley, J.; Nichols, P.; Erskine, W.; Doležel, Jaroslav

    2017-01-01

    Roč. 15, č. 8 (2017), s. 1034-1046 ISSN 1467-7644 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : advanced reference assembly * BioNano * forage legumes * gene expression * Legume comparative genomics * transcriptome Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Environmental biotechnology Impact factor: 7.443, year: 2016

  7. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  8. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  9. Detection of genomic instability in hypospadias patients by random ...

    African Journals Online (AJOL)

    DIRECTOR

    2011-05-16

    May 16, 2011 ... organism including bacteria (Sahoo et al., 2010), fungi. (Motlagh and Anvari ... technique that detects genomic alteration correlated with human tumor is .... chromosomal instability among hypospadias patients. REFERENCES.

  10. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    Science.gov (United States)

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  11. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome

    International Nuclear Information System (INIS)

    Economou, E.P.; Bergen, A.W.; Warren, A.C.; Antonarakis, S.E.

    1990-01-01

    To identify DNA polymorphisms that are abundant in the human genome and are detectable by polymerase chain reaction amplification of genomic DNA, the authors hypothesize that the polydeoxyadenylate tract of the Alu family of repetitive elements is polymorphic among human chromosomes. Analysis of the 3' ends of three specific Alu sequences showed two occurrences, one in the adenosine deaminase gene and other in the β-globin pseudogene, were polymorphic. This novel class of polymorphism, termed AluVpA [Alu variable poly(A)] may represent one of the most useful and informative group of DNA markers in the human genome

  12. Targets of balancing selection in the human genome

    DEFF Research Database (Denmark)

    Andrés, Aida M; Hubisz, Melissa J; Indap, Amit

    2009-01-01

    Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant...... to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set......, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment...

  13. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  14. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart.

    Science.gov (United States)

    Angstadt, Andrea Y; Motsinger-Reif, Alison; Thomas, Rachael; Kisseberth, William C; Guillermo Couto, C; Duval, Dawn L; Nielsen, Dahlia M; Modiano, Jaime F; Breen, Matthew

    2011-11-01

    Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts. Copyright © 2011 Wiley-Liss, Inc.

  15. Perspectives of International Human Epigenome Consortium

    Directory of Open Access Journals (Sweden)

    Jae-Bum Bae

    2013-03-01

    Full Text Available As the International Human Epigenome Consortium (IHEC launched officially at the 2010 Washington meeting, a giant step toward the conquest of unexplored regions of the human genome has begun. IHEC aims at the production of 1,000 reference epigenomes to the international scientific community for next 7-10 years. Seven member institutions, including South Korea, Korea National Institute of Health (KNIH, will produce 25-200 reference epigenomes individually, and the produced data will be publically available by using a data center. Epigenome data will cover from whole genome bisulfite sequencing, histone modification, and chromatin access information to miRNA-seq. The final goal of IHEC is the production of reference maps of human epigenomes for key cellular status relevant to health and disease.

  16. A compact view of isochores in the draft human genome sequence

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Adam; Pačes, Jan; Clay, O.; Bernardi, G.

    2002-01-01

    Roč. 511, 1-3 (2002), s. 165-169 ISSN 0014-5793 R&D Projects: GA MŠk LN00A079 Keywords : genome organisation * mammalian DNA * human genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.912, year: 2002

  17. The Human Genome Project: Information access, management, and regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  18. National human genome projects: an update and an agenda

    OpenAIRE

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions...

  19. Distant homology between yeast photoreactivating gene fragment and human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1985-01-01

    Hybridization of DNA coding for the yeast DNA photolyase to human genomic DNA appears to allow one to determine whether a conserved enzyme is coded for in human cells. Under stringent conditions (68 0 C), hybridization is not found between the cloned yeast fragment (YEp13-phr1) and human or chick genomic digests. At less stringent conditions (60 0 C), hybridization is observed with chick digests, indicating evolutionary divergence even among organisms capable of photo-reactivation. At 50 0 C, weak hybridization with human digests was observed, indicating further divergence from the cloned gene. Data concerning the precise extent of homology and methods to clone the chick gene for use as another probe are discussed

  20. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  1. An Upper Limit on the Functional Fraction of the Human Genome.

    Science.gov (United States)

    Graur, Dan

    2017-07-01

    For the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 25%, and is probably considerably lower. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  3. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases

    Science.gov (United States)

    Nalbantoglu, Ufuk

    2017-01-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome–human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis. PMID:28785422

  4. In silico pattern-based analysis of the human cytomegalovirus genome.

    Science.gov (United States)

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-04-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/).

  5. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  6. Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro.

    Science.gov (United States)

    Ottolini, Christian S; Kitchen, John; Xanthopoulou, Leoni; Gordon, Tony; Summers, Michael C; Handyside, Alan H

    2017-08-29

    Following in vitro fertilisation (IVF), only about half of normally fertilised human embryos develop beyond cleavage and morula stages to form a blastocyst in vitro. Although many human embryos are aneuploid and genomically imbalanced, often as a result of meiotic errors inherited in the oocyte, these aneuploidies persist at the blastocyst stage and the reasons for the high incidence of developmental arrest remain unknown. Here we use genome-wide SNP genotyping and meiomapping of both polar bodies to identify maternal meiotic errors and karyomapping to fingerprint the parental chromosomes in single cells from disaggregated arrested embryos and excluded cells from blastocysts. Combined with time lapse imaging of development in culture, we demonstrate that tripolar mitoses in early cleavage cause chromosome dispersal to clones of cells with identical or closely related sub-diploid chromosome profiles resulting in intercellular partitioning of the genome. We hypothesise that following zygotic genome activation (ZGA), the combination of genomic imbalance and partial genome loss disrupts the normal pattern of embryonic gene expression blocking development at the morula-blastocyst transition. Failure to coordinate the cell cycle in early cleavage and regulate centrosome duplication is therefore a major cause of human preimplantation developmental arrest in vitro.

