WorldWideScience

Sample records for reference adaptive controller

  1. Predictor-Based Model Reference Adaptive Control

    Science.gov (United States)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  2. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    Science.gov (United States)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  3. Reference-shaping adaptive control by using gradient descent optimizers.

    Directory of Open Access Journals (Sweden)

    Baris Baykant Alagoz

    Full Text Available This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC method for several test scenarios. An experimental study demonstrates application of method for rotor control.

  4. Adaptive Control with Reference Model Modification

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example

  5. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...... stability augmented model reference design is proposed. By utilizing the closed-loop control error, a simple auxiliary controller is tuned, using a normalized MIT rule for the parameter adjustment. The MIT adjustment is protected against the effects of unmodelled dynamics by lowpass filtering...... of the gradient. The proposed method is verified through simulation results indicating that the method may lead to an improvement of the model reference controller in the presence of unmodelled dynamics...

  6. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  7. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  8. PI controller based model reference adaptive control for nonlinear

    African Journals Online (AJOL)

    user

    Keywords: Model Reference Adaptive Controller (MRAC), Artificial Neural ... attention, and many new approaches have been applied to practical process .... effectiveness of proposed method, it is compared with the simulation results of the ...

  9. Adaptive control for a PWR using a self-tuning reference model concept

    International Nuclear Information System (INIS)

    Miley, G.H.; Park, G.T.; Kim, B.S.

    1992-01-01

    Possible applications of an adaptive control method to a pressurized-water reactor nuclear power plant are investigated. The self-tuning technique with a reference model concept is employed. This control algorithm is developed by combining the self-tuning controller with the model reference adaptive control. This approach overcomes the difficulties in choosing the appropriate weighting polynomials in the cost function of the self-tuning control

  10. Adaptive Sliding Mode Control of MEMS AC Voltage Reference Source

    Directory of Open Access Journals (Sweden)

    Ehsan Ranjbar

    2017-01-01

    Full Text Available The accuracy of physical parameters of a tunable MEMS capacitor, as the major part of MEMS AC voltage reference, is of great importance to achieve an accurate output voltage free of the malfunctioning noise and disturbance. Even though strenuous endeavors are made to fabricate MEMS tunable capacitors with desiderated accurate physical characteristics and ameliorate exactness of physical parameters’ values, parametric uncertainties ineluctably emerge in fabrication process attributable to imperfections in micromachining process. First off, this paper considers applying an adaptive sliding mode controller design in the MEMS AC voltage reference source so that it is capable of giving off a well-regulated output voltage in defiance of jumbling parametric uncertainties in the plant dynamics and also aggravating external disturbance imposed on the system. Secondly, it puts an investigatory comparison with the designed model reference adaptive controller and the pole-placement state feedback one into one’s prospective. Not only does the tuned adaptive sliding mode controller show remarkable robustness against slow parameter variation and external disturbance being compared to the pole-placement state feedback one, but also it immensely gets robust against the external disturbance in comparison with the conventional adaptive controller. The simulation results are promising.

  11. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  12. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    International Nuclear Information System (INIS)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok; Yi, Sun

    2016-01-01

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  13. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)

    2016-08-15

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  14. An implicit adaptation algorithm for a linear model reference control system

    Science.gov (United States)

    Mabius, L.; Kaufman, H.

    1975-01-01

    This paper presents a stable implicit adaptation algorithm for model reference control. The constraints for stability are found using Lyapunov's second method and do not depend on perfect model following between the system and the reference model. Methods are proposed for satisfying these constraints without estimating the parameters on which the constraints depend.

  15. The cost of model reference adaptive control - Analysis, experiments, and optimization

    Science.gov (United States)

    Messer, R. S.; Haftka, R. T.; Cudney, H. H.

    1993-01-01

    In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.

  16. Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle

    Science.gov (United States)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.

  17. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  18. Second-order sliding mode controller with model reference adaptation for automatic train operation

    Science.gov (United States)

    Ganesan, M.; Ezhilarasi, D.; Benni, Jijo

    2017-11-01

    In this paper, a new approach to model reference based adaptive second-order sliding mode control together with adaptive state feedback is presented to control the longitudinal dynamic motion of a high speed train for automatic train operation with the objective of minimal jerk travel by the passengers. The nonlinear dynamic model for the longitudinal motion of the train comprises of a locomotive and coach subsystems is constructed using multiple point-mass model by considering the forces acting on the vehicle. An adaptation scheme using Lyapunov criterion is derived to tune the controller gains by considering a linear, stable reference model that ensures the stability of the system in closed loop. The effectiveness of the controller tracking performance is tested under uncertain passenger load, coupler-draft gear parameters, propulsion resistance coefficients variations and environmental disturbances due to side wind and wet rail conditions. The results demonstrate improved tracking performance of the proposed control scheme with a least jerk under maximum parameter uncertainties when compared to constant gain second-order sliding mode control.

  19. Efficient speed control of induction motor using RBF based model reference adaptive control method

    OpenAIRE

    Kilic, Erdal; Ozcalik, Hasan Riza; Yilmaz, Saban

    2017-01-01

    This paper proposes a model reference adaptive speed controller based on artificial neural network for induction motor drives. The performance of traditional feedback controllers has been insufficient in speed control of induction motors due to nonlinear structure of the system, changing environmental conditions, and disturbance input effects. A successful speed control of induction motor requires a nonlinear control system. On the other hand, in recent years, it has been demonstrated that ar...

  20. Development of model reference adaptive control theory for electric power plant control applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis. An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.

  1. Direct Model Reference Adaptive Control for a Magnetic Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  2. Speed Sensorless Control of PMSM using Model Reference Adaptive System and RBFN

    OpenAIRE

    Wei Gao; Zhirong Guo

    2013-01-01

    In the speed sensorless vector control system, the amended method of estimating the rotor speed about model reference adaptive system (MRAS) based on radial basis function neural network (RBFN) for PMSM sensorless vector control system was presented. Based on the PI regulator, the radial basis function neural network which is more prominent learning efficiency and performance is combined with MRAS. The reference model and the adjust model are the PMSM itself and the PMSM current, respectively...

  3. Direct model reference adaptive control with application to flexible robots

    Science.gov (United States)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory W.

    1992-01-01

    A modification to a direct command generator tracker-based model reference adaptive control (MRAC) system is suggested in this paper. This modification incorporates a feedforward into the reference model's output as well as the plant's output. Its purpose is to eliminate the bounded model following error present in steady state when previous MRAC systems were used. The algorithm was evaluated using the dynamics for a single-link flexible-joint arm. The results of these simulations show a response with zero steady state model following error. These results encourage further use of MRAC for various types of nonlinear plants.

  4. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  5. An Adaptive Critic Approach to Reference Model Adaptation

    Science.gov (United States)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  6. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  7. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    Science.gov (United States)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  8. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    Science.gov (United States)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  9. Discrete Model Reference Adaptive Control for Gimbal Servosystem of Control Moment Gyro with Harmonic Drive

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available The double-gimbal control moment gyro (DGCMG demands that the gimbal servosystem should have fast response and small overshoot. But due to the low and nonlinear torsional stiffness of harmonic drive, the gimbal servo-system has poor dynamic performance with large overshoot and low bandwidth. In order to improve the dynamic performance of gimbal servo-system, a model reference adaptive control (MRAC law is introduced in this paper. The model of DGCMG gimbal servo-system with harmonic drive is established, and the adaptive control law based on POPOV super stable theory is designed. The MATLAB simulation results are provided to verify the effectiveness of the proposed control algorithm. The experimental results indicate that the MRAC could increase the bandwidth of gimbal servo-system to 3 Hz and improve the dynamic performance with small overshoot.

  10. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    Science.gov (United States)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  11. Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives with a Modified Reference Frame

    KAUST Repository

    Chaoui, Hicham

    2017-01-10

    In this paper, an adaptive interval type-2 fuzzy logic control scheme is proposed for high-performance permanent magnet synchronous machine drives. This strategy combines the power of type-2 fuzzy logic systems with the adaptive control theory to achieve accurate tracking and robustness to higher uncertainties. Unlike other controllers, the proposed strategy does not require electrical transducers and hence, no explicit currents loop regulation is needed, which yields a simplified control scheme. But, this limits the machine\\'s operation range since it results in a higher energy consumption. Therefore, a modified reference frame is also proposed in this paper to decrease the machine\\'s consumption. To better assess the performance of the new reference frame, comparison against its original counterpart is carried-out under the same conditions. Moreover, the stability of the closed-loop control scheme is guaranteed by a Lyapunov theorem. Simulation and experimental results for numerous situations highlight the effectiveness of the proposed controller in standstill, transient, and steady-state conditions.

  12. Model reference adaptive vector control for induction motor without speed sensor

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2017-01-01

    Full Text Available The wide applications of vector control improve the high-accuracy performance of alternating current (AC adjustable speed system. In order to obverse the full-order flux and calculate the real-time speed, this article introduces the motor T equivalent circuit to build a full-order flux observer model, where the current and flux variables of stator and rotor are adopted. Model reference adaptive control is introduced to build the AC motor flux observer. The current output is used as feedback to build the feedback matrix. The calculation method of motor speed, which is part of the inputs of flux observation, is applied to realize the adaptive control. The concept of characteristic function is introduced to calculate the flux, of which the foundation is the variables of composite form of voltage and current models. The characteristic function is deduced as a relative-state variable function. The feedback matrix is improved and designed to ensure the motor flux observer is a smooth switch between current and voltage model in low and high speeds, respectively. Experimental results show that the feedback and characteristic model are feasible, and the vector control with speed sensorless based on the full-order flux observer has better performance and anti-disturbance.

  13. A Modified Model Reference Adaptive Control for a Single Motor of Latch Type Control Element Drive Mechanism

    International Nuclear Information System (INIS)

    Park, Bae Jeong

    2016-01-01

    A modified Model Reference Adaptive Control (MRAC) for a single motor of latch type Control Element Drive Mechanism (CEDM) is described herein. The CEDM has complicated dynamic characteristics including electrical, mechanical, and magnetic effects. The previous control system has utilized a Proportional-Integral (PI) controller, and the control performance is limited according to nonlinear dynamic characteristics and environmental conditions. The modified MRAC using system identification (ID) technique improves the control performance in the operating condition such as model parameter variation and environmental condition change. The modified MRAC using the identified reference model with feed-forward gain and 180Hz noise reduction filter presents better performance under normal and/or abnormal condition. The simplified reference model can make H/W implementation more practical on the viewpoint of less computation and good performance. Actually, the CEDM controller shall be capable of controlling 101 control element assemblies (CEAs) individually in the nuclear power plant. Because the load conditions and the environmental condition around the 101 CEAs are all different minutely, the proposed modified MRAC can be a good practice. The modified MRAC controller will be applied in the real nuclear power plant later and this will overcome some weak point of PI controller

  14. Comparison and extension of a direct model reference adaptive control procedure

    Science.gov (United States)

    Neat, Gregory W.; Kaufman, Howard; Steinvorth, Rodrigo

    1992-01-01

    This paper analyzes and extends an easily implemented direct model reference adaptive control procedure. The paper focuses on the major limitation of this control approach which is the satisfaction of a strictly positive real sufficiency condition in order to guarantee asymptotic tracking. Attempts, to date, to address this problem have been unable to relax simultaneously the stringent condition and maintain asymptotic tracking capabilities. Three different modifications to existing versions of this algorithm are presented which substantially relax the stringent sufficiency condition while providing asymptotic tracking. These three modifications achieve this goal by imposing slight adjustments to existing sufficiency conditions. A simulation example demonstrates that the modifications eliminate the steady error inherent in the existing methods.

  15. Adaptive sequential controller

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Xing, Jian (Seattle, WA); Butler, Nicholas G. (Newberg, OR); Rodriguez, Alonso (Pasadena, CA)

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  16. Adaptive sequential controller

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  17. Adaptive Control Of Remote Manipulator

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  18. A Reactive Power Based Reference Model for Adaptive Control Strategy in a SEIG

    Directory of Open Access Journals (Sweden)

    M. A. Taghikhani

    2018-02-01

    Full Text Available In this paper, a new control strategy is proposed for a three-phase squirrel-cage self-excited induction generator (SEIG connected to a variable speed wind turbine in autonomous mode. In order to improve the dynamic performance of the mentioned vector control system, a model reference adaptive controller is used for online rotor time constant estimation. Thus, the main drawbacks of this method, which include the effects of the changes in machine parameters on rotor flux estimation, slip speed, the creation of instability problems and the system leaving vector control mode, are resolved. In this control strategy, a PI controller is used to control the dc voltage and three similar hysteresis current controllers (HCC are used to control the switching of IGBTs. The results of the dynamic simulation indicate the desirable performance of the proposed system.

  19. Model reference adaptive control of flexible robots in the presence of sudden load changes

    Science.gov (United States)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory

    1991-01-01

    Direct command generator tracker based model reference adaptive control (MRAC) algorithms are applied to the dynamics for a flexible-joint arm in the presence of sudden load changes. Because of the need to satisfy a positive real condition, such MRAC procedures are designed so that a feedforward augmented output follows the reference model output, thus, resulting in an ultimately bounded rather than zero output error. Thus, modifications are suggested and tested that: (1) incorporate feedforward into the reference model's output as well as the plant's output, and (2) incorporate a derivative term into only the process feedforward loop. The results of these simulations give a response with zero steady state model following error, and thus encourage further use of MRAC for more complex flexibile robotic systems.

  20. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  1. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    Science.gov (United States)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  2. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  3. Reference Device-Assisted Adaptive Location Fingerprinting

    Directory of Open Access Journals (Sweden)

    Dongjin Wu

    2016-06-01

    Full Text Available Location fingerprinting suffers in dynamic environments and needs recalibration from time to time to maintain system performance. This paper proposes an adaptive approach for location fingerprinting. Based on real-time received signal strength indicator (RSSI samples measured by a group of reference devices, the approach applies a modified Universal Kriging (UK interpolant to estimate adaptive temporal and environmental radio maps. The modified UK can take the spatial distribution characteristics of RSSI into account. In addition, the issue of device heterogeneity caused by multiple reference devices is further addressed. To compensate the measuring differences of heterogeneous reference devices, differential RSSI metric is employed. Extensive experiments were conducted in an indoor field and the results demonstrate that the proposed approach not only adapts to dynamic environments and the situation of changing APs’ positions, but it is also robust toward measuring differences of heterogeneous reference devices.

  4. Adaptive control of robotic manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  5. Temperature uniformity control in RTP using multivariable adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.

    1995-12-31

    In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.

  6. Postural adaptation of the spatial reference frames to microgravity: back to the egocentric reference frame.

    Directory of Open Access Journals (Sweden)

    Sébastien Viel

    Full Text Available BACKGROUND: In order to test how gravitational information would affect the choice of stable reference frame used to control posture and voluntary movement, we have analysed the forearm stabilisation during sit to stand movement under microgravity condition obtained during parabolic flights. In this study, we hypothesised that in response to the transient loss of graviceptive information, the postural adaptation might involve the use of several strategies of segmental stabilisation, depending on the subject's perceptual typology (dependence--independence with respect to the visual field. More precisely, we expected a continuum of postural strategies across subjects with 1 at one extreme the maintaining of an egocentric reference frame and 2 at the other the re-activation of childhood strategies consisting in adopting an egocentric reference frame. METHODOLOGY/PRINCIPAL FINDINGS: To check this point, a forearm stabilisation task combined with a sit to stand movement was performed with eyes closed by 11 subjects during parabolic flight campaigns. Kinematic data were collected during 1-g and 0-g periods. The postural adaptation to microgravity's constraint may be described as a continuum of strategies ranging from the use of an exo- to an egocentric reference frame for segmental stabilisation. At one extremity, the subjects used systematically an exocentric frame to control each of their body segments independently, as under normogravity conditions. At the other, the segmental stabilisation strategies consist in systematically adopting an egocentric reference frame to control their forearm's stabilisation. A strong correlation between the mode of segmental stabilisation used and the perceptual typology (dependence--independence with respect to the visual field of the subjects was reported. CONCLUSION: The results of this study show different subjects' typologies from those that use the forearm orientation in a mainly exocentric reference frame to

  7. Adaptive control of a Stewart platform-based manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.

    1993-01-01

    A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  8. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  9. An adaptive Cartesian control scheme for manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.

  10. An application of indirect model reference adaptive control to a low-power proton exchange membrane fuel cell

    Science.gov (United States)

    Yang, Yee-Pien; Liu, Zhao-Wei; Wang, Fu-Cheng

    2008-05-01

    Nonlinearity and the time-varying dynamics of fuel cell systems make it complex to design a controller for improving output performance. This paper introduces an application of a model reference adaptive control to a low-power proton exchange membrane (PEM) fuel cell system, which consists of three main components: a fuel cell stack, an air pump to supply air, and a solenoid valve to adjust hydrogen flow. From the system perspective, the dynamic model of the PEM fuel cell stack can be expressed as a multivariable configuration of two inputs, hydrogen and air-flow rates, and two outputs, cell voltage and current. The corresponding transfer functions can be identified off-line to describe the linearized dynamics with a finite order at a certain operating point, and are written in a discrete-time auto-regressive moving-average model for on-line estimation of parameters. This provides a strategy of regulating the voltage and current of the fuel cell by adaptively adjusting the flow rates of air and hydrogen. Experiments show that the proposed adaptive controller is robust to the variation of fuel cell system dynamics and power request. Additionally, it helps decrease fuel consumption and relieves the DC/DC converter in regulating the fluctuating cell voltage.

  11. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    Science.gov (United States)

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Modal-space reference-model-tracking fuzzy control of earthquake excited structures

    Science.gov (United States)

    Park, Kwan-Soon; Ok, Seung-Yong

    2015-01-01

    This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.

  13. An Adaptive Speed Control Approach for DC Shunt Motors

    Directory of Open Access Journals (Sweden)

    Ruben Tapia-Olvera

    2016-11-01

    Full Text Available A B-spline neural networks-based adaptive control technique for angular speed reference trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed. A methodology for adaptive control and its proper training procedure are introduced. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only requires measurements of the velocity output signal. Thus, real-time measurements or estimations of acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient and robust performance of the proposed control approach for highly demanding motor operation conditions exposed to variable-speed reference trajectories and completely unknown load torque. Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the proposed adaptive output feedback trajectory tracking control approach.

  14. Dynamic optimization and adaptive controller design

    Science.gov (United States)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  15. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    Science.gov (United States)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  16. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  17. Direct adaptive control of manipulators in Cartesian space

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.

  18. A new approach to adaptive control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.

  19. A Direct Adaptive Control Approach in the Presence of Model Mismatch

    Science.gov (United States)

    Joshi, Suresh M.; Tao, Gang; Khong, Thuan

    2009-01-01

    This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.

  20. Adaptive control of chaotic continuous-time systems with delay

    Science.gov (United States)

    Tian, Yu-Chu; Gao, Furong

    1998-06-01

    A simple delay system governed by a first-order differential-delay equation may behave chaotically, but the conditions for the system to have such behaviors have not been well recognized. In this paper, a set of rules is postulated first for the conditions for the delay system to display chaos. A model-reference adaptive control scheme is then proposed to control the chaotic system state to converge to an arbitrarily given reference trajectory with certain and uncertain system parameters. Numerical examples are given to analyze the chaotic behaviors of the delay system and to demonstrate the effectiveness of the proposed adaptive control scheme.

  1. Adaptation of manipulation skills in physical contact with the environment to reference force profiles

    DEFF Research Database (Denmark)

    Abu-Dakka, Fares J.; Nemec, Bojan; Jørgensen, Jimmy A.

    2015-01-01

    We propose a new methodology for learning and adaption of manipulation skills that involve physical contact with the environment. Pure position control is unsuitable for such tasks because even small errors in the desired trajectory can cause significant deviations from the desired forces...... and torques. The proposed algorithm takes a reference Cartesian trajectory and force/torque profile as input and adapts the movement so that the resulting forces and torques match the reference profiles. The learning algorithm is based on dynamic movement primitives and quaternion representation...

  2. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  3. Control of multi-machine using adaptive fuzzy

    Directory of Open Access Journals (Sweden)

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  4. Design of L1 -Adaptive Controller for Single Axis Positioning Table

    Directory of Open Access Journals (Sweden)

    Amjad Jalil Humaidi

    2017-11-01

    Full Text Available L1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a large variety of systems. It is commonly used for controlling systems with uncertain time-varying unknown parameters. The effectiveness of L1 adaptive controller for position control of single axis has been examined and compared with Model Reference Adaptive Controller (MRAC. The Linear servo motor is one of the main constituting elements of the x-y table which is mostly used in automation application. It is characterized by time-varying friction and disturbance

  5. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  6. Multiple model adaptive control with mixing

    Science.gov (United States)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  7. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  8. Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives with a Modified Reference Frame

    KAUST Repository

    Chaoui, Hicham; Khayamy, Mehdy; Aljarboua, Abdullah Abdulaziz

    2017-01-01

    In this paper, an adaptive interval type-2 fuzzy logic control scheme is proposed for high-performance permanent magnet synchronous machine drives. This strategy combines the power of type-2 fuzzy logic systems with the adaptive control theory

  9. Robust and Adaptive Control With Aerospace Applications

    CERN Document Server

    Lavretsky, Eugene

    2013-01-01

    Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems.  The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: ·         case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; ·         detailed background material for each chapter to motivate theoretical developments; ·         realistic examples and simulation data illustrating key features ...

  10. Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2009-01-01

    Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.

  11. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  12. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  13. Full Gradient Solution to Adaptive Hybrid Control

    Science.gov (United States)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  14. A tuning approach for offset-free MPC with conditional reference adaptation

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted

    2014-01-01

    Model predictive control has become a widely accepted strategy in industrial applications in the recent years. Often mentioned reasons for the success are the optimization based on a system model, consideration of constraints and an intuitive tuning process. However, as soon as unknown disturbances...... properties these controllers can be tuned separate and by known guidelines. To address conditions with active input constraints, additionally a conditional reference adaptation scheme is introduced. The tuning strategy is evaluated on a simulated linear Wood-Berry binary distillation column example....

  15. Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Endou, A.

    1994-01-01

    Artificial intelligence is foreseen as the base for new control systems aimed to replace traditional controllers and to assist and eventually advise plant operators. This paper discusses the development of an indirect model reference adaptive control (MRAC) system, using the artificial neural network (ANN) technique, and its implementation to control the outlet steam temperature of a sodium to water evaporator. The ANN technique is applied in the identification and in the control process of the indirect MRAC system. The emphasis is placed on demonstrating the efficacy of the indirect MRAC system in controlling the outlet steam temperature of the evaporator, and on showing the important function covered by the ANN technique. An important characteristic of this control system is that it relays only on some selected input variables and output variables of the evaporator model. These are the variables that can be actually measured or calculated in a real environment. The results obtained applying the indirect MRAC system to control the evaporator model are quite remarkable. The outlet temperature of the steam is almost perfectly kept close to its desired set point, when the evaporator is forced to depart from steady state conditions, either due to the variation of some input variables or due to the alteration of some of its internal parameters. The results also show the importance of the role played by the ANN technique in the overall control action. The connecting weights of the ANN nodes self adjust to follow the modifications which may occur in the characteristic of the evaporator model during a transient. The efficiency and the accuracy of the control action highly depends on the on-line identification process of the ANN, which is responsible for upgrading the connecting weights of the ANN nodes. (J.P.N.)

