WorldWideScience

Sample records for reestablishing riparian trees

  1. Riparian trees as common denominators across the river flow ...

    African Journals Online (AJOL)

    Riparian tree species, growing under different conditions of water availability, can ... leaf area and increasing wood density correlating with deeper groundwater levels. ... and Sanddrifskloof Rivers (South Africa) under reduced flow conditions.

  2. Passive reestablishment of riparian vegetation following removal of invasive knotweed (Polygonum)

    Science.gov (United States)

    Shannon M. Claeson; Peter A. Bisson

    2013-01-01

    Japanese knotweed and congeners are invasive to North America and Europe and spread aggressively along rivers establishing dense monotypic stands, thereby reducing native riparian plant diversity, structure, and function. Noxious weed control programs attempt to eradicate the knotweed with repeated herbicide applications under the assumption that the system will...

  3. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  4. Review of Invasive Riparian Trees that Impact USACE Ecosystem Restoration Projects

    Science.gov (United States)

    2016-08-01

    often release seeds in periods of stress , including periods when exposed to herbicides or mechanical disturbances. Such characteristics make this...Approved for public release ; distribution is unlimited. ERDC TN-EMRRP-SI-36 August 2016 Review of Invasive Riparian Trees that Impact USACE...various spatial control methods for woody invasive plant removal in densely vegetated riparian habitats. The USACE ecosystem restoration mission has

  5. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  6. Riparian trees as common denominators across the river flow ...

    African Journals Online (AJOL)

    2014-03-04

    Mar 4, 2014 ... may be a valuable indicator for water stress, while the other measurements might provide ... O'Keeffe, 2000) as the life histories of riparian plants are inti- .... Southern Africa, some in the context of groundwater depend- .... and C. gratissimus were spread out next to a ruler on a white .... The data were log.

  7. Effects of thinning on transpiration by riparian buffer trees in response to advection and solar radiation

    Science.gov (United States)

    Advective energy occurring in edge environments may increase tree water use. In humid agricultural landscapes, advection-enhanced transpiration in riparian buffers may provide hydrologic regulation; however, research in humid environments is lacking. The objectives of this study were to determine ho...

  8. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    Science.gov (United States)

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  9. Re-establishment of hummock topography promotes tree regeneration on highly disturbed moderate-rich fens.

    Science.gov (United States)

    Lieffers, Victor J; Caners, Richard T; Ge, Hangfei

    2017-07-15

    Winter exploration of oil sands deposits underlying wooded fens mostly eliminates the hummock-hollow topography on drilling pads and the ice roads leading to them, after their abandonment in spring. Recovery of black spruce (Picea mariana (P. Mill.) B.S.P.) and tamarack (Larix laricina (Du Roi) K. Koch) on these disturbed peatlands is thought to depend on the recovery of hummock topography. In late winter, numerous large blocks of frozen peat (1.5 × 1.5 m) were lifted out of the flattened drilling pads and positioned beside their excavated hollows; this was done on six temporary pads. Four years later, the condition of the mounds and the regeneration of conifers from natural seed dispersal were assessed on these elevated mounds compared to adjacent flattened areas of the pads. Then, conifer seedling density was more than five times higher on elevated spots than the mostly flat, flood-prone areas between them, and seedling density was positively related to mound height and strength of seed source. Higher mounds tended to have larger seedlings. Mounds on some of the pads were heavily eroded down; these pads had peat with higher humification, and operationally these pads were also treated in late winter when peat was thawing and fractured into pieces during mound construction. Developing a large volume of elevated substrate that persists until natural hummock-forming mosses can establish is thought necessary for tree recruitment and the recovery of the habitat for the threatened woodland caribou of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Impacts of removing Chinese privet from riparian forests on plant communities and tree growth five years later

    Science.gov (United States)

    Jacob R. Hudson; James L. Hanula; Scott Horn

    2014-01-01

    An invasive shrub, Chinese privet (Ligustrum sinense Lour.), was removed from heavily infested riparian forests in the Georgia Piedmont in 2005 by mulching machine or chainsaw felling. Subsequent herbicide treatment eliminated almost all privet by 2007. Recovery of plant communities, return of Chinese privet, and canopy tree growth were measured on...

  11. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    Science.gov (United States)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that

  12. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats.

    Science.gov (United States)

    Harner, Mary J; Crenshaw, Chelsea L; Abelho, Manuela; Stursova, Martina; Shah, Jennifer J Follstad; Sinsabaugh, Robert L

    2009-07-01

    Dynamics of nutrient exchange between floodplains and rivers have been altered by changes in flow management and proliferation of nonnative plants. We tested the hypothesis that the nonnative, actinorhizal tree, Russian olive (Elaeagnus angustifolia), alters dynamics of leaf litter decomposition compared to native cottonwood (Populus deltoides ssp. wislizeni) along the Rio Grande, a river with a modified flow regime, in central New Mexico (U.S.A.). Leaf litter was placed in the river channel and the surface and subsurface horizons of forest soil at seven riparian sites that differed in their hydrologic connection to the river. All sites had a cottonwood canopy with a Russian olive-dominated understory. Mass loss rates, nutrient content, fungal biomass, extracellular enzyme activities (EEA), and macroinvertebrate colonization were followed for three months in the river and one year in forests. Initial nitrogen (N) content of Russian olive litter (2.2%) was more than four times that of cottonwood (0.5%). Mass loss rates (k; in units of d(-1)) were greatest in the river (Russian olive, k = 0.0249; cottonwood, k = 0.0226), intermediate in subsurface soil (Russian olive, k = 0.0072; cottonwood, k = 0.0031), and slowest on the soil surface (Russian olive, k = 0.0034; cottonwood, k = 0.0012) in a ratio of about 10:2:1. Rates of mass loss in the river were indistinguishable between species and proportional to macroinvertebrate colonization. In the riparian forest, Russian olive decayed significantly faster than cottonwood in both soil horizons. Terrestrial decomposition rates were related positively to EEA, fungal biomass, and litter N, whereas differences among floodplain sites were related to hydrologic connectivity with the river. Because nutrient exchanges between riparian forests and the river have been constrained by flow management, Russian olive litter represents a significant annual input of N to riparian forests, which now retain a large portion of slowly

  13. Development of Microsatellite Loci for the Riparian Tree Species Melaleuca argentea (Myrtaceae Using 454 Sequencing

    Directory of Open Access Journals (Sweden)

    Paul G. Nevill

    2013-05-01

    Full Text Available Premise of the study: Microsatellite primers were developed for Melaleuca argentea (Myrtaceae to evaluate genetic diversity and population genetic structure of this broadly distributed northern Australian riparian tree species. Methods and Results: 454 GS-FLX shotgun sequencing was used to obtain 5860 sequences containing putative microsatellite motifs. Two multiplex PCRs were optimized to genotype 11 polymorphic microsatellite loci. These loci were screened for variation in individuals from two populations in the Pilbara region, northwestern Western Australia. Overall, observed heterozygosities ranged from 0.27 to 0.86 (mean: 0.52 and the number of alleles per locus ranged from two to 13 (average: 4.3. Conclusions: These microsatellite loci will be useful in future studies of the evolutionary history and population and spatial genetic structure in M. argentea, and inform the development of seed sourcing strategies for the species.

  14. Assessing the Effects of Periodic Flooding on the Population Structure and Recruitment Rates of Riparian Tree Forests

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Berthelot

    2014-08-01

    Full Text Available Riparian forest stands are subjected to a variety of hydrological stresses as a result of annual fluctuations in water levels during the growing season. Spring floods create additional water-related stress as a result of a major inflow of water that floods riverside land. This exploratory study assesses the impacts of successive floods on tree dynamics and regeneration in an active sedimentation area, while determining the age of the stands using the recruitment rates, tree structure and tree rings based on dendrochronological analysis. Environmental data were also recorded for each vegetation quadrat. In total, 2633 tree stems were tallied throughout the quadrats (200 m2, and tree specimens were analyzed based on the various flood zones. A total of 720 specimens were counted (100 m2 strip to measure natural regeneration. Higher recruitment rates are noted for the no-flood zones and lower rates in active floodplains. During the period of the establishment of tree species, the survival rates are comparable between the flood zones and the no-flood zones. Tree diameter distribution reveals a strong predominance of young trees in flooded areas. Different factors appear to come into play in the dynamics of riparian forest stands, including the disruptions associated with successive flooding.

  15. Spatial Structure of Soil Macrofauna Diversity and Tree Canopy in Riparian Forest of Maroon River

    Directory of Open Access Journals (Sweden)

    Ehsan Sayad

    2017-02-01

    Full Text Available Introduction: Sustainability and maintenance of riparian vegetation or restoring of degraded sites is critical to sustain inherent ecosystem function and values. Description of patterns in species assemblages and diversity is an essential step before generating hypotheses in functional ecology. If we want to have information about ecosystem function, soil biodiversity is best considered by focusing on the groups of soil organisms that play major roles in ecosystem functioning when exploring links with provision of ecosystem services. Information about the spatial pattern of soil biodiversity at the regional scale is limited though required, e.g. for understanding regional scale effects of biodiversity on ecosystem processes. The practical consequences of these findings are useful for sustainable management of soils and in monitoring soil quality. Soil macrofauna play significant, but largely ignored roles in the delivery of ecosystem services by soils at plot and landscape scales. One main reason responsible for the absence of information about biodiversity at regional scale is the lack of adequate methods for sampling and analyzing data at this dimension. An adequate approach for the analysis of spatial patterns is a transect study in which samples are taken in a certain order and with a certain distance between samples. Geostatistics provide descriptive tools such as variogram to characterize the spatial pattern of continuous and categorical soil attributes. This method allows assessment of consistency of spatial patterns as well as the scale at which they are expressed. This study was conducted to analyze spatial patterns of soil macrofauna in relation to tree canopy in the riparian forest landscape of Maroon. Materilas and Methods: The study was carried out in the Maroon riparian forest of the southeasternIran (30o 38/- 30 o 39/ N and 50 o 9/- 50 o 10/ E. The climate of the study area is semi-arid. Average yearly rainfall is about 350.04 mm

  16. Environmental tolerance of an invasive riparian tree and its potential for continued spread in the southwestern US

    Science.gov (United States)

    Reynolds, L.V.; Cooper, D.J.

    2010-01-01

    Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species-rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species. ?? 2010 International Association for Vegetation Science.

  17. Tree mortality in mature riparian forest: Implications for Fremont cottonwood conservation in the American southwest

    Science.gov (United States)

    Andersen, Douglas

    2015-01-01

    Mature tree mortality rates are poorly documented in desert riparian woodlands. I monitored deaths and calculated annual survivorship probability (Ps) in 2 groups of large (27–114 cm DBH), old (≥40 years old) Fremont cottonwood (Populus fremontii Wats.) in a stand along the free-flowing Yampa River in semiarid northwestern Colorado. Ps = 0.993 year-1 in a group (n = 126) monitored over 2003–2013, whereas Ps = 0.985 year-1 in a group (n = 179) monitored over the same period plus 3 earlier years (2000–2003) that included drought and a defoliating insect outbreak. Assuming Ps was the same for both groups during the 10-year postdrought period, the data indicate that Ps = 0.958 year-1 during the drought. I found no difference in canopy dieback level between male and female survivors. Mortality was equal among size classes, suggesting Ps is independent of age, but published longevity data imply that either Ps eventually declines with age or, as suggested in this study, periods with high Ps are interrupted by episodes of increased mortality. Stochastic population models featuring episodes of low Ps suggest a potential for an abrupt decline in mature tree numbers where recruitment is low. The modeling results have implications for woodland conservation, especially for relictual stands along regulated desert rivers.