  7. The genome in three dimensions: a new frontier in human brain research.

    Science.gov (United States)

    Mitchell, Amanda C; Bharadwaj, Rahul; Whittle, Catheryne; Krueger, Winfried; Mirnics, Karoly; Hurd, Yasmin; Rasmussen, Theodore; Akbarian, Schahram

    2014-06-15

    Less than 1.5% of the human genome encodes protein. However, vast portions of the human genome are subject to transcriptional and epigenetic regulation, and many noncoding regulatory DNA elements are thought to regulate the spatial organization of interphase chromosomes. For example, chromosomal "loopings" are pivotal for the orderly process of gene expression, by enabling distal regulatory enhancer or silencer elements to directly interact with proximal promoter and transcription start sites, potentially bypassing hundreds of kilobases of interspersed sequence on the linear genome. To date, however, epigenetic studies in the human brain are mostly limited to the exploration of DNA methylation and posttranslational modifications of the nucleosome core histones. In contrast, very little is known about the regulation of supranucleosomal structures. Here, we show that chromosome conformation capture, a widely used approach to study higher-order chromatin, is applicable to tissue collected postmortem, thereby informing about genome organization in the human brain. We introduce chromosome conformation capture protocols for brain and compare higher-order chromatin structures at the chromosome 6p22.2-22.1 schizophrenia and bipolar disorder susceptibility locus, and additional neurodevelopmental risk genes, (DPP10, MCPH1) in adult prefrontal cortex and various cell culture systems, including neurons derived from reprogrammed skin cells. We predict that the exploration of three-dimensional genome architectures and function will open up new frontiers in human brain research and psychiatric genetics and provide novel insights into the epigenetic risk architectures of regulatory noncoding DNA. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Stakeholder engagement in policy development: challenges and opportunities for human genomics

    OpenAIRE

    Lemke, Amy A.; Harris-Wai, Julie N.

    2015-01-01

    Along with rapid advances in human genomics, policies governing genomic data and clinical technologies have proliferated. Stakeholder engagement is widely lauded as an important methodology for improving clinical, scientific, and public health policy decision making. The purpose of this paper is to examine how stakeholder engagement is used to develop policies in genomics research and public health areas, as well as to identify future priorities for conducting evidence-based stakeholder engag...

  9. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome.

    Science.gov (United States)

    Garazha, Andrew; Ivanova, Alena; Suntsova, Maria; Malakhova, Galina; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of "domestication" of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.

  10. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  11. Ensembl Genomes 2013: scaling up access to genome-wide data.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  12. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...... polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates...

  13. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

    OpenAIRE

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulat...

  14. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  15. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    Science.gov (United States)

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.

  16. New roles of the human Suv3 helicase in genome maintenance

    DEFF Research Database (Denmark)

    Venø, Susanne Trillingsgaard

    During her PhD studies, Susanne Trillingsgaard Venø carried out research into the role of the human Suv3 protein in stabilising the human genome – DNA. Suv3 is a helicase that separates the two strands of the DNA’s double helix. Throughout our lives, the DNA in our cells is constantly exposed...... maintenance. Based on these new research results, the Suv3 protein could be a valuable model for genome stability as an important factor in our understanding of why we get old....

  17. The humankind genome: from genetic diversity to the origin of human diseases.

    Science.gov (United States)

    Belizário, Jose E

    2013-12-01

    Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

  18. Human Ageing Genomic Resources: new and updated databases

    Science.gov (United States)

    Tacutu, Robi; Thornton, Daniel; Johnson, Emily; Budovsky, Arie; Barardo, Diogo; Craig, Thomas; Diana, Eugene; Lehmann, Gilad; Toren, Dmitri; Wang, Jingwei; Fraifeld, Vadim E

    2018-01-01

    Abstract In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/). PMID:29121237

  19. Genome-to-genome analysis highlights the impact of the human innate and adaptive immune systems on the hepatitis C virus

    Science.gov (United States)

    Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C. A.

    2018-01-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. We use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals chronically infected with HCV, predominately genotype 3. We show that both HLA alleles and interferon lambda innate immune system genes drive viral genome polymorphism, and that IFNL4 genotypes determine HCV viral load through a mechanism that is dependent on a specific polymorphism in the HCV polyprotein. We highlight the interplay between innate immune responses and the viral genome in HCV control. PMID:28394351

  20. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human

    NARCIS (Netherlands)

    S.L. Macrae (Sheila L.); Q. Zhang (Quanwei); C. Lemetre (Christophe); I. Seim (Inge); R.B. Calder (Robert B.); J.H.J. Hoeijmakers (Jan); Y. Suh (Yousin); V.N. Gladyshev (Vadim N.); A. Seluanov (Andrei); V. Gorbunova (Vera); J. Vijg (Jan); Z.D. Zhang (Zhengdong D.)

    2015-01-01

    textabstractGenome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM

  1. Human genome education model project. Ethical, legal, and social implications of the human genome project: Education of interdisciplinary professionals

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, J.O. [Alliance of Genetic Support Groups, Chevy Chase, MD (United States); Lapham, E.V. [Georgetown Univ., Washington, DC (United States). Child Development Center

    1996-12-31

    This meeting was held June 10, 1996 at Georgetown University. The purpose of this meeting was to provide a multidisciplinary forum for exchange of state-of-the-art information on the human genome education model. Topics of discussion include the following: psychosocial issues; ethical issues for professionals; legislative issues and update; and education issues.

  2. Predicting human height by Victorian and genomic methods.

    Science.gov (United States)

    Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M

    2009-08-01

    In the Victorian era, Sir Francis Galton showed that 'when dealing with the transmission of stature from parents to children, the average height of the two parents, ... is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified.