  16. Applications of Adaptive Learning Controller to Synthetic Aperture Radar.

    Science.gov (United States)

    1985-02-01

    TERMS (Continue on retuerse if necessary and identify by block num ber) FIELD YGROUP SUB. GR. Adaptive control, aritificial intelligence , synthetic aetr1...application of Artificial Intelligence methods to Synthetic Aperture Radars (SARs) is investigated. It was shown that the neuron-like Adaptive Learning...wavelength Al SE!RI M RADAR DIVISION REFERENCES 1. Barto, A.G. and R.S. Sutton, Goal Seeking Components for Adaptive Intelligence : An Initial Assessment

  17. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  18. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  19. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    International Nuclear Information System (INIS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-01-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller

  20. Projection Operator: A Step Towards Certification of Adaptive Controllers

    Science.gov (United States)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  1. A discrete-time adaptive control scheme for robot manipulators

    Science.gov (United States)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  2. Continuous use of an adaptive lung ventilation controller in critically ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... Adaptive lung ventilation (ALV) refers to closed-loop mechanical ventilation designed to work ... optimise the controller performance, the volume controller .... PawEE), vital capacity IYC), an index of airway resistance relative to ...

  3. An adaptive predictive controller and its applications in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhiyuan; Lu Huiming; Zhang Xinggao [North China Electric Power University, Beijing (China); Song Chunping [Tsinghua University, Beijing (China). Dept. of Thermal Energy Engineering

    1999-07-01

    Based on the objective function in the form of integration of generalized model error, a globally convergent model reference adaptive predictive control algorithm (MRAPC) containing inertia-time compensators is presented in this paper. MRAPC has been successfully applied to control important thermal process of more than 20 units in many Chinese power stations. In this paper three representative examples are described. Continual operation results for years demonstrate that MRAPC is a successful attempt for the practical applications of adaptive control techniques. (author)

  4. Bayesian nonparametric adaptive control using Gaussian processes.

    Science.gov (United States)

    Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A

    2015-03-01

    Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.

  5. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  6. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik

    2015-01-01

    the angular deflection of the tower with respect to the vertical axis in response to variations in wind speed. The controller is shown to guarantee asymptotic tracking of the reference trajectory. The performance of the control system is evaluated through deterministic and stochastic simulations including......This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...... for towers and foundations would greatly reduce the construction cost of the wind turbine, however extra features ought be included in the control system architecture to avoid tower collapse. An adaptive backstepping collective pitch controller is proposed for tower point tracking control, i.e. to modify...

  7. Adaptive pitch control for load mitigation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  8. Adaptive neuro-fuzzy control of ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Thinh, Nguyen Truong; Yang, Young-Soo; Oh, Il-Kwon

    2009-01-01

    An adaptive neuro-fuzzy controller was newly designed to overcome the degradation of the actuation performance of ionic polymer metal composite actuators that show highly nonlinear responses such as a straightening-back problem under a step excitation. An adaptive control algorithm with the merits of fuzzy logic and neural networks was applied for controlling the tip displacement of the ionic polymer metal composite actuators. The reference and actual displacements and the change of the error with the electrical inputs were recorded to generate the training data. These data were used for training the adaptive neuro-fuzzy controller to find the membership functions in the fuzzy control algorithm. Software simulation and real-time experiments were conducted by using the Simulink and dSPACE environments. Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the reliable control of the ionic polymer metal composite actuator for which the performance degrades under long-time actuation

  9. Adaptive aspirations and performance heterogeneity : Attention allocation among multiple reference points

    NARCIS (Netherlands)

    Blettner, D.P.; He, Z.; Hu, S.; Bettis, R.

    Organizations learn and adapt their aspiration levels based on reference points (prior aspiration, prior performance, and prior performance of reference groups). The relative attention that organizations allocate to these reference points impacts organizational search and strategic decisions.

  10. Adaptive piezoelectric sensoriactuators for active structural acoustic control

    Science.gov (United States)

    Vipperman, Jeffrey Stuart

    1997-09-01

    A new transducer technology with application to active control systems, modal analysis, and autonomous system health monitoring, is brought to fruition in this work. It has the advantages of being lightweight, potentially cost-effective, self-tuning, has negligible dynamics, and most importantly (from a robustness perspective), it provides a colocated sensor/actuator pair. The transducer consists of a piezoceramic element which serves as both an actuator and a sensor and will be referred to in this work as a sensoriactuator. Simple, adaptive signal processing in conjunction with a voltage controlled amplifier, reference capacitor, and a common-mode rejection circuit extract the mechanical response from the total response of the piezoelectric sensoriactuator for sensing. The digital portion of the adaptive piezoelectric sensoriactuator merely serves to tune the circuit, avoiding the potentially destabilizing effects of introducing a digital delay in the signal path, when used for feedback control applications. Adaptive compensation of the sensoriactuator is necessary since the signal to noise ratio is typically greater than 40 dB, making it prohibitive to tune the circuit manually. In addition, the constitutive properties of piezoceramics vary with time and environment, necessitating that the circuit be periodically re-tuned. The analog portion of the hardware is based upon op-amp circuits and an AD632 analog multiplier chip, which serves as both a voltage controlled amplifier (VCA) and a common mode rejection (CMR) circuit. A single coefficient least-mean square (LMS) adaptive filter continuously adjusts the gain of the VCA circuit as necessary. Nonideal behavior of piezoceramics is discussed along with methods to counter the consequential deterioration in circuit performance. A multiple input multiple output (MIMO) implementation of the adaptive piezoelectric sensoriactuator is developed using orthogonal white noise training signals for each sensoriactuator. Two

  11. Endogenous Market-Clearing Prices and Reference Point Adaptation

    Science.gov (United States)

    Dragicevic, Arnaud Z.

    When prices depend on the submitted bids, i.e. with endogenous market-clearing prices in repeated-round auction mechanisms, the assumption of independent private values that underlines the property of incentive-compatibility is to be brought into question; even if these mechanisms provide active involvement and market learning. In its orthodox view, adaptive bidding behavior imperils incentive-compatibility. We relax the assumption of private values' independence in the repeated-round auctions, when the market-clearing prices are made public at the end of each round. Instead of using game-theory learning models, we introduce a behavioral model that shows that bidders bid according to the anchoring-and-adjustment heuristic, which neither ignores the rationality and incentive-compatibility constraints, nor rejects the posted prices issued from others' bids. Bidders simply weight information at their disposal and adjust their discovered value using reference points encoded in the sequential price weighting function. Our model says that bidders and offerers are sincere boundedly rational utility maximizers. It lies between evolutionary dynamics and adaptive heuristics and we model the concept of inertia as high weighting of the anchor, which stands for truthful bidding and high regard to freshly discovered preferences. Adjustment means adaptive rule based on adaptation of the reference point in the direction of the posted price. It helps a bidder to maximize her expected payoff, which is after all the only purpose that matters to rationality. The two components simply suggest that sincere bidders are boundedly rational. Furthermore, by deviating from their anchor in the direction of the public signal, bidders operate in a correlated equilibrium. The correlation between bids comes from the commonly observed history of play and each bidder's actions are determined by the history. Bidders are sincere if they have limited memory and confine their reference point adaptation

  12. FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    A. BENNASSAR

    2016-01-01

    Full Text Available Many industrial applications require high performance speed sensorless operation and demand new control methods in order to obtain fast dynamic response and insensitive to external disturbances. The current research aims to present the performance of the sensorless direct torque control (DTC of an induction motor (IM using adaptive Luenberger observer (ALO with fuzzy logic controller (FLC for adaptation mechanism. The rotor speed is regulated by proportional integral (PI anti-windup controller. The proposed strategy is directed to reduce the ripple on the torque and the flux. Numerical simulation results show the good performance and effectiveness of the proposed sensorless control for different references of the speed even both low and high speeds.

  13. A Cross-Cultural Study of Reference Point Adaptation: Evidence from China, Korea, and the US

    Science.gov (United States)

    Arkes, Hal R.; Hirshleifer, David; Jiang, Danling; Lim, Sonya S.

    2010-01-01

    We examined reference point adaptation following gains or losses in security trading using participants from China, Korea, and the US. In both questionnaire studies and trading experiments with real money incentives, reference point adaptation was larger for Asians than for Americans. Subjects in all countries adapted their reference points more…

  14. Wind Turbine Pitch Control and Load Mitigation Using an L1 Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Danyong Li

    2014-01-01

    Full Text Available We present an application of L1 adaptive output feedback control design to wind turbine collective pitch control and load mitigation. Our main objective is the design of an L1 output feedback controller without wind speed estimation, ensuring that the generator speed tracks the reference trajectory with robustness to uncertain parameters and time-varying disturbances (mainly the uniform wind disturbance across the wind turbine rotor. The wind turbine model CART (controls advanced research turbine developed by the national renewable energy laboratory (NREL is used to validate the performance of the proposed L1 adaptive controller using the FAST (fatigue, aerodynamics, structures, and turbulence code. A comparative study is also conducted between the proposed controller and the most popular methods in practice: gain scheduling PI (GSPI controls and disturbance accommodating control (DAC methods. The results show better performance of L1 output feedback controller over the other two methods. Moreover, based on the FAST software and LQR analysis in the reference model selection of L1 adaptive controller, tradeoff can be achieved between control performance and loads mitigation.

  15. Adaptive Landing Gear: Optimum Control Strategy and Potential for Improvement

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2009-01-01

    Full Text Available An adaptive landing gear is a landing gear (LG capable of active adaptation to particular landing conditions by means of controlled hydraulic force. The objective of the adaptive control is to mitigate the peak force transferred to the aircraft structure during touch-down, and thus to limit the structural fatigue factor. This paper investigates the ultimate limits for improvement due to various strategies of active control. Five strategies are proposed and investigated numerically using a~validated model of a real, passive landing gear as a reference. Potential for improvement is estimated statistically in terms of the mean and median (significant peak strut forces as well as in terms of the extended safe sinking velocity range. Three control strategies are verified experimentally using a laboratory test stand.

  16. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    International Nuclear Information System (INIS)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-01-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation. (paper)

  17. The Role of Theory Adaptation in the Making of a Reference Discipline

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette; Vendelø, Morten Thanning

    2015-01-01

    Information Systems (IS) scholars repeatedly debate the nature of the IS discipline. A series of articles have debated whether the IS field has become a reference discipline. While many scholars have argued this question from a perceptual point of view, we address it by examining the role of theo...... adaptation, have a higher probability of being referenced by other disciplines. Finally, we discuss the implications of the manner in which IS scholars borrow theory regarding the IS discipline's prospects of becoming a reference discipline.......Information Systems (IS) scholars repeatedly debate the nature of the IS discipline. A series of articles have debated whether the IS field has become a reference discipline. While many scholars have argued this question from a perceptual point of view, we address it by examining the role of theory...... adaptation in the making of a reference discipline. Based on a review of how the sensemaking theory from organization studies is adapted and used in IS research, we show that papers that adapt and use sensemaking theory as a central construct in the theoretical framework – in other words – engaging in theory...

  18. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.

    Science.gov (United States)

    Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He

    2010-01-01

    For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Adaptive multiparameter control: application to a Rapid Thermal Processing process; Commande Adaptative Multivariable: Application a un Procede de Traitement Thermique Rapide

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mago, S J

    1995-12-20

    In this work the problem of temperature uniformity control in rapid thermal processing is addressed by means of multivariable adaptive control. Rapid Thermal Processing (RTP) is a set of techniques proposed for semiconductor fabrication processes such as annealing, oxidation, chemical vapour deposition and others. The product quality depends on two mains issues: precise trajectory following and spatial temperature uniformity. RTP is a fabrication technique that requires a sophisticated real-time multivariable control system to achieve acceptable results. Modelling of the thermal behaviour of the process leads to very complex mathematical models. These are the reasons why adaptive control techniques are chosen. A multivariable linear discrete time model of the highly non-linear process is identified on-line, using an identification scheme which includes supervisory actions. This identified model, combined with a multivariable predictive control law allows to prevent the controller from systems variations. The control laws are obtained by minimization of a quadratic cost function or by pole placement. In some of these control laws, a partial state reference model was included. This reference model allows to incorporate an appropriate tracking capability into the control law. Experimental results of the application of the involved multivariable adaptive control laws on a RTP system are presented. (author) refs

  20. Nonlinear adaptive PID control for greenhouse environment based on RBF network.

    Science.gov (United States)

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

  1. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  2. Adaptive Control for Linear Uncertain Systems with Unmodeled Dynamics Revisited via Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan

    2013-01-01

    This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.

  3. Adaptive Controller Effects on Pilot Behavior

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  4. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  5. Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models.

    Science.gov (United States)

    Yang, Chenguang; Li, Zhijun; Li, Jing

    2013-02-01

    In this paper, we investigate optimized adaptive control and trajectory generation for a class of wheeled inverted pendulum (WIP) models of vehicle systems. Aiming at shaping the controlled vehicle dynamics to be of minimized motion tracking errors as well as angular accelerations, we employ the linear quadratic regulation optimization technique to obtain an optimal reference model. Adaptive control has then been developed using variable structure method to ensure the reference model to be exactly matched in a finite-time horizon, even in the presence of various internal and external uncertainties. The minimized yaw and tilt angular accelerations help to enhance the vehicle rider's comfort. In addition, due to the underactuated mechanism of WIP, the vehicle forward velocity dynamics cannot be controlled separately from the pendulum tilt angle dynamics. Inspired by the control strategy of human drivers, who usually manipulate the tilt angle to control the forward velocity, we design a neural-network-based adaptive generator of implicit control trajectory (AGICT) of the tilt angle which indirectly "controls" the forward velocity such that it tracks the desired velocity asymptotically. The stability and optimal tracking performance have been rigorously established by theoretic analysis. In addition, simulation studies have been carried out to demonstrate the efficiency of the developed AGICT and optimized adaptive controller.

  6. New fuzzy approximate model for indirect adaptive control of distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2014-06-01

    This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.

  7. New fuzzy approximate model for indirect adaptive control of distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2014-01-01

    This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.

  8. An adaptive control application in a large thermal combined power plant

    International Nuclear Information System (INIS)

    Kocaarslan, Ilhan; Cam, Ertugrul

    2007-01-01

    In this paper, an adaptive controller was applied to a 765 MW large thermal power plant to decrease operating costs, increase quality of generated electricity and satisfy environmental concerns. Since power plants may present several operating problems such as disturbances and severe effects at operating points, design of their controllers needs to be carried out adequately. For these reasons, first, a reduced mathematical model was developed under Computer Aided Analysis and Design Package for Control (CADACS), so that the results of the experimental model have briefly been discussed. Second, conventional PID and adaptive controllers were designed and implemented under the real-time environment of the CADACS software. Additionally, the design of the adaptive model-reference and conventional PID controllers used in the power plant for real-time control were theoretically presented. All processes were realized in real-time. Due to safety restrictions, a direct connection to the sensors and actuators of the plant was not allowed. Instead a coupling to the control system was realized. This offers, in addition, the usage of the supervisory functions of an industrial process computer system. Application of the controllers indicated that the proposed adaptive controller has better performances for rise and settling times of electrical power, and enthalpy outputs than the conventional PID controller does

  9. Adaptive filtering prediction and control

    CERN Document Server

    Goodwin, Graham C

    2009-01-01

    Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o

  10. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  11. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  12. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  13. Improved Transient Performance of a Fuzzy Modified Model Reference Adaptive Controller for an Interacting Coupled Tank System Using Real-Coded Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Asan Mohideen Khansadurai

    2014-01-01

    Full Text Available The main objective of the paper is to design a model reference adaptive controller (MRAC with improved transient performance. A modification to the standard direct MRAC called fuzzy modified MRAC (FMRAC is used in the paper. The FMRAC uses a proportional control based Mamdani-type fuzzy logic controller (MFLC to improve the transient performance of a direct MRAC. The paper proposes the application of real-coded genetic algorithm (RGA to tune the membership function parameters of the proposed FMRAC offline so that the transient performance of the FMRAC is improved further. In this study, a GA based modified MRAC (GAMMRAC, an FMRAC, and a GA based FMRAC (GAFMRAC are designed for a coupled tank setup in a hybrid tank process and their transient performances are compared. The results show that the proposed GAFMRAC gives a better transient performance than the GAMMRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient performance for the control of nonlinear processes.

  14. Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant

    Science.gov (United States)

    Bosworth, John T.

    2008-01-01

    Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.

  15. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    Science.gov (United States)

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Adaptive hybrid control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  17. Adaptive Controller for 6-DOF Parallel Robot Using T-S Fuzzy Inference

    Directory of Open Access Journals (Sweden)

    Xue Jian

    2013-02-01

    Full Text Available 6-DOF parallel robot always appears in the form of Stewart platform. It has been widely used in industry for the benefits such as strong structural stiffness, high movement accuracy and so on. Space docking technology makes higher requirements of motion accuracy and dynamic performance to the control method on 6-DOF parallel robot. In this paper, a hydraulic 6-DOF parallel robot was used to simulate the docking process. Based on this point, this paper gave a thorough study on the design of an adaptive controller to eliminate the asymmetric of controlled plant and uncertain load force interference. Takagi-Sugeno (T-S fuzzy inference model was used to build the fuzzy adaptive controller. With T-S model, the controller directly imposes adaptive control signal on the plant to make sure that the output of plant could track the reference model output. The controller has simple structure and is easy to implement. Experiment results show that the controller can eliminate asymmetric and achieve good dynamic performance, and has good robustness to load interference.

  18. Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing pada Pesawat UAV Quadcopter

    Directory of Open Access Journals (Sweden)

    Teddy Sudewo

    2012-09-01

    Full Text Available Pada fase penerbangan quadcopter, fase landing (pendaratan merupakan fase paling kritis, dimana resiko terjadi kecelakaan paling besar. Permasalahan tersebut muncul karena adanya beberapa kendala, seperti kendala pada struktur rangka pesawat yang kecil, peningkatan beban pada sayap pesawat serta pengaruh angin sehingga menyebabkan pesawat tidak stabil. Pada penelitian tugas akhir ini, didesain suatu sistem kontrol pada UAV quadcopter menggunakan kontrol PID dengan Model Reference Adaptive Control (MRAC. Sistem pengendalian berbasis MRAC menawarkan beberapa kelebihan untuk mengatasi karakteristik plant non-linear salah satunya quadcopter. MRAC merupakan kontrol adaptif dimana performansi keluaran sistem (proses akan mengikuti performansi keluaran model referensinya. Pada tugas akhir ini, model referensi sudah ditentukan diawal dan spesifikasinya tetap sehingga dapat langsung didisain mekanisme adaptasi dari MRAC. Parameter proses θ (a1,a2,b0,b1 diestimasi menggunakan metode Extended Least Square, parameter proses tersebut akan mentuning parameter kontroler (k0,k1,k2,k3 sehingga menghasilkan sinyal kontrol PID. Hasil pengujian menunjukkan bahwa ketika terjadi perubahan parameter pada plant, kontroler mampu memperbaiki respon agar tetap dapat mengikuti model referensinya dan dalam mengatasi gangguan metode adaptasi MRAC memiliki kemampuan yang baik dilihat dari waktu yang dibutuhkan yang relatif singkat.

  19. Adaptive precompensators for flexible-link manipulator control

    Science.gov (United States)

    Tzes, Anthony P.; Yurkovich, Stephen

    1989-01-01

    The application of input precompensators to flexible manipulators is considered. Frequency domain compensators color the input around the flexible mode locations, resulting in a bandstop or notch filter in cascade with the system. Time domain compensators apply a sequence of impulses at prespecified times related to the modal frequencies. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration-free output. An adaptive precompensator can be implemented by combining a frequency domain identification scheme which is used to estimate online the modal frequencies and subsequently update the bandstop interval or the spacing between the impulses. The combined adaptive input preshaping scheme provides the most rapid slew that results in a vibration-free output. Experimental results are presented to verify the results.

  20. Adaptive PIF control for permanent magnet synchronous motors based on GPC.

    Science.gov (United States)

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2012-12-24

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  1. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    Directory of Open Access Journals (Sweden)

    Shaowu Lu

    2012-12-01

    Full Text Available To enhance the control performance of permanent magnet synchronous motors (PMSMs, a generalized predictive control (GPC-based proportional integral feedforward (PIF controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  2. Adaptive control of port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András

    2010-01-01

    In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for

  3. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barkana, Itzhak, E-mail: ibarkana@gmail.com [BARKANA Consulting, Ramat Hasharon (Israel)

    2014-12-10

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.

  4. Distributed Consensus-Based Robust Adaptive Formation Control for Nonholonomic Mobile Robots with Partial Known Dynamics

    Directory of Open Access Journals (Sweden)

    Zhaoxia Peng

    2014-01-01

    Full Text Available This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem. Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.

  5. Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman Filter

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2013-01-01

    Full Text Available The paper deals with a speed estimation of the induction motor using observer with Model Reference Adaptive System and Kalman Filter. For simulation, Hardware in Loop Simulation method is used. The first part of the paper includes the mathematical description of the observer for the speed estimation of the induction motor. The second part describes Kalman filter. The third part describes Hardware in Loop Simulation method and its realization using multifunction card MF 624. In the last section of the paper, simulation results are shown for different changes of the induction motor speed which confirm high dynamic properties of the induction motor drive with sensorless control.

  6. Efficiency and reliability improvement in wind turbine converters by grid converter adaptive control

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Abrahamsen, Flemming

    2013-01-01

    This paper presents a control method that reduces the losses in wind turbine converters adaptively controlling the grid converter. The dc-link voltage adapts its reference based on the system state and therefore reduces the stored energy, and is therefore kept at the minimum necessary for the grid...... and generator side. Operating in this way, the electrical and thermal stress factors are decreased on the power electronic devices, increasing their lifetime. The simulation results using this method show efficiency increase and devices temperature cycles slightly decreased. Experimental results on a wind...... turbine power stack shows efficiency increase in the high power region....

  7. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  8. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important....... Firstly, it is assumed that the nonlinear processes can be divided into a dynamic linear part and static nonlinear part. Consequently the processes with input nonlinearity and output nonlinearity are treated separately. With the nonlinearity at the input it is easy to set up a model which is linear...

  9. Robust Approximation to Adaptive Control by Use of Representative Parameter Sets with Particular Reference to Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2006-04-01

    Full Text Available This paper describes an approach to adaptive optimal control in the presence of model parameter calculation difficulties. This has wide application in a variety of biological and biomedical research and clinical problems. To illustrate the techniques, the approach is applied to the development and implementation of a practical adaptive insulin infusion algorithm for use with patients with Type 1 diabetes mellitus.

  10. Adaptive Sliding-Mode Control in Bus Voltage for an Islanded DC Microgrid

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-01-01

    Full Text Available The control of bus voltage is a crucial task for the stable operation of islanded DC microgrids. To improve the DC bus voltage control dynamics and stability, this paper proposes an adaptive sliding-mode control method based on large-signal model. The sliding-mode control, adaptive observation, and fix-frequency pulse width modulation technology are adopted and combined efficiently, which guarantee stable bus voltage and the constant switching frequency of closed-loop system, regardless of how the parameters vary with the variable constant-power loads and uncertainties. In addition, the reference values can be quickly tracked by the state variables using the proposed method without any additional sensors/hardware circuits. Therefore, this method is beneficial for the scalability and plug-play of the distributed generators and loads within the DC microgrids. The performance of the proposed control method has been successfully verified in simulation.