  18. SHRUBBY TREE COMPONENT OF RIPARIAN CORRIDORS IN RESTORATION AND NATURAL REMAINING AREAS OF MATRIX FORESTRY, RIO NEGRINHO, SC STATE

    Directory of Open Access Journals (Sweden)

    Eliziane Carla Scariot

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814578The aim of this study was to analyze the shrubby tree component in riparian corridors in restoration process and natural remainders in a matrix forestry. We identified the richness, diversity, dispersal and pollination syndromes of the individuals and estimate the floristic similarity. The study was conducted at the producing farm of Pinus spp. wood Santa Alice, located in Rio Negrinho city, Santa Catarina state, Brazil. We adopted the center-quarter method for survey the shrubby tree component in four sample groups: CA (advanced stage of riparian corridors vegetation, CR (riparian corridors in restoration, MA (advanced stage of natural remaining, MI (intermediate stage of natural remaining. We found the highest richness and diversity index in MA and CR. Regarding the number of individuals, the dispersal and pollination syndromes predominant in all sample groups were zoochory and zoophilia. CR and CA had the highest percentage of floristic similarity while MA and MI did not form clusters. The sample group CR has composition, richness and diversity more similar to CA. This indicates that the restoration of riparian zones has conditions to rescue the components and the interactions of an ecological community.

  19. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan.

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the

  20. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation

  1. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  2. Caloric content of leaves of five tree species from the riparian vegetation in a forest fragment from South Brazil

    Directory of Open Access Journals (Sweden)

    Leandro Fabrício Fiori

    2015-09-01

    Full Text Available Abstract Aim: The measurement of the caloric content evidences the amount of energy that remains in the leaf and that can be released to the aquatic trophic chain. We assessed the energy content of leaves from five riparian tree species of a forest fragment in south Brazil and analyzed whether leaf caloric content varied between leaf species and between seasons (dry and wet. The studied sites are located in Northwest of Paraná State, inside a Semi-Deciduous Forest fragment beside two headwater streams. Methods Sampling sites were located along the riparian vegetation of these two water bodies, and due to its proximity and absence of statistical differences of caloric values, analyzed as one compartment. Results Caloric content varied significantly among species and among all pairs of species, with exception of Nectandra cuspidata Ness and Calophyllum brasiliensis Cambess. Two species presented significant differences between seasons, Sloanea guianensis (Aubl. Ben and Calophyllum brasiliensis Cambess. Conclusions The absence of significant seasonal differences of energy content for some species may be due to the characteristics of the tropical forest, in which temperature did not varied dramatically between seasons. However, the energy differed between species and seasons for some species, emphasizing the necessity of a preliminary inspection of energy content, before tracing energy fluxes instead of using a single value to all species from riparian vegetation.

  3. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales.

    Science.gov (United States)

    Rieger, Isaak; Kowarik, Ingo; Cherubini, Paolo; Cierjacks, Arne

    2017-01-01

    Aboveground carbon (C) sequestration in trees is important in global C dynamics, but reliable techniques for its modeling in highly productive and heterogeneous ecosystems are limited. We applied an extended dendrochronological approach to disentangle the functioning of drivers from the atmosphere (temperature, precipitation), the lithosphere (sedimentation rate), the hydrosphere (groundwater table, river water level fluctuation), the biosphere (tree characteristics), and the anthroposphere (dike construction). Carbon sequestration in aboveground biomass of riparian Quercus robur L. and Fraxinus excelsior L. was modeled (1) over time using boosted regression tree analysis (BRT) on cross-datable trees characterized by equal annual growth ring patterns and (2) across space using a subsequent classification and regression tree analysis (CART) on cross-datable and not cross-datable trees. While C sequestration of cross-datable Q. robur responded to precipitation and temperature, cross-datable F. excelsior also responded to a low Danube river water level. However, CART revealed that C sequestration over time is governed by tree height and parameters that vary over space (magnitude of fluctuation in the groundwater table, vertical distance to mean river water level, and longitudinal distance to upstream end of the study area). Thus, a uniform response to climatic drivers of aboveground C sequestration in Q. robur was only detectable in trees of an intermediate height class and in taller trees (>21.8m) on sites where the groundwater table fluctuated little (≤0.9m). The detection of climatic drivers and the river water level in F. excelsior depended on sites at lower altitudes above the mean river water level (≤2.7m) and along a less dynamic downstream section of the study area. Our approach indicates unexploited opportunities of understanding the interplay of different environmental drivers in aboveground C sequestration. Results may support species-specific and

  4. Does tree harvesting in riparian areas increase stream sedimentation and turbidity - world-wide experience relative to Australia.

    Science.gov (United States)

    Neary, D.; Smethurst, P.; Petrone, K.

    2009-04-01

    A typical improved-pasture property in the high-rainfall zone of Australia contains 0.5-2.0 km of waterways per 100 ha. Nationwide, some 25-30 million ha of improved pasture contains about 100,000 km of streams, of which about 75% are currently un-buffered and contributing to soil and water degradation. Farmers and natural resource managers are considering ways to enhance environmental outcomes at farm and catchment scales using stream-side buffers of trees and other perennial vegetation. Benefits of buffers include improved water quality, biodiversity, carbon sequestration and aesthetics. Lack of sound information and funding for establishing and managing buffer zones is hindering wide-scale adoption of this practice. Stream-side areas of farms are generally highly productive (wet and nutrient-rich) and contain a high biodiversity, but they are also high-risk zones for soil and water values and stock safety. Development of options based on a balance between environmental and economic outcomes would potentially promote wider adoption. Australian codes of forest practice currently discourage or prevent harvesting of trees in streamside buffers. These codes were developed exclusively for large-scale native forests and industrial-scale plantations, and were applicable to farm forestry as now required. In countries including USA and Germany trees in stream-side buffers are harvested using Best Management Practices. Trees may grow at a faster rate in riparian zones and provide a commercial return, but the impacts of tree establishment and harvesting on water yield and quality must be evaluated. However, there have been few designed experiments investigating this problem. Australia has recently initiated studies to explore the use of high-value timber species and associated vegetation in riparian zones to improve water quality, particularly suspended sediment. Preliminary information from the Yan Yan Gurt Catchment in Victoria indicate that forested riparian strips can

  5. Influence of Riparian Tree Phenology on Lower Colorado River Spring-Migrating Birds: Implications of Flower Cueing

    Science.gov (United States)

    McGrath, Laura J.; van Riper, Charles

    2005-01-01

    Executive Summary Neotropical migrant birds make choices about which habitats are most likely to provide successful foraging locations during migration, but little is known about how these birds recognize and process environmental clues that indicate the presence of prey species. Aspects of tree phenology, notably flowering of trees along the lower Colorado River corridor, coincide with the migratory stopovers of leaf-gleaning insectivorous songbirds and may be an important indicator of arthropod prey species availability. Shifting tree flowering and leaf flush during the spring migration period presents avian insectivores with an assortment of foraging opportunities. During two field seasons at Cibola National Wildlife Refuge in southwestern Arizona, we examined riparian tree species to test whether leaf-gleaning insectivorous birds are attracted to the flowering condition of trees in choosing foraging sites. We predicted that flowering trees would host more insect prey resources, would thus show increased visit rates, length of stays and attack ratios of migrant avian insectivores, and that those arthropods would be found in the stomach contents of the birds. Paired trees of honey mesquite (Prosopis glandulosa), displaying heavy and light degrees of flowering were observed to test these predictions. To test whether birds are tracking arthropods directly or are using flowers as a proximate cue, we removed flowers from selected trees and paired these treated trees with neighboring high flowering trees, which served as controls. Avian foraging behavior, avian diets, arthropods, and phenology data were collected at the same time to control for temporal differences in insect availability, plant phenology, and differences in stopover arrivals of birds. We documented five patterns from this study: 1) Higher abundance and richness of arthropods were found on honey mesquite trees with greater numbers of flowers. 2) Arthropod abundance and richness increased as flowering

  6. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  7. Pervasive hydrologic effects on freshwater mussels and riparian trees in southeastern floodplain ecosystems

    Science.gov (United States)

    Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay

    2009-01-01

    We present long-term growth trends for 13 freshwater mussel species from two unregulated rivers and one regulated river in the southeastern U.S. Coastal Plain. We also collected baldcypress (Taxodium distichum (L.) Rich.) tree cores adjacent to mussel collection sites in one river and directly compared tree and mussel chronologies in this river. To extend our analysis...

  8. Variation in experimental flood impacts and ecogeomorphic feedbacks among native and exotic riparian tree seedlings

    Science.gov (United States)

    Kui, L.; Stella, J. C.; Skorko, K.; Lightbody, A.; Wilcox, A. C.; Bywater-Reyes, S.

    2012-12-01

    Flooding interacts with riparian plants on a variety of scales, resulting in coevolution of geomorphic surfaces with plant vegetation communities. Our research aims to develop a mechanistic understanding of riparian seedling damage from small floods, with a focus on differential responses among species (native and non-native), ecogeomorphic feedbacks, and implications for riparian restoration. We tested the effects of controlled flood events on cottonwood (Populus fremontii) and tamarisk (Tamarix spp.) seedlings in an experimental meandering stream channel. We hypothesized that seedling dislodgement and burial would be influenced by individual plant height, species-specific morphology, patch density, and differences in hydraulic forces (as a function of location on the bar). Four experimental floods were tested, with different combinations of plant species and seedling densities. For each flood run, rooted seedlings were installed within a 1.5-m-wide sandbar during low flow conditions and stream discharge was increased to a constant flood level for approximately 8 hours, after which seedling response was assessed. Seedling damage was analyzed within a logistic regression framework that predicted the probability of dislodgement or burial as a function of the explanatory variables. Plant dislodgement depended on root length and the location on the sandbar, whereas burial depended on plant height, species-specific morphology, and location. For every centimeter increase in plant height, the odds of plant burial decreased by 10 percent, illustrating the rate at which plants developed flood resistance as they grow taller. With every meter closer to the thalweg, plant dislodgement was four times more likely, and plant burial was 2.6 times more likely. The probability of burial was twice as great for tamarisk seedlings as for cottonwood. The increased sedimentation within tamarisk patches was associated with a denser foliage and a more compact crown for this species. The

  9. Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference.