  3. Genomic and bioinformatics analyses of HAdV-4vac and HAdV-7vac, two human adenovirus (HAdV) strains that constituted original prophylaxis against HAdV-related acute respiratory disease, a reemerging epidemic disease.

    Science.gov (United States)

    Purkayastha, Anjan; Su, Jing; McGraw, John; Ditty, Susan E; Hadfield, Ted L; Seto, Jason; Russell, Kevin L; Tibbetts, Clark; Seto, Donald

    2005-07-01

    Vaccine strains of human adenovirus serotypes 4 and 7 (HAdV-4vac and HAdV-7vac) have been used successfully to prevent adenovirus-related acute respiratory disease outbreaks. The genomes of these two vaccine strains have been sequenced, annotated, and compared with their prototype equivalents with the goals of understanding their genomes for molecular diagnostics applications, vaccine redevelopment, and HAdV pathoepidemiology. These reference genomes are archived in GenBank as HAdV-4vac (35,994 bp; AY594254) and HAdV-7vac (35,240 bp; AY594256). Bioinformatics and comparative whole-genome analyses with their recently reported and archived prototype genomes reveal six mismatches and four insertions-deletions (indels) between the HAdV-4 prototype and vaccine strains, in contrast to the 611 mismatches and 130 indels between the HAdV-7 prototype and vaccine strains. Annotation reveals that the HAdV-4vac and HAdV-7vac genomes contain 51 and 50 coding units, respectively. Neither vaccine strain appears to be attenuated for virulence based on bioinformatics analyses. There is evidence of genome recombination, as the inverted terminal repeat of HAdV-4vac is initially identical to that of species C whereas the prototype is identical to species B1. These vaccine reference sequences yield unique genome signatures for molecular diagnostics. As a molecular forensics application, these references identify the circulating and problematic 1950s era field strains as the original HAdV-4 prototype and the Greider prototype, from which the vaccines are derived. Thus, they are useful for genomic comparisons to current epidemic and reemerging field strains, as well as leading to an understanding of pathoepidemiology among the human adenoviruses.

  4. DOE Human Genome Program contractor-grantee workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  5. Linkage disequilibrium between STRPs and SNPs across the human genome.

    Science.gov (United States)

    Payseur, Bret A; Place, Michael; Weber, James L

    2008-05-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.

  6. Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor

    DEFF Research Database (Denmark)

    de los Campos, Gustavo; Vazquez, Ana I; Fernando, Rohan

    2013-01-01

    Despite important advances from Genome Wide Association Studies (GWAS), for most complex human traits and diseases, a sizable proportion of genetic variance remains unexplained and prediction accuracy (PA) is usually low. Evidence suggests that PA can be improved using Whole-Genome Regression (WGR......) models where phenotypes are regressed on hundreds of thousands of variants simultaneously. The Genomic Best Linear Unbiased Prediction G-BLUP, a ridge-regression type method) is a commonly used WGR method and has shown good predictive performance when applied to plant and animal breeding populations....... However, breeding and human populations differ greatly in a number of factors that can affect the predictive performance of G-BLUP. Using theory, simulations, and real data analysis, we study the erformance of G-BLUP when applied to data from related and unrelated human subjects. Under perfect linkage...

  7. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. A systematic genome-wide analysis of zebrafish protein-coding gene function

    NARCIS (Netherlands)

    Kettleborough, R.N.; Busch-Nentwich, E.M.; Harvey, S.A.; Dooley, C.M.; de Bruijn, E.; van Eeden, F.; Sealy, I.; White, R.J.; Herd, C.; Nijman, I.J.; Fenyes, F.; Mehroke, S.; Scahill, C.; Gibbons, R.; Wali, N.; Carruthers, S.; Hall, A.; Yen, J.; Cuppen, E.; Stemple, D.L.

    2013-01-01

    Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms,

  9. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains.

    Science.gov (United States)

    Bwogi, Josephine; Jere, Khuzwayo C; Karamagi, Charles; Byarugaba, Denis K; Namuwulya, Prossy; Baliraine, Frederick N; Desselberger, Ulrich; Iturriza-Gomara, Miren

    2017-01-01

    Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.

  10. The Human Genome Diversity (HGD) Project. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would not only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.

  11. Reference quality assembly of the 3.5 Gb genome of Capsicum annuum form a single linked-read library

    Science.gov (United States)

    Linked-Read sequencing technology has recently been employed successfully for de novo assembly of multiple human genomes, however the utility of this technology for complex plant genomes is unproven. We evaluated the technology for this purpose by sequencing the 3.5 gigabase (Gb) diploid pepper (Cap...

  12. Genome-wide association studies in Africans and African Americans: Expanding the Framework of the Genomics of Human Traits and Disease

    Science.gov (United States)

    Peprah, Emmanuel; Xu, Huichun; Tekola-Ayele, Fasil; Royal, Charmaine D.

    2014-01-01

    Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance, and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago, and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent-African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions. PMID:25427668

  13. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease.

    Science.gov (United States)

    Peprah, Emmanuel; Xu, Huichun; Tekola-Ayele, Fasil; Royal, Charmaine D

    2015-01-01

    Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions.

  14. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  15. Using Short-Term Enrichments and Metagenomics to Obtain Genomes from uncultured Activated Sludge Microorganisms

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Nielsen, Per Halkjær; Albertsen, Mads

    is that they depend on system-specific reference genomes in order to analyze the vast amounts of data (Albertsen et al., 2012). This limits the application of -omics to environments for which a comprehensive catalogue of reference genomes exists e.g. the human gut. Several strategies for obtaining microbial genomes...... exist today, but their ability to obtain complete genomes from complex microbial communities on a large scale is still inadequate (Lasken, 2012). In theory, conventional metagenomics should be able to recover genomes from complex communities, but in practice the approach is hampered by the presence...... of microdiversity. This leads to fragmented and chimeric de novo assemblies, which prevent the extraction of complete genomes. The new approach presented here involves reducing the impact of microdiversity and increasing genome extraction efficiency by what we term “metagenome triangulation”. The microdiversity...