  11. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    International Nuclear Information System (INIS)

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  12. Adaptive Augmenting Control and Launch Vehicle Adaptive Control Flight Experiments

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers at NASA Armstrong are working to further the development of an adaptive augmenting control algorithm (AAC). The AAC was developed to improve the...

  13. Adaptive Flight Control Research at NASA

    Science.gov (United States)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  14. An integration time adaptive control method for atmospheric composition detection of occultation

    Science.gov (United States)

    Ding, Lin; Hou, Shuai; Yu, Fei; Liu, Cheng; Li, Chao; Zhe, Lin

    2018-01-01

    When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.

  15. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  16. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  17. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  18. Adaptive self-correcting control system

    International Nuclear Information System (INIS)

    Ellis, S.H.

    1984-01-01

    A control system for regulating a controlled device or process, such as a turbofan engine, produces independent multiple estimates of one or more controlled variables of the device or process by combining the signals from a plurality of feedback sensors, which provide information related to the controlled variables, in weighted nonordered pairs. The independent multiple estimates of each controlled variable are combined into a weighted average, and individual estimates which differ by more than a specified amount from the weighted average are edited and temporarily removed from consideration. A revised weighted average value of each controlled variable is then produced, and this value is used to limit or control operation of the device or process. Adaptive trim is provided to compensate for changes in the device or process being controlled, such as engine deterioration, by slowly trimming each individual estimate toward the mean, and includes error compensation which constrains the weighted sum of the adaptive trims to equal zero, thereby preventing the adaptive trim from changing the operating level of the device or process. A secondary editing circuit based on a majority rule principle identifies a failed feedback sensor and permanently excludes all individual estimates of the controlled variable based on the failed sensor. Editing boundaries are increased and adaptive trim rate is varied when a transient occurs in the operation of the device or process. Further transient compensation may be required for a system with more severe transient requirements, and this invention includes compensation to selected feedback parameters such as turbine temperature to account for differences between steady state and transient values

  19. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  20. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    Science.gov (United States)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  1. Simulation and Rapid Prototyping of Adaptive Control Systems using the Adaptive Blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole

    1998-01-01

    The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller implement...... design, controller and state variable filter.The use of the Adaptive Blockset is demonstrated using a simple laboratory setup. Both the use of the blockset for simulation and for rapid prototyping of a real-time controller are shown.......The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...... implementation. This is done using the code generation capabilities of Real Time Workshop in combination with C s-function blocks for adaptive control in Simulink. In the paper the design of each group of blocks normally found in adaptive controllers is outlined. The block types are, identification, controller...

  2. Current control of PMSM based on maximum torque control reference frame

    Science.gov (United States)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  3. Adaptation in the fuzzy self-organising controller

    DEFF Research Database (Denmark)

    Jantzen, Jan; Poulsen, Niels Kjølstad

    2003-01-01

    This simulation study provides an analysis of the adaptation mechanism in the self-organising fuzzy controller, SOC. The approach is to apply a traditional adaptive control viewpoint. A simplified performance measure in the SOC controller is used in a loss function, and thus the MIT rule implies...... an update mechanism similar to the SOC update mechanism. Two simulations of proportionally controlled systems show the behaviour of the proportional gain as it adapts to a specified behaviour....

  4. An associative model of adaptive inference for learning word-referent mappings.

    Science.gov (United States)

    Kachergis, George; Yu, Chen; Shiffrin, Richard M

    2012-04-01

    People can learn word-referent pairs over a short series of individually ambiguous situations containing multiple words and referents (Yu & Smith, 2007, Cognition 106: 1558-1568). Cross-situational statistical learning relies on the repeated co-occurrence of words with their intended referents, but simple co-occurrence counts cannot explain the findings. Mutual exclusivity (ME: an assumption of one-to-one mappings) can reduce ambiguity by leveraging prior experience to restrict the number of word-referent pairings considered but can also block learning of non-one-to-one mappings. The present study first trained learners on one-to-one mappings with varying numbers of repetitions. In late training, a new set of word-referent pairs were introduced alongside pretrained pairs; each pretrained pair consistently appeared with a new pair. Results indicate that (1) learners quickly infer new pairs in late training on the basis of their knowledge of pretrained pairs, exhibiting ME; and (2) learners also adaptively relax the ME bias and learn two-to-two mappings involving both pretrained and new words and objects. We present an associative model that accounts for both results using competing familiarity and uncertainty biases.

  5. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  6. Monitoring the Performance of a Neuro-Adaptive Controller

    Science.gov (United States)

    Schumann, Johann; Gupta, Pramod

    2004-01-01

    Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.

  7. Adaptive Method Using Controlled Grid Deformation

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2011-09-01

    Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.

  8. Adaptive LQG controller tuning

    Czech Academy of Sciences Publication Activity Database

    Novák, Miroslav; Böhm, Josef; Nedoma, Petr; Tesař, Ludvík

    2003-01-01

    Roč. 150, č. 6 (2003), s. 655-665 ISSN 1350-2379 R&D Projects: GA ČR GA102/02/0204; GA AV ČR IBS1075102 Institutional research plan: CEZ:AV0Z1075907 Keywords : adaptive controller * LQG controller * controller design Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 0.745, year: 2003

  9. Neural adaptive control for vibration suppression in composite fin-tip of aircraft.

    Science.gov (United States)

    Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P

    2008-06-01

    In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.

  10. Adaptive tracking control of nonholonomic systems: an example

    NARCIS (Netherlands)

    Lefeber, A.A.J.; Nijmeijer, Henk

    1999-01-01

    We study an example of an adaptive (state) tracking control problem for a four-wheel mobile robot, as it is an illustrative example of the general adaptive state-feedback tracking control problem. It turns out that formulating the adaptive state-feedback tracking control problem is not

  11. Maritime adaptive optics beam control

    OpenAIRE

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  12. Fuzzy Adaptation Algorithms’ Control for Robot Manipulators with Uncertainty Modelling Errors

    Directory of Open Access Journals (Sweden)

    Yongqing Fan

    2018-01-01

    Full Text Available A novel fuzzy control scheme with adaptation algorithms is developed for robot manipulators’ system. At the beginning, one adjustable parameter is introduced in the fuzzy logic system, the robot manipulators system with uncertain nonlinear terms as the master device and a reference model dynamic system as the slave robot system. To overcome the limitations such as online learning computation burden and logic structure in conventional fuzzy logic systems, a parameter should be used in fuzzy logic system, which composes fuzzy logic system with updated parameter laws, and can be formed for a new fashioned adaptation algorithms controller. The error closed-loop dynamical system can be stabilized based on Lyapunov analysis, the number of online learning computation burdens can be reduced greatly, and the different kinds of fuzzy logic systems with fuzzy rules or without any fuzzy rules are also suited. Finally, effectiveness of the proposed approach has been shown in simulation example.

  13. Adaptive Torque Control of Variable Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. E.

    2004-08-01

    The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

  14. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    Science.gov (United States)

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.

  15. Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Omur Can Ozguney

    2017-08-01

    Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.

  16. Direct adaptive control using feedforward neural networks

    OpenAIRE

    Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira

    2003-01-01

    ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...

  17. Adaptive control system having hedge unit and related apparatus and methods

    Science.gov (United States)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2007-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  18. Pilot-Induced Oscillation Suppression by Using 1 Adaptive Control

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2012-01-01

    research activities that aim to alleviate this problem. In this paper, the L1 adaptive controller has been introduced to suppress the PIO, which is caused by rate limiting and pure time delay. Due to its architecture, the L1 adaptive controller will achieve a desired response with fast adaptation. The analysis of PIO and its suppression by L1 adaptive controller are presented in detail in the paper. The simulation results indicate that the L1 adaptive control is efficient in solving this kind of problem.

  19. Adaptive Reference Levels in a Level-Crossing Analog-to-Digital Converter

    Directory of Open Access Journals (Sweden)

    Andrew C. Singer

    2008-11-01

    Full Text Available Level-crossing analog-to-digital converters (LC ADCs have been considered in the literature and have been shown to efficiently sample certain classes of signals. One important aspect of their implementation is the placement of reference levels in the converter. The levels need to be appropriately located within the input dynamic range, in order to obtain samples efficiently. In this paper, we study optimization of the performance of such an LC ADC by providing several sequential algorithms that adaptively update the ADC reference levels. The accompanying performance analysis and simulation results show that as the signal length grows, the performance of the sequential algorithms asymptotically approaches that of the best choice that could only have been chosen in hindsight within a family of possible schemes.

  20. An Adaptive Approach for Precise Underwater Vehicle Control in Combined Robot-Diver Operations

    Science.gov (United States)

    2015-03-01

    and Nicosia and Tomei [13] focused on industrial applications involving robotic manipulator arms carrying various loads. The application of...1987. 94 [13] S. Nicosia and P. Tomei, “Model reference adaptive control algorithms for industrial robots ,” Automatica, vol. 20, pp. 635–644, 9... kinematic and dynamic properties,” The International Journal of Robotics Research, vol. 25, pp. 283–296, March 01, 2006. [17] A. Sanei and M. French

  1. Enhanced vaccine control of epidemics in adaptive networks

    Science.gov (United States)

    Shaw, Leah B.; Schwartz, Ira B.

    2010-04-01

    We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

  2. Applications of adaptive filters in active noise control

    Science.gov (United States)

    Darlington, Paul

    The active reduction of acoustic noise is achieved by the addition of a cancelling acoustic signal to the unwanted sound. Successful definition of the cancelling signal amounts to a system identification problem. Recent advances in adaptive signal processing have allowed this problem to be tackled using adaptive filters, which offer significant advantages over conventional solutions. The extension of adaptive noise cancelling techniques, which were developed in the electrical signal conditioning context, to the control of acoustic systems is studied. An analysis is presented of the behavior of the Widrow-Hoff LMS adaptive noise canceller with a linear filter in its control loop. The active control of plane waves propagating axially in a hardwalled duct is used as a motivating model problem. The model problem also motivates the study of the effects of feedback around an LMS adaptive filter. An alternative stochastic gradient algorithm for controlling adaptive filters in the presence of feedback is presented.

  3. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    Directory of Open Access Journals (Sweden)

    Guoliang Zhao

    2013-01-01

    Full Text Available This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  4. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    Science.gov (United States)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration

  5. Adaptive change in corporate control practices.

    Science.gov (United States)

    Alexander, J A

    1991-03-01

    Multidivisional organizations are not concerned with what structure to adopt but with how they should exercise control within the divisional form to achieve economic efficiencies. Using an information-processing framework, I examined control arrangements between the headquarters and operating divisions of such organizations and how managers adapted control practices to accommodate increasing environmental uncertainty. Also considered were the moderating effects of contextual attributes on such adaptive behavior. Analyses of panel data from 97 multihospital systems suggested that organizations generally practice selective decentralization under conditions of increasing uncertainty but that organizational age, dispersion, and initial control arrangements significantly moderate the direction and magnitude of such changes.

  6. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  7. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

  8. Robust sawtooth period control based on adaptive online optimization

    International Nuclear Information System (INIS)

    Bolder, J.J.; Witvoet, G.; De Baar, M.R.; Steinbuch, M.; Van de Wouw, N.; Haring, M.A.M.; Westerhof, E.; Doelman, N.J.

    2012-01-01

    The systematic design of a robust adaptive control strategy for the sawtooth period using electron cyclotron current drive (ECCD) is presented. Recent developments in extremum seeking control (ESC) are employed to derive an optimized controller structure and offer practical tuning guidelines for its parameters. In this technique a cost function in terms of the desired sawtooth period is optimized online by changing the ECCD deposition location based on online estimations of the gradient of the cost function. The controller design does not require a detailed model of the sawtooth instability. Therefore, the proposed ESC is widely applicable to any sawtoothing plasma or plasma simulation and is inherently robust against uncertainties or plasma variations. Moreover, it can handle a broad class of disturbances. This is demonstrated by time-domain simulations, which show successful tracking of time-varying sawtooth period references throughout the whole operating space, even in the presence of variations in plasma parameters, disturbances and slow launcher mirror dynamics. Due to its simplicity and robustness the proposed ESC is a valuable sawtooth control candidate for any experimental tokamak plasma, and may even be applicable to other fusion-related control problems. (paper)

  9. Feedback control and adaptive control of the energy resource chaotic system

    International Nuclear Information System (INIS)

    Sun Mei; Tian Lixin; Jiang Shumin; Xu Jun

    2007-01-01

    In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results

  10. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  11. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  12. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  13. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  14. An adaptive nonlinear internal-model control for the speed control of homopolar salient-pole BLDC motor

    Science.gov (United States)

    CheshmehBeigi, Hassan Moradi

    2018-05-01

    In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.

  15. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    K. Prabhu; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  16. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  17. Adaptive control of bifurcation and chaos in a time-delayed system

    International Nuclear Information System (INIS)

    Li Ning; Zhang Qing-Ling; Yuan Hui-Qun; Sun Hai-Yi

    2013-01-01

    In this paper, the stabilization of a continuous time-delayed system is considered. To control the bifurcation and chaos in a time-delayed system, a parameter perturbation control and a hybrid control are proposed. Then, to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes, the adaptive control idea is introduced, i.e., the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws, respectively. The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem. The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods. They have the advantages of increased stability, adaptability to the changes of the system parameters, control cost saving, and simplicity. Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods. A comparison of the two adaptive control methods is also made in an experimental study

  18. Controlling chaos based on an adaptive adjustment mechanism

    International Nuclear Information System (INIS)

    Zheng Yongai

    2006-01-01

    In this paper, we extend the ideas and techniques developed by Huang [Huang W. Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism. Phys Rev E 2000;61:R1012-5] for controlling discrete-time chaotic system using adaptive adjustment mechanism to continuous-time chaotic system. Two control approaches, namely adaptive adjustment mechanism (AAM) and modified adaptive adjustment mechanism (MAAM), are investigated. In both case sufficient conditions for the stabilization of chaotic systems are given analytically. The simulation results on Chen chaotic system have verified the effectiveness of the proposed techniques

  19. Adaptive fuzzy PID control for a quadrotor stabilisation

    Science.gov (United States)

    Cherrat, N.; Boubertakh, H.; Arioui, H.

    2018-02-01

    This paper deals with the design of an adaptive fuzzy PID control law for attitude and altitude stabilization of a quadrotor despite the system model uncertainties and disturbances. To this end, a PID control with adaptive gains is used in order to approximate a virtual ideal control previously designed to achieve the predefined objective. Specifically, the control gains are estimated and adjusted by mean of a fuzzy system whose parameters are adjusted online via a gradient descent-based adaptation law. The analysis of the closed-loop system is given by the Lyapunov approach. The simulation results are presented to illustrate the efficiency of the proposed approach.

  20. Connection adaption for control of networked mobile chaotic agents.

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S

    2017-11-22

    In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

  1. Adaptive mechanism-based congestion control for networked systems

    Science.gov (United States)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  2. ADEX optimized adaptive controllers and systems from research to industrial practice

    CERN Document Server

    Martín-Sánchez, Juan M

    2015-01-01

    This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...

  3. All-Coefficient Adaptive Control of Dual-Motor Driving Servo System

    Directory of Open Access Journals (Sweden)

    Zhao Haibo

    2017-01-01

    Full Text Available Backlash nonlinearity and friction nonlinearity exist in dual-motor driving servo system, which reducing system response speed, steady accuracy and anti-interference ability. In order to diminish the adverse effects of backlash and friction nonlinearity to system, we proposed a new all-coefficient adaptive control method. Firstly, we introduced the dynamic model of backlash and friction nonlinearity respectively. Then on this basis, we established the characteristic model when backlash and friction nonlinearity coexist. We used recursive least square method for parameter estimation. Finally we designed the all-coefficient adaptive controller. On the basis of simplex all-coefficient adaptive controller, we designed a feedforward all-coefficient adaptive controller. The simulations of feedforward all-coefficient adaptive control and simplex all-coefficient adaptive control were compared. The results show that the former has quicker response speed, higher steady accuracy, stronger anti-interference performance and better robustness, which validating the efficacy of the proposed control strategy.

  4. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    , (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...... adaptive speed control of the CVC drive. A direct truly adaptive speed controller has been implemented. The adaptive controller is a moving Average Self-Tuning Regulator which is abbreviated MASTR throughout the thesis. Two practical implementations of this controller were proposed. They were denoted MASTR...... and measurement noise in general, were the major reasons for the drifting parameters. Two approaches was proposed to robustify MASTR2 against the output noise. The first approach consists of filtering the output. Output filtering had a significant effect in simulations, but the robustness against the output noise...

  5. Adaptive Control Methods for Soft Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to develop methods for soft and inflatable robots that will allow the control system to adapt and change control parameters based on changing conditions...

  6. Disturbance Accommodating Adaptive Control with Application to Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2012-01-01

    Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.

  7. Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)

    2016-01-01

    Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.

  8. Adaptive Backstepping Flight Control for Modern Fighter Aircraft

    NARCIS (Netherlands)

    Sonneveldt, L.

    2010-01-01

    The main goal of this thesis is to investigate the potential of the nonlinear adaptive backstepping control technique in combination with online model identification for the design of a reconfigurable flight control system for a modern fighter aircraft. Adaptive backstepping is a recursive,

  9. A Nonlinear Ship Manoeuvering Model: Identification and adaptive control with experiments for a model ship

    Directory of Open Access Journals (Sweden)

    Roger Skjetne

    2004-01-01

    Full Text Available Complete nonlinear dynamic manoeuvering models of ships, with numerical values, are hard to find in the literature. This paper presents a modeling, identification, and control design where the objective is to manoeuver a ship along desired paths at different velocities. Material from a variety of references have been used to describe the ship model, its difficulties, limitations, and possible simplifications for the purpose of automatic control design. The numerical values of the parameters in the model is identified in towing tests and adaptive manoeuvering experiments for a small ship in a marine control laboratory.

  10. Design and implementation of adaptive inverse control algorithm for a micro-hand control system

    Directory of Open Access Journals (Sweden)

    Wan-Cheng Wang

    2014-01-01

    Full Text Available The Letter proposes an online tuned adaptive inverse position control algorithm for a micro-hand. First, the configuration of the micro-hand is discussed. Next, a kinematic analysis of the micro-hand is investigated and then the relationship between the rotor position of micro-permanent magnet synchronous motor and the tip of the micro-finger is derived. After that, an online tuned adaptive inverse control algorithm, which includes an adaptive inverse model and an adaptive inverse control, is designed. The online tuned adaptive inverse control algorithm has better performance than the proportional–integral control algorithm does. In addition, to avoid damaging the object during the grasping process, an online force control algorithm is proposed here as well. An embedded micro-computer, cRIO-9024, is used to realise the whole position control algorithm and the force control algorithm by using software. As a result, the hardware circuit is very simple. Experimental results show that the proposed system can provide fast transient responses, good load disturbance responses, good tracking responses and satisfactory grasping responses.

  11. Adaptive landing gear concept—feedback control validation

    Science.gov (United States)

    Mikulowski, Grzegorz M.; Holnicki-Szulc, Jan

    2007-12-01

    The objective of this paper is to present an integrated feedback control concept for adaptive landing gears (ALG) and its experimental validation. Aeroplanes are subjected to high dynamic loads as a result of the impact during each landing. Classical landing gears, which are in common use, are designed in accordance with official regulations in a way that ensures the optimal energy dissipation for the critical (maximum) sink speed. The regulations were formulated in order to ensure the functional capability of the landing gears during an emergency landing. However, the landing gears, whose characteristics are optimized for these critical conditions, do not perform well under normal impact conditions. For that situation it is reasonable to introduce a system that would adapt the characteristics of the landing gears according to the sink speed of landing. The considered system assumes adaptation of the damping force generated by the landing gear, which would perform optimally in an emergency situation and would adapt itself for regular landings as well. This research covers the formulation and design of the control algorithms for an adaptive landing gear based on MR fluid, implementation of the algorithms on an FPGA platform and experimental verification on a lab-scale landing gear device. The main challenge of the research was to develop a control methodology that could operate effectively within 50 ms, which is assumed to be the total duration of the phenomenon. The control algorithm proposed in this research was able to control the energy dissipation process on the experimental stand.

  12. Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems

    Science.gov (United States)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.

    2016-04-01

    Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.

  13. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    Science.gov (United States)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  14. Adaptive control of manipulators handling hazardous waste

    International Nuclear Information System (INIS)

    Colbaugh, R.; Glass, K.

    1994-01-01

    This article focuses on developing a robot control system capable of meeting hazardous waste handling application requirements, and presents as a solution an adaptive strategy for controlling the mechanical impedance of kinematically redundant manipulators. The proposed controller is capable of accurate end-effector impedance control and effective redundancy utilization, does not require knowledge of the complex robot dynamic model or parameter values for the robot or the environment, and is implemented without calculation of the robot inverse transformation. Computer simulation results are given for a four degree of freedom redundant robot under adaptive impedance control. These results indicate that the proposed controller is capable of successfully performing important tasks in robotic waste handling applications. (author) 3 figs., 39 refs

  15. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power......Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designing....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...

  16. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  17. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    Science.gov (United States)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  18. Adaptive control of a PWR core power using neural networks

    International Nuclear Information System (INIS)

    Arab-Alibeik, H.; Setayeshi, S.

    2005-01-01

    Reactor power control is important because of safety concerns and the call for regular and appropriate operation of nuclear power plants. It seems that the load-follow operation of these plants will be unavoidable in the future. Discrepancies between the real plant and the model used in controller design for load-follow operation encourage one to use auto-tuning and (or) adaptive techniques. Neural network technology shows great promise for addressing many problems in non-model-based adaptive control methods. Also, there has been a great attention to inverse control especially in the neural and fuzzy control context. Fortunately, online adaptation eliminates some limitations of inverse control and its shortcomings for real world applications. We use a neural adaptive inverse controller to control the power of a PWR reactor. The stability of the system and convergence of the controller parameters are guaranteed during online adaptation phase provided the controller is near the plant's real inverse after offline training period. The performance of the controller is verified using nonlinear simulations in diverse operating conditions

  19. Adaptive nonlinear control for a research reactor

    International Nuclear Information System (INIS)

    Benitez R, J.S.

    1994-01-01

    Linearization by feedback of states is based on the idea of transform the nonlinear dynamic equation of a system in a linear form. This linear behavior can be achieve well in a complete way (input state) or in partial way (input output). This can be applied to systems of single or multiple inputs, and can be used to solve problems of stabilization and tracking of references trajectories. Comparing this method with conventional ones, linearization by feedback of states is exact in certain region of the space of state, instead of linear approximations of the equations in a certain point of the operation. In the presence of parametric uncertainties in the model of the system, the introduction of adaptive schemes provide a type toughness to the control system by nonlinear feedback, which gives as result the eventual cancellation of the nonlinear terms in the dynamic relationship between the output and the input of the auxiliary control. In the same way, it has been presented the design of a nonlinearizing control for the non lineal model of a TRIGA Mark III type reactor, with the aim of tracking a predetermined power profile. The asymptotic tracking of such profile is, at the present moment, in the stage of verification by computerized simulation the relative easiness in the design of auxiliary variable of control, as well as the decoupling action of the output variable, make very attractive the utilization of the method herein presented. (Author)

  20. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    Science.gov (United States)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  1. Adaptive Critic Nonlinear Robust Control: A Survey.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  2. Adaptive Trajectory Tracking Control using Reinforcement Learning for Quadrotor

    Directory of Open Access Journals (Sweden)

    Wenjie Lou

    2016-02-01

    Full Text Available Inaccurate system parameters and unpredicted external disturbances affect the performance of non-linear controllers. In this paper, a new adaptive control algorithm under the reinforcement framework is proposed to stabilize a quadrotor helicopter. Based on a command-filtered non-linear control algorithm, adaptive elements are added and learned by policy-search methods. To predict the inaccurate system parameters, a new kernel-based regression learning method is provided. In addition, Policy learning by Weighting Exploration with the Returns (PoWER and Return Weighted Regression (RWR are utilized to learn the appropriate parameters for adaptive elements in order to cancel the effect of external disturbance. Furthermore, numerical simulations under several conditions are performed, and the ability of adaptive trajectory-tracking control with reinforcement learning are demonstrated.