    Science.gov (United States)

    Cabra-Rivas, Isabel; Castro-Díez, Pilar

    2016-01-01

    A widely accepted hypothesis in invasion ecology is that invasive species have higher survival through the early stages of establishment than do non-invasive species. In this study we explore the hypothesis that the sexual reproductive success of the invasive trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. is higher than that of the native Fraxinus angustifolia Vahl., all three species coexisting within the riparian forests of Central Spain. We compared different stages of the early life cycle, namely seed rain, seed infestation by insects, seed removal by local fauna, seed germination under optimal conditions and seedling abundance between the two invasive trees and the native, in order to assess their sexual reproductive success. The exotic species did not differ from the native reference (all three species displaying high seed rain and undergoing seed losses up to 50% due to seed removal by the local fauna). Even if the exotic R. pseudoacacia showed a high percentage of empty and insect-parasited seeds along with a low seedling emergence and the exotic A. altissima was the species with more viable seeds and of higher germinability, no differences were found regarding these variables when comparing them with the native F. angustifolia. Unsuitable conditions might have hampered either seedling emergence and survival, as seedling abundance in the field was lower than expected in all species -especially in R. pseudoacacia-. Our results rather suggest that the sexual reproductive success was not higher in the exotic trees than in the native reference, but studies focusing on long-term recruitment would help to shed light on this issue.

  10. Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference.

    Directory of Open Access Journals (Sweden)

    Isabel Cabra-Rivas

    Full Text Available A widely accepted hypothesis in invasion ecology is that invasive species have higher survival through the early stages of establishment than do non-invasive species. In this study we explore the hypothesis that the sexual reproductive success of the invasive trees Ailanthus altissima (Mill. Swingle and Robinia pseudoacacia L. is higher than that of the native Fraxinus angustifolia Vahl., all three species coexisting within the riparian forests of Central Spain. We compared different stages of the early life cycle, namely seed rain, seed infestation by insects, seed removal by local fauna, seed germination under optimal conditions and seedling abundance between the two invasive trees and the native, in order to assess their sexual reproductive success. The exotic species did not differ from the native reference (all three species displaying high seed rain and undergoing seed losses up to 50% due to seed removal by the local fauna. Even if the exotic R. pseudoacacia showed a high percentage of empty and insect-parasited seeds along with a low seedling emergence and the exotic A. altissima was the species with more viable seeds and of higher germinability, no differences were found regarding these variables when comparing them with the native F. angustifolia. Unsuitable conditions might have hampered either seedling emergence and survival, as seedling abundance in the field was lower than expected in all species -especially in R. pseudoacacia-. Our results rather suggest that the sexual reproductive success was not higher in the exotic trees than in the native reference, but studies focusing on long-term recruitment would help to shed light on this issue.

  11. Metapopulation modelling of riparian tree species persistence in river networks under climate change.

    Science.gov (United States)

    Van Looy, Kris; Piffady, Jérémy

    2017-11-01

    Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and ¼ for poplar after 25 years already. But proposed adaptation measures prove effective to even

  12. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    Science.gov (United States)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution ( 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar amounts of aboveground carbon

  13. Characterising the water use and hydraulic properties of riparian tree invasions: A case study of Populus canescens in South Africa

    CSIR Research Space (South Africa)

    Ntshidi, Zanele

    2018-04-01

    Full Text Available catchment of South Africa. Whole tree hydraulic resistance ranged from ~ 1.4 MPa·h·g(sup)-1 for large trees to ~14.3 MPa·h·g(sup)-1 for the small ones. These resistances are higher than those found for poplars in temperate climates, suggesting substantial...

  14. Riparian Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around all...

  15. Riparian trees as common denominators across the river flow spectrum: are ecophysiological methods useful tools in environmental flow assessments?

    CSIR Research Space (South Africa)

    Schachtschneider, K

    2014-04-01

    Full Text Available physiological differences for trees occurred along rivers of the drier flow regime spectrum (seasonal and ephemeral). As such, this physiological measurement may be a valuable indicator for water stress, while the other measurements might provide more conclusive...

  16. The evaluation of the establishment and growth of indigenous trees to restore deforested riparian areas in the Mapungubwe National Park, South Africa / Theo Scholtz

    OpenAIRE

    Scholtz, Theo

    2007-01-01

    The deforestation of riparian areas is a major concern in southern Africa. These areas are characterized as fragile ecosystems which contribute largely to the regional and global biodiversity of the world. It is therefore important to restore these degraded areas along the natural rivers of South Africa to ensure the sustainability and biodiversity of riparian corridors. Riparian areas inside the National Parks of South Africa, and especially in Mapungubwe National Park, have a high esthetica...

  17. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    Science.gov (United States)

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.

  18. Riparian vegetation structure under desertification scenarios

    Science.gov (United States)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  19. Rocky Mountain Riparian Digest

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Rocky Mountain Riparian Digest presents the many facets of riparian research at the station. Included are articles about protecting the riparian habitat, the social and economic values of riparian environments, watershed restoration, remote sensing tools, and getting kids interested in the science.

  20. Flow and transport in Riparian Zones

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn

    scenarios with changing conditions for flow (steady state with no flooding or transient with flooding), hydrogeology, denitrification rate, and extent of flooding it is demonstrated how flow paths, residence times, and nitrate removal are affected. With this previous conceptual models on the hydrology......The PhD study presents research results from two re-established Danish riparian zones, Brynemade and Skallebanke, located along Odense River on the island Funen, Denmark. The overall objectives of the PhD study have been to improve the understanding of flow and transport in riparian zones....... The methodology focuses on; construction of field sites along Odense River, understanding flow and transport, and performing numerical/analytical model assessments of flow and transport. An initial 2D simulation study was performed with a conceptual setup based on the Brynemade site. Through a series of 2D model...

  1. Greenhouse gas emissions from a Danish riparian wetland before and after restoration

    DEFF Research Database (Denmark)

    Audet, Joachim; Elsgaard, Lars; Kjærgaard, Charlotte

    2013-01-01

    Restoration of riparian wetlands often aims at increasing the removal of nitrogen and phosphorus by re-establishing the hydrological connectivity between the stream and the surrounding floodplain. However, the geochemically reduced soil conditions in the newly restored area may favor the emission...

  2. Trees

    Science.gov (United States)

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  3. 78 FR 29382 - Notice of Charter Reestablishment

    Science.gov (United States)

    2013-05-20

    ... principles of the various criminal justice information systems managed by the FBI's CJIS Division. The APB... General, I have determined that the reestablishment of the Criminal Justice Information Services (CJIS... agencies participating in the CJIS Division Systems; and representatives of criminal justice professional...

  4. 76 FR 33785 - Notice of Charter Reestablishment

    Science.gov (United States)

    2011-06-09

    ... principles of the various criminal justice information systems managed by the FBI's CJIS Division. The APB... General, I have determined that the reestablishment of the Criminal Justice Information Services (CJIS... agencies participating in the CJIS Division Systems; and representatives of criminal justice professional...

  5. Riparian Vegetation Mapping Along the Hanford Reach

    International Nuclear Information System (INIS)

    FOGWELL, T.W.

    2003-01-01

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY2002

  6. Small mammals in saltcedar (Tamarix ramosissima) - invaded and native riparian habitats of the western Great Basin

    Science.gov (United States)

    Invasive saltcedar species have replaced native riparian trees on numerous river systems throughout the western US, raising concerns about how this habitat conversion may affect wildlife. For periods ranging from 1-10 years, small mammal populations were monitored at six riparian sites impacted by s...

  7. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...

  8. EnviroAtlas - Memphis, TN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a...

  9. EnviroAtlas - New York, NY - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  10. EnviroAtlas - Cleveland, OH - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody...

  11. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody...

  12. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  13. EnviroAtlas - Minneapolis/St. Paul, MN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody...

  14. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  15. Riparian Communities along Longitudinal Gradients in Mexico's Northeastern San Juan River

    OpenAIRE

    Guerra, San Juana; Lizárraga-Mendiola, Liliana; Návar, José

    2016-01-01

    Abstract: This research was conducted in three major tributaries of Mexico's northeast San Juan River with the major objectives of: (a) describing the diversity-abundance of riparian trees, benthic insects and fish faunal communities and (b) associating the fish and benthic insect communities to riparian tree communities, flow quality, and discharge parameters along a longitudinal gradient of water stress. Regardless of the high spatial variability, two gradients could be identified using mul...

  16. Transpirational water loss in invaded and restored semiarid riparian forests

    Science.gov (United States)

    Georgianne W. Moore; M. Keith Owens

    2011-01-01

    The invasive tree, Tamarix sp., was introduced to the United States in the 1800s to stabilize stream banks. The riparian ecosystem adjacent to the middle Rio Grande River in central NewMexico consists of mature cottonwood (Populus fremontii ) gallery forests with a dense Tamarix understory. We hypothesized that Populus would compensate for reduced competition by...

  17. Biogeomorphic feedbacks within riparian corridors: the role of positive interactions between riparian plants

    Science.gov (United States)

    Corenblit, Dov; Steiger, Johannes; Till-Bottraud, Irène

    2017-04-01

    storage within the shared constructed niche. During post-establishment, the probability of finding functional natural root grafting between neighbour trees increases, which could represent a biomechanical and physiological advantage for anchorage and nutrient acquisition and exchange. These stands remain dense on alluvial bars until a threshold of landform construction and hydrogeomorphic disconnection is reached. We suggest that intra-specific competition for resources then increases and induces a density reduction in the stand (i.e. self-thinning), linked not only to competition but potentially also to altruism. This may be due to a grafted root system and the death of aboveground stems of some of the grafted individuals, resulting in more space for the development of the tall competitive individuals, whereas the initial riparian biogeomorphic landform turns more and more into a terrestrial biogeomorphic landform.

  18. Riparian Vegetation Mapping Along the Hanford Reach

    Energy Technology Data Exchange (ETDEWEB)

    FOGWELL, T.W.

    2003-07-11

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY

  19. Litter Controls Earthworm-Mediated Carbon and Nitrogen Transformations in Soil from Temperate Riparian Buffers

    OpenAIRE

    Maria Kernecker; Joann K. Whalen; Robert L. Bradley

    2014-01-01

    Nutrient cycling in riparian buffers is partly influenced by decomposition of crop, grass, and native tree species litter. Nonnative earthworms in riparian soils in southern Quebec are expected to speed the processes of litter decomposition and nitrogen (N) mineralization, increasing carbon (C) and N losses in gaseous forms or via leachate. A 5-month microcosm experiment evaluated the effect of Aporrectodea turgida on the decomposition of 3 litter types (deciduous leaves, reed canarygrass, an...

  20. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  1. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Natural Resource Agency — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  2. GIS applications in riparian management

    Science.gov (United States)

    Carrie Christman; Douglas W. Shaw; Charles L. Spann; Penny Luehring

    1996-01-01

    GIS was used to prioritize watersheds for treatment needs across the USDA Forest Service Southwestern Region. Factors in this analysis included soil condition, riparian habitat, population centers and mining sites.

  3. Riparian planning in Yogyakarta City

    Science.gov (United States)

    Rachmawati, R.; Prakoso, E.; Sadali, M. I.; Yusuf, M. G.