  16. Building capacity for human genetics and genomics research in Trinidad and Tobago

    Directory of Open Access Journals (Sweden)

    Allana Roach

    Full Text Available Advances in human genetics and genomic sciences and the corresponding explosion of biomedical technologies have deepened current understanding of human health and revolutionized medicine. In developed nations, this has led to marked improvements in disease risk stratification and diagnosis. These advances have also led to targeted intervention strategies aimed at promoting disease prevention, prolonging disease onset, and mitigating symptoms, as in the well-known case of breast cancer and the BRCA1 gene. In contrast, in the developing nation of Trinidad and Tobago, this scientific revolution has not translated into the development and application of effective genomics-based interventions for improving public health. While the reasons for this are multifactorial, the underlying basis may be rooted in the lack of pertinence of internationally driven genomics research to the local public health needs in the country, as well as a lack of relevance of internationally conducted genetics research to the genetic and environmental contexts of the population. Indeed, if Trinidad and Tobago is able to harness substantial public health benefit from genetics/genomics research, then there is a dire need, in the near future, to build local capacity for the conduct and translation of such research. Specifically, it is essential to establish a national human genetics/genomics research agenda in order to build sustainable human capacity through education and knowledge transfer and to generate public policies that will provide the basis for the creation of a mutually beneficial framework (including partnerships with more developed nations that is informed by public health needs and contextual realities of the nation.

  17. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  18. Genomic landscape of human diversity across Madagascar

    Science.gov (United States)

    Pierron, Denis; Heiske, Margit; Razafindrazaka, Harilanto; Rakoto, Ignace; Rabetokotany, Nelly; Ravololomanga, Bodo; Rakotozafy, Lucien M.-A.; Rakotomalala, Mireille Mialy; Razafiarivony, Michel; Rasoarifetra, Bako; Raharijesy, Miakabola Andriamampianina; Razafindralambo, Lolona; Ramilisonina; Fanony, Fulgence; Lejamble, Sendra; Thomas, Olivier; Mohamed Abdallah, Ahmed; Rocher, Christophe; Arachiche, Amal; Tonaso, Laure; Pereda-loth, Veronica; Schiavinato, Stéphanie; Brucato, Nicolas; Ricaut, Francois-Xavier; Kusuma, Pradiptajati; Sudoyo, Herawati; Ni, Shengyu; Boland, Anne; Deleuze, Jean-Francois; Beaujard, Philippe; Grange, Philippe; Adelaar, Sander; Stoneking, Mark; Rakotoarisoa, Jean-Aimé; Radimilahy, Chantal; Letellier, Thierry

    2017-01-01

    Although situated ∼400 km from the east coast of Africa, Madagascar exhibits cultural, linguistic, and genetic traits from both Southeast Asia and Eastern Africa. The settlement history remains contentious; we therefore used a grid-based approach to sample at high resolution the genomic diversity (including maternal lineages, paternal lineages, and genome-wide data) across 257 villages and 2,704 Malagasy individuals. We find a common Bantu and Austronesian descent for all Malagasy individuals with a limited paternal contribution from Europe and the Middle East. Admixture and demographic growth happened recently, suggesting a rapid settlement of Madagascar during the last millennium. However, the distribution of African and Asian ancestry across the island reveals that the admixture was sex biased and happened heterogeneously across Madagascar, suggesting independent colonization of Madagascar from Africa and Asia rather than settlement by an already admixed population. In addition, there are geographic influences on the present genomic diversity, independent of the admixture, showing that a few centuries is sufficient to produce detectable genetic structure in human populations. PMID:28716916

  19. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    Hori, Tada-aki

    1994-03-01

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  20. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    Science.gov (United States)

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.

  1. Genome Improvement at JGI-HAGSC

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  2. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  3. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  4. The human genome project and the Catholic Church (1)

    Science.gov (United States)

    Moraczewski, Albert S

    1991-12-01

    The Cathlic Church has not made any formal statements about the Human Genome Project as such. But the present Pope, John Paul II, has commented, albeit very briefly, on various aspects of genetic manipulation. Genetic interventions which are therapeutic (e.g. gene therapy), namely, directed to the correction or amelioration of a disorder are acceptable, in principle, provided they promote the personal well being of the individual being so treated. Genetic interventions which are not therapeutic for the specific individual involved but are experimental and directed primarily to improving humans as biological entities are of dubious moral probity, but are not necessarily to be totally rejected out of hand. To be morally acceptable such genetic intervention should meet certain conditions which include due respect for the given psychological nature of each individual human being. In addition, no harm should be inflicted on the process of human generation, and its fundamental design should not be altered. Any genetic manipulation which results in, or tends to, the creation of groups with different qualities such that there would result a fresh marginalization of these people must be avoided. It has been also suggested by a few that because the Son of God took on a human nature in Jesus Christ, one may not so alter the human genome that a new distinct species would be created....

  5. Reconsidering democracy. History of the Human Genome Project.

    NARCIS (Netherlands)

    Marli Huijer

    2003-01-01

    What options are open for people—citizens, politicians, and other nonscientists—to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  6. Shared regulatory sites are abundant in the human genome and shed light on genome evolution and disease pleiotropy.