  3. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  4. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Directory of Open Access Journals (Sweden)

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  5. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  6. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  7. Composite adaptive control of belt polishing force for aero-engine blade

    Science.gov (United States)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and

  8. Adaptive Backstepping Self-balancing Control of a Two-wheel Electric Scooter

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Son

    2014-10-01

    Full Text Available This paper introduces an adaptive backstepping control law for a two-wheel electric scooter (eScooter with a nonlinear uncertain model. Adaptive backstepping control is integrated with feedback control that satisfies Lyapunov stability. By using the recursive structure to find the controlled function and estimate uncertain parameters, an adaptive backstepping method allows us to build a feedback control law that efficiently controls a self-balancing controller of the eScooter. Additionally, a controller area network (CAN bus with high reliability is applied for communicating between the modules of the eScooter. Simulation and experimental results demonstrate the robustness and good performance of the proposed adaptive backstepping control.

  9. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  10. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044, China and College of Mechanical Engineering, Hunan University of Arts and Science, Hunan 415000 (China)

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  11. Adaptive nonlinear control using input normalized neural networks

    International Nuclear Information System (INIS)

    Leeghim, Henzeh; Seo, In Ho; Bang, Hyo Choong

    2008-01-01

    An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small

  12. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  13. Adaptive fuzzy controller based MPPT for photovoltaic systems

    International Nuclear Information System (INIS)

    Guenounou, Ouahib; Dahhou, Boutaib; Chabour, Ferhat

    2014-01-01

    Highlights: • We propose a fuzzy controller with adaptive output scaling factor as a maximum power point tracker of photovoltaic system. • The proposed controller integrates two different rule bases defined on error and change of error. • Our controller can track the maximum power point with better performances when compared to its conventional counterpart. - Abstract: This paper presents an intelligent approach to optimize the performances of photovoltaic systems. The system consists of a PV panel, a DC–DC boost converter, a maximum power point tracker controller and a resistive load. The key idea of the proposed approach is the use of a fuzzy controller with an adaptive gain as a maximum power point tracker. The proposed controller integrates two different rule bases. The first is used to adjust the duty cycle of the boost converter as in the case of a conventional fuzzy controller while the second rule base is designed for an online adjusting of the controller’s gain. The performances of the adaptive fuzzy controller are compared with those obtained using a conventional fuzzy controllers with different gains and in each case, the proposed controller outperforms its conventional counterpart

  14. Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure

    Directory of Open Access Journals (Sweden)

    Ashraf Ahmed Fahmy

    2014-03-01

    Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation.  Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.

  15. A localization algorithm of adaptively determining the ROI of the reference circle in image

    Science.gov (United States)

    Xu, Zeen; Zhang, Jun; Zhang, Daimeng; Liu, Xiaomao; Tian, Jinwen

    2018-03-01

    Aiming at solving the problem of accurately positioning the detection probes underwater, this paper proposed a method based on computer vision which can effectively solve this problem. The theory of this method is that: First, because the shape information of the heat tube is similar to a circle in the image, we can find a circle which physical location is well known in the image, we set this circle as the reference circle. Second, we calculate the pixel offset between the reference circle and the probes in the picture, and adjust the steering gear through the offset. As a result, we can accurately measure the physical distance between the probes and the under test heat tubes, then we can know the precise location of the probes underwater. However, how to choose reference circle in image is a difficult problem. In this paper, we propose an algorithm that can adaptively confirm the area of reference circle. In this area, there will be only one circle, and the circle is the reference circle. The test results show that the accuracy of the algorithm of extracting the reference circle in the whole picture without using ROI (region of interest) of the reference circle is only 58.76% and the proposed algorithm is 95.88%. The experimental results indicate that the proposed algorithm can effectively improve the efficiency of the tubes detection.

  16. Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller.

    Science.gov (United States)

    Tan, U-Xuan; Latt, Win Tun; Widjaja, Ferdinan; Shee, Cheng Yap; Riviere, Cameron N; Ang, Wei Tech

    2009-03-16

    With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.

  17. Development of adaptive control applied to chaotic systems

    Science.gov (United States)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  18. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  19. An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances.

    Science.gov (United States)

    Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald

    2014-01-01

    We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Application of adaptive fuzzy control technology to pressure control of a pressurizer

    Institute of Scientific and Technical Information of China (English)

    YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai

    2005-01-01

    A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.

  1. Control uncertain Genesio-Tesi chaotic system: Adaptive sliding mode approach

    International Nuclear Information System (INIS)

    Dadras, Sara; Momeni, Hamid Reza

    2009-01-01

    An adaptive sliding mode control (ASMC) technique is introduced in this paper for a chaotic dynamical system (Genesio-Tesi system). Using the sliding mode control technique, a sliding surface is determined and the control law is established. An adaptive sliding mode control law is derived to make the states of the Genesio-Tesi system asymptotically track and regulate the desired state. The designed control scheme can control the uncertain chaotic behaviors to a desired state without oscillating very fast and guarantee the property of asymptotical stability. An illustrative simulation result is given to demonstrate the effectiveness of the proposed adaptive sliding mode control design.

  2. Adaptive control for solar energy based DC microgrid system development

    Science.gov (United States)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  3. Robust adaptive control modeling of human arm movements subject to altered gravity and mechanical loads

    Science.gov (United States)

    Tryfonidis, Michail

    It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new internal models develop, gradually compensating for the loss of spatial reference. The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that during the adaptive learning process the neural connections behave in ways that can be described by an adaptive control method. The investigation presented in this thesis includes two different sets of experiments. A series of dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biomechanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects. Numerical simulations of the proposed framework are compared with experimental results and predictions from competitive models. The proposed control methodology extends the results of the sliding mode theory to human motor control. The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that

  4. Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control

    Science.gov (United States)

    Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526

  5. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  6. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  7. Adaptive control for accelerators

    International Nuclear Information System (INIS)

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity

  8. Adaptive control for accelerators

    Science.gov (United States)

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  9. Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles

    Science.gov (United States)

    2007-11-01

    Tolerant Overactuated Autonomous Vehicles Casavola, A.; Garone, E. (2007) Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous ...Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Tolerant Overactuated Autonomous Vehicles 3.2 - 2 RTO-MP-AVT-145 UNCLASSIFIED/UNLIMITED Control allocation problem (CAP) - Given a virtual input v(t

  10. Adaptive Robot Control – An Experimental Comparison

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2012-11-01

    Full Text Available This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with the new management algorithm, outperforms the conventional Model-Based schemes in the presence of structural uncertainties in the mathematical model of the robot, without pre-training and more efficiently than the Neural Network approach.

  11. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  12. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    International Nuclear Information System (INIS)

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  13. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  14. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  15. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Directory of Open Access Journals (Sweden)

    Luka Peternel

    Full Text Available In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  16. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    Science.gov (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  17. Controlling smart grid adaptivity

    OpenAIRE

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption data. Forecast errors are shown to affect worst case behavior in particular, the severity of which depends on the chosen adaptivity strategy and error model.

  18. An adaptive unscented Kalman filter-based adaptive tracking control for wheeled mobile robots with control constrains in the presence of wheel slipping

    Directory of Open Access Journals (Sweden)

    Mingyue Cui

    2016-09-01

    Full Text Available A novel control approach is proposed for trajectory tracking of a wheeled mobile robot with unknown wheels’ slipping. The longitudinal and lateral slipping are considered and processed as three time-varying parameters. The adaptive unscented Kalman filter is then designed to estimate the slipping parameters online, an adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the adaptive unscented Kalman filter context. Considering the practical physical constrains, a stable tracking control law for this robot system is proposed by the backstepping method. Asymptotic stability is guaranteed by Lyapunov stability theory. Control gains are determined online by applying pole placement method. Simulation and real experiment results show the effectiveness and robustness of the proposed control method.

  19. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations.

    Science.gov (United States)

    Lilly, John H

    2003-09-01

    Adaptive tracking techniques are applied to pneumatic muscle actuators arranged in bicep and tricep configurations. The control objective is to force the joint angle to track a specified reference path. Mathematical models are derived for the bicep and tricep configurations. The models are nonlinear and in general time-varying, making adaptive control desirable. Stability results are derived, and the results of simulation studies are presented, contrasting the nonlinear adaptive control to a nonadaptive PID control approach.

  20. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  1. Adaptive automatic generation control with superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Tripathy, S.C.; Balasubramanian, R.; Nair, P.S.C.

    1992-01-01

    An improved automatic generation control (AGC) employing self-tuning adaptive control for both main AGC loop and superconducting magnetic energy storage (SMES) is presented in this paper. Computer simulations on a two-area interconnected power system show that the proposed adaptive control scheme is very effective in damping out oscillations caused by load disturbances and its performance is quite insensitive to controller gain parameter changes of SMES. A comprehensive comparative performance evaluation of control schemes using adaptive and non-adaptive controllers in the main AGC and in the SMES control loops is presented. The improvement in performance brought in by the adaptive scheme is particularly pronounced for load changes of random magnitude and duration. The proposed controller can be easily implemented using microprocessors

  2. Fully probabilistic control design in an adaptive critic framework

    Czech Academy of Sciences Publication Activity Database

    Herzallah, R.; Kárný, Miroslav

    2011-01-01

    Roč. 24, č. 10 (2011), s. 1128-1135 ISSN 0893-6080 R&D Projects: GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic control design * Fully probabilistic design * Adaptive control * Adaptive critic Subject RIV: BC - Control Systems Theory Impact factor: 2.182, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/karny-0364820.pdf

  3. Indirect fuzzy adaptive control of a class of SISO nonlinear systems

    International Nuclear Information System (INIS)

    Laboid, S.; Boucherit, M.S.

    2006-01-01

    This paper presents an adaptive fuzzy control scheme for a class of continuous-time single-input single-output nonlinear systems with unknown dynamics and disturbance. Within this scheme, the fuzzy systems are employed to approximate the unknown system's dynamics. The proposed controller is composed of a well-defined adaptive fuzzy control term that uses the adaptive fuzzy approximation errors and disturbance. Based on a Lyapunov synthesis method, it is shown that the proposed adaptive control scheme guarantees the convergence of the tracking error to zero and the global boundedness of all signals in the closed-loop system. Moreover, the proposed controller allows initialization by zero of all adjusted parameters in the fuzzy approximators, and does not require the knowledge of the lower bound of the control gain and upper bounds of the approximation errors and disturbance. Simulation results performed on an inverted pendulum system are given to point out the good performance of the developed adaptive controller. (author)

  4. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  5. On Using Exponential Parameter Estimators with an Adaptive Controller

    Science.gov (United States)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  6. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Science.gov (United States)

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  7. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  8. Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Agus Naba

    2016-12-01

    Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme’s efficacy.

  9. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  10. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Poulsen, Niels Kjølstad

    2015-01-01

    The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ....... The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotechnical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved...

  11. Predictive no-reference assessment of video quality

    NARCIS (Netherlands)

    Torres Vega, M.; Mocanu, D.C.; Stavrou, S.; Liotta, A.

    2017-01-01

    Among the various means to evaluate the quality of video streams, light-weight No-Reference (NR) methods have low computation and may be executed on thin clients. Thus, these methods would be perfect candidates in cases of real-time quality assessment, automated quality control and in adaptive

  12. Multivariable adaptive control of bio process

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.; Bahhou, B.; Roux, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Maher, M. [Faculte des Sciences, Rabat (Morocco). Lab. de Physique

    1995-12-31

    This paper presents a multivariable adaptive control of a continuous-flow fermentation process for the alcohol production. The linear quadratic control strategy is used for the regulation of substrate and ethanol concentrations in the bioreactor. The control inputs are the dilution rate and the influent substrate concentration. A robust identification algorithm is used for the on-line estimation of linear MIMO model`s parameters. Experimental results of a pilot-plant fermenter application are reported and show the control performances. (authors) 8 refs.

  13. Interval type-2 fuzzy gain-adaptive controller of a Doubly Fed ...

    African Journals Online (AJOL)

    ... Interval Type-2 Fuzzy Gain Adaptive IP (IT2FGAIP) controller and a conventional IP controller ... and an adaptive IP controller is proposed for the speed control of DFIM in the presence of ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  14. Focused cognitive control in dishonesty: Evidence for predominantly transient conflict adaptation.

    Science.gov (United States)

    Foerster, Anna; Pfister, Roland; Schmidts, Constantin; Dignath, David; Wirth, Robert; Kunde, Wilfried

    2018-04-01

    Giving a dishonest response to a question entails cognitive conflict due to an initial activation of the truthful response. Following conflict monitoring theory, dishonest responding could therefore elicit transient and sustained control adaptation processes to mitigate such conflict, and the current experiments take on the scope and specificity of such conflict adaptation in dishonesty. Transient adaptation reduces differences between honest and dishonest responding following a recent dishonest response. Sustained adaptation has a similar behavioral signature but is driven by the overall frequency of dishonest responding. Both types of adaptation to recent and frequent dishonest responses have been separately documented, leaving open whether control processes in dishonest responding can flexibly adapt to transient and sustained conflict signals of dishonest and other actions. This was the goal of the present experiments which studied (dis)honest responding to autobiographical yes/no questions. Experiment 1 showed robust transient adaptation to recent dishonest responses whereas sustained control adaptation failed to exert an influence on behavior. It further revealed that transient effects may create a spurious impression of sustained adaptation in typical experimental settings. Experiments 2 and 3 examined whether dishonest responding can profit from transient and sustained adaption processes triggered by other behavioral conflicts. This was clearly not the case: Dishonest responding adapted markedly to recent (dis)honest responses but not to any context of other conflicts. These findings indicate that control adaptation in dishonest responding is strong but surprisingly focused and they point to a potential trade-off between transient and sustained adaptation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  16. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-14

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  17. 40 CFR 63.113 - Process vent provisions-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... § 63.113 Process vent provisions—reference control technology. (a) The owner or operator of a Group 1... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process vent provisions-reference control technology. 63.113 Section 63.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  18. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reference control technology. 63.1322 Section 63.1322 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of a...

  19. Robust synchronization of drive-response chaotic systems via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Li, W.-L.; Chang, K.-M.

    2009-01-01

    A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.

  20. Adaptive integral robust control and application to electromechanical servo systems.

    Science.gov (United States)

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Direct adaptive control of a PUMA 560 industrial robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  2. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  3. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  4. A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid

    International Nuclear Information System (INIS)

    Pavković, Danijel; Lobrović, Mihael; Hrgetić, Mario; Komljenović, Ante

    2016-01-01

    Highlights: • Battery/ultracapacitor storage is considered for a direct-current microgrid. • Microgrid voltage cascade control system with load compensator is designed. • Current references are allocated so that ultracapacitor takes on transient loads. • Adaptive Kalman filter-based estimator is used for indirect load compensation. • Control strategy has been verified on a downscaled hardware-in-the-loop setup. - Abstract: A control system design based on an actively-controlled battery/ultracapacitor hybrid energy storage system suitable for direct current microgrid energy management purposes is presented in this paper. The proposed cascade control system arrangement is based on the superimposed proportional–integral voltage controller designed according to Damping Optimum criterion and a zero-pole canceling feed-forward load compensator aimed at voltage excursion suppression under variable load conditions. The superimposed controller commands the inner battery and ultracapacitor current control loops through a dynamic current reference distribution scheme, wherein the ultracapacitor takes on the highly-dynamic (transient) current demands, and the battery covers for steady-state loads. In order to avoid deep discharges of the ultracapacitor module, it is equipped with an auxiliary state-of-charge controller. Finally, for those applications where load is not measured, an adaptive Kalman filter-based load compensator is proposed and tested. The presented control strategy has been implemented on the low-cost industrial controller unit, and its effectiveness has been verified by means of simulations and experiments for the cases of abrupt load changes and quasi-stochastic load profiles using a downscaled battery/ultracapacitor hardware-in-the-loop experimental setup.

  5. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    Science.gov (United States)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  6. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins

    International Nuclear Information System (INIS)

    Naik, Mugdha S; Singh, Sahjendra N; Mittal, Rajat

    2009-01-01

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback

  7. Development of fault tolerant adaptive control laws for aerospace systems

    Science.gov (United States)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  8. Revisionist integral deferred correction with adaptive step-size control

    KAUST Repository

    Christlieb, Andrew

    2015-03-27

    © 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step-size control can be incorporated within a family of parallel time integrators known as revisionist integral deferred correction (RIDC) methods. The RIDC framework allows for various strategies to implement stepsize control, and we report results from exploring a few of them.

  9. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    Science.gov (United States)

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.

  10. Novel hybrid adaptive controller for manipulation in complex perturbation environments.

    Directory of Open Access Journals (Sweden)

    Alex M C Smith

    Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.

  11. Non-identifier based adaptive control in mechatronics theory and application

    CERN Document Server

    Hackl, Christoph M

    2017-01-01

    This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots. In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relativ...

  12. Conflict adaptation in patients diagnosed with schizophrenia.

    Science.gov (United States)

    Abrahamse, Elger; Ruitenberg, Marit; Boddewyn, Sarah; Oreel, Edith; de Schryver, Maarten; Morrens, Manuel; van Dijck, Jean-Philippe

    2017-11-01

    Cognitive control impairments may contribute strongly to the overall cognitive deficits observed in patients diagnosed with schizophrenia. In the current study we explore a specific cognitive control function referred to as conflict adaptation. Previous studies on conflict adaptation in schizophrenia showed equivocal results, and, moreover, were plagued by confounded research designs. Here we assessed for the first time conflict adaptation in schizophrenia with a design that avoided the major confounds of feature integration and stimulus-response contingency learning. Sixteen patients diagnosed with schizophrenia and sixteen healthy, matched controls performed a vocal Stroop task to determine the congruency sequence effect - a marker of conflict adaptation. A reliable congruency sequence effect was observed for both healthy controls and patients diagnosed with schizophrenia. These findings indicate that schizophrenia is not necessarily accompanied by impaired conflict adaptation. As schizophrenia has been related to abnormal functioning in core conflict adaptation areas such as anterior cingulate and dorsolateral prefrontal cortex, further research is required to better understand the precise impact of such abnormal brain functioning at the behavioral level. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  14. Modeling and (adaptive) control of greenhouse climates

    NARCIS (Netherlands)

    Udink ten Cate, A.J.

    1983-01-01

    The material presented in this thesis can be grouped around four themes, system concepts, modeling, control and adaptive control. In this summary these themes will be treated separately.

    System concepts

    In Chapters 1 and 2 an overview of the problem formulation

  15. Bayesian selective response-adaptive design using the historical control.

    Science.gov (United States)

    Kim, Mi-Ok; Harun, Nusrat; Liu, Chunyan; Khoury, Jane C; Broderick, Joseph P

    2018-06-13

    High quality historical control data, if incorporated, may reduce sample size, trial cost, and duration. A too optimistic use of the data, however, may result in bias under prior-data conflict. Motivated by well-publicized two-arm comparative trials in stroke, we propose a Bayesian design that both adaptively incorporates historical control data and selectively adapt the treatment allocation ratios within an ongoing trial responsively to the relative treatment effects. The proposed design differs from existing designs that borrow from historical controls. As opposed to reducing the number of subjects assigned to the control arm blindly, this design does so adaptively to the relative treatment effects only if evaluation of cumulated current trial data combined with the historical control suggests the superiority of the intervention arm. We used the effective historical sample size approach to quantify borrowed information on the control arm and modified the treatment allocation rules of the doubly adaptive biased coin design to incorporate the quantity. The modified allocation rules were then implemented under the Bayesian framework with commensurate priors addressing prior-data conflict. Trials were also more frequently concluded earlier in line with the underlying truth, reducing trial cost, and duration and yielded parameter estimates with smaller standard errors. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.

  16. Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC.

    Science.gov (United States)

    Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao

    2016-09-01

    In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Implementation of robust adaptive control for robotic manipulator using TMS320C30

    International Nuclear Information System (INIS)

    Han, S. H.

    1996-01-01

    A new adaptive digital control scheme for the robotic manipulator is proposed in this paper. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved Lyapunov second stability analysis based on the adaptive feedforward and feedback controller and PI type time-varying control elements. The control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot. (author)

  18. Fault tolerancy in cooperative adaptive cruise control

    NARCIS (Netherlands)

    Nunen, E. van; Ploeg, J.; Medina, A.M.; Nijmeijer, H.

    2013-01-01

    Future mobility requires sound solutions in the field of fault tolerance in real-time applications amongst which Cooperative Adaptive Cruise Control (CACC). This control system cannot rely on the driver as a backup and is constantly active and therefore more prominent to the occurrences of faults

  19. Research on the adaptive optical control technology based on DSP

    Science.gov (United States)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  20. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Adaptive sliding mode control of tri-layer conjugated polymer actuators

    International Nuclear Information System (INIS)

    Wang, Xiangjiang; Alici, Gursel; Nguyen, Chuc Huu

    2013-01-01

    This paper proposes an adaptive sliding mode control methodology to enhance the positioning ability of conducting polymer actuators typified by tri-layer conjugated polymer actuators. This is motivated by the search for an effective control strategy to command such actuators to a desired configuration in the presence of parametric uncertainties and unmodeled disturbances. After analyzing the stability of the adaptive sliding mode control system, experiments were conducted to demonstrate its satisfactory tracking ability, based on a series of experimental results. Implementation of the control law requires a valid model of the conducting polymer actuator and boundaries of the uncertainties and disturbances. Based on the theoretical and experimental results presented, the adaptive sliding mode control methodology is very attractive in the field of smart actuators which contain significant uncertainties and disturbances. (paper)

  2. Vehicle Reference Generator for Collision-Free Trajectories in Hazardous Maneuvers

    Directory of Open Access Journals (Sweden)

    Cuauhtémoc Acosta Lúa

    2018-01-01

    Full Text Available This paper presents a reference generator for ground vehicles, based on potential fields adapted to the case of vehicular dynamics. The reference generator generates signals to be tracked by the vehicle, corresponding to a trajectory avoiding collisions with obstacles. This generator integrates artificial forces of potential fields of the object surrounding the vehicle. The reference generator is used with a controller to ensure the tracking of the accident-free reference. This approach can be used for vehicle autonomous driving or for active control of manned vehicles. Simulation results, presented for the autonomous driving, consider a scenario inspired by the so-called moose (or elk test, with the presence of other collaborative vehicles.

  3. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  4. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    Directory of Open Access Journals (Sweden)

    Yanchao Yin

    2017-01-01

    Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.