    2018-04-01

    Riparian is a potential for slums in urban areas. The city of Yogyakarta is passed by three rivers namely Code, Gajahwong, and Winongo, crossing the city. Riparian in the three rivers are potential for slum if the area is not well managed. This paper is based on the survey results of the structured interview with the people living in the riparian area in Yogyakarta City. They were 75 respondents from the three riparian. The result shows that several reasons why people prefer to remain living in the area are limited spaces and high land price in the city as well as inherited from their parents. The facts that there are still several problems related to the condition of settlement environment in the riparian, i.e., The condition of densely-populated areas, limited availability of land, and limited public spaces. Efforts that can be done to solve problems related to the riparian planning are anticipating disasters like flood and landslide, paying attention to densely-populated and unwell-planned areas, and handling garbage that has been abandoned into the river. The program expected by those living along both riversides is intended to give priorities on providing some aid for those whose houses are not in good condition, controlling buildings without a permit, and building a dike along the river. Efficiency can be made by making use of the space adequately between the one for settlement and the other one for open-green space for both aesthetic and economic purposes.

  4. Levantamento florístico do componente arbustivo-arbóreo da vegetação ciliar na bacia do rio Taperoá, PB, Brasil Floristic survey of components of shrub-tree riparian vegetation in the Taperoá river basin, Paraíba State, Brasil

    Directory of Open Access Journals (Sweden)

    Alecksandra Vieira de Lacerda

    2005-09-01

    Full Text Available Considerando o papel relevante e o nível de degradação presente nas áreas ciliares, a pesquisa objetivou estudar a composição florística do componente arbustivo-arbóreo da vegetação ciliar em diferentes ambientes hídricos do semi-árido paraibano na bacia do rio Taperoá. O levantamento florístico foi realizado no período de junho/2002 a fevereiro/2003 e abrangeu nove pontos distribuídos ao longo de rios, riachos, lagoa e açude. A definição das atividades apoiou-se em análise de cartas e mapas da vegetação em escala de 1:100.000 e caminhadas aleatórias que permitiram a realização de coleta de material vegetal, utilizado para identificação por meio de consultas a especialistas e de morfologia comparada, usando bibliografia especializada e análise das exsicatas depositadas no herbário Lauro Pires Xavier - JPB (UFPB, João Pessoa, PB. A vegetação arbustivo-arbórea da mata ciliar nos nove pontos amostrados foi representada por 43 espécies, das quais 41 são pertencentes a 19 famílias, e duas espécies permaneceram indeterminadas. As famílias que apresentaram o maior número de espécies foram Mimosaceae (sete, Caesalpiniaceae (cinco e Euphorbiaceae (cinco. Os resultados da análise de agrupamento indicaram que as áreas ciliares apresentaram certa particularização em termos de composição florística, o que se refletiu nos baixos índices de similaridades entre o conjunto de áreas amostradas.Considering the relevant role and the current level of degradation of riparian areas, this work aimed to study the floristic composition of shrub-tree riparian vegetation at different hydric environments in the Taperoá river basin, in the semi-arid region of the Paraíba State, Northeast Brazil. The survey was performed from June 2002 to February 2003. Nine sampling sites were distributed along rivers and streams, and around lagoon, and dam. The definition of activities was based on the analysis of charts and vegetation maps

  5. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    Science.gov (United States)

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  6. Woody riparian vegetation response to different alluvial water table regimes

    Science.gov (United States)

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  7. Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction.

    Science.gov (United States)

    Marshall, Kristin N; Hobbs, N Thompson; Cooper, David J

    2013-04-07

    Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems.

  8. 76 FR 7807 - National Wildlife Services Advisory Committee; Reestablishment

    Science.gov (United States)

    2011-02-11

    ... Inspection Service [Docket No. APHIS-2009-0057] National Wildlife Services Advisory Committee.... SUMMARY: We are giving notice that the Secretary of Agriculture will reestablish the National Wildlife.... SUPPLEMENTARY INFORMATION: The purpose of the National Wildlife Services Advisory Committee (the Committee) is...

  9. 49 CFR 24.304 - Reestablishment expenses-nonresidential moves.

    Science.gov (United States)

    2010-10-01

    ..., such as paint, paneling, or carpeting. (5) Advertisement of replacement location. (6) Estimated... or rental charges; (ii) Personal or real property taxes; (iii) Insurance premiums; and (iv) Utility charges, excluding impact fees. (7) Other items that the Agency considers essential to the reestablishment...

  10. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    Science.gov (United States)

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  11. Principles for Establishing Ecologically Successful Riparian Corridors

    Science.gov (United States)

    Principles for establishing riparian areas. Riparian areas are three‐dimensional ecotones of interaction that include terrestrial and aquatic ecosystems, that extend down into the groundwater, up above the canopy, outward across the floodplain.

  12. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    Science.gov (United States)

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  13. Buffer Strips for Riparian Zone Management

    National Research Council Canada - National Science Library

    1991-01-01

    This study provides a review of technical literature concerning the width of riparian buffer strips needed to protect water quality and maintain other important values provided by riparian ecosystem...

  14. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Down by the riverside: urban riparian ecology

    Science.gov (United States)

    Peter M. Groffman; Daniel J. Bain; Lawrence E. Band; Kenneth T. Belt; Grace S. Brush; J. Morgan Grove; Richard V. Pouyat; Ian C. Yesilonis; Wayne C. Zipperer

    2003-01-01

    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surprisingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem...

  16. Hydrology, ecology, and management of riparian areas in the Madrean Archipelago

    Science.gov (United States)

    Daniel G. Neary; Peter F. Ffolliott; Leonard F. DeBano

    2005-01-01

    Riparian areas in the Madrean Archipelago have historically provided water necessary for people, livestock, and agricultural crops. European settlers were attracted to these areas in the 1880s, where they enjoyed shade and forage for themselves and their livestock and existed on the readily available wildlife and fish. Trees growing along stream banks were harvested...

  17. Quantifying change in riparian ash forests following the introduction of EAB in Michigan and Indiana

    Science.gov (United States)

    Susan J. Crocker; Dacia M. Meneguzzo

    2012-01-01

    The emerald ash borer (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae; EAB) is an introduced beetle that kills ash (Fraxinus spp.) trees. While most EAB-related ash mortality has been documented in urban areas, the effects of EAB in forested settings, particularly in riparian forests, are not well known. This study utilizes...

  18. Tree production in desert regions using effluent and water harvesting

    Science.gov (United States)

    Martin M. Karpiscak; Gerald J. Gottfried

    2000-01-01

    Treated municipal effluent combined with water harvesting can be used for land restoration and enhancing the growth of important riparian tree species. Paired studies in Arizona are assessing the potential of growing trees using mixtures of effluent and potable water. Trees are grown in the field and in containers. Initial results from the field show high survival for...

  19. 7 CFR 1410.9 - Conversion to trees.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Conversion to trees. 1410.9 Section 1410.9... Conversion to trees. An owner or operator who has entered into a CRP contract prior to November 28, 1990, may... permanent vegetative cover, from such cover to hardwood trees, (including alley cropping and riparian...

  20. Riparian ecotone: A functional definition and delineation for resource assessment

    Science.gov (United States)

    E. S Verry; C. A Dolloff; M. E. Manning

    2004-01-01

    We propose a geomorphic basis for defining riparian areas using the term: riparian ecotone, discuss how past definitions fall short, and illustrate how a linked sequence of definition, delineation, and riparian sampling are used to accurately assess riparian resources on the ground. Our riparian ecotone is based on the width of the valley (its floodprone area width)...

  1. EAB induced tree mortality impacts ecosystem respiration and tree water use in an experimental forest

    Science.gov (United States)

    Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler

    2011-01-01

    The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...

  2. How do riparian woody seedlings survive seasonal drought?

    Science.gov (United States)

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  3. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    Science.gov (United States)

    Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  4. Multicriteria analysis to evaluate the energetic reuse of riparian vegetation

    International Nuclear Information System (INIS)

    Recchia, Lucia; Cini, Enrico; Corsi, Stefano

    2010-01-01

    The management of riparian vegetation which includes cutting operations of grass, reeds, bushes and trees, is very important to reduce hydrogeologic risk. In Tuscany, riparian biomass and residues are mainly left shredded along courses or disposed in landfills as special wastes: actually different laws prohibit that tree trunks are abandoned in areas naturally affected by flooding, because they can be moved contributing to increase the water level and to maximize the hydraulic risk of some other nearby areas. In some cases, it is also possible to store the logs in specified sites from where they can be taken and used as a fuel in fireplaces or domestic heating plants. This work studies the possibility of the reuse of riparian vegetation as biomass for energy production and evaluates benefits and drawbacks from the economical, environmental and managerial points of view. Particularly, a specific methodology has been developed for two hydrological districts of Tuscany, with different typologies and densities of vegetation. First, an estimation of biomass distribution on the land and an evaluation of annual wood availability have been carried out; then, different chains concerning harvesting operation, biomass transport, storage conditions and final utilisation, have been defined and compared by a specific multicriteria analysis (MCA); finally, for the most suitable bio-energy chains the Life Cycle Assessment (LCA) has been implemented. Results of the LCA have also permitted to validate some environmental indicators used in the MCA, as mechanisation level of yards, energy efficiency of plants or transport distances. The decision making tool developed allows to compare costs and environmental benefits of the energy use of riparian vegetation, supporting local authorities involved in energy planning: in this way it is possible to confront different alternatives to match the energy demand and meet the energy saving and sustainability issues at the lowest cost for the

  5. Multicriteria analysis to evaluate the energetic reuse of riparian vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, Lucia; Cini, Enrico [Dipartimento di Ingegneria Agraria e Forestale, Universita di Firenze, Piazzale delle Cascine 15, 50144 Firenze (Italy); Corsi, Stefano [Consorzio di Bonifica per la difesa del suolo e la tutela dell' ambiente della Toscana Centrale, via Verdi 16, 50122 Firenze (Italy)

    2010-01-15

    The management of riparian vegetation which includes cutting operations of grass, reeds, bushes and trees, is very important to reduce hydrogeologic risk. In Tuscany, riparian biomass and residues are mainly left shredded along courses or disposed in landfills as special wastes: actually different laws prohibit that tree trunks are abandoned in areas naturally affected by flooding, because they can be moved contributing to increase the water level and to maximize the hydraulic risk of some other nearby areas. In some cases, it is also possible to store the logs in specified sites from where they can be taken and used as a fuel in fireplaces or domestic heating plants. This work studies the possibility of the reuse of riparian vegetation as biomass for energy production and evaluates benefits and drawbacks from the economical, environmental and managerial points of view. Particularly, a specific methodology has been developed for two hydrological districts of Tuscany, with different typologies and densities of vegetation. First, an estimation of biomass distribution on the land and an evaluation of annual wood availability have been carried out; then, different chains concerning harvesting operation, biomass transport, storage conditions and final utilisation, have been defined and compared by a specific multicriteria analysis (MCA); finally, for the most suitable bio-energy chains the Life Cycle Assessment (LCA) has been implemented. Results of the LCA have also permitted to validate some environmental indicators used in the MCA, as mechanisation level of yards, energy efficiency of plants or transport distances. The decision making tool developed allows to compare costs and environmental benefits of the energy use of riparian vegetation, supporting local authorities involved in energy planning: in this way it is possible to confront different alternatives to match the energy demand and meet the energy saving and sustainability issues at the lowest cost for the