    Science.gov (United States)

    Tong, Pin; Monahan, Jack; Prendergast, James G D

    2017-03-01

    Large-scale gene expression datasets are providing an increasing understanding of the location of cis-eQTLs in the human genome and their role in disease. However, little is currently known regarding the extent of regulatory site-sharing between genes. This is despite it having potentially wide-ranging implications, from the determination of the way in which genetic variants may shape multiple phenotypes to the understanding of the evolution of human gene order. By first identifying the location of non-redundant cis-eQTLs, we show that regulatory site-sharing is a relatively common phenomenon in the human genome, with over 10% of non-redundant regulatory variants linked to the expression of multiple nearby genes. We show that these shared, local regulatory sites are linked to high levels of chromatin looping between the regulatory sites and their associated genes. In addition, these co-regulated gene modules are found to be strongly conserved across mammalian species, suggesting that shared regulatory sites have played an important role in shaping human gene order. The association of these shared cis-eQTLs with multiple genes means they also appear to be unusually important in understanding the genetics of human phenotypes and pleiotropy, with shared regulatory sites more often linked to multiple human phenotypes than other regulatory variants. This study shows that regulatory site-sharing is likely an underappreciated aspect of gene regulation and has important implications for the understanding of various biological phenomena, including how the two and three dimensional structures of the genome have been shaped and the potential causes of disease pleiotropy outside coding regions.

  7. Efficient assembly of de novo human artificial chromosomes from large genomic loci

    Directory of Open Access Journals (Sweden)

    Stromberg Gregory

    2005-07-01

    Full Text Available Abstract Background Human Artificial Chromosomes (HACs are potentially useful vectors for gene transfer studies and for functional annotation of the genome because of their suitability for cloning, manipulating and transferring large segments of the genome. However, development of HACs for the transfer of large genomic loci into mammalian cells has been limited by difficulties in manipulating high-molecular weight DNA, as well as by the low overall frequencies of de novo HAC formation. Indeed, to date, only a small number of large (>100 kb genomic loci have been reported to be successfully packaged into de novo HACs. Results We have developed novel methodologies to enable efficient assembly of HAC vectors containing any genomic locus of interest. We report here the creation of a novel, bimolecular system based on bacterial artificial chromosomes (BACs for the construction of HACs incorporating any defined genomic region. We have utilized this vector system to rapidly design, construct and validate multiple de novo HACs containing large (100–200 kb genomic loci including therapeutically significant genes for human growth hormone (HGH, polycystic kidney disease (PKD1 and ß-globin. We report significant differences in the ability of different genomic loci to support de novo HAC formation, suggesting possible effects of cis-acting genomic elements. Finally, as a proof of principle, we have observed sustained ß-globin gene expression from HACs incorporating the entire 200 kb ß-globin genomic locus for over 90 days in the absence of selection. Conclusion Taken together, these results are significant for the development of HAC vector technology, as they enable high-throughput assembly and functional validation of HACs containing any large genomic locus. We have evaluated the impact of different genomic loci on the frequency of HAC formation and identified segments of genomic DNA that appear to facilitate de novo HAC formation. These genomic loci

  8. Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory.

    Science.gov (United States)

    Crisan, Anamaria; McKee, Geoffrey; Munzner, Tamara; Gardy, Jennifer L

    2018-01-01

    Microbial genome sequencing is now being routinely used in many clinical and public health laboratories. Understanding how to report complex genomic test results to stakeholders who may have varying familiarity with genomics-including clinicians, laboratorians, epidemiologists, and researchers-is critical to the successful and sustainable implementation of this new technology; however, there are no evidence-based guidelines for designing such a report in the pathogen genomics domain. Here, we describe an iterative, human-centered approach to creating a report template for communicating tuberculosis (TB) genomic test results. We used Design Study Methodology-a human centered approach drawn from the information visualization domain-to redesign an existing clinical report. We used expert consults and an online questionnaire to discover various stakeholders' needs around the types of data and tasks related to TB that they encounter in their daily workflow. We also evaluated their perceptions of and familiarity with genomic data, as well as its utility at various clinical decision points. These data shaped the design of multiple prototype reports that were compared against the existing report through a second online survey, with the resulting qualitative and quantitative data informing the final, redesigned, report. We recruited 78 participants, 65 of whom were clinicians, nurses, laboratorians, researchers, and epidemiologists involved in TB diagnosis, treatment, and/or surveillance. Our first survey indicated that participants were largely enthusiastic about genomic data, with the majority agreeing on its utility for certain TB diagnosis and treatment tasks and many reporting some confidence in their ability to interpret this type of data (between 58.8% and 94.1%, depending on the specific data type). When we compared our four prototype reports against the existing design, we found that for the majority (86.7%) of design comparisons, participants preferred the

  9. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  10. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam

    2011-01-01

    a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein...

  11. The Human Genome Project and the social contract: a law policy approach.

    Science.gov (United States)

    Byk, C

    1992-08-01

    For the first time in history, genetics will enable science to completely identify each human as genetically unique. Will this knowledge reinforce the trend for more individual liberties or will it create a 'brave new world'? A law policy approach to the problems raised by the human genome project shows how far our democratic institutions are from being the proper forum to discuss such issues. Because of the fears and anxiety raised in the population, and also because of its wide implications on the everyday life, the human genome analysis more than any other project needs to succeed in setting up such a social assessment.

  12. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    Science.gov (United States)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  13. A map to a new treasure island: the human genome and the concept of common heritage.

    Science.gov (United States)

    Byk, C

    1998-06-01

    While the 1970's have been called the environmental years, the 1990's could be seen as the genome years. As the challenge to map and to sequence the human genome mobilized the scientific community, risks and benefits of information and uses that would derive from this project have also raised ethical issues at the international level. The particular interest of the 1997 UNESCO Declaration relies on the fact that it emphasizes both the scientific importance of genetics and the appropriate reinforcement of human rights in this area. It considers the human genome, at least symbolically, as the common heritage of humanity.

  14. Whole genome analysis of Klebsiella pneumoniae T2-1-1 from human oral cavity

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2016-03-01

    Full Text Available Klebsiella pneumoniae T2-1-1 was isolated from the human tongue debris and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JAQL00000000. Keywords: Human tongue surface, Oral cavity, Oral bacteria, Virulence

  15. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    Science.gov (United States)

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Single genome retrieval of context-dependent variability in mutation rates for human germline.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2017-01-13

    Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.

  17. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes.