  5. Comparison of Conventional Closed-Loop Controller with an Adaptive Controller for a Disturbed Thermodynamic System

    DEFF Research Database (Denmark)

    Alphinas, Robert A.; Hansen, Hans Henrik; Tambo, Torben

    2017-01-01

    Non-adaptive proportional controllers suffer from the ability to handle a system disturbance leading to a large steady-state error and undesired transient behavior. On the other hand, they are easy to implement and tune. This article examines whether an adaptive controller based on the MIT...

  6. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    Science.gov (United States)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  7. Revisionist integral deferred correction with adaptive step-size control

    KAUST Repository

    Christlieb, Andrew; Macdonald, Colin; Ong, Benjamin; Spiteri, Raymond

    2015-01-01

    © 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step

  8. Parameter Identification and Adaptive Control Applied to the Inverted Pendulum

    Directory of Open Access Journals (Sweden)

    Carlos A. Saldarriaga-Cortés

    2012-06-01

    Full Text Available This paper presents a methodology to implement an adaptive control of the inverted pendulum system; which uses the recursive square minimum method for the identification of a dynamic digital model of the plant and then, with its estimated parameters, tune in real time a pole placement control. The plant to be used is an unstable and nonlinear system. This fact, combined with the adaptive controller characteristics, allows the obtained results to be extended to a great variety of systems. The results show that the above methodology was implemented satisfactorily in terms of estimation, stability and control of such a system. It was established that adaptive techniques have a proper performance even in systems with complex features such as nonlinearity and instability.

  9. Adaptive State Feedback—Theory and Application for Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    Kaman Thapa Magar

    2017-12-01

    Full Text Available A class of adaptive disturbance tracking controllers (ADTCs is augmented with disturbance and state estimation and adaptive state feedback, in which a controller and estimator, which are designed on the basis of a lower-order model, are used to control a higher-order nonlinear plant. The ADTC requires that the plant be almost strict positive real (ASPR to ensure stability. In this paper, we show that the ASPR property of a plant is retained with the addition of disturbance and state estimation and state feedback, thereby ensuring the stability of the augmented system. The proposed adaptive controller with augmentation is presented in the context of maximum power extraction from a wind turbine in a low-wind-speed operation region. A simulation and comparative study on the National Renewable Energy Laboratory’s (NREL’s 5 MW nonlinear wind turbine model with an existing baseline Proportional-Integral-Derivative(PID controller shows that the proposed controller is more effective than the existing baseline PID controller.

  10. Iterative learning-based decentralized adaptive tracker for large-scale systems: a digital redesign approach.

    Science.gov (United States)

    Tsai, Jason Sheng-Hong; Du, Yan-Yi; Huang, Pei-Hsiang; Guo, Shu-Mei; Shieh, Leang-San; Chen, Yuhua

    2011-07-01

    In this paper, a digital redesign methodology of the iterative learning-based decentralized adaptive tracker is proposed to improve the dynamic performance of sampled-data linear large-scale control systems consisting of N interconnected multi-input multi-output subsystems, so that the system output will follow any trajectory which may not be presented by the analytic reference model initially. To overcome the interference of each sub-system and simplify the controller design, the proposed model reference decentralized adaptive control scheme constructs a decoupled well-designed reference model first. Then, according to the well-designed model, this paper develops a digital decentralized adaptive tracker based on the optimal analog control and prediction-based digital redesign technique for the sampled-data large-scale coupling system. In order to enhance the tracking performance of the digital tracker at specified sampling instants, we apply the iterative learning control (ILC) to train the control input via continual learning. As a result, the proposed iterative learning-based decentralized adaptive tracker not only has robust closed-loop decoupled property but also possesses good tracking performance at both transient and steady state. Besides, evolutionary programming is applied to search for a good learning gain to speed up the learning process of ILC. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Nonlinear model-based robust control of a nuclear reactor using adaptive PIF gains and variable structure controller

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Cho, Nam Zin

    1993-01-01

    A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods. (Author)

  12. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    Science.gov (United States)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  13. Walking Flexibility after Hemispherectomy: Split-Belt Treadmill Adaptation and Feedback Control

    Science.gov (United States)

    Choi, Julia T.; Vining, Eileen P. G.; Reisman, Darcy S.; Bastian, Amy J.

    2009-01-01

    Walking flexibility depends on use of feedback or reactive control to respond to unexpected changes in the environment, and the ability to adapt feedforward or predictive control for sustained alterations. Recent work has demonstrated that cerebellar damage impairs feedforward adaptation, but not feedback control, during human split-belt treadmill…

  14. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  15. Decentralized adaptive control of manipulators - Theory, simulation, and experimentation

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.

  16. Adaptive Dynamic Programming for Control Algorithms and Stability

    CERN Document Server

    Zhang, Huaguang; Luo, Yanhong; Wang, Ding

    2013-01-01

    There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...

  17. Adaptive Feature Based Control of Compact Disk Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Vidal, Enrique Sanchez

    2005-01-01

    Many have experienced the problem that their Compact Disc players have difficulties playing Compact Discs with surface faults like scratches and fingerprints. The cause of this is due to the two servo control loops used to keep the Optical Pick-up Unit focused and radially on the information track...... of the Compact Disc. The problem is to design servo controllers which are well suited for handling surface faults which disturb the position measurement and still react sufficiently against normal disturbances like mechanical shocks. In previous work of the same authors a feature based control scheme for CD......-players playing CDs with surface fault is derived and described. This feature based control scheme uses precomputed base to remove the surface fault influence from the position measurements. In this paper an adaptive version of the feature based control scheme is proposed and described. This adaptive scheme can...

  18. Application of stable adaptive schemes to nuclear reactor systems, (1)

    International Nuclear Information System (INIS)

    Fukuda, Toshio

    1978-01-01

    Parameter identification and adaptive control schemes are presented for a point reactor with internal feedbacks which lead to the nonlinearity of the overall system. Both are shown stable with new representation of the system, which corresponds to the nonminimal system representation, in the vein of the Model Reference Adaptive System (MRAS) via the Lyapunov's method. For the sake of the parameter identification, model parameters can be adjusted adaptively as soon as measurements start, while plant parameters can also adaptively be compensated through control input to reduce the output error between the model and the plant for the case of the adaptive control. In the case of the adaptive control, control schemes are presented for two cases, the case of the unknown decay constant of the delayed neutron and the case of the known constant. The adaptive control scheme for the latter case is shown extremely simpler than that for the former. Furthermore, when plant parameters vary slowly with time, computer simulations show that the proposed adaptive control scheme works satisfactorily enough to stabilize an unstable reactor and that it does even in the noise with small variance. (auth.)

  19. Scalable Harmonization of Complex Networks With Local Adaptive Controllers

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Herzallah, R.

    2017-01-01

    Roč. 47, č. 3 (2017), s. 394-404 ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Fee dback * Fee dforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 2.350, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf

  20. STABLE ADAPTIVE CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITHOUT USE OF A SUPERVISORY TERM IN THE CONTROL LAW

    Directory of Open Access Journals (Sweden)

    MOHAMED BAHITA

    2012-02-01

    Full Text Available In this paper, a direct adaptive control scheme for a class of nonlinear systems is proposed. The architecture employs a Gaussian radial basis function (RBF network to construct an adaptive controller. The parameters of the adaptive controller are adapted and changed according to a law derived using Lyapunov stability theory. The centres of the RBF network are adapted on line using the k-means algorithm. Asymptotic Lyapunov stability is established without the use of a supervisory (compensatory term in the control law and with the tracking errors converging to a neighbourhood of the origin. Finally, a simulation is provided to explore the feasibility of the proposed neuronal controller design method.

  1. Adaptive noise cancellation

    International Nuclear Information System (INIS)

    Akram, N.

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique. (author)

  2. A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

    Science.gov (United States)

    Ji, Xuewu; He, Xiangkun; Lv, Chen; Liu, Yahui; Wu, Jian

    2018-06-01

    Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.

  3. The application of adaptive Luenberger observer concept in chemical process control: An algorithmic approach

    Science.gov (United States)

    Doko, Marthen Luther

    2017-05-01

    When developing a wide class of on-line parameter estimation scheme for estimating the unknown parameter vector that appears in certain general linear and bilinear parametric model will be parametrizations of LTI processes or plants as well as of some special classes of nonlinear processes or plants. The resuls is used to design one of the important tools in control, i.e., adaptive observer and for stable LTI processes or plants. In this paper it will consider the design of schemes that simultaneously estimate the plant state variables and parameters by processing the plant I/O measurements on-line and such schemes is refered to as adaptive observers. The design of an adaptive observer is based on the combination of a state observer that could be used to estimate the state variables of aparticular plant state-space representation with an on-line estimation scheme. The choice of the plant state-space representation is crucial for the design and stability analysis of the adaptive observer. The paper will discuss a class of observer called Adaptive Luenberger Observer and its application. Begin with observable canonical form one can find observability matrix of n linear independent rows. By using this fact or their linear combination chosen as a basis, various canonical forms known also as Luenberger canonical form can be obtained. Also,this formation will leads to various algorithm for computing including computation of observable canonical form, observable Hessenberg form and reduced-order state observer design.

  4. Simple adaptive control for quadcopters with saturated actuators

    Science.gov (United States)

    Borisov, Oleg I.; Bobtsov, Alexey A.; Pyrkin, Anton A.; Gromov, Vladislav S.

    2017-01-01

    The stabilization problem for quadcopters with saturated actuators is considered. A simple adaptive output control approach is proposed. The control law "consecutive compensator" is augmented with the auxiliary integral loop and anti-windup scheme. Efficiency of the obtained regulator was confirmed by simulation of the quadcopter control problem.

  5. The importance of reference materials in doping-control analysis.

    Science.gov (United States)

    Mackay, Lindsey G; Kazlauskas, Rymantas

    2011-08-01

    Currently a large range of pure substance reference materials are available for calibration of doping-control methods. These materials enable traceability to the International System of Units (SI) for the results generated by World Anti-Doping Agency (WADA)-accredited laboratories. Only a small number of prohibited substances have threshold limits for which quantification is highly important. For these analytes only the highest quality reference materials that are available should be used. Many prohibited substances have no threshold limits and reference materials provide essential identity confirmation. For these reference materials the correct identity is critical and the methods used to assess identity in these cases should be critically evaluated. There is still a lack of certified matrix reference materials to support many aspects of doping analysis. However, in key areas a range of urine matrix materials have been produced for substances with threshold limits, for example 19-norandrosterone and testosterone/epitestosterone (T/E) ratio. These matrix-certified reference materials (CRMs) are an excellent independent means of checking method recovery and bias and will typically be used in method validation and then regularly as quality-control checks. They can be particularly important in the analysis of samples close to threshold limits, in which measurement accuracy becomes critical. Some reference materials for isotope ratio mass spectrometry (IRMS) analysis are available and a matrix material certified for steroid delta values is currently under production. In other new areas, for example the Athlete Biological Passport, peptide hormone testing, designer steroids, and gene doping, reference material needs still need to be thoroughly assessed and prioritised.

  6. Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-01-01

    Full Text Available This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller.

  7. Relationships between adaptation-innovation, experienced control, and state-trait anxiety.

    Science.gov (United States)

    Elder, R L

    1989-08-01

    This study examines correlations among scores on the Kirton Adaption-Innovation Inventory, the Tiffany Control Scales, and the Spielberger State-Trait Anxiety Inventory for 104 undergraduates enrolled in the general psychology classes at a middle-sized midwestern university. Analysis indicated that adaptors and innovators perceive control from and/or over some aspects of their lives differently. Innovators feel control over internal (self) and over external (environment) while adaptors feel control from internal (self) and from external (environment). These results suggest innovators generally feel that they are in control of both themselves and the environment. Adaptors, however, generally feel they are controlled by internal drives and impulses or environmental events. The present study yielded no correlation between choice of college major and adaption-innovation but more research is needed. A relation between adaption and state anxiety was found, which may suggest adaptors feel more pressure when completing a novel task (answering questionnaires) than innovators. Finally, no significant correlation was found between the Kirton scores and trait anxiety.

  8. L1 Adaptive Control for a Vertical Rotor Orientation System

    Directory of Open Access Journals (Sweden)

    Sijia Liu

    2016-08-01

    Full Text Available Bottom-fixed vertical rotating devices are widely used in industrial and civilian fields. The free upside of the rotor will cause vibration and lead to noise and damage during operation. Meanwhile, parameter uncertainties, nonlinearities and external disturbances will further deteriorate the performance of the rotor. Therefore, in this paper, we present a rotor orientation control system based on an active magnetic bearing with L 1 adaptive control to restrain the influence of the nonlinearity and uncertainty and reduce the vibration amplitude of the vertical rotor. The boundedness and stability of the adaptive system are analyzed via a theoretical derivation. The impact of the adaptive gain is discussed through simulation. An experimental rig based on dSPACE is designed to test the validity of the rotor orientation system. The experimental results show that the relative vibration amplitude of the rotor using the L 1 adaptive controller will be reduced to ∼50% of that in the initial state, which is a 10% greater reduction than can be achieved with the nonadaptive controller. The control approach in this paper is of some significance to solve the orientation control problem in a low-speed vertical rotor with uncertainties and nonlinearities.

  9. dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter

    International Nuclear Information System (INIS)

    Altin, Necmi; Sefa, İbrahim

    2012-01-01

    Highlights: ► We propose a dSPACE based neuro-fuzzy controlled grid interactive inverter. ► The membership functions and rule base of fuzzy logic controller by using ANFIS. ► A LCL output filter is designed. ► A high performance controller is designed. - Abstract: In this study, design, simulation and implementation of a dSPACE based grid interactive voltage source inverter are proposed. This inverter has adaptive neuro-fuzzy controller and capable of importing electrical energy, generated from renewable energy sources such as the wind, the solar and the fuel cells to the grid. A line frequency transformer and a LCL filter are used at the output of the grid interactive inverter which is designed as current controlled to decrease the susceptibility to phase errors. Membership functions and rule base of the fuzzy logic controller, which control the inverter output current, are determined by using artificial neural networks. Both simulation and experimental results show that, the grid interactive inverter operates synchronously with the grid. The inverter output current which is imported to the grid is in sinusoidal waveform and the harmonic level of it meets the international standards (4.3 < 5.0%). In addition, simulation and experimental results of the neuro-fuzzy and the PI controlled inverter are given together and compared in detail. Simulation and experimental results show that the proposed inverter has faster response to the reference variations and lower steady state error than PI controller.

  10. Error-controlled adaptive finite elements in solid mechanics

    National Research Council Canada - National Science Library

    Stein, Erwin; Ramm, E

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...

  11. Adaptive Wavelet Coding Applied in a Wireless Control System.

    Science.gov (United States)

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  12. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  13. Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems

    International Nuclear Information System (INIS)

    Yan Zhenya; Yu Pei

    2007-01-01

    In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adaptive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos lag synchronization for τ < 0 and global chaos synchronization for τ = 0 of the LC system. Numerical simulations are used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear (adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. Moreover, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of another new type of chaotic system

  14. Cooperative adaptive cruise control : tradeoffs between control and network specifications

    NARCIS (Netherlands)

    Oncu, S.; Wouw, van de N.; Nijmeijer, H.

    2011-01-01

    In this study, we consider a Cooperative Adaptive Cruise Control (CACC) system which regulates inter-vehicle distances in a vehicle string. Improved performance can be achieved by utilizing information exchange between vehicles through wireless communication besides local sensor measurements.

  15. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Husam Fayiz, Al Masri

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms. (paper)

  16. Generating Human-Like Velocity-Adapted Jumping Gait from sEMG Signals for Bionic Leg’s Control

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2017-01-01

    Full Text Available In the case of dynamic motion such as jumping, an important fact in sEMG (surface Electromyogram signal based control on exoskeletons, myoelectric prostheses, and rehabilitation gait is that multichannel sEMG signals contain mass data and vary greatly with time, which makes it difficult to generate compliant gait. Inspired by the fact that muscle synergies leading to dimensionality reduction may simplify motor control and learning, this paper proposes a new approach to generate flexible gait based on muscle synergies extracted from sEMG signal. Two questions were discussed and solved, the first one concerning whether the same set of muscle synergies can explain the different phases of hopping movement with various velocities. The second one is about how to generate self-adapted gait with muscle synergies while alleviating model sensitivity to sEMG transient changes. From the experimental results, the proposed method shows good performance both in accuracy and in robustness for producing velocity-adapted vertical jumping gait. The method discussed in this paper provides a valuable reference for the sEMG-based control of bionic robot leg to generate human-like dynamic gait.

  17. An adaptable Boolean net trainable to control a computing robot

    International Nuclear Information System (INIS)

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-01-01

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits

  18. A Dung Beetle-like Leg and its Adaptive Neural Control

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Stoyanov, Stoyan; Larsen, Jørgen Christian

    2016-01-01

    Dung beetles show fascinating locomotion abilities. They can use their legs to not only walk but also manipulate objects. Furthermore, they can perform their leg movements at a proper frequency with respect to their biomechanical properties and quickly adapt the movements to deal with external pe...... also apply adaptive neural control, based on a central pattern generator (CPG) circuit with synaptic plasticity, to autonomously generate a proper stepping frequency of the leg. The controller can also adapt the leg movement to deal with external perturbations within a few steps....

  19. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems

    International Nuclear Information System (INIS)

    Poursamad, Amir; Markazi, Amir H.D.

    2009-01-01

    This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.

  20. Adaptive terminal sliding mode control for hypersonic flight vehicles with strictly lower convex function based nonlinear disturbance observer.

    Science.gov (United States)

    Wu, Yun-Jie; Zuo, Jing-Xing; Sun, Liang-Hua

    2017-11-01

    In this paper, the altitude and velocity tracking control of a generic hypersonic flight vehicle (HFV) is considered. A novel adaptive terminal sliding mode controller (ATSMC) with strictly lower convex function based nonlinear disturbance observer (SDOB) is proposed for the longitudinal dynamics of HFV in presence of both parametric uncertainties and external disturbances. First, for the sake of enhancing the anti-interference capability, SDOB is presented to estimate and compensate the equivalent disturbances by introducing a strictly lower convex function. Next, the SDOB based ATSMC (SDOB-ATSMC) is proposed to guarantee the system outputs track the reference trajectory. Then, stability of the proposed control scheme is analyzed by the Lyapunov function method. Compared with other HFV control approaches, key novelties of SDOB-ATSMC are that a novel SDOB is proposed and drawn into the (virtual) control laws to compensate the disturbances and that several adaptive laws are used to deal with the differential explosion problem. Finally, it is illustrated by the simulation results that the new method exhibits an excellent robustness and a better disturbance rejection performance than the convention approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  2. Model and experiments to optimize co-adaptation in a simplified myoelectric control system.

    Science.gov (United States)

    Couraud, M; Cattaert, D; Paclet, F; Oudeyer, P Y; de Rugy, A

    2018-04-01

    To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional

  3. Model and experiments to optimize co-adaptation in a simplified myoelectric control system

    Science.gov (United States)

    Couraud, M.; Cattaert, D.; Paclet, F.; Oudeyer, P. Y.; de Rugy, A.

    2018-04-01

    Objective. To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. Approach. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. Results. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. Significance. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this

  4. Adaptive Automation Based on Air Traffic Controller Decision-Making

    NARCIS (Netherlands)

    IJtsma (Student TU Delft), Martijn; Borst, C.; Mercado Velasco, G.A.; Mulder, M.; van Paassen, M.M.; Tsang, P.S.; Vidulich, M.A.

    2017-01-01

    Through smart scheduling and triggering of automation support, adaptive automation has the potential to balance air traffic controller workload. The challenge in the design of adaptive automation systems is to decide how and when the automation should provide support. This paper describes the design

  5. A Methodology for Investigating Adaptive Postural Control

    Science.gov (United States)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  6. Model Predictive Control for Offset-Free Reference Tracking

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    2016-01-01

    Roč. 5, č. 1 (2016), s. 8-13 ISSN 1805-3386 Institutional support: RVO:67985556 Keywords : offset-free reference tracking * predictive control * ARX model * state-space model * multi-input multi-output system * robotic system * mechatronic system Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2016/AS/belda-0458355.pdf

  7. Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    Science.gov (United States)

    Eshak, Peter B.

    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to

  8. Substantiation of Structure of Adaptive Control Systems for Motor Units

    Science.gov (United States)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  9. Adaptive Control of a Wearable Exoskeleton for Upper-Extremity Neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Sivakumar Balasubramanian

    2012-01-01

    Full Text Available The paper describes the implementation and testing of two adaptive controllers developed for a wearable, underactuated upper extremity therapy robot – RUPERT (Robotic Upper Extremity Repetitive Trainer. The controllers developed in this study were used to implement two adaptive robotic therapy modes – the adaptive co-operative mode and the adaptive active-assist mode – that are based on two different approaches for providing robotic assistance for task practice. The adaptive active-assist mode completes therapy tasks when a subject is unable to do so voluntarily. This robotic therapy mode is a novel implementation of the idea of an active-assist therapy mode; it utilizes the measure of a subject’s motor ability, along with their real-time movement kinematics to initiate robotic assistance at the appropriate time during a movement trial. The adaptive co-operative mode, on the other hand, is based on the idea of enabling task completion instead of completing the task for the subject. Both these therapy modes were designed to adapt to a stroke subject's motor ability, and thus encourage voluntary participation from the stroke subject. The two controllers were tested on three stroke subjects practicing robot-assisted reaching movements. The results from this testing demonstrate that an underactuated wearable exoskeleton, such as RUPERT, can be used for administering robot-assisted therapy, in a manner that encourages voluntary participation from the subject undergoing therapy.

  10. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    International Nuclear Information System (INIS)

    Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing

    2015-01-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)

  11. Novel adaptive feedback synchronization scheme for a class of chaotic systems with and without parametric uncertainty

    International Nuclear Information System (INIS)

    Handa, Himesh; Sharma, B.B.

    2016-01-01

    Highlights: • New adaptive control design strategy to address chaotic system synchronization in master-slave configuration. • To derive control structure using model reference adaptive control like approach. • Extension of results to address general case with known and unknown system parameters. • Application of proposed strategy to chaotic systems. - Abstract: In this paper, a new adaptive feedback control design technique for the synchronization of a class of chaotic systems in master–slave configuration is proposed. The controller parameters are assumed to be unknown and are evolved using adaptation laws so as to achieve synchronization. To replicate real system operation, uncertainties are considered in both master as well as salve system parameters and adaptation laws for uncertain parameters are analytically derived using Lyapunov stability theory. The proposed strategy is derived by mimicking model reference adaptive control like structure for synchronization problem. To validate the methodology, two Genesio–Tesi systems and two Rossler's Prototype-4 systems are considered in master–slave configuration for synchronization. The analysis is done first with known system parameters and then uncertainties in system parameters are considered. Finally, detailed simulation results are provided to illustrate the effectiveness of the proposed results.

  12. Attractive manifold-based adaptive solar attitude control of satellites in elliptic orbits

    Science.gov (United States)

    Lee, Keum W.; Singh, Sahjendra N.

    2011-01-01

    The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller-estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.

  13. Adaptive training of neural networks for control of autonomous mobile robots

    NARCIS (Netherlands)

    Steur, E.; Vromen, T.; Nijmeijer, H.; Fossen, T.I.; Nijmeijer, H.; Pettersen, K.Y.