  6. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  7. Innovative water withdrawal system re-establishes fish migration runs

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This article described a unique water withdrawal and fish bypass structure that is under construction in Oregon to re-establish anadromous fish runs and to improve water quality downstream of the Round Butte dam. Portland General Electric and the Confederated Tribes of the Warm Springs Reservation, which co-own the dam, have committed to re-establish fish runs in response to concerns over the declining numbers of salmon and trout in the region. Water intakes are routinely added at hydroelectric facilities to protect native fish in compliance with the Federal Energy Regulatory Commission and the Clean Water Act. The Round Butte Hydroelectric project had a complex set of challenges whereby surface-current directions had to be changed to help migrating salmon swim easily into a fish handling area and create a fish collection system. CH2M HILL designed the system which consists of a large floating structure, an access bridge, a large vertical conduit and a base structure resting on the lake bed. Instead of using 2D CAD file methods, CH2M HILL decided to take advantage of 3D models to visualize the complex geometry of these structures. The 3D models were used to help designers and consultants understand the issues, resolve conflicts and design solutions. The objective is to have the system operating by the 2009 migrating season. 1 ref., 4 figs

  8. Riparian Habitat Management for Mammals on Corps of Engineers Projects

    National Research Council Canada - National Science Library

    Martin, Chester

    2002-01-01

    .... This note provides an overview of the importance of riparian ecosystems to mammals, discusses regional variation in mammal communities characteristic of riparian zones, identifies potential impacts...

  9. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  10. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  11. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    Science.gov (United States)

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  12. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    Science.gov (United States)

    Merritt, David M; Bateman, Heather L

    2012-10-01

    shrublands. Variability in the BHI was best explained by the cover of deciduous riparian tree species, primarily Populus fremontii, Platanus wrightii, and Salix gooddingii. The distributions of these plant species were well explained by the depth to groundwater and magnitude of fluvial disturbance along the stream. Bird species diversity and richness were significantly higher in sites with higher habitat indices. This quantitative linkage between surface and groundwater, plant species composition, habitat complexity, and bird communities has implications for water management and in determining environmental flows.

  13. Estrutura e síndromes de dispersão de espécies arbóreas em um trecho de mata ciliar, Sirinhaém, Pernambuco, Brasil Structure and dispersal syndromes of tree species in a stretch of riparian vegetation, Sirinhaém, Pernambuco State, Brazil

    Directory of Open Access Journals (Sweden)

    Roseane Karla Soares da Silva

    2012-03-01

    Full Text Available

    Este trabalho teve por objetivo conhecer a fitossociologia do componente arboreo em uma mata ciliar de um corrego que desagua no Rio Sirinhaem, localizado no Engenho Buranhem, Sirinhaem, PE e identificar as sindromes de dispersao das especies. O corrego esta situado em um fragmento de Floresta Ombrofila Densa de Terras Baixas, com 272 ha. Utilizou-se como area amostral um hectare (40 unidades amostrais, 10 m x 25 m onde foram registrados 1.307 individuos arboreos com circunferencia a altura do peito (CAP ≥ 15 cm. Foram identificadas 118 especies, pertencentes a 40 familias botanicas. Protium heptaphyllum e Pouteria sp.1 foram as especies mais abundantes. Em termos de valor de importancia (VI, as especies Protium heptaphyllum, Pouteria sp.1 e Virola gardneri estao entre as mais importantes ecologicamente. As sindromes de dispersao predominantes foram: zoocoria (72,8%, autocoria (13,6% e anemocoria (4,8%. Nao foi possivel determinar a sindrome de dispersao de 8,8% das especies estudadas.

     

    doi: 10.4336/2012.pfb.32.69.01

    This study aimed to know the phytosociology of the tree component of riparian vegetation in a stream that flows into the Sirinhaem River in Engenho Buranhem, Sirinhaem, Pernambuco State, and identify the species dispersal syndromes. The stream is located in a fragment of dense rain forest of the lowlands, with 272 ha. It was sempled used one hectare (40 sampling units of 10 m x 25 m each. It was registered 1,307 trees with circumference at breast height (CAP . 15 cm. We identified 118 species belonging to 40 botanical families. Protium heptaphyllum and Pouteria sp.1 were the most abundant species. In terms of importance value (IV, Protium heptaphyllum, Pouteria sp.1 and Virola gardneri are among the most important ecologically species. The predominant dispersal syndromes were zoocory (72.8%, autocory (13.6% and anemochory (4.8%. It was not possible to determine the type of dispersal of 8.8% of the

  14. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests in

  15. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    Science.gov (United States)

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  16. Tamarisk coalition - native riparian plant materials program

    Science.gov (United States)

    Stacy Kolegas

    2012-01-01

    The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...

  17. The Riparianness of a Desert Herpetofauna

    Science.gov (United States)

    Charles H. Lowe

    1989-01-01

    Within the Mojave, Sonoran, and Chihuahuan Desert subdivisions of the North American Desert in the U.S., more than half of 143 total amphibian and reptilian species perform as riparian and/or wetland taxa. For the reptiles, but not the amphibians, there is a significant inverse relationship between riparianness (obligate through preferential and facultative to...

  18. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    Science.gov (United States)

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  19. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)

    LEANDRO VALLE FERREIRA

    2013-09-01

    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  20. Biomass and carbon pools of disturbed riparian forests

    Science.gov (United States)

    Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  1. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  2. A framework for reporting tree cover attributes in agricultural landscapes

    Science.gov (United States)

    Dacia M. Meneguzzo; Greg C. Liknes

    2012-01-01

    The definition of forest land used by the USDA Forest Service’s Forest Inventory and Analysis program includes area, width, and density requirements. These requirements frequently exclude from the inventory any trees occupyingnarrow riparian corridors or linear tree plantings (e.g., windbreaks and shelterbelts). With recent attention being paid to such topics as bio-...

  3. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    Science.gov (United States)

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  4. 78 FR 30737 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-05-23

    ... FR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...: This final rule reestablishes the membership on the Colorado Potato Administrative Committee, Area No... Irish potatoes grown in Colorado. This action modifies the Committee membership structure by amending...

  5. 75 FR 983 - Notice of Re-Establishment of the National Petroleum Council

    Science.gov (United States)

    2010-01-07

    ... DEPARTMENT OF ENERGY Notice of Re-Establishment of the National Petroleum Council AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Re-Establishment of the National Petroleum... Secretariat, General Services Administration, notice is hereby given that the National Petroleum Council has...

  6. Improving tree establishment with forage crops

    Science.gov (United States)

    Eric J. Holzmueller; Carl W. Mize

    2003-01-01

    Tree establishment in Iowa can be difficult without adequate weed control. Although herbicides are effective at controlling weeds, they may not be desirable in riparian settings and some landowners are opposed to using them. An alternative to herbicides is the use of forage crops to control weeds. A research project was established in 1998 to evaluate the influence of...

  7. Effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function on woodland-encroached sagebrush steppe, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Kormos, P.; Al-Hamdan, O. Z.; Nouwakpo, S.; Weltz, M.; Vega, S.; Lindsay, K.

    2017-12-01

    Range expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers into sagebrush steppe (Artemisia spp.) communities has imperiled a vast domain in the western US. Encroachment of sagebrush ecosystems by pinyon and juniper conifers has negative ramifications to ecosystem structure and function and delivery of goods and services. Scientists, land management agencies, and private land owners throughout the western US are challenged with selecting from a suite of options to reduce pinyon and juniper woody fuels and re-establish sagebrush steppe structure and function. This study evaluated the effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function over a 9 yr period. Nine years post-fire hydrologic and erosion responses reflect the combination of pre-fire site conditions, perennial grass recruitment, delayed litter cover, and inherent site characteristics. Burning initially increased bare ground, runoff, and erosion for well-vegetated areas underneath tree and shrub canopies, but had minimal impact on hydrology and erosion for degraded interspaces between plants. The degraded interspaces were primarily bare ground and exhibited high runoff and erosion rates prior to burning. Initial fire effects persisted for two years, but increased productivity of grasses improved hydrologic function of interspaces over the full 9 yr period. At the hillslope scale, grass recruitment in the intercanopy between trees reduced runoff from rainsplash, sheetflow, and concentrated overland flow at one site, but did not reduce the high levels of runoff and erosion from a more degraded site. In areas formerly occupied by trees (tree zones), burning increased invasive annual grass cover due to fire removal of limited native perennial plants and competition for resources. The invasive annual grass cover had no net effect on runoff and erosion from tree zones however. Runoff and erosion increased in tree zones at the more degraded site due to

  8. Beyond cool: adapting upland streams for climate change using riparian woodlands.

    Science.gov (United States)

    Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J

    2016-01-01

    Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem

  9. Legal Mechanisms for Protecting Riparian Resource Values

    Science.gov (United States)

    Lamb, Berton L.; Lord, Eric

    1992-04-01

    Riparian resources include the borders of rivers, lakes, ponds, and potholes. These border areas are very important for a number of reasons, including stream channel maintenance, flood control, aesthetics, erosion control, fish and wildlife habitat, recreation, and water quality maintenance. These diverse functions are not well protected by law or policy. We reviewed law and policies regarding endangered species habitat designation, land use planning, grazing management, water allocation, takings, and federal permits and licenses, along with the roles of federal, state, and local governments. We discuss the politics of implementing these policies, focusing on the difficulties in changing entrenched water and land use practices. Our review indicates a lack of direct attention to riparian ecosystem issues in almost all environmental and land use programs at every level of government. Protection of riparian resource values requires a means to integrate existing programs to focus on riparian zones.

  10. A case series of re-establishment of neuromuscular block with rocuronium after sugammadex reversal.

    Science.gov (United States)

    Iwasaki, Hajime; Sasakawa, Tomoki; Takahoko, Kenichi; Takagi, Shunichi; Nakatsuka, Hideki; Suzuki, Takahiro; Iwasaki, Hiroshi

    2016-06-01

    We report the use of rocuronium to re-establish neuromuscular block after reversal with sugammadex. The aim of this study was to investigate the relationship between the dose of rocuronium needed to re-establish neuromuscular block and the time interval between sugammadex administration and re-administration of rocuronium. Patients who required re-establishment of neuromuscular block within 12 h after the reversal of rocuronium-induced neuromuscular block with sugammadex were included. After inducing general anesthesia and placing the neuromuscular monitor, the protocol to re-establish neuromuscular block was as follows. An initial rocuronium dose of 0.6 mg/kg was followed by additional 0.3 mg/kg doses every 2 min until train-of-four responses were abolished. A total of 11 patients were enrolled in this study. Intervals between sugammadex and second rocuronium were 12-465 min. Total dose of rocuronium needed to re-establish neuromuscular block was 0.6-1.2 mg/kg. 0.6 mg/kg rocuronium re-established neuromuscular block in all patients who received initial sugammadex more than 3 h previously. However, when the interval between sugammadex and second rocuronium was less than 2 h, more than 0.6 mg/kg rocuronium was necessary to re-establish neuromuscular block.