    Science.gov (United States)

    Clark, Samuel A; Hickey, John M; Daetwyler, Hans D; van der Werf, Julius H J

    2012-02-09

    The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.

  18. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  19. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.

    Science.gov (United States)

    Baptista, Rodrigo P; Reis-Cunha, Joao Luis; DeBarry, Jeremy D; Chiari, Egler; Kissinger, Jessica C; Bartholomeu, Daniella C; Macedo, Andrea M

    2018-02-14

    Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.

  20. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics

    DEFF Research Database (Denmark)

    Gopalakrishnan, Shyam; Samaniego Castruita, Jose Alfredo; Sinding, Mikkel Holger Strander

    2017-01-01

    Background An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data - that of a......Background An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data...

  1. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Philpott Michael P

    2010-02-01

    Full Text Available Abstract Background The human cell cycle transcription factor FOXM1 is known to play a key role in regulating timely mitotic progression and accurate chromosomal segregation during cell division. Deregulation of FOXM1 has been linked to a majority of human cancers. We previously showed that FOXM1 was upregulated in basal cell carcinoma and recently reported that upregulation of FOXM1 precedes malignancy in a number of solid human cancer types including oral, oesophagus, lung, breast, kidney, bladder and uterus. This indicates that upregulation of FOXM1 may be an early molecular signal required for aberrant cell cycle and cancer initiation. Results The present study investigated the putative early mechanism of UVB and FOXM1 in skin cancer initiation. We have demonstrated that UVB dose-dependently increased FOXM1 protein levels through protein stabilisation and accumulation rather than de novo mRNA expression in human epidermal keratinocytes. FOXM1 upregulation in primary human keratinocytes triggered pro-apoptotic/DNA-damage checkpoint response genes such as p21, p38 MAPK, p53 and PARP, however, without causing significant cell cycle arrest or cell death. Using a high-resolution Affymetrix genome-wide single nucleotide polymorphism (SNP mapping technique, we provided the evidence that FOXM1 upregulation in epidermal keratinocytes is sufficient to induce genomic instability, in the form of loss of heterozygosity (LOH and copy number variations (CNV. FOXM1-induced genomic instability was significantly enhanced and accumulated with increasing cell passage and this instability was increased even further upon exposure to UVB resulting in whole chromosomal gain (7p21.3-7q36.3 and segmental LOH (6q25.1-6q25.3. Conclusion We hypothesise that prolonged and repeated UVB exposure selects for skin cells bearing stable FOXM1 protein causes aberrant cell cycle checkpoint thereby allowing ectopic cell cycle entry and subsequent genomic instability. The aberrant

  2. Reporting of Human Genome Epidemiology (HuGE association studies: An empirical assessment

    Directory of Open Access Journals (Sweden)

    Gwinn Marta

    2008-05-01

    Full Text Available Abstract Background Several thousand human genome epidemiology association studies are published every year investigating the relationship between common genetic variants and diverse phenotypes. Transparent reporting of study methods and results allows readers to better assess the validity of study findings. Here, we document reporting practices of human genome epidemiology studies. Methods Articles were randomly selected from a continuously updated database of human genome epidemiology association studies to be representative of genetic epidemiology literature. The main analysis evaluated 315 articles published in 2001–2003. For a comparative update, we evaluated 28 more recent articles published in 2006, focusing on issues that were poorly reported in 2001–2003. Results During both time periods, most studies comprised relatively small study populations and examined one or more genetic variants within a single gene. Articles were inconsistent in reporting the data needed to assess selection bias and the methods used to minimize misclassification (of the genotype, outcome, and environmental exposure or to identify population stratification. Statistical power, the use of unrelated study participants, and the use of replicate samples were reported more often in articles published during 2006 when compared with the earlier sample. Conclusion We conclude that many items needed to assess error and bias in human genome epidemiology association studies are not consistently reported. Although some improvements were seen over time, reporting guidelines and online supplemental material may help enhance the transparency of this literature.

  3. Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    McCallin, Shawna, E-mail: semccallin@yahoo.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Alam Sarker, Shafiqul, E-mail: sasarker@icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Barretto, Caroline, E-mail: Caroline.Barretto@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Sultana, Shamima, E-mail: shamima@icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Berger, Bernard, E-mail: bernard.berger@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Huq, Sayeda, E-mail: sayeeda@mail.icddrb.org [International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212 (Bangladesh); Krause, Lutz, E-mail: ltz.krause@gmail.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Bibiloni, Rodrigo, E-mail: Rodrigo.Bibiloni@agresearch.co.nz [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Schmitt, Bertrand, E-mail: bertrand.schmitt@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Reuteler, Gloria, E-mail: gloria.reuteler@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland); Brüssow, Harald, E-mail: harald.bruessow@rdls.nestle.com [Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)

    2013-09-01

    Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb, including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. - Highlights: • We analyzed the composition of a commercial Russian phage cocktail. • The cocktail consists of at least 10 different phage genera. • No undesired genes were detected. • No adverse effects were seen upon oral application in a small human clinical trial.

  4. Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects

    International Nuclear Information System (INIS)

    McCallin, Shawna; Alam Sarker, Shafiqul; Barretto, Caroline; Sultana, Shamima; Berger, Bernard; Huq, Sayeda; Krause, Lutz; Bibiloni, Rodrigo; Schmitt, Bertrand; Reuteler, Gloria; Brüssow, Harald

    2013-01-01

    Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb, including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. - Highlights: • We analyzed the composition of a commercial Russian phage cocktail. • The cocktail consists of at least 10 different phage genera. • No undesired genes were detected. • No adverse effects were seen upon oral application in a small human clinical trial

  5. Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory

    Science.gov (United States)