    2017-01-01

    We present an adaptive training procedure for a spiking neural network, which is used for control of a mobile robot. Because of manufacturing tolerances, any hardware implementation of a spiking neural network has non-identical nodes, which limit the performance of the controller. The adaptive

  14. On the necessity of identifying the true parameter in adaptive LQ control

    NARCIS (Netherlands)

    Polderman, Jan W.

    1986-01-01

    In adaptive control problems one may drop the requirement of identifying the true system in order to simplify the problem of control. It will be shown that in the adaptive LQ control problem this does not at all lead to an easier problem.

  15. L(sub 1) Adaptive Control Design for NASA AirSTAR Flight Test Vehicle

    Science.gov (United States)

    Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira; Zou, Xiaotian

    2009-01-01

    In this paper we present a new L(sub 1) adaptive control architecture that directly compensates for matched as well as unmatched system uncertainty. To evaluate the L(sub 1) adaptive controller, we take advantage of the flexible research environment with rapid prototyping and testing of control laws in the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. We apply the L(sub 1) adaptive control laws to the subscale turbine powered Generic Transport Model. The presented results are from a full nonlinear simulation of the Generic Transport Model and some preliminary pilot evaluations of the L(sub 1) adaptive control law.

  16. Adaptive Incentive Controls for Stackelberg Games with Unknown Cost Functionals.

    Science.gov (United States)

    1984-01-01

    APR EZT:: F I AN 73S e OsL:-: UNCLASSI?:-- Q4~.’~- .A.., 6, *~*i i~~*~~*.- U ADAPTIVE INCENTIVE CONTROLS FOR STACKELBERG GAMES WITH UNKNOWN COST...AD-A161 885 ADAPTIVE INCENTIVE CONTROLS FOR STACKELBERG GAMES WITH i/1 UNKNOWN COST FUNCTIONALSCU) ILLINOIS UNIV AT URBANA DECISION AND CONTROL LAB T...ORGANIZATION 6b. OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION CoriaeLcenef~pda~ Joint Services Electronics Program Laboratory, Univ. of Illinois N/A

  17. Adaptive Sensing and Control for Flexible Transmission in a Turbulent Medium. Adaptive Laser Beam Control Using Return Photon Statistics

    National Research Council Canada - National Science Library

    Lukesh, Gordon

    2004-01-01

    .... Pointing estimates are available after 25 shots. As a prime example of the utility and feasibility, estimates of boresight will be available to adaptively control pointing with a goal of boresight reduction via feedback...

  18. Embedded intelligent adaptive PI controller for an electromechanical system.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2016-09-01

    In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.

    Science.gov (United States)

    Aprasoff, Jonathan; Donchin, Opher

    2012-04-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.

  20. Alignment Condition-Based Robust Adaptive Iterative Learning Control of Uncertain Robot System

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available This paper proposes an adaptive iterative learning control strategy integrated with saturation-based robust control for uncertain robot system in presence of modelling uncertainties, unknown parameter, and external disturbance under alignment condition. An important merit is that it achieves adaptive switching of gain matrix both in conventional PD-type feedforward control and robust adaptive control in the iteration domain simultaneously. The analysis of convergence of proposed control law is based on Lyapunov's direct method under alignment initial condition. Simulation results demonstrate the faster learning rate and better robust performance with proposed algorithm by comparing with other existing robust controllers. The actual experiment on three-DOF robot manipulator shows its better practical effectiveness.

  1. Flexible Microgrid Power Quality Enhancement Using Adaptive Hybrid Voltage and Current Controller

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede

    2014-01-01

    -pass/bandpass filters in the DG unit digital controller. Moreover, phase-locked loops are not necessary as the microgrid frequency deviation can be automatically identified by the power control loop. Consequently, the proposed control method provides opportunities to reduce DG control complexity, without affecting......To accomplish superior harmonic compensation performance using distributed generation (DG) unit power electronics interfaces, an adaptive hybrid voltage and current controlled method (HCM) is proposed in this paper. It shows that the proposed adaptive HCM can reduce the numbers of low...... the harmonic compensation performance. Comprehensive simulated and experimental results from a single-phase microgrid are provided to verify the feasibility of the proposed adaptive HCM approach....

  2. Adaptive control in multi-threaded iterated integration

    International Nuclear Information System (INIS)

    Doncker, Elise de; Yuasa, Fukuko

    2013-01-01

    In recent years we have developed a technique for the direct computation of Feynman loop-integrals, which are notorious for the occurrence of integrand singularities. Especially for handling singularities in the interior of the domain, we approximate the iterated integral using an adaptive algorithm in the coordinate directions. We present a novel multi-core parallelization scheme for adaptive multivariate integration, by assigning threads to the rule evaluations in the outer dimensions of the iterated integral. The method ensures a large parallel granularity as each function evaluation by itself comprises an integral over the lower dimensions, while the application of the threads is governed by the adaptive control in the outer level. We give computational results for a test set of 3- to 6-dimensional integrals, where several problems exhibit a loop integral behavior.

  3. Adaptive Observer-Based Fault-Tolerant Control Design for Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Huaming Qian

    2015-01-01

    Full Text Available This study focuses on the design of the robust fault-tolerant control (FTC system based on adaptive observer for uncertain linear time invariant (LTI systems. In order to improve robustness, rapidity, and accuracy of traditional fault estimation algorithm, an adaptive fault estimation algorithm (AFEA using an augmented observer is presented. By utilizing a new fault estimator model, an improved AFEA based on linear matrix inequality (LMI technique is proposed to increase the performance. Furthermore, an observer-based state feedback fault-tolerant control strategy is designed, which guarantees the stability and performance of the faulty system. Moreover, the adaptive observer and the fault-tolerant controller are designed separately, whose performance can be considered, respectively. Finally, simulation results of an aircraft application are presented to illustrate the effectiveness of the proposed design methods.

  4. Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode

    Directory of Open Access Journals (Sweden)

    Mostafa Khazaee

    Full Text Available AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where the passive techniques have obvious shortcomings. The main idea is to combine the adaptive fuzzy controller with adaptive predictor as a new time delay control technique. The adaptive fuzzy sliding mode control and the adaptive fuzzy predictor help to circumvent the input delay and nonlinearities in such isolators. The main advantage of the proposed method is that the closed-loop system stability is guaranteed under certain conditions. Simulation results reveal the effectiveness of the proposed method, compared with other existing time -delay control methods.

  5. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  6. Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging

    Science.gov (United States)

    Litt, Jonathan S.; Parker, Khary I.; Chatterjee, Santanu

    2003-01-01

    This paper presents an ad hoc adaptive, multivariable controller tuning rule that compensates for a thrust response variation in an engine whose performance has been degraded though use and wear. The upset appears when a large throttle transient is performed such that the engine controller switches from low-speed to high-speed mode. A relationship was observed between the level of engine degradation and the overshoot in engine temperature ratio, which was determined to cause the thrust response variation. This relationship was used to adapt the controller. The method is shown to work very well up to the operability limits of the engine. Additionally, since the level of degradation can be estimated from sensor data, it would be feasible to implement the adaptive control algorithm on-line.

  7. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    Science.gov (United States)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a

  8. Robust Optimal Adaptive Trajectory Tracking Control of Quadrotor Helicopter

    Directory of Open Access Journals (Sweden)

    M. Navabi

    Full Text Available Abstract This paper focuses on robust optimal adaptive control strategy to deal with tracking problem of a quadrotor unmanned aerial vehicle (UAV in presence of parametric uncertainties, actuator amplitude constraints, and unknown time-varying external disturbances. First, Lyapunov-based indirect adaptive controller optimized by particle swarm optimization (PSO is developed for multi-input multi-output (MIMO nonlinear quadrotor to prevent input constraints violation, and then disturbance observer-based control (DOBC technique is aggregated with the control system to attenuate the effects of disturbance generated by an exogenous system. The performance of synthesis control method is evaluated by a new performance index function in time-domain, and the stability analysis is carried out using Lyapunov theory. Finally, illustrative numerical simulations are conducted to demonstrate the effectiveness of the presented approach in altitude and attitude tracking under several conditions, including large time-varying uncertainty, exogenous disturbance, and control input constraints.

  9. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  10. Objective evaluation of human manual control adaptation boundaries using a cybernetic approach

    NARCIS (Netherlands)

    Lu, T.

    2018-01-01

    Manual control tasks can be found everywhere in our daily activities, and the human ability to adapt in controlling many different vehicles such as cars and airplanes make it possible for us to travel farther, faster and higher. The human adaptation ability to changes in the controlled element

  11. Graceful degradation of cooperative adaptive cruise control

    NARCIS (Netherlands)

    Ploeg, J.; Semsar-Kazerooni, E.; Lijster, G.; Wouw, N. van de; Nijmeijer, H.

    2015-01-01

    Cooperative adaptive cruise control (CACC) employs wireless intervehicle communication, in addition to onboard sensors, to obtain string-stable vehicle-following behavior at small intervehicle distances. As a consequence, however, CACC is vulnerable to communication impairments such as latency and

  12. Adaptive Disturbance Rejection Control for Automatic Carrier Landing System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-01-01

    Full Text Available An adaptive disturbance rejection algorithm is proposed for carrier landing system in the final-approach. The carrier-based aircraft dynamics and the linearized longitudinal model under turbulence conditions in the final-approach are analyzed. A stable adaptive control scheme is developed based on LDU decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. Finally, simulation studies of a linearized longitudinal-directional dynamics model are conducted to demonstrate the performance of the adaptive scheme.

  13. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    Science.gov (United States)

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.

  14. [Application of traditional Chinese medicine reference standards in quality control of Chinese herbal pieces].

    Science.gov (United States)

    Lu, Tu-Lin; Li, Jin-Ci; Yu, Jiang-Yong; Cai, Bao-Chang; Mao, Chun-Qin; Yin, Fang-Zhou

    2014-01-01

    Traditional Chinese medicine (TCM) reference standards plays an important role in the quality control of Chinese herbal pieces. This paper overviewed the development of TCM reference standards. By analyzing the 2010 edition of Chinese pharmacopoeia, the application of TCM reference standards in the quality control of Chinese herbal pieces was summarized, and the problems exiting in the system were put forward. In the process of improving the quality control level of Chinese herbal pieces, various kinds of advanced methods and technology should be used to research the characteristic reference standards of Chinese herbal pieces, more and more reasonable reference standards should be introduced in the quality control system of Chinese herbal pieces. This article discussed the solutions in the aspect of TCM reference standards, and future development of quality control on Chinese herbal pieces is prospected.

  15. Rotor Field Oriented Control with adaptive Iron Loss Compensation

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1999-01-01

    It is well known from the literature that iron loses in an induction motor implies field angle estimation errors and hence detuning problems. In this paper a new method for estimating the iron loss resistor in an induction motor is presented. The method is based on a traditional dynamic model...... controlled in a Field Oriented Control scheme. This deviation is used to force a MIT-rule based adaptive estimator. An adaptive compensator containing the developed estimator is introduced and verified by simulations and tested by real time experiments....

  16. Adaptive control of two-wheeled mobile balance robot capable to adapt different surfaces using a novel artificial neural network–based real-time switching dynamic controller

    Directory of Open Access Journals (Sweden)

    Ali Unluturk

    2017-03-01

    Full Text Available In this article, a novel real-time artificial neural network–based adaptable switching dynamic controller is developed and practically implemented. It will be used for real-time control of two-wheeled balance robot which can balance itself upright position on different surfaces. In order to examine the efficiency of the proposed controller, a two-wheeled mobile balance robot is designed and a test platform for experimental setup is made for balance problem on different surfaces. In a developed adaptive controller algorithm which is capable to adapt different surfaces, mean absolute target angle deviation error, mean absolute target displacement deviation error and mean absolute controller output data are employed for surface estimation by using artificial neural network. In a designed two-wheeled mobile balance robot system, robot tilt angle is estimated via Kalman filter from accelerometer and gyroscope sensor signals. Furthermore, a visual robot control interface is developed in C++ software development environment so that robot controller parameters can be changed as desired. In addition, robot balance angle, linear displacement and controller output can be observed online on personal computer. According to the real-time experimental results, the proposed novel type controller gives more effective results than the classic ones.

  17. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  18. Calculation of vehicle delay at signal-controlled intersections with adaptive traffic control algorithm

    Directory of Open Access Journals (Sweden)

    Andronov Roman

    2018-01-01

    Full Text Available By widely introducing information technology tools in the field of traffic control, it is possible to increase the capacity of hubs and reduce vehicle delays. Adaptive traffic light control is one of such tools. Its effectiveness can be assessed through traffic flow simulation. The aim of this study is to create a simulation model of a signal-controlled intersection that can be used to assess the effectiveness of adaptive control in various traffic situations, including the presence or absence of pedestrian traffic through an intersection. The model is based on a numerical experiment conducted using the Monte Carlo method. As a result of the study, vehicle delays, queue length and duration of traffic light cycles are calculated subject to different intensities of incoming traffic flows, and the presence or absence of pedestrian traffic.

  19. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    Science.gov (United States)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  20. Adaptive control of dynamic balance in human gait on a split-belt treadmill.

    Science.gov (United States)

    Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob

    2018-05-17

    Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.

  1. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    Directory of Open Access Journals (Sweden)

    Poramate eManoonpong

    2013-02-01

    Full Text Available Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs and sensory feedback (afferent-based control but also on internal forward models (efference copies. They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.

  2. Design of a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological damper

    International Nuclear Information System (INIS)

    Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok

    2014-01-01

    This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80–99) and the control algorithm is synthesized based on the H ∞ tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches. (papers)

  3. Ruminal acidosis: a review with detailed reference to the controlling agent Megasphaera elsdenii NCIMB 41125

    OpenAIRE

    Meissner, H.H.; Henning, P.H.; Horn, C.H.; Leeuw, K-J.; Hagg, F.M.; Fouché, G.

    2010-01-01

    Ruminal acidosis is discussed with reference to causes and economic and health implications. Distinction is made between the acute form which with proper adaptation to high energy diets is seldom encountered and the more problematic chronic or sub-acute form, commonly referred to as sub-acute ruminal acidosis (SARA). Apart from stepwise transition from roughage to concentrates, methods adopted to reduce SARA include grain treatment to reduce starch degradation, feed additives such as buffers ...

  4. Generic adaptation framework for unifying adaptive web-based systems

    NARCIS (Netherlands)

    Knutov, E.

    2012-01-01

    The Generic Adaptation Framework (GAF) research project first and foremost creates a common formal framework for describing current and future adaptive hypermedia (AHS) and adaptive webbased systems in general. It provides a commonly agreed upon taxonomy and a reference model that encompasses the

  5. Contrasting Complement Control, Temporal Adjunct Control and Controlled Verbal Gerund Subjects in ASD: The Role of Contextual Cues in Reference Assignment.

    Science.gov (United States)

    Janke, Vikki; Perovic, Alexandra

    2017-01-01

    This study examines two complex syntactic dependencies (complement control and sentence-final temporal adjunct control) and one pragmatic dependency (controlled verbal gerund subjects) in children with ASD. Sixteen high-functioning (HFA) children (aged 6-16) with a diagnosis of autism and no language impairment, matched on age, gender and non-verbal MA to one TD control group, and on age, gender and verbal MA to another TD control group, undertook three picture-selection tasks. Task 1 measured their base-line interpretations of the empty categories ( ec ). Task 2 preceded these sentence sets with a weakly established topic cueing an alternative referent and Task 3 with a strongly established topic cueing an alternative referent. In complement control (Ron persuaded Hermione ec to kick the ball) and sentence-final temporal adjunct control (Harry tapped Luna while ec feeding the owl), the reference of the ec is argued to be related obligatorily to the object and subject respectively. In controlled verbal-gerund subjects (VGS) ( ec Rowing the boat clumsily made Luna seasick), the ec 's reference is resolved pragmatically. Referent choices across the three tasks were compared. TD children chose the object uniformly in complement control across all tasks but in adjunct control, preferences shifted toward the object in Task 3. In controlled VGSs, they exhibited a strong preference for an internal-referent interpretation in Task 1, which shifted in the direction of the cues in Tasks 2 and 3. HFA children gave a mixed performance. They patterned with their TD counterparts on complement control and controlled VGSs but performed marginally differently on adjunct control: no TD groups were influenced by the weakly established topic in Task 2 but all groups were influenced by the strongly established topic in Task 3. HFA children were less influenced than the TD children, resulting in their making fewer object choices overall but revealing parallel patterns of performance. In

  6. Design and FPGA-implementation of an improved adaptive fuzzy logic controller for DC motor speed control

    Directory of Open Access Journals (Sweden)

    E.A. Ramadan

    2014-09-01

    Full Text Available This paper presents an improved adaptive fuzzy logic speed controller for a DC motor, based on field programmable gate array (FPGA hardware implementation. The developed controller includes an adaptive fuzzy logic control (AFLC algorithm, which is designed and verified with a nonlinear model of DC motor. Then, it has been synthesised, functionally verified and implemented using Xilinx Integrated Software Environment (ISE and Spartan-3E FPGA. The performance of this controller has been successfully validated with good tracking results under different operating conditions.

  7. Output-Feedback Nonlinear Adaptive Control Strategy of the Single-Phase Grid-Connected Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Abdelmajid Abouloifa

    2018-01-01

    Full Text Available This paper addresses the problem of controlling the single-phase grid connected to the photovoltaic system through a full bridge inverter with LCL-filter. The control aims are threefold: (i imposing the voltage in the output of PV panel to track a reference provided by the MPPT block; (ii regulating the DC-link voltage to guarantee the power exchange between the source and AC grid; (iii ensuring a satisfactory power factor correction (PFC. The problem is dealt with using a cascade nonlinear adaptive controller that is developed making use of sliding-mode technique and observers in order to estimate the state variables and grid parameters, by measuring only the grid current, PV voltage, and the DC bus voltage. The control problem addressed by this work involves several difficulties, including the uncertainty of some parameters of the system and the numerous state variables are inaccessible to measurements. The results are confirmed by simulation under MATLAB∖Simulink∖SimPowerSystems, which show that the proposed regulator is robust with respect to climate changes.

  8. Robust Longitudinal Aircraft- Control Based on an Adaptive Fuzzy-Logic Algorithm

    Directory of Open Access Journals (Sweden)

    Abdel- Latif Elshafei

    2002-06-01

    Full Text Available To study the aircraft response to a fast pull-up manoeuvre, a short period approximation of the longitudinal model is considered. The model is highly nonlinear and includes parametric uncertainties. To cope with a wide range of command signals, a robust adaptive fuzzy logic controller is proposed. The proposed controller adopts a dynamic inversion approach. Since feedback linearization is practically imperfect, robustifying and adaptive components are included in the control law to compensate for modeling errors and achieve acceptable tracking errors. Two fuzzy systems are implemented. The first system models the nominal values of the system’s nonlinearity. The second system is an adaptive one that compensates for modeling errors. The derivation of the control law based on a dynamic game approach is given in detail. Stability of the closed-loop control system is also verified. Simulation results based on an F16-model illustrate a successful tracking performance of the proposed controller.

  9. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.

    Science.gov (United States)

    Kang, Hao-Bo; Wang, Jian-Hui

    2013-11-01

    This paper studies an adaptive control strategy for a class of 5 DOF upper-limb exoskeleton robot with a special safety consideration. The safety requirement plays a critical role in the clinical treatment when assisting patients with shoulder, elbow and wrist joint movements. With the objective of assuring the tracking performance of the pre-specified operations, the proposed adaptive controller is firstly designed to be robust to the model uncertainties. To further improve the safety and fault-tolerance in the presence of unknown large parameter variances or even actuator faults, the adaptive controller is on-line updated according to the information provided by an adaptive observer without additional sensors. An output tracking performance is well achieved with a tunable error bound. The experimental example also verifies the effectiveness of the proposed control scheme. © 2013 ISA. Published by ISA. All rights reserved.

  10. Analytic Model Predictive Control of Uncertain Nonlinear Systems: A Fuzzy Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Xiuyan Peng

    2015-01-01

    Full Text Available A fuzzy adaptive analytic model predictive control method is proposed in this paper for a class of uncertain nonlinear systems. Specifically, invoking the standard results from the Moore-Penrose inverse of matrix, the unmatched problem which exists commonly in input and output dimensions of systems is firstly solved. Then, recurring to analytic model predictive control law, combined with fuzzy adaptive approach, the fuzzy adaptive predictive controller synthesis for the underlying systems is developed. To further reduce the impact of fuzzy approximation error on the system and improve the robustness of the system, the robust compensation term is introduced. It is shown that by applying the fuzzy adaptive analytic model predictive controller the rudder roll stabilization system is ultimately uniformly bounded stabilized in the H-infinity sense. Finally, simulation results demonstrate the effectiveness of the proposed method.

  11. Design of an adaptive pole assignment controller for steam generators and its experimental study

    International Nuclear Information System (INIS)

    Na, Man Gyun; No, Hee Cheon

    1992-01-01

    An adaptive observer is designed that both parameters and state variables of the steam generator are estimated simultaneously. A pole assignment controller is derived on the basis of the adaptive observer. The characteristics of the overall closed-loop control system can be expressed in terms of its poles, assigned poles. The troublesome tuning procedure of the P-I controller is reduced to the determination of the desired poles only. The proposed algorithm is compared with the conventional P-I controller through numerical simulation. Also, the adaptive pole assignment controller is studied experimentally by implementing it to the mock-up of the nuclear steam generator. The adaptive pole assignment controller shows better responses than the P-l controller does. (Author)

  12. Real-Time Application Performance Steering and Adaptive Control

    National Research Council Canada - National Science Library

    Reed, Daniel

    2002-01-01

    .... The objective of the Real-time Application Performance Steering and Adaptive Control project is to replace ad hoc, post-mortem performance optimization with an extensible, portable, and distributed...

  13. Achieving control and synchronization merely through a stochastically adaptive feedback coupling

    Science.gov (United States)

    Lin, Wei; Chen, Xin; Zhou, Shijie

    2017-07-01

    Techniques of deterministically adaptive feedback couplings have been successfully and extensively applied to realize control or/and synchronization in chaotic dynamical systems and even in complex dynamical networks. In this article, a technique of stochastically adaptive feedback coupling is novelly proposed to not only realize control in chaotic dynamical systems but also achieve synchronization in unidirectionally coupled systems. Compared with those deterministically adaptive couplings, the proposed stochastic technique interestingly shows some advantages from a physical viewpoint of time and energy consumptions. More significantly, the usefulness of the proposed stochastic technique is analytically validated by the theory of stochastic processes. It is anticipated that the proposed stochastic technique will be widely used in achieving system control and network synchronization.

  14. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  15. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Science.gov (United States)

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  16. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Directory of Open Access Journals (Sweden)

    Jinxiang Dong

    2008-07-01

    Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.

  17. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  18. Synchronization of chaos in RCL-shunted Josephson junction using a simple adaptive controller

    International Nuclear Information System (INIS)

    Guo, R; Vincent, U E; Idowu, B A

    2009-01-01

    In this paper, a simple adaptive control is proposed for the synchronization of chaotic dynamics of resistive-capacitive-inductive-shunted Josephson junctions (RCLSJ). The synchronization problem is investigated based on a drive-response system configuration consisting of two identical RCLSJ with and without identical system parameters. In addition, the synchronization when the system parameters are unknown is considered based on adaptive parameter control estimation. Sufficient conditions for global asymptotic synchronization are given and numerical simulations are employed to demonstrate the efficiency of the adaptive control scheme. In the presence of noise, we also show that the synchronization is robust and discuss the implication of our adaptive control technique in rapid single flux quantum (RSFQ) devices.