  11. Reestablishment of radiographic kidney size in Miniature Schnauzer dogs.

    Science.gov (United States)

    Sohn, Jungmin; Yun, Sookyung; Lee, Jeosoon; Chang, Dongwoo; Choi, Mincheol; Yoon, Junghee

    2017-01-10

    Kidney size may be altered in renal diseases, and the detection of kidney size alteration has diagnostic and prognostic values. We hypothesized that radiographic kidney size, the kidney length to the second lumbar vertebra (L2) length ratio, in normal Miniature Schnauzer dogs may be overestimated due to their shorter vertebral length. This study was conducted to evaluate radiographic and ultrasonographic kidney size and L2 length in clinically normal Miniature Schnauzers and other dog breeds to evaluate the effect of vertebral length on radiographic kidney size and to reestablish radiographic kidney size in normal Miniature Schnauzers. Abdominal radiographs and ultrasonograms from 49 Miniature Schnauzers and 54 other breeds without clinical evidence of renal disease and lumbar vertebral abnormality were retrospectively evaluated. Radiographic kidney size, in the Miniature Schnauzer (3.31 ± 0.26) was significantly larger than that in other breeds (2.94 ± 0.27). Relative L2 length, the L2 length to width ratio, in the Miniature Schnauzer (1.11 ± 0.06) was significantly shorter than that in other breeds (1.21 ± 0.09). However, ultrasonographic kidney sizes, kidney length to aorta diameter ratios, were within or very close to normal range both in the Miniature Schnauzer (6.75 ± 0.67) and other breeds (7.16 ± 1.01). Thus, Miniature Schnauzer dogs have breed-specific short vertebrae and consequently a larger radiographic kidney size, which was greater than standard reference in normal adult dogs. Care should be taken when evaluating radiographic kidney size in Miniature Schnauzers to prevent falsely diagnosed renomegaly.

  12. 77 FR 52700 - Reestablishment of Department of Defense Federal Advisory Committees

    Science.gov (United States)

    2012-08-30

    ...), the Department of Defense gives notice that it is reestablishing the charter for the Board of Visitors... advice and recommendations on the overall management and governance of the National Defense University in...

  13. How to re-establish Openness as default? Towards a global joint initiative

    NARCIS (Netherlands)

    Stracke, Christian M.

    2017-01-01

    Stracke, C. M. (2016, 14 April). How to re-establish Openness as default? Towards a global joint initiative. Results from the Action Lab at the Open Education Global Conference 2016, Krakow, Poland. More about the Action Lab:

  14. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Directory of Open Access Journals (Sweden)

    H. Trimmel

    2018-01-01

    Full Text Available Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land–water interfaces and their ecological functioning in aquatic environments.

  15. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Science.gov (United States)

    Trimmel, Heidelinde; Weihs, Philipp; Leidinger, David; Formayer, Herbert; Kalny, Gerda; Melcher, Andreas

    2018-01-01

    Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land-water interfaces and their ecological functioning in aquatic environments.

  16. META-ANALYSIS OF NITROGEN REMOVAL IN RIPARIAN BUFFERS

    Science.gov (United States)

    Riparian buffer zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and controlling nitrogen loads entering water bodies. Riparian buffer width may be positively related to nitrogen removal effectiveness by influencing nitrog...

  17. Riparian Raptors on USACE Projects: Bald Eagle (Haliaeetus leucocephalus)

    National Research Council Canada - National Science Library

    Mitchell, Wilma

    2000-01-01

    ...) reservoir operations. For management purposes, these raptors are considered riparian generalists because they inhabit the riparian zones surrounding streams and lakes of Corps projects but may seasonally use adjacent...

  18. Riparian Raptors on USACE Projects: Osprey (Pandion haliaetus)

    National Research Council Canada - National Science Library

    Mitchell, Wilma A; Wolters, M. S

    2000-01-01

    ...) reservoir operations. For management purposes, these raptors are considered riparian generalists because they inhabit riparian zones surrounding streams and lakes on Corps project lands but may seasonally use adjacent...

  19. Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles.

    Directory of Open Access Journals (Sweden)

    Luke J Evans

    Full Text Available Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.

  20. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool.

    Science.gov (United States)

    González, Eduardo; Martínez-Fernández, Vanesa; Shafroth, Patrick B; Sher, Anna A; Henry, Annie L; Garófano-Gómez, Virginia; Corenblit, Dov

    2018-04-25

    Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceae regeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines tree buffer for this community as only trees and forest. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. Costs of Producing Biomass from Riparian Buffer Strips

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow, A.

    2000-09-01

    Nutrient runoff from poultry litter applied to agricultural fields in the Delmarva Peninsula contributes to high nutrient loadings in Chesapeake Bay. One potential means of ameliorating this problem is the use of riparian buffer strips. Riparian buffer strips intercept overland flows of water, sediments, nutrients, and pollutants; and ground water flows of nutrients and pollutants. Costs are estimated for three biomass systems grown on buffer strips: willow planted at a density of 15,300 trees/ha (6200 trees/acre); poplar planted at a density of 1345 trees/ha (545 trees/acre); and switchgrass. These costs are estimated for five different scenarios: (1) total economic costs, where everything is costed [cash costs, noncash costs (e.g., depreciation), land rent, labor]; (2) costs with Conservation Reserve Program (CRP) payments (which pays 50% of establishment costs and an annual land rent); (3) costs with enhanced CRP payments (which pays 95% of establishment costs and an annual payment of approximately 170% of land rent for trees and 150% of land rent for grasses); (4) costs when buffer strips are required, but harvest of biomass is not required [costs borne by biomass are for yield enhancing activities (e.g., fertilization), harvest, and transport]; and (5) costs when buffer strips are required. and harvest of biomass is required to remove nutrients (costs borne by biomass are for yield enhancing activities and transport). CRP regulations would have to change to allow harvest. Delivered costs of willow, poplar, and switchgrass [including transportation costs of $0.38/GJ ($0.40/million Btu) for switchgrass and $0.57/GJ ($0.60/million Btu) for willow and poplar] at 11.2 dry Mg/ha-year (5 dry tons/acre-year) for the five cost scenarios listed above are [$/GJ ($million BIN)]: (1) 3.30-5.45 (3.45-5.75); (2) 2.30-3.80 (2.45-4.00); (3) 1.70-2.45 (1.80-2.60); (4) l-85-3.80 (1.95-4.05); and (5) 0.80-1.50 (0.85-1.60). At yields of 15.7 to 17.9 GJ/ha-year (7 to 8 dry tons

  3. Tribal experiences and lessons learned in riparian ecosystem restoration

    Science.gov (United States)

    Ronald K. Miller; James E. Enote; Cameron L. Martinez

    1996-01-01

    Riparian ecosystems have been part of the culture of land use of native peoples in the Southwest United States for thousands of years. The experiences of tribal riparian initiatives to incorporate modern elements of environment and development with cultural needs are relatively few. This paper describes tribal case examples and approaches in riparian management which...

  4. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  5. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  6. Indirect effects of biocontrol of an invasive riparian plant (Tamarix) alters habitat and reduces herpetofauna abundance

    Science.gov (United States)

    Bateman, H.L.; Merritt, D.M.; Glenn, E.P.; Nagler, P.L.

    2014-01-01

    The biological control agent (tamarisk leaf beetle, Diorhabda spp.) is actively being used to defoliate exotic saltcedar or tamarisk (Tamarix spp.) in riparian ecosystems in western USA. The Virgin River in Arizona and Nevada is a system where tamarisk leaf beetle populations are spreading. Saltcedar biocontrol, like other control methods, has the potential to affect non-target species. Because amphibians and reptiles respond to vegetation changes in habitat and forage in areas where beetles are active, herpetofauna are model taxa to investigate potential impacts of biocontrol defoliation. Our objectives related herpetofauna abundance to vegetation cover and indices (normalized difference vegetation index, NDVI; enhanced vegetation index, EVI) and timing of biocontrol defoliation. We captured herpetofauna and ground-dwelling arthropods in trap arrays and measured vegetation using remotely sensed images and on-the-ground measurements at 16–21 sites 2 years before (2009–2010) and 2 years following (2011–2012) biocontrol defoliation. Following defoliation, riparian stands (including stands mixed with native and exotic trees and stands of monotypic exotic saltcedar) had significantly lower NDVI and EVI values and fewer captures of marked lizards. Total captures of herpetofauna (toads, lizards, and snakes) were related to higher vegetation cover and sites with a lower proportion of saltcedar. Our results suggest that effects of biocontrol defoliation are likely to be site-specific and depend upon the proportion of native riparian trees established prior to biocontrol introduction and defoliation. The mechanisms by which habitat structure, microclimate, and ultimately vertebrate species are affected by exotic plant biocontrol riparian areas should be a focus of natural-resource managers.

  7. Methods for evaluating riparian habitats with applications to management

    Science.gov (United States)

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  8. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  9. Best management practices for riparian areas

    Science.gov (United States)

    Michael J. Phillips; Lloyd W. Swift; Charles R. Blinn

    2000-01-01

    Forest streams, lakes, and other water bodies create unique conditions along their margins that control and influence transfers of energy, nutrients, and sediments between aquatic and terrestrial systems. These riparian areas are among the most critical features of the landscape because they contain a rich diversity of plants and animals and help to maintain water...

  10. Developing management strategies for riparian areas.

    Science.gov (United States)

    D.E. Hibbs; S. Chan

    2001-01-01

    This talk outlines four principles that are critical to successful management of a riparian area. First, given problems both with defining historic conditions and with returning to them, attaining management goals based on restoration of ecological processes and functions will be far more successful. Second, the management goals for any stream reach must be placed in a...

  11. REMM: The Riparian Ecosystem Management Model

    Energy Technology Data Exchange (ETDEWEB)

    Lowrance, R.; Altier, L.S.; Williams, R.G.; Inamdar, S.P.; Sheridan, J.M.; Bosch, D.D.; Hubbard, R.K.; Thomas, D.L.

    2000-03-01

    Riparian buffer zones are effective in mitigating nonpoint source pollution and have been recommended as a best management practice (BMP). The Riparian Ecosystem Management Model (REMM) has been developed for researchers and natural resource agencies as a modeling tool that can help quantify the water quality benefits of riparian buffers under varying site conditions. Processes simulated in REMM include surface and subsurface hydrology; sediment transport and deposition; carbon, nitrogen, and phosphorus transport, removal, and cycling; and vegetation growth. Management options, such as vegetation type, size of the buffer zone, and biomass harvesting also can be simulated. REMM can be used in conjunction with upland models, empirical data, or estimated loadings to examine scenarios of buffer zone design for a hillslope. Evaluation of REMM simulations with field observations shows generally good agreement between simulated and observed data for groundwater nitrate concentrations and water table depths in a mature riparian forest buffer. Sensitivity analysis showed that changes that influenced the water balance or soil moisture storage affected the streamflow output. Parameter changes that influence either hydrology or rates of nutrient cycling affected total N transport and plant N uptake.