    Crisan, Anamaria; McKee, Geoffrey; Munzner, Tamara

    2018-01-01

    Background Microbial genome sequencing is now being routinely used in many clinical and public health laboratories. Understanding how to report complex genomic test results to stakeholders who may have varying familiarity with genomics—including clinicians, laboratorians, epidemiologists, and researchers—is critical to the successful and sustainable implementation of this new technology; however, there are no evidence-based guidelines for designing such a report in the pathogen genomics domain. Here, we describe an iterative, human-centered approach to creating a report template for communicating tuberculosis (TB) genomic test results. Methods We used Design Study Methodology—a human centered approach drawn from the information visualization domain—to redesign an existing clinical report. We used expert consults and an online questionnaire to discover various stakeholders’ needs around the types of data and tasks related to TB that they encounter in their daily workflow. We also evaluated their perceptions of and familiarity with genomic data, as well as its utility at various clinical decision points. These data shaped the design of multiple prototype reports that were compared against the existing report through a second online survey, with the resulting qualitative and quantitative data informing the final, redesigned, report. Results We recruited 78 participants, 65 of whom were clinicians, nurses, laboratorians, researchers, and epidemiologists involved in TB diagnosis, treatment, and/or surveillance. Our first survey indicated that participants were largely enthusiastic about genomic data, with the majority agreeing on its utility for certain TB diagnosis and treatment tasks and many reporting some confidence in their ability to interpret this type of data (between 58.8% and 94.1%, depending on the specific data type). When we compared our four prototype reports against the existing design, we found that for the majority (86.7%) of design

  6. Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory

    Directory of Open Access Journals (Sweden)

    Anamaria Crisan

    2018-01-01

    Full Text Available Background Microbial genome sequencing is now being routinely used in many clinical and public health laboratories. Understanding how to report complex genomic test results to stakeholders who may have varying familiarity with genomics—including clinicians, laboratorians, epidemiologists, and researchers—is critical to the successful and sustainable implementation of this new technology; however, there are no evidence-based guidelines for designing such a report in the pathogen genomics domain. Here, we describe an iterative, human-centered approach to creating a report template for communicating tuberculosis (TB genomic test results. Methods We used Design Study Methodology—a human centered approach drawn from the information visualization domain—to redesign an existing clinical report. We used expert consults and an online questionnaire to discover various stakeholders’ needs around the types of data and tasks related to TB that they encounter in their daily workflow. We also evaluated their perceptions of and familiarity with genomic data, as well as its utility at various clinical decision points. These data shaped the design of multiple prototype reports that were compared against the existing report through a second online survey, with the resulting qualitative and quantitative data informing the final, redesigned, report. Results We recruited 78 participants, 65 of whom were clinicians, nurses, laboratorians, researchers, and epidemiologists involved in TB diagnosis, treatment, and/or surveillance. Our first survey indicated that participants were largely enthusiastic about genomic data, with the majority agreeing on its utility for certain TB diagnosis and treatment tasks and many reporting some confidence in their ability to interpret this type of data (between 58.8% and 94.1%, depending on the specific data type. When we compared our four prototype reports against the existing design, we found that for the majority (86.7% of

  7. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  8. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics

    Science.gov (United States)

    Cooper, Laurel; Meier, Austin; Laporte, Marie-Angélique; Elser, Justin L; Mungall, Chris; Sinn, Brandon T; Cavaliere, Dario; Carbon, Seth; Dunn, Nathan A; Smith, Barry; Qu, Botong; Preece, Justin; Zhang, Eugene; Todorovic, Sinisa; Gkoutos, Georgios; Doonan, John H; Stevenson, Dennis W; Arnaud, Elizabeth

    2018-01-01

    Abstract The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository. PMID:29186578

  9. Ultrafast comparison of personal genomes

    OpenAIRE

    Mauldin, Denise; Hood, Leroy; Robinson, Max; Glusman, Gustavo

    2017-01-01

    We present an ultra-fast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into 'genome fingerprints' that can be readily compared across sequencing technologies and reference versions. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. This enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative s...

  10. The mobile genetic element Alu in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E. [Florida International Univ., Miami, FL (United States); Batzer, M.A.; Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)] [and others

    1996-01-01

    Genetic material has been traditionally envisioned as relatively static with the exception of occasional, often deleterious mutations. The sequence DNA-to-RNA-to-protein represented for many years the central dogma relating gene structure and function. Recently, the field of molecular genetics has provided revolutionary information on the dynamic role of repetitive elements in the function of the genetic material and the evolution of humans and other organisms. Alu sequences represent the largest family of short interspersed repetitive elements (SINEs) in humans, being present in an excess of 500,000 copies per haploid genome. Alu elements, as well as the other repetitive elements, were once considered to be useless. Today, the biology of Alu transposable elements is being widely examined in order to determine the molecular basis of a growing number of identified diseases and to provide new directions in genome mapping and biomedical research. 66 refs., 5 figs.

  11. The noncoding human genome and the future of personalised medicine.

    Science.gov (United States)

    Cowie, Philip; Hay, Elizabeth A; MacKenzie, Alasdair

    2015-01-30

    Non-coding cis-regulatory sequences act as the 'eyes' of the genome and their role is to perceive, organise and relay cellular communication information to RNA polymerase II at gene promoters. The evolution of these sequences, that include enhancers, silencers, insulators and promoters, has progressed in multicellular organisms to the extent that cis-regulatory sequences make up as much as 10% of the human genome. Parallel evidence suggests that 75% of polymorphisms associated with heritable disease occur within predicted cis-regulatory sequences that effectively alter the 'perception' of cis-regulatory sequences or render them blind to cell communication cues. Cis-regulatory sequences also act as major functional targets of epigenetic modification thus representing an important conduit through which changes in DNA-methylation affects disease susceptibility. The objectives of the current review are (1) to describe what has been learned about identifying and characterising cis-regulatory sequences since the sequencing of the human genome; (2) to discuss their role in interpreting cell signalling pathways pathways; and (3) outline how this role may be altered by polymorphisms and epigenetic changes. We argue that the importance of the cis-regulatory genome for the interpretation of cellular communication pathways cannot be overstated and understanding its role in health and disease will be critical for the future development of personalised medicine.