  19. Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy

    NARCIS (Netherlands)

    Mullakkal Babu, F.A.; Wang, M.; van Arem, B.; Happee, R.; Rosetti, R.; Wolf, D.

    2016-01-01

    Current Full Range Adaptive Cruise Control (FRACC) systems switch between separate adaptive cruise control and collision avoidance systems. This can lead to jerky responses and discomfort during the transition between the two control modes. We propose a Full Range Adaptive Cruise Control (FRACC)

  20. Adaptive active vibration isolation – A control perspective

    Directory of Open Access Journals (Sweden)

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  1. Control of grid integrated voltage source converters under unbalanced conditions: development of an on-line frequency-adaptive virtual flux-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Suul, Jon Are

    2012-03-15

    and reactive power flow, formulated as generalized equations for current reference calculation. A simple, but general, implementation is therefore achieved, where the control objective and the power flow characteristics can be selected according to the requirements of any particular application. Thus, the same control structure can be used to achieve for instance balanced sinusoidal currents or elimination of double frequency active power oscillations during unbalanced conditions. In case of voltage sags, current references corresponding to a specified active or reactive power flow might exceed the current capability of the converter. The limits for active and reactive power transfer during unbalanced conditions have therefore been analyzed, and generalized strategies for current reference calculation when operating under current limitations have been derived. The specified objectives for active and reactive power flow characteristics can therefore be maintained during unbalanced grid conditions, while the average active and reactive power flow is limited to keep the current references within safe values. All concepts and techniques proposed in this Thesis have been verified by simulations and laboratory experiments. The SOGI-based method for Virtual Flux estimation and the strategies for active and reactive power control with current limitation can also be easily adapted for a wide range of applications and can be combined with various types of inner loop control structures. Therefore, the proposed approach can potentially be used as a general basis for Virtual Flux-based voltage-sensor-less operation of VSCs under unbalanced grid voltage conditions.(Author)

  2. Simple adaptive control system design for a quadrotor with an internal PFC

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro [Dept. of Mechanical Systems Engineering, Kumamoto University 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan)

    2014-12-10

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  3. Integrated Damage-Adaptive Control System (IDACS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI, in collaboration with Boeing Phantom Works, proposes to develop and test an efficient Integrated Damage Adaptive Control System (IDACS). The proposed system is...

  4. Career success criteria and locus of control as indicators of adaptive readiness in the career adaptation model.

    OpenAIRE

    Zhou, W.; Guan, Y.; Xin, L.; Mak, M.C.K.; Deng, Y.

    2016-01-01

    The present research had two goals. The first goal was to identify additional individual characteristics that may contribute to adaptive readiness. The second goal was to test if these characteristics fit the career adaptation model of readiness to resources to responses. We examined whether career success criteria (measured at Time 1) and career locus of control (measured at Time 1) would contribute to adaptivity and predict university students’ career decision-making self-efficacy (measured...

  5. Adaptive Synchronization of Grid-Connected Threephase Inverters by Using Virtual Oscillator Control

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Guerrero, Josep M.

    2018-01-01

    This paper presents an adaptive synchronization for current-controlled grid-connected inverter based on a time domain virtual oscillator controller (VOC). Inspired by the phenomenon of dynamics of adaptive oscillator under the perturbation effect. Firstly, the fast learning rule of the oscillator...

  6. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  7. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  8. Control and adaptation in telecommunication systems mathematical foundations

    CERN Document Server

    Popovskij, Vladimir; Titarenko, Larysa

    2011-01-01

    This book is devoted to mathematical foundations providing synthesis and analysis of control and adaptation algorithms targeting modern telecommunication systems (TCS). The most popular technologies and network management methods are discussed.

  9. Engineering of Fast and Robust Adaptive Control for Fixed-Wing Unmanned Aircraft

    Science.gov (United States)

    2017-06-01

    evaluate the use of adaptive control on fixed-wing unmanned aircraft . The growing demand for unmanned systems will inherit the costs associated with...aerospace environment . 2.2 Classical Feedback vs Adaptive Control Control of a system can be categorized into two required elements; the requirement to...stabilize the system in the presence of: 1. disturbances that affect the controlled states and outputs (pitch rate perturbation caused by environmental

  10. Personal control over the cure of breast cancer : adaptiveness, underlying beliefs and correlates

    NARCIS (Netherlands)

    Henselmans, Inge; Sanderman, Robbert; Helgeson, Vicki S; de Vries, J; Smink, Ans; Ranchor, Adelita V

    OBJECTIVES: Although cognitive adaptation theory suggests that personal control acts as a stress buffer when facing adversity, maladaptive outcomes might occur when control is disconfirmed. The moderating effect of disappointing news on the adaptiveness of personal control over cure in women with

  11. Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system

    Science.gov (United States)

    Bai, Jianbo; Li, Yang; Chen, Jianhao

    2018-02-01

    The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.

  12. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  13. Model-reference robust tuning of PID controllers

    CERN Document Server

    Alfaro, Victor M

    2016-01-01

    This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivati...

  14. Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping

    2018-06-01

    This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.

  15. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Science.gov (United States)

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  16. Distance Constrained Based Adaptive Flocking Control for Multiagent Networks with Time Delay

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2015-01-01

    Full Text Available The flocking control of multiagent system is a new type of decentralized control method, which has aroused great attention. The paper includes a detailed research in terms of distance constrained based adaptive flocking control for multiagent system with time delay. Firstly, the program on the adaptive flocking with time delay of multiagent is proposed. Secondly, a kind of adaptive controllers and updating laws are presented. According to the Lyapunov stability theory, it is proved that the distance between agents can be larger than a constant during the motion evolution. What is more, velocities of each agent come to the same asymptotically. Finally, the analytical results can be verified by a numerical example.

  17. A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines

    International Nuclear Information System (INIS)

    Song, Zhanfeng; Shi, Tingna; Xia, Changliang; Chen, Wei

    2012-01-01

    A novel adaptive current controller for DFIG-based wind turbines is introduced in this paper. The attractiveness of the proposed strategy results from its ability to actively estimate and actively compensate for the plant dynamics and external disturbances in real time. Thus, the control strategy can successfully drive the rotor current to track the reference value, ensuring that the performance degradation caused by grid disturbances, cross-coupling terms and parameter uncertainties can be successfully suppressed. Besides, the two-parameter tuning feature makes the control strategy practical and easy to implement in commercial wind turbines. To quantify the controller performances, the transfer function description of the controller is derived. General disturbance rejection, robustness against parameter uncertainties, bandwidth and stability are also addressed. Simulation results, together with the time-domain responses, proved the stability and the strong robustness of the control system against parameter uncertainties and grid disturbances. Significant tracking and disturbance rejection performances are achieved. -- Highlights: ► The controller can compensate for plant dynamics and external disturbances. ► Performance degradation caused by disturbance can be successfully suppressed. ► General disturbance rejection of the proposed strategy is addressed. ► The stability and the strong robustness of the control system are proved.

  18. Adaptive PID formation control of nonholonomic robots without leader's velocity information.

    Science.gov (United States)

    Shen, Dongbin; Sun, Weijie; Sun, Zhendong

    2014-03-01

    This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  19. A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments

    Science.gov (United States)

    Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis

    2012-01-01

    We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially

  20. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    Science.gov (United States)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  1. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.

    Science.gov (United States)

    Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu

    2018-04-23

    This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.

  2. Distributed robust adaptive control of high order nonlinear multi agent systems.

    Science.gov (United States)

    Hashemi, Mahnaz; Shahgholian, Ghazanfar

    2018-03-01

    In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Scenario design : adaptive architecture for command and control experiment eight

    OpenAIRE

    Clark, Frankie J.

    2002-01-01

    Approved for public release; distribution is unlimited. The Adaptive Architectures for Command and Control (A2C2) project is an ongoing research effort sponsored by the Office of Naval Research to explore adaptation in joint command and control. The objective of the project's eighth experiment is to study the adjustments that organizations make when they are confronted with a scenario for which their organizational is ill-suited. To accomplish this, teams will each be in one of two fundame...

  4. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej

    1998-01-01

    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  5. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    Science.gov (United States)

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.

  6. 40 CFR 792.107 - Test, control, and reference substance handling.

    Science.gov (United States)

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference... proper storage. (b) Distribution is made in a manner designed to preclude the possibility of... the date and quantity of each batch distributed or returned. ...

  7. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    Science.gov (United States)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  8. Adaptive decoupled power control method for inverter connected DG

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Tian, Yanjun; Chen, Zhe

    2014-01-01

    an adaptive droop control method based on online evaluation of power decouple matrix for inverter connected distributed generations in distribution system. Traditional decoupled power control is simply based on line impedance parameter, but the load characteristics also cause the power coupling, and alter...

  9. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  10. Two fiber optics communication adapters apply to the control system of HIRFL-CSR

    International Nuclear Information System (INIS)

    Wang Dan; Zhang Shuocheng; Jing Lan; Zhang Wei; Ma Yunhai

    2006-01-01

    The authors introduced two kinds of fiber adapters that apply to the engineering HIRFL-CSR. Including design of two adapters, operational principle, and hardware construction, field of application. How to control equipment which have the standard RS232 or RS485 interface at long distance by two adapters. Replace the RS485 bus with the fiber and the 485-Fiber Adapter, solved the problem of communication disturb. The requirements of control in the national great science engineering HIRFL-CSR are fulfilled. (authors)

  11. Adaptive Tracking Control of an Electro-Pneumatic Clutch Actuator

    Directory of Open Access Journals (Sweden)

    Glenn-Ole Kaasa

    2003-10-01

    Full Text Available This paper deals with the application of a simple adaptive algorithm for robust tracking control of an electro-pneumatic clutch actuator with output feedback. We present a mathematical model of the strongly nonlinear system, and implement an adaptive algorithm, based on a parallel feedforward compensator (PFC to remove the relative-degree-1 restriction. We propose a practical method of constructing the PFC, and introduce a simple modification that removes an inherent restriction on bandwidth of the nonlinear system. We show that the adaptive algorithm deals well with nonlinearities, and we achieve tracking corresponding to a settling-time of 150 ms.

  12. The purpose of adaptation.

    Science.gov (United States)

    Gardner, Andy

    2017-10-06

    A central feature of Darwin's theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin's theory of the purpose of adaptation, with reference to Fisher's 'fundamental theorem of natural selection'; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms.

  13. Lag Synchronization Between Two Coupled Networks via Open-Plus-Closed-Loop and Adaptive Controls

    International Nuclear Information System (INIS)

    Tong-Chun Hu; Yong-Qing Wu; Shi-Xing Li

    2016-01-01

    In this paper, we study lag synchronization between two coupled networks and apply two types of control schemes, including the open-plus-closed-loop (OPCL) and adaptive controls. We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes. With the designed controllers, we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma. Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures. (paper)

  14. A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of Panax notoginseng used as a functional food.

    Science.gov (United States)

    Li, S P; Qiao, C F; Chen, Y W; Zhao, J; Cui, X M; Zhang, Q W; Liu, X M; Hu, D J

    2013-10-25

    Root of Panax notoginseng (Burk.) F.H. Chen (Sanqi in Chinese) is one of traditional Chinese medicines (TCMs) based functional food. Saponins are the major bioactive components. The shortage of reference compounds or chemical standards is one of the main bottlenecks for quality control of TCMs. A novel strategy, i.e. standardized reference extract based qualification and single calibrated components directly quantitative estimation of multiple analytes, was proposed to easily and effectively control the quality of natural functional foods such as Sanqi. The feasibility and credibility of this methodology were also assessed with a developed fast HPLC method. Five saponins, including ginsenoside Rg1, Re, Rb1, Rd and notoginsenoside R1 were rapidly separated using a conventional HPLC in 20 min. The quantification method was also compared with individual calibration curve method. The strategy is feasible and credible, which is easily and effectively adapted for improving the quality control of natural functional foods such as Sanqi. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

    Science.gov (United States)

    Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh

    2011-05-27

    Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.

  16. Adaptive relative pose control of spacecraft with model couplings and uncertainties

    Science.gov (United States)

    Sun, Liang; Zheng, Zewei

    2018-02-01

    The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.

  17. Wavelet Adaptive Algorithm and Its Application to MRE Noise Control System

    Directory of Open Access Journals (Sweden)

    Zhang Yulin

    2015-01-01

    Full Text Available To address the limitation of conventional adaptive algorithm used for active noise control (ANC system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE, which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS and Decomposition and Reconstruction LMS algorithm (DR-LMS based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.

  18. Control of beam halo-chaos using neural network self-adaptation method

    International Nuclear Information System (INIS)

    Fang Jinqing; Huang Guoxian; Luo Xiaoshu

    2004-11-01

    Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)

  19. Synchronization of a modified Chua's circuit system via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Yan, J.-J.; Lin, J.-S.; Liao, T.-L.

    2008-01-01

    This study addresses the adaptive synchronization of a modified Chua's circuit system with both unknown system parameters and the nonlinearity in the control input. An adaptive switching surface is newly adopted such that it becomes easy to ensure the stability of the error dynamics in the sliding mode. Based on this adaptive switching surface, an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion, even when the system is undergoing input nonlinearity. This method can also be easily extended to a general class of Chua's circuits. An illustrative example is given to show the applicability of the proposed ASMC design

  20. Adaptive control of human action: The role of outcome representations and reward signals

    Directory of Open Access Journals (Sweden)

    Hans eMarien

    2013-09-01

    Full Text Available The present paper aims to advance the understanding of the control of human behavior by integrating two lines of literature that so far have led separate lives. First, one line of literature is concerned with the ideomotor principle of human behavior, according to which actions are represented in terms of their outcomes. The second line of literature mainly considers the role of reward signals in adaptive control. Here, we offer a combined perspective on how outcome representations and reward signals work together to modulate adaptive control processes. We propose that reward signals signify the value of outcome representations and facilitate the recruitment of control resources in situations where behavior needs to be maintained or adapted to attain the represented outcome. We discuss recent research demonstrating how adaptive control of goal-directed behavior may emerge when outcome representations are co-activated with positive reward signals.

  1. Synchronization of discrete-time spatiotemporal chaos via adaptive fuzzy control

    International Nuclear Information System (INIS)

    Xue Yueju; Yang Shiyuan

    2003-01-01

    A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization

  2. Synchronization of discrete-time spatiotemporal chaos via adaptive fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn

    2003-08-01

    A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization.

  3. LFC based adaptive PID controller using ANN and ANFIS techniques

    Directory of Open Access Journals (Sweden)

    Mohamed I. Mosaad

    2014-12-01

    Full Text Available This paper presents an adaptive PID Load Frequency Control (LFC for power systems using Neuro-Fuzzy Inference Systems (ANFIS and Artificial Neural Networks (ANN oriented by Genetic Algorithm (GA. PID controller parameters are tuned off-line by using GA to minimize integral error square over a wide-range of load variations. The values of PID controller parameters obtained from GA are used to train both ANFIS and ANN. Therefore, the two proposed techniques could, online, tune the PID controller parameters for optimal response at any other load point within the operating range. Testing of the developed techniques shows that the adaptive PID-LFC could preserve optimal performance over the whole loading range. Results signify superiority of ANFIS over ANN in terms of performance measures.

  4. Frequency Adaptability of Harmonics Controllers for Grid-Interfaced Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2017-01-01

    sensitivity of the most popular harmonic controllers for grid-interfaced converters. The frequency adaptability of these harmonic controllers is evaluated in the presence of a variable grid frequency within a specified reasonable range, e.g., +-1% of the nominal grid frequency (50 Hz). Solutions...

  5. Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control

    International Nuclear Information System (INIS)

    Fu Shi-Hui; Lu Qi-Shao; Du Ying

    2012-01-01

    Adaptive H ∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lyapunov's stability theory, linear and nonlinear feedback control of adaptive H ∞ synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an H ∞ -norm constraint. Adaptive H ∞ synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis. (general)

  6. Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik; Khaliq, Abdul; Saeed-ur-Rehman

    2015-01-01

    This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies

  7. Decentralized adaptive control of interconnected nonlinear systems with unknown control directions.

    Science.gov (United States)

    Huang, Jiangshuai; Wang, Qing-Guo

    2018-03-01

    In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  9. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  10. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    Science.gov (United States)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  11. Cognitive control and conflict adaptation in youth with high-functioning autism.

    Science.gov (United States)

    Larson, Michael J; South, Mikle; Clayson, Peter E; Clawson, Ann

    2012-04-01

      Youth diagnosed with autism spectrum disorders (ASD) often show deficits in cognitive control processes, potentially contributing to characteristic difficulties monitoring and regulating behavior. Modification of performance following conflict can be measured by examining conflict adaptation, the adjustment of cognitive resources based on previous-trial conflict. The electrophysiological correlates of these processes can be measured using the N2, a stimulus-locked component of the event-related potential (ERP).   High-density ERPs and behavioral data [i.e. response times (RTs) and error rates] were acquired while 28 youth with ASD and 36 typically developing controls completed a modified Eriksen flanker task.   Behaviorally, groups showed similar conflict adaptation effects; youth with ASD showed larger RT slowing on switch trials. For electrophysiology, controls demonstrated larger N2 amplitudes for incongruent (high-conflict) trials following congruent (low-conflict) trials than for incongruent trials following incongruent trials. Importantly, youth with ASD showed no such differences in N2 amplitude based on previous-trial conflict.   Lack of electrophysiological conflict adaptation effects in youth with ASD indicates irregular neural processing associated with conflict adaptation. Individuals with ASD show declines in level of conflict evaluation and adaptation. Future research is necessary to accurately characterize and understand the behavioral implications of these cognitive control deficits relative to diagnostic severity, anxiety, and personality. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  12. Adaptive Controller for Drive System PMSG in Wind Turbine

    OpenAIRE

    Gnanambal; G.Balaji; M.Abinaya

    2014-01-01

    This paper proposes adaptive Maximum Power Point Tracking (MPPT) controller for Permanent Magnet Synchronous Generator (PMSG) wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC li...

  13. Adaptive Positive Position Feedback Control of Flexible Aircraft Structures Using Piezoelectric Actuators

    Science.gov (United States)

    2014-03-27

    need for adaptive control of BIVs. Adaptive control methods have been used in aerospace applications of many years, from flight controls [20] to cabin ... stress in the separated boundary layer causes larger values of the recirculating velocity, thus leading to a more unstable flow” [26]. In essence, as...Air Academy High School in Colorado Springs, Colorado. He attended the University of Colorado, Colorado Springs while completing a four year Reserve

  14. Experimental setup for evaluating an adaptive user interface for teleoperation control

    Science.gov (United States)

    Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.

    2017-05-01

    A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.

  15. Optimal adaptive control for a class of stochastic systems

    NARCIS (Netherlands)

    Bagchi, Arunabha; Chen, Han-Fu

    1995-01-01

    We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law

  16. Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines

    Science.gov (United States)

    Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin

    2018-03-01

    In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.

  17. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor.

    Science.gov (United States)

    Avanzino, Laura; Ravaschio, Andrea; Lagravinese, Giovanna; Bonassi, Gaia; Abbruzzese, Giovanni; Pelosin, Elisa

    2018-01-01

    It is under debate whether the cerebellum plays a role in dystonia pathophysiology and in the expression of clinical phenotypes. We investigated a typical cerebellar function (anticipatory movement control) in patients with cervical dystonia (CD) with and without tremor. Twenty patients with CD, with and without tremor, and 17 healthy controls were required to catch balls of different load: 15 trials with a light ball, 25 trials with a heavy ball (adaptation) and 15 trials with a light ball (post-adaptation). Arm movements were recorded using a motion capture system. We evaluated: (i) the anticipatory adjustment (just before the impact); (ii) the extent and rate of the adaptation (at the impact) and (iii) the aftereffect in the post-adaptation phase. The anticipatory adjustment was reduced during adaptation in CD patients with tremor respect to CD patients without tremor and controls. The extent and rate of adaptation and the aftereffect in the post-adaptation phase were smaller in CD with tremor than in controls and CD without tremor. Patients with cervical dystonia and tremor display an abnormal predictive movement control. Our findings point to a possible role of cerebellum in the expression of a clinical phenotype in dystonia. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Using engineering control principles to inform the design of adaptive interventions: a conceptual introduction.

    Science.gov (United States)

    Rivera, Daniel E; Pew, Michael D; Collins, Linda M

    2007-05-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice.

  19. Synchronization of generalized Henon map by using adaptive fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn

    2003-08-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.

  20. Synchronization of generalized Henon map by using adaptive fuzzy controller

    International Nuclear Information System (INIS)

    Xue Yueju; Yang Shiyuan

    2003-01-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization

  1. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day variability.

    Science.gov (United States)

    Herrero, Pau; Bondia, Jorge; Adewuyi, Oloruntoba; Pesl, Peter; El-Sharkawy, Mohamed; Reddy, Monika; Toumazou, Chris; Oliver, Nick; Georgiou, Pantelis

    2017-07-01

    Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for delays in subcutaneous insulin absorption in order to avoid initial post-prandial hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-subject variability of insulin requirements. Most closed-loop systems compute this pre-meal insulin dose by a standard bolus calculation, as is commonly found in insulin pumps. However, the performance of these calculators is limited due to a lack of adaptiveness in front of dynamic changes in insulin requirements. Despite some initial attempts to include adaptation within these calculators, challenges remain. In this paper we present a new technique to automatically adapt the meal-priming bolus within an artificial pancreas. The technique consists of using a novel adaptive bolus calculator based on Case-Based Reasoning and Run-To-Run control, within a closed-loop controller. Coordination between the adaptive bolus calculator and the controller was required to achieve the desired performance. For testing purposes, the clinically validated Imperial College Artificial Pancreas controller was employed. The proposed system was evaluated against itself but without bolus adaptation. The UVa-Padova T1DM v3.2 system was used to carry out a three-month in silico study on 11 adult and 11 adolescent virtual subjects taking into account inter-and intra-subject variability of insulin requirements and uncertainty on carbohydrate intake. Overall, the closed-loop controller enhanced by an adaptive bolus calculator improves glycemic control when compared to its non-adaptive counterpart. In particular, the following statistically significant improvements were found (non-adaptive vs. adaptive). Adults: mean glucose 142.2 ± 9.4vs. 131.8 ± 4.2mg/dl; percentage time in target [70, 180]mg/dl, 82.0 ± 7.0vs. 89.5 ± 4

  2. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan

    2015-02-01

    The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.

  3. Vehicle-to-infrastructure program cooperative adaptive cruise control.

    Science.gov (United States)

    2015-03-01

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the project titled Cooperative Adaptive Cruise Control (CACC). Participating companies in the V2I Cons...