  12. Phytostabilization of metals by indigenous riparian vegetation ...

    African Journals Online (AJOL)

    When measured against an ideal hypothetical buffer zone, the buffer zones under investigation varied between intact and severely compromised. Intact riparian zones showed elevated metal concentrations in the soil, yet significantly lower concentrations in the river water compared to areas with insufficient vegetative cover ...

  13. Temporal variation in the arthropod community of desert riparian habitats with varying amounts of saltcedar (Tamarix ramosissima)

    Science.gov (United States)

    Durst, S.L.; Theimer, T.C.; Paxton, E.H.; Sogge, M.K.

    2008-01-01

    We used Malaise traps to examine the aerial arthropod community in riparian habitats dominated by native willow, exotic saltcedar, or a mixture of these two tree species in central Arizona, USA. Over the course of three sampling periods per year in 2003 and 2004, native habitats had significantly greater diversity (Shannon-Wiener) and supported different arthropod communities compared to exotic habitats, while mixed habitats were intermediate in terms of diversity and supported an arthropod community statistically indistinguishable from the exotic site. The composition of arthropod communities varied significantly between the two years, and there was an approximately two-fold difference in richness and diversity. Overall, we documented complex interactions indicating that differences among the arthropod communities of riparian habitats may be driven not only by the composition of native and exotic tree species making up these habitats, but also by year and season of arthropod sampling.

  14. Estimation of the time since death--reconsidering the re-establishment of rigor mortis.

    Science.gov (United States)

    Anders, Sven; Kunz, Michaela; Gehl, Axel; Sehner, Susanne; Raupach, Tobias; Beck-Bornholdt, Hans-Peter

    2013-01-01

    In forensic medicine, there is an undefined data background for the phenomenon of re-establishment of rigor mortis after mechanical loosening, a method used in establishing time since death in forensic casework that is thought to occur up to 8 h post-mortem. Nevertheless, the method is widely described in textbooks on forensic medicine. We examined 314 joints (elbow and knee) of 79 deceased at defined time points up to 21 h post-mortem (hpm). Data were analysed using a random intercept model. Here, we show that re-establishment occurred in 38.5% of joints at 7.5 to 19 hpm. Therefore, the maximum time span for the re-establishment of rigor mortis appears to be 2.5-fold longer than thought so far. These findings have major impact on the estimation of time since death in forensic casework.

  15. Planting and care of fine hardwood seedlings: diseases in hardwood tree plantings

    Science.gov (United States)

    Paula M. Pijut

    2006-01-01

    Hardwood trees planted for timber production, wildlife habitat, riparian buffers, native woodland restoration, windbreaks, watershed protection, erosion control, and conservation are susceptible to damage or even death by various native and exotic fungal or bacterial diseases. Establishment, growth, and the quality of the trees produced can be affected by these disease...

  16. Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications

    Science.gov (United States)

    Paula M. Pijut; Keith E. Woeste; G. Vengadesan

    2007-01-01

    Hardwood forests and plantations are an important economic resource for the forest products industry worldwide and to the international trade of lumber and logs. Hardwood trees are also planted for ecological reasons, for example, wildlife habitat, native woodland restoration, and riparian buffers. The demand for quality hardwood from tree plantations will continue to...

  17. Tamarix and Diorhabda leaf beetle interactions: implications for Tamarix water use and riparian habitat

    Science.gov (United States)

    Nagler, Pamela; Glenn, Edward P.

    2013-01-01

    Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western United States rivers to control introduced shrubs in the genus Tamarix, with the goals of saving water through removal of an assumed high water-use plant, and of improving habitat value by removing a competitor of native riparian trees. We review recent studies addressing three questions: (1) to what extent are Tamarix weakened or killed by recurrent cycles of defoliation; (2) can significant water salvage be expected from defoliation; and (3) what are the effects of defoliation on riparian ecology, particularly on avian habit? Defoliation has been patchy at many sites, and shrubs at some sites recover each year even after multiple years of defoliation. Tamarix evapotranspiration (ET) is much lower than originally assumed in estimates of potential water savings, and are the same or lower than possible replacement plants. There is concern that the endangered southwestern willow flycatcher (Empidonax trailli extimus) will be negatively affected by defoliation because the birds build nests early in the season when Tamarix is still green, but are still on their nests during the period of summer defoliation. Affected river systems will require continued monitoring and development of adaptive management practices to maintain or enhance riparian habitat values. Multiplatform remote sensing methods are playing an essential role in monitoring defoliation and rates of ET on affected river systems.

  18. Early Response of Soil Properties and Function to Riparian Rainforest Restoration

    Science.gov (United States)

    Gageler, Rose; Bonner, Mark; Kirchhof, Gunnar; Amos, Mark; Robinson, Nicole; Schmidt, Susanne; Shoo, Luke P.

    2014-01-01

    Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2–20 years in an Australian subtropical catchment on ferrosols to determine the extent to which reforestation restores key soil properties. Of the nine soil attributes measured (total nitrogen, nitrate and ammonium concentrations, net nitrification and ammonification rates, organic carbon, bulk density, fine root biomass and water infiltration rates), only infiltration rates were significantly lower in pasture than remnant riparian rainforest. Within reforestation plantings, bulk density decreased up to 1.4-fold and infiltration rates increased up to 60-fold with time post-reforestation. Our results suggest that the main outcome of belowground processes of early reforestation is the recovery of the soils' physical structure, with potential beneficial ecosystem services including reduced runoff, erosion and associated sediment and nutrient loads in waterways. We also demonstrate differential impacts of two commonly planted tree species on a subset of soil properties suggesting that preferential planting of select species could accelerate progress on specific restoration objectives. PMID:25117589

  19. Variation and Genetic Structure in Platanus mexicana (Platanaceae along Riparian Altitudinal Gradient

    Directory of Open Access Journals (Sweden)

    Dulce M. Galván-Hernández

    2015-01-01

    Full Text Available Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l. using ten inter-simple sequence repeats (ISSR markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42 and polymorphism reached the top value at the middle altitude (% p = 88.57. Analysis of molecular variance (AMOVA and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  20. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    Science.gov (United States)

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Which offers more scope to suppress river phytoplankton blooms: reducing nutrient pollution or riparian shading?

    Science.gov (United States)

    Hutchins, M G; Johnson, A C; Deflandre-Vlandas, A; Comber, S; Posen, P; Boorman, D

    2010-10-01

    River flow and quality data, including chlorophyll-a as a surrogate for river phytoplankton biomass, were collated for the River Ouse catchment in NE England, which according to established criteria is a largely unpolluted network. Against these data, a daily river quality model (QUESTOR) was setup and successfully tested. Following a review, a river quality classification scheme based on phytoplankton biomass was proposed. Based on climate change predictions the model indicated that a shift from present day oligotrophic/mesotrophic conditions to a mesotrophic/eutrophic system could occur by 2080. Management options were evaluated to mitigate against this predicted decline in quality. Reducing nutrient pollution was found to be less effective at suppressing phytoplankton growth than the less costly option of establishing riparian shading. In the Swale tributary, ongoing efforts to reduce phosphorus loads in sewage treatment works will only reduce peak (95th percentile) phytoplankton by 11%, whereas a reduction of 44% is possible if riparian tree cover is also implemented. Likewise, in the Ure, whilst reducing nitrate loads by curtailing agriculture in the headwaters may bring about a 10% reduction, riparian shading would instead reduce levels by 47%. Such modelling studies are somewhat limited by insufficient field data but offer a potentially very valuable tool to assess the most cost-effective methods of tackling effects of eutrophication. Copyright 2010 Elsevier B.V. All rights reserved.

  2. EnviroAtlas - Austin, TX - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  4. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  6. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines vegetated buffer for this community as trees and forest and grass and herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  8. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  9. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  11. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  12. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Austin, TX - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. Early response of soil properties and function to riparian rainforest restoration.

    Directory of Open Access Journals (Sweden)

    Rose Gageler

    Full Text Available Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2-20 years in an Australian subtropical catchment on ferrosols to determine the extent to which reforestation restores key soil properties. Of the nine soil attributes measured (total nitrogen, nitrate and ammonium concentrations, net nitrification and ammonification rates, organic carbon, bulk density, fine root biomass and water infiltration rates, only infiltration rates were significantly lower in pasture than remnant riparian rainforest. Within reforestation plantings, bulk density decreased up to 1.4-fold and infiltration rates increased up to 60-fold with time post-reforestation. Our results suggest that the main outcome of belowground processes of early reforestation is the recovery of the soils' physical structure, with potential beneficial ecosystem services including reduced runoff, erosion and associated sediment and nutrient loads in waterways. We also demonstrate differential impacts of two commonly planted tree species on a subset of soil properties suggesting that preferential planting of select species could accelerate progress on specific restoration objectives.

  16. Litter Controls Earthworm-Mediated Carbon and Nitrogen Transformations in Soil from Temperate Riparian Buffers

    Directory of Open Access Journals (Sweden)

    Maria Kernecker

    2014-01-01

    Full Text Available Nutrient cycling in riparian buffers is partly influenced by decomposition of crop, grass, and native tree species litter. Nonnative earthworms in riparian soils in southern Quebec are expected to speed the processes of litter decomposition and nitrogen (N mineralization, increasing carbon (C and N losses in gaseous forms or via leachate. A 5-month microcosm experiment evaluated the effect of Aporrectodea turgida on the decomposition of 3 litter types (deciduous leaves, reed canarygrass, and soybean stem residue. Earthworms increased CO2 and N2O losses from microcosms with soybean residue, by 112% and 670%, respectively, but reduced CO2 and N2O fluxes from microcosms with reed canarygrass by 120% and 220%, respectively. Litter type controlled the CO2 flux (soybean ≥ deciduous-mix litter = reed canarygrass > no litter and the N2O flux (soybean ≥ no litter ≥ reed canarygrass > deciduous-mix litter. However, in the presence of earthworms, there was a slight increase in C and N gaseous losses of C and N relative to their losses via leachate, across litter treatments. We conclude that litter type determines the earthworm-mediated decomposition effect, highlighting the importance of vegetation management in controlling C and N losses from riparian buffers to the environment.

  17. Influence of Gully Erosion Control on Amphibian and Reptile Communities within Riparian Zones of Channelized Streams

    Science.gov (United States)

    Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...

  18. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    Science.gov (United States)

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation

  19. Do Riparian Buffers Protect Stream Invertebrate Communities in South American Atlantic Forest Agricultural Areas?

    Science.gov (United States)

    Hunt, L.; Marrochi, N.; Bonetto, C.; Liess, M.; Buss, D. F.; Vieira da Silva, C.; Chiu, M.-C.; Resh, V. H.

    2017-12-01

    We investigated the influence and relative importance of insecticides and other agricultural stressors in determining variability in invertebrate communities in small streams in intensive soy-production regions of Brazil and Paraguay. In Paraguay we sampled 17 sites on tributaries of the Pirapó River in the state of Itapúa and in Brazil we sampled 18 sites on tributaries of the San Francisco River in the state of Paraná. The riparian buffer zones generally contained native Atlantic forest remnants and/or introduced tree species at various stages of growth. In Brazil the stream buffer width was negatively correlated with sediment insecticide concentrations and buffer width was found to have moderate importance in mitigating effects on some sensitive taxa such as mayflies. However, in both regions insecticides had low relative importance in explaining variability in invertebrate communities, while various habitat parameters were more important. In Brazil, the percent coverage of soft depositional sediment in streams was the most important agriculture-related explanatory variable, and the overall stream-habitat score was the most important variable in Paraguay streams. Paraguay and Brazil both have laws requiring forested riparian buffers. The ample forested riparian buffer zones typical of streams in these regions are likely to have mitigated the effects of pesticides on stream invertebrate communities. This study provides evidence that riparian buffer regulations in the Atlantic Forest region are protecting stream ecosystems from pesticides and other agricultural stressors. Further studies are needed to determine the minimum buffer widths necessary to achieve optimal protection.

  20. 77 FR 38040 - Reestablishment of the Renewable Energy and Energy Efficiency Advisory Committee and Solicitation...

    Science.gov (United States)

    2012-06-26

    ... of Reestablishment of the Renewable Energy and Energy Efficiency Advisory Committee and Solicitation.... exports of renewable energy and energy efficiency goods and services, in accordance with applicable United... of U.S. citizens who will represent U.S. companies in the renewable energy and energy efficiency...

  1. 75 FR 70712 - General Conference Committee of the National Poultry Improvement Plan; Reestablishment

    Science.gov (United States)

    2010-11-18

    ...] General Conference Committee of the National Poultry Improvement Plan; Reestablishment AGENCY: Animal and... Poultry Improvement Plan (Committee) for a 2-year period. The Secretary of Agriculture has determined that.... Rhorer, Senior Coordinator, National Poultry Improvement Plan, VS, APHIS, USDA, Suite 101, 1498 Klondike...

  2. Rapid orthodontic extrusion using an interocclusal appliance for the reestablishment of biologic width: a case report.

    Science.gov (United States)

    Kim, Sung Hyun; Tramontina, Vinicius Augusto; Papalexiou, Vula; Luczyszyn, Sônia Mara; Grassi, Maria Bibiana; de Fatima Scarpim, Maria; Tanaka, Orlando Motohiro

    2011-03-01

    A multidisciplinary treatment of a case of subgingival fracture in a maxillary anterior tooth is presented. This case report describes a simple method involving an interocclusal appliance and an elastic band for rapid orthodontic extrusion to reestablish biologic width. In addition, a simple technique for surgical recontouring following the coronal displacement of the gingival margin prior to restoration of fractured tooth is explained.

  3. 78 FR 9629 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-02-11

    ... Service 7 CFR Part 948 [Doc. No. AMS-FV-12-0044; FV12-948-2 PR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato Administrative Committee, Area No. 2 AGENCY: Agricultural... membership on the Colorado Potato Administrative Committee, Area No. 2 (Committee). The Committee locally...

  4. The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Provart, N.J.; Ligterink, W.; Hilhorst, H.W.M.

    2011-01-01

    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance

  5. Variable Width Riparian Model Enhances Landscape and Watershed Condition

    Science.gov (United States)

    Abood, S. A.; Spencer, L.

    2017-12-01

    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  6. Function, Design, and Establishment of Riparian Forest Buffers: A Review

    OpenAIRE

    Klapproth, Julia Caldwell

    1999-01-01

    Through the interaction of their soils, hydrology, and biotic communities, riparian forests protect and improve water quality, provide habitat for plants and animals, support aquatic communities, and provide many benefits to humans. Virginia, along with other states in the Chesapeake Bay region, has recognized the importance of riparian forests by implementing a plan to restore forested buffers along streams, rivers, and lakes. This project reviews selected literature on riparian forest bu...

  7. Restoration ecology and invasive riparian plants: An introduction to the special section on Tamarix spp. in western North America

    Science.gov (United States)

    Shafroth, Patrick B.; Briggs, Mark K.

    2008-01-01

    River systems around the world are subject to various perturbations, including the colonization and spread of non-native species in riparian zones. Riparian resource managers are commonly engaged in efforts to control problematic non-native species and restore native habitats. In western North America, small Eurasian trees or shrubs in the genus Tamarixoccupy hundreds of thousands of hectares of riparian lands, and are the targets of substantial and costly control efforts and associated restoration activities. Still, significant information gaps exist regarding approaches used in control and restoration efforts and their effects on riparian ecosystems. In this special section of papers, eight articles address various aspects of control and restoration associated with Tamarix spp. These include articles focused on planning restoration and revegetation; a synthetic analysis of past restoration efforts; and several specific research endeavors examining plant responses, water use, and various wildlife responses (including birds, butterflies, and lizards). These articles represent important additions to the Tamarix spp. literature and contain many lessons and insights that should be transferable to other analogous situations in river systems globally.

  8. Influence of Soils, Riparian Zones, and Hydrology on Nutrients, Herbicides, and Biological Relations in Midwestern Agricultural Streams

    Science.gov (United States)

    Porter, S.

    2001-12-01

    Chemical, biological, and habitat conditions were characterized in 70 streams in the upper Mississippi River basin during August 1997, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study was designed to evaluate algal and macroinvertebrate responses to high agricultural intensity in relation to nonpoint sources of nutrients and herbicides, characteristics of basin soils, wooded-riparian vegetation, and hydrology. Concentrations and forms of nutrients, herbicides and their metabolites, and seston constituents varied significantly with regional differences in soil properties, ground and surface water relations, density of riparian trees, and precedent rainfall-runoff conditions. Dissolved nitrate concentrations were relatively low in streams with high algal productivity; however, nitrate concentrations increased with basin water yield, which was associated with the regional distribution of rainfall during the month prior to the study. Stream productivity and respiration were positively correlated with seston (phytoplankton) chlorophyll concentrations, which were significantly larger in streams in areas with poorly drained soils and low riparian-tree density. Concentrations of dissolved phosphorus were low in streams where periphyton biomass was high. Periphyton biomass was relatively larger in streams with clear water and low abundance of macroinvertebrates that consume algae. Periphyton biomass decreased rapidly with modest increases in the abundance of scrapers such as snails and certain mayfly taxa. Differences in dissolved oxygen, organic carbon, stream velocity, and precedent hydrologic conditions explained much of the variance in macroinvertebrate community structure. The overall number of macroinvertebrate species and number of mayfly, caddisfly, and stonefly (EPT) taxa that are sensitive to organic enrichment were largest in streams with moderate periphyton biomass, in areas with moderately-well drained soils

  9. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  10. Protocols for Mapping and Characterizing Land Use/Land Cover in Riparian Zones

    National Research Council Canada - National Science Library

    Johnson, Michaela R; Zelt, Ronald B

    2005-01-01

    .... Characterization of riparian systems is critical to a comprehensive understanding of nutrient enrichment effects on stream ecosystems because riparian functions provide an important ecological...

  11. Riparian and Upland Restoration at the U.S. Department of Energy Rocky Flats, Colorado, Site - 12360

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Jody K. [S.M. Stoller Corporation, Contractor to the U.S. Department of Energy Office of Legacy Management, Westminster, Colorado 80021 (United States)

    2012-07-01

    Remedial investigation and cleanup at the Rocky Flats, Colorado, Site was completed in 2005. Uplands, riparian, and wetland habitat were disturbed during cleanup and closure activities and required extensive revegetation. Unavoidable disturbances to habitat of the Preble's meadow jumping mouse (a federally listed species) and wetlands required consultation with regulatory agencies and mitigation. Mitigation wetlands were constructed in two drainages, and a third developed naturally where a soil borrow area intercepted the groundwater table. During the 50-plus years of site operations, 12 ponds were constructed in three drainages to manage and retain runoff and sewage treatment plant discharges prior to release off site. A batch-release protocol has been used for the past several decades at the terminal ponds, which has affected the riparian communities downstream. To return the hydrologic regime to a more natural flow-through system similar to the pre-industrial-use conditions, seven interior dams (of 12) have been breached, and the remaining five dams are scheduled for breaching between 2011 and 2020. At the breached dams, the former open water areas have transformed to emergent wetlands, and the stream reaches have returned to a flow-through system. Riparian and wetland vegetation has established very well. The valves of the terminal ponds were opened in fall 2011 to begin flow-through operations and provide water to the downstream plant communities while allowing reestablishment of vegetation in the former pond bottoms prior to breaching. A number of challenges and issues were addressed during the revegetation effort. These included reaching an agreement on revegetation goals, addressing poor substrate quality and soil compaction problems, using soil amendments and topsoil, selecting seeds, determining the timing and location of revegetation projects relative to continuing closure activities, weed control, erosion control, revegetation project field

  12. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool

    Science.gov (United States)

    Gonzalez, Eduardo; Martinez-Fernandez, Vanesa; Shafroth, Patrick B.; Sher, Anna A.; Henry, Annie L.; Garofano-Gomez, Virginia; Corenblit, Dov

    2018-01-01

    Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceaeregeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component.

  13. Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality

    Science.gov (United States)

    Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.

    2016-03-01

    A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.

  14. Phosphorus retention in riparian buffers: review of their efficiency.

    Science.gov (United States)

    Hoffmann, Carl Christian; Kjaergaard, Charlotte; Uusi-Kämppä, Jaana; Hansen, Hans Christian Bruun; Kronvang, Brian

    2009-01-01

    Ground water and surface water interactions are of fundamental importance for the biogeochemical processes governing phosphorus (P) dynamics in riparian buffers. The four most important conceptual hydrological pathways for P losses from and P retention in riparian buffers are reviewed in this paper: (i) The diffuse flow path with ground water flow through the riparian aquifer, (ii) the overland flow path across the riparian buffer with water coming from adjacent agricultural fields, (iii) irrigation of the riparian buffer with tile drainage water from agricultural fields where disconnected tile drains irrigate the riparian buffer, and (iv) inundation of the riparian buffer (floodplain) with river water during short or longer periods. We have examined how the different flow paths in the riparian buffer influence P retention mechanisms theoretically and from empirical evidence. The different hydrological flow paths determine where and how water-borne P compounds meet and interact with iron and aluminum oxides or other minerals in the geochemical cycling of P in the complex and dynamic environment that constitutes a riparian buffer. The main physical process in the riparian buffer-sedimentation-is active along several flow paths and may account for P retention rates of up to 128 kg P ha(-1) yr(-1), while plant uptake may temporarily immobilize up to 15 kg P ha(-1) yr(-1). Retention of dissolved P in riparian buffers is not as pronounced as retention of particulate P and is often below 0.5 kg P ha(-1) yr