  12. The Extended Nutrigenomics – Understanding the Interplay between the Genomes of Food, Gut Microbes and Human Host

    Directory of Open Access Journals (Sweden)

    Martin eKussmann

    2011-05-01

    Full Text Available Comprehensive investigation of nutritional health effects at molecular level requires understanding the interplay between three genomes, the food, the gut microbial and the human host genome. Food genomes are researched for exploitation of macro- and micronutrients as well as bioactives, with the genes coding for bioactive proteins and peptides being of central interest. The human gut microbiota encompasses a complex intestinal ecosystem with profound impact on host metabolism. It is studied at genomic, proteomic and metabolomic level. Humans are characterized at the level of: genetic predisposition and variability in terms of dietary response and direction of health trajectories; epigenetic, metabolic programming at certain life stages with health consequences later in life and for subsequent generations; and acute genomic expression as a holistic response to diet, monitored at gene transcript, protein and metabolite level.Modern nutrition science explores health aspects of bioactive food components, thereby promoting health, preventing or delaying the onset of disease, optimizing performance and assessing benefits and risks. Personalized nutrition means adapting food to individual needs, depending on the human host’s life stage, -style and -situation. Traditionally, nutrigenomics and nutri(epigenetics have been seen as the key sciences to understand human variability in preferences and requirements for diet as well as responses to nutrition. This article puts the three nutrition and health-relevant genomes into perspective, i.e. the food, the gut microbial and the human host’s genome, and calls for an extended nutrigenomics approach to build the future tools for personalized nutrition, health maintenance and disease prevention. We discuss examples of these genomes, proteomes, transcriptomes and metabolomes under the overarching term genomics that covers all Omics rather than the sole study of DNA and RNA.

  13. Phenotypic and Genomic Analysis of Hypervirulent Human-associated Bordetella bronchiseptica

    Directory of Open Access Journals (Sweden)

    Ahuja Umesh

    2012-08-01

    Full Text Available Abstract Background B. bronchiseptica infections are usually associated with wild or domesticated animals, but infrequently with humans. A recent phylogenetic analysis distinguished two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Complex IV isolates appear to have a bias for infecting humans; however, little is known regarding their epidemiology, virulence properties, or comparative genomics. Results Here we report a characterization of the virulence of human-associated complex IV B. bronchiseptica strains. In in vitro cytotoxicity assays, complex IV strains showed increased cytotoxicity in comparison to a panel of complex I strains. Some complex IV isolates were remarkably cytotoxic, resulting in LDH release levels in A549 cells that were 10- to 20-fold greater than complex I strains. In vivo, a subset of complex IV strains was found to be hypervirulent, with an increased ability to cause lethal pulmonary infections in mice. Hypercytotoxicity in vitro and hypervirulence in vivo were both dependent on the activity of the bsc T3SS and the BteA effector. To clarify differences between lineages, representative complex IV isolates were sequenced and their genomes were compared to complex I isolates. Although our analysis showed there were no genomic sequences that can be considered unique to complex IV strains, there were several loci that were predominantly found in complex IV isolates. Conclusion Our observations reveal a T3SS-dependent hypervirulence phenotype in human-associated complex IV isolates, highlighting the need for further studies on the epidemiology and evolutionary dynamics of this B. bronchiseptica lineage.

  14. Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2015-06-01

    Full Text Available Human immunodeficiency virus (HIV-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS, which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors.

  15. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    Science.gov (United States)

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  16. Genome Sequence of Novel Human Parechovirus Type 17

    OpenAIRE

    B?ttcher, Sindy; Obermeier, Patrick E.; Diedrich, Sabine; Kabor?, Yolande; D?Alfonso, Rossella; Pfister, Herbert; Kaiser, Rolf; Di Cristanziano, Veronica

    2017-01-01

    ABSTRACT Human parechoviruses (HPeV) circulate worldwide, causing a broad variety of symptoms, preferentially in early childhood. We report here the nearly complete genome sequence of a novel HPeV type, consisting of 7,062 nucleotides and encoding 2,179?amino acids. M36/CI/2014 was taxonomically classified as HPeV-17 by the picornavirus study group.

  17. Contribution of type W human endogenous retroviruses to the human genome: characterization of HERV-W proviral insertions and processed pseudogenes.

    Science.gov (United States)

    Grandi, Nicole; Cadeddu, Marta; Blomberg, Jonas; Tramontano, Enzo

    2016-09-09

    Human endogenous retroviruses (HERVs) are ancient sequences integrated in the germ line cells and vertically transmitted through the offspring constituting about 8 % of our genome. In time, HERVs accumulated mutations that compromised their coding capacity. A prominent exception is HERV-W locus 7q21.2, producing a functional Env protein (Syncytin-1) coopted for placental syncytiotrophoblast formation. While expression of HERV-W sequences has been investigated for their correlation to disease, an exhaustive description of the group composition and characteristics is still not available and current HERV-W group information derive from studies published a few years ago that, of course, used the rough assemblies of the human genome available at that time. This hampers the comparison and correlation with current human genome assemblies. In the present work we identified and described in detail the distribution and genetic composition of 213 HERV-W elements. The bioinformatics analysis led to the characterization of several previously unreported features and provided a phylogenetic classification of two main subgroups with different age and structural characteristics. New facts on HERV-W genomic context of insertion and co-localization with sequences putatively involved in disease development are also reported. The present work is a detailed overview of the HERV-W contribution to the human genome and provides a robust genetic background useful to clarify HERV-W role in pathologies with poorly understood etiology, representing, to our knowledge, the most complete and exhaustive HERV-W dataset up to date.

  18. Genome editing reveals a role for OCT4 in human embryogenesis.

    Science.gov (United States)

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  19. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    Directory of Open Access Journals (Sweden)

    MacInnes Janet I

    2009-02-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology.

  20. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...