  4. A User-Centered Approach to Adaptive Hypertext Based on an Information Relevance Model

    Science.gov (United States)

    Mathe, Nathalie; Chen, James

    1994-01-01

    Rapid and effective to information in large electronic documentation systems can be facilitated if information relevant in an individual user's content can be automatically supplied to this user. However most of this knowledge on contextual relevance is not found within the contents of documents, it is rather established incrementally by users during information access. We propose a new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles. The model, called a relevance network, records the relevance of references based on user feedback for specific queries and user profiles. It also generalizes such knowledge to later derive relevant references for similar queries and profiles. The relevance network lets users filter information by context of relevance. Compared to other approaches, it does not require any prior knowledge nor training. More importantly, our approach to adaptivity is user-centered. It facilitates acceptance and understanding by users by giving them shared control over the adaptation without disturbing their primary task. Users easily control when to adapt and when to use the adapted system. Lastly, the model is independent of the particular application used to access information, and supports sharing of adaptations among users.

  5. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  6. Observer-based design of set-point tracking adaptive controllers for nonlinear chaotic systems

    International Nuclear Information System (INIS)

    Khaki-Sedigh, A.; Yazdanpanah-Goharrizi, A.

    2006-01-01

    A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology

  7. Observer-based design of set-point tracking adaptive controllers for nonlinear chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaki-Sedigh, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran 16314 (Iran, Islamic Republic of)]. E-mail: sedigh@kntu.ac.ir; Yazdanpanah-Goharrizi, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran 16314 (Iran, Islamic Republic of)]. E-mail: yazdanpanah@ee.kntu.ac.ir

    2006-09-15

    A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology.

  8. Design of sewage treatment system by applying fuzzy adaptive PID controller

    Science.gov (United States)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  9. An adaptive neuro-fuzzy controller for mold level control in continuous casting

    International Nuclear Information System (INIS)

    Zolghadri Jahromi, M.; Abolhassan Tash, F.

    2001-01-01

    Mold variations in continuous casting are believed to be the main cause of surface defects in the final product. Although a Pid controller is well capable of controlling the level under normal conditions, it cannot prevent large variations of mold level when a disturbance occurs in the form of nozzle unclogging. In this paper, dual controller architecture is presented, a Pid controller is used as the main controller of the plant and an adaptive neuro-fuzzy controller is used as an auxiliary controller to help the Pid during disturbed phases. The control is passed back to the Pid controller after the disturbance is being dealt with. Simulation results prove the effectiveness of this control strategy in reducing mold level variations during the unclogging period

  10. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  11. Mechanosensation and Adaptive Motor Control in Insects.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-10-24

    The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    Science.gov (United States)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  13. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...

  14. Multiple Model Adaptive Control Using Dual Youla-Kucera Factorisation

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2012-01-01

    We propose a multi-model adaptive control scheme for uncertain linear plants based on the concept of model unfalsification. The approach relies on examining the ability of a pre-computed set of plant-controller candidates and choosing the one that is best able to reproduce observed in- and output...

  15. Adaptive control in series load PWM induction heating inverters

    Science.gov (United States)

    Szelitzky, Tibor; Henrietta Dulf, Eva

    2013-12-01

    Permanent variations of the electric properties of the load in induction heating equipment make difficult to control the plant. To overcome these disadvantages, the authors propose a new approach based on adaptive control methods. For real plants it is enough to present desired performances or start-up variables for the controller, from which the algorithms tune the controllers by itself. To present the advantages of the proposed controllers, comparisons are made to a PI controller tuned through Ziegler-Nichols method.

  16. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  17. A Reference Model for Distribution Grid Control in the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); De Martini, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kristov, Lorenzo [California Independent System Operator, Folsom, CA (United States)

    2015-07-01

    Intensive changes in the structure of the grid due to the penetration of new technologies, coupled with changing societal needs are outpacing the capabilities of traditional grid control systems. The gap is widening at an accelerating rate with the biggest impacts occurring at the distribution level due to the widespread adoption of diverse distribution-connected energy resources (DER) . This paper outlines the emerging distribution grid control environment, defines the new distribution control problem, and provides a distribution control reference model. The reference model offers a schematic representation of the problem domain to inform development of system architecture and control solutions for the high-DER electric system.

  18. Anti-windup adaptive PID control design for a class of uncertain chaotic systems with input saturation.

    Science.gov (United States)

    Tahoun, A H

    2017-01-01

    In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Dynamic Self-Adaptive Reliability Control for Electric-Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Yi Wan

    2015-02-01

    Full Text Available The high-speed electric-hydraulic proportional control is a new development of the hydraulic control technique with high reliability, low cost, efficient energy, and easy maintenance; it is widely used in industrial manufacturing and production. However, there are still some unresolved challenges, the most notable being the requirements of high stability and real-time by the classical control algorithm due to its high nonlinear characteristics. We propose a dynamic self-adaptive mixed control method based on the least squares support vector machine (LSSVM and the genetic algorithm for high-speed electric-hydraulic proportional control systems in this paper; LSSVM is used to identify and adjust online a nonlinear electric-hydraulic proportional system, and the genetic algorithm is used to optimize the control law of the controlled system and dynamic self-adaptive internal model control and predictive control are implemented by using the mixed intelligent method. The internal model and the inverse control model are online adjusted together. At the same time, a time-dependent Hankel matrix is constructed based on sample data; thus finite dimensional solution can be optimized on finite dimensional space. The results of simulation experiments show that the dynamic characteristics are greatly improved by the mixed intelligent control strategy, and good tracking and high stability are met in condition of high frequency response.

  20. Indirect Adaptive Attitude Control for a Ducted Fan Vertical Takeoff and Landing Microaerial Vehicle

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-01-01

    Full Text Available The present paper addresses an attitude tracking control problem of a ducted fan microaerial vehicle. The proposed indirect adaptive controller can greatly reduce tracking error in the initial stage of the adaptive learning process by using an error compensation strategy and can achieve good capability to eliminate the adverse effect of measurement noises on the convergence of adjustable parameters. Moreover, the learning rate adaptation strategy is proposed to further minimize the adverse effect of large learning rates on the convergence of adjustable parameters. The experimental tests have illustrated the effectiveness of the proposed adaptive controller.

  1. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    Science.gov (United States)

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  2. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  3. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chang Weider; Yan Junjuh

    2005-01-01

    A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, K p , K i , and K d , are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Duffing-Holmes chaotic system is used as an illustrative to show the effectiveness of the proposed robust adaptive PID controller

  4. Modelling and adaptive control of small capacity chillers for HVAC applications

    International Nuclear Information System (INIS)

    Beghi, A.; Cecchinato, Luca

    2011-01-01

    An adaptive controller for single and uneven tandem scroll compressor, packaged air-cooled water chillers is described. The designed controller allows to substantially increase the energy performance of the system, as well as to achieve excellent regulation performances in process applications. The controller parameters are adapted on the basis of estimates of the plant thermal load, that are computed by using a Kalman filter. An ad hoc approach is used to define a relay control logic, which is based on a numerical optimization procedure. To support controller design, a detailed simulation environment is developed and validated on an experimental facility. Performance of the algorithm is described with both simulation and experimental data. At low part load ratio values the proposed algorithm grants a 0.6-0.7 K improvement in the regulation performance in terms of supply water temperature standard deviation and mean supply water temperature deviation. The unit energy efficiency improvement with respect to supply water temperature control varies from 7.3% to 3.0% while the experimental seasonal energy efficiency rating improvement is 9.1%. - Research highlights: → Design of an advanced control algorithms for small capacity chillers. → Matlab/Simulink simulation environment development and experimental validation. → Development of an adaptive control algorithm for scroll compressor chillers, which allows to increase both control accuracy and energy performance. → New load estimation scheme based on a Kalman filter.

  5. Context-dependent adaptation of visually-guided arm movements and vestibular eye movements: role of the cerebellum

    Science.gov (United States)

    Lewis, Richard F.

    2003-01-01

    Accurate motor control requires adaptive processes that correct for gradual and rapid perturbations in the properties of the controlled object. The ability to quickly switch between different movement synergies using sensory cues, referred to as context-dependent adaptation, is a subject of considerable interest at present. The potential function of the cerebellum in context-dependent adaptation remains uncertain, but the data reviewed below suggest that it may play a fundamental role in this process.

  6. The role of certified reference materials in material control and accounting

    International Nuclear Information System (INIS)

    Turel, S.P.

    1979-01-01

    One way of providing an adequate material control and accounting system for the nuclear fuel cycle is to calculate material unaccounted for (MUF) after a physical inventory and to compare the limit of error of the MUF value (LEMUF) against prescribed criteria. To achieve a meaningful LEMUF, a programme for the continuing determination of systematic and random errors is necessary. Within this programme it is necessary to achieve traceability of all Special Nuclear Material (SNM) control and accounting measurements to an International/National Measurement System by means of Certified Reference Materials. SNM measurements for control and accounting are made internationally on a great variety of materials using many diverse measurement procedures by a large number of facilities. To achieve valid overall accountability over this great variety of measurements there must be some means of relating all these measurements and their uncertainties to each other. This is best achieved by an International/National Measurement System (IMS/NMS). To this end, all individual measurement systems must be compatible to the IMS/NMS and all measurement results must be traceable to appropriate international/national Primary Certified Reference Materials. To obtain this necessary compatibility for any given SNM measurement system, secondary certified reference materials or working reference materials are needed for every class of SNM and each type of measurement system. Ways to achieve ''traceability'' and the various types of certified reference material are defined and discussed in this paper. (author)

  7. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  8. Research on a Nonlinear Robust Adaptive Control Method of the Elbow Joint of a Seven-Function Hydraulic Manipulator Based on Double-Screw-Pair Transmission

    Directory of Open Access Journals (Sweden)

    Gaosheng Luo

    2014-01-01

    Full Text Available A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1 the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2 the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.

  9. Development and use of reference materials and quality control materials

    International Nuclear Information System (INIS)

    2003-04-01

    Current knowledge is summarized on correct use of commercially available certified reference materials (CRMs) and reference materials (RMs). Acknowledged are also the limitations and restrictions analysts have to face if they want to apply quality control. The concept of in-house RMs or quality control materials (QCMs) is advocated to supplement the use of CRMs for quality control purposes. On hand advice on how to select, prepare, characterize and use these QCMs is given from the experts' perspective. Several scenarios are described to make this concept widely applicable to: advanced laboratories with CRMs with validated analytical techniques available, laboratories with less experience and facilities, as well as cases were labile compounds and unstable matrices are involved. Each scenario considers different approaches to overcome the lack of appropriate CRMs and advise on the preparation of QCMs, which might fit the particular purpose

  10. Development and use of reference materials and quality control materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    Current knowledge is summarized on correct use of commercially available certified reference materials (CRMs) and reference materials (RMs). Acknowledged are also the limitations and restrictions analysts have to face if they want to apply quality control. The concept of in-house RMs or quality control materials (QCMs) is advocated to supplement the use of CRMs for quality control purposes. On hand advice on how to select, prepare, characterize and use these QCMs is given from the experts' perspective. Several scenarios are described to make this concept widely applicable to: advanced laboratories with CRMs with validated analytical techniques available, laboratories with less experience and facilities, as well as cases were labile compounds and unstable matrices are involved. Each scenario considers different approaches to overcome the lack of appropriate CRMs and advise on the preparation of QCMs, which might fit the particular purpose.

  11. Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...

  12. Adaptive control and synchronization of a fractional-order chaotic ...

    Indian Academy of Sciences (India)

    Fractional order; adaptive scheme; control; synchronization. ... College of Physics and Electronics, Hunan Institute of Science and Technology, ... of Information and Communication Engineering, Hunan Institute of Science and Technology, ...

  13. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  14. Request for Information Response for the Flight Validation of Adaptive Control to Prevent Loss-of-Control Events. Overview of RFI Responses

    Science.gov (United States)

    Bosworth, John T.

    2009-01-01

    Adaptive control should be integrated with a baseline controller and only used when necessary (5 responses). Implementation as an emergency system. Immediately re-stabilize and return to controlled flight. Forced perturbation (excitation) for fine-tuning system a) Check margins; b) Develop requirements for amplitude of excitation. Adaptive system can improve performance by eating into margin constraints imposed on the non-adaptive system. Nonlinear effects due to multi-string voting.

  15. An Adaptive Traffic Signal Control in a Connected Vehicle Environment: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Peng Jing

    2017-08-01

    Full Text Available In the last few years, traffic congestion has become a growing concern due to increasing vehicle ownerships in urban areas. Intersections are one of the major bottlenecks that contribute to urban traffic congestion. Traditional traffic signal control systems cannot adjust the timing pattern depending on road traffic demand. This results in excessive delays for road users. Adaptive traffic signal control in a connected vehicle environment has shown a powerful ability to effectively alleviate urban traffic congestions to achieve desirable objectives (e.g., delay minimization. Connected vehicle technology, as an emerging technology, is a mobile data platform that enables the real-time data exchange among vehicles and between vehicles and infrastructure. Although several reviews about traffic signal control or connected vehicles have been written, a systemic review of adaptive traffic signal control in a connected vehicle environment has not been made. Twenty-six eligible studies searched from six databases constitute the review. A quality evaluation was established based on previous research instruments and applied to the current review. The purpose of this paper is to critically review the existing methods of adaptive traffic signal control in a connected vehicle environment and to compare the advantages or disadvantages of those methods. Further, a systematic framework on connected vehicle based adaptive traffic signal control is summarized to support the future research. Future research is needed to develop more efficient and generic adaptive traffic signal control methods in a connected vehicle environment.

  16. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  17. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    second-order altitude models for the quadrotor, AR.Drone 2.0. Proportional (P), pole placement or proportional plus velocity (PV), linear quadratic regulator (LQR), and model reference adaptive control (MRAC) controllers are designed and validated through simulations using MATLAB/Simulink. Control input saturation and time delay in the controlled systems are also studied. MATLAB graphical user interface (GUI) and Simulink programs are developed to implement the controllers on the drone. Thirdly, the time delay in the drone's control system is estimated using analytical and experimental methods. In the experimental approach, the transient properties of the experimental altitude responses are compared to those of simulated responses. The analytical approach makes use of the Lambert W function to obtain analytical solutions of scalar first-order delay differential equations (DDEs). A time-delayed P-feedback control system (retarded type) is used in estimating the time delay. Then an improved system performance is obtained by incorporating the estimated time delay in the design of the PV control system (neutral type) and PV-MRAC control system. Furthermore, the stability of a parametric perturbed linear time-invariant (LTI) retarded-type system is studied. This is done by analytically calculating the stability radius of the system. Simulation of the control system is conducted to confirm the stability. This robust control design and uncertainty analysis are conducted for first-order and second-order quadrotor models. Lastly, the robustly designed PV and PV-MRAC control systems are used to autonomously track multiple waypoints. Also, the robustness of the PV-MRAC controller is tested against a baseline PV controller using the payload capability of the drone. It is shown that the PV-MRAC offers several benefits over the fixed-gain approach of the PV controller. The adaptive control is found to offer enhanced robustness to the payload fluctuations.

  18. Tip-over Prevention: Adaptive Control Development

    Science.gov (United States)

    2015-05-30

    Tip-over Prevention: Adaptive Control Development Leah Kelley Massachusetts Institute of Technology Cambridge, MA 02139 Email: lckelley@mit.edu Kurt...Papadopoulos and D. Rey, Proc. IEEE ICRA, vol.4, 1996, pp. 3111. [7] S. Ali, A. Moosavian, and K. Alipour, Robotics, Automation and Mechatronics , 2006 IEEE Conf...on, 2006, pp. 1–6. [8] K. Talke, L. Kelley, P. Longhini, and G. Catron, Proc. SPIE 9084, Unmanned Systems Technology XVI, June 2014, pp. 90 840L–11

  19. Adaptive Sliding Control for a Class of Fractional Commensurate Order Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Jian Yuan

    2015-01-01

    Full Text Available This paper proposes adaptive sliding mode control design for a class of fractional commensurate order chaotic systems. We firstly introduce a fractional integral sliding manifold for the nominal systems. Secondly we prove the stability of the corresponding fractional sliding dynamics. Then, by introducing a Lyapunov candidate function and using the Mittag-Leffler stability theory we derive the desired sliding control law. Furthermore, we prove that the proposed sliding manifold is also adapted for the fractional systems in the presence of uncertainties and external disturbances. At last, we design a fractional adaptation law for the perturbed fractional systems. To verify the viability and efficiency of the proposed fractional controllers, numerical simulations of fractional Lorenz’s system and Chen’s system are presented.

  20. Adaptive sensorless field oriented control of PM motors including zero speed

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2004-01-01

    This paper presents a simple control method for controlling permanent magnet synchronous motors (PMSM) in a wide speed range without a shaft sensor. An adaptive observer is used for estimation of the rotor position and speed of a permanent magnet synchronous motors (PMSM). The observer compensates...... for voltage offsets and permanent magnet strength variations. The adaption structure for estimating the strength of the permanent magnet is determined from a Lyapunov stability proof. The control method is made robust at zero and low speed by changing the direct vector current component to a value different...... from zero. In order to verify the applicability of the method the controller has been implemented and tested on a 800 W motor....

  1. Estimation, filtering and adaptative control of a waste water processing process; Estimation, filtrage et commande adaptive d`un procede de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youssef, C; Dahhou, B; Roux, G [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Rols, J L [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1996-12-31

    Controlling the process of a fixed bed bioreactor imply solving filtering and adaptative control problems. Estimation processes have been developed for unmeasurable parameters. An adaptative non linear control has been built, instead of conventional approaches trying to linearize the system and apply a linear control system. (D.L.) 10 refs.

  2. Reference and control plots – a useful tool for forestry?

    Directory of Open Access Journals (Sweden)

    Wójcicki Adam

    2017-06-01

    Full Text Available In the current age, the increased need for the restoration of forest ecosystems necessitates a better understanding of natural processes. Forest stands that are affected only by natural processes and disturbances can serve as references and controls for comparison with cut or otherwise managed forests. Such a comparison may help us determine, whether our sylvicultural practices actually pursue the goal of sustainable development. It is also important to use uniform terminology across the world to facilitate sharing of experiences and results. Creating reference and control stands in every ecoregion will provide a rich scientific basis for comparison with managed forests and allow us to design and apply restoration methods more effectively.

  3. Liquid-crystal intraocular adaptive lens with wireless control

    NARCIS (Netherlands)

    Simonov, A.N.; Vdovine, G.V.; Loktev, M.

    2007-01-01

    We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively.

  4. Lifetime Maximizing Adaptive Power Control in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Sun, Fangting; Shayman, Mark

    2006-01-01

    ...: adaptive power control. They focus on the sensor networks that consist of a sink and a set of homogeneous wireless sensor nodes, which are randomly deployed according to a uniform distribution...

  5. Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.

    Science.gov (United States)

    Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T

    2013-12-01

    It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.

  6. Adaptive Neural Output Feedback Control for Uncertain Robot Manipulators with Input Saturation

    Directory of Open Access Journals (Sweden)

    Rong Mei

    2017-01-01

    Full Text Available This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation using the radial basis function neural network (RBFNN and disturbance observer. First, the RBFNN is used to approximate the system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for robot manipulators using the backstepping technique. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot manipulators.

  7. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    . This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...

  8. Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.

  9. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    Science.gov (United States)

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  10. Automated Manipulation of Micro-Nano Objects with SPM by Using L1 Adaptive Controller

    Directory of Open Access Journals (Sweden)

    Qinmin Yang

    2012-12-01

    Full Text Available In this paper, a novel control methodology for automatically manipulating micro/nano particles by using a Scanning Probe Microscope (SPM is presented. First of all, a mathematical model of micro/nanomanipulation, including the interactive forces and dynamics between the tip, particle and substrate along with the roughness effect of the substrate, is described. Then, the L1 adaptive control design for the manipulation system of micro/nano objects is presented, which consists of a state predictor with fast adaptation, a piece-wise continuous adaptive law and a low-pass filtered control design. This control framework can handle nonlinear uncertainties and ensures uniformly bounded tracking performance. The tracking performance bound can be systematically improved by reducing the step size of integration. Rigorous mathematical proof is provided. Simulation results demonstrate the effectiveness of the presented L1 adaptive control law on the micro/nanomanipulation model.

  11. Adaptive compensation control for attitude adjustment of quad-rotor unmanned aerial vehicle.

    Science.gov (United States)

    Song, Zhankui; Sun, Kaibiao

    2017-07-01

    A compensation control strategy based on adaptive back-stepping technique is presented to address the problem of attitude adjustment for a quad-rotor unmanned aerial vehicle (QR- UAV) with inertia parameter uncertainties, the limited airflow disturbance and the partial loss of rotation speed effectiveness. In the design process of control system, adaptive estimation technique is introduced into the closed loop system in order to compensate the lumped disturbance term. More specifically, the designed controller utilizes "prescribed performance bounds" method, and therefore guarantees the transient performance of tracking errors, even in the presence of the lumped disturbance. Adaptive compensation algorithms under the proposed closed loop system structure are derived in the sense of Lyapunov stability analysis such that the attitude tracking error converge to a small neighborhood of equilibrium point. Finally, the simulation results demonstrate the effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Adaptive suboptimal second-order sliding mode control for microgrids

    Science.gov (United States)

    Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella

    2016-09-01

    This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.

  13. Control architecture for an adaptive electronically steerable flash lidar and associated instruments

    Science.gov (United States)

    Ruppert, Lyle; Craner, Jeremy; Harris, Timothy

    2014-09-01

    An Electronically Steerable Flash Lidar (ESFL), developed by Ball Aerospace & Technologies Corporation, allows realtime adaptive control of configuration and data-collection strategy based on recent or concurrent observations and changing situations. This paper reviews, at a high level, some of the algorithms and control architecture built into ESFL. Using ESFL as an example, it also discusses the merits and utility such adaptable instruments in Earth-system studies.

  14. Adaptive control of nonlinear system using online error minimum neural networks.

    Science.gov (United States)

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems

    International Nuclear Information System (INIS)

    Li Yin; Chen Yong; Li Biao

    2009-01-01

    This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.

  16. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  17. Control of humanoid robot motions with impacts : numerical experiments with reference spreading control

    NARCIS (Netherlands)

    Rijnen, M.W.L.M.; De Mooij, E.B.C.; Traversaro, S.; Nori, F.; Van De Wouw, N.; Saccon, A.; Nijmeijer, H.

    2017-01-01

    This work explores the stabilization of desired dynamic motion tasks involving hard impacts at non-negligible speed for humanoid robots. To this end, a so-called reference spreading hybrid control law is designed showing promising results in simulation. The simulations are performed employing a

  18. Dynamic Surface Adaptive Robust Control of Unmanned Marine Vehicles with Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Pengchao Zhang

    2018-01-01

    Full Text Available This paper presents a dynamic surface adaptive robust control method with disturbance observer for unmanned marine vehicles (UMV. It uses adaptive law to estimate and compensate the disturbance observer error. Dynamic surface is introduced to solve the “differential explosion” caused by the virtual control derivation in traditional backstepping method. The final controlled system is proved to be globally uniformly bounded based on Lyapunov stability theory. Simulation results illustrate the effectiveness of the proposed controller, which can realize the three-dimensional trajectory tracking for UMV with the systematic uncertainty and time-varying disturbances.

  19. UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID

    Directory of Open Access Journals (Sweden)

    Ali Moltajaei Farid

    2013-01-01

    Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV.  First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.

  20. Robust adaptive fuzzy neural tracking control for a class of unknown ...

    Indian Academy of Sciences (India)

    In this paper, an adaptive fuzzy neural controller (AFNC) for a class of unknown chaotic systems is ... The robust controller is used to guarantee the stability and to control the per- ..... From the above analysis we have the following theorem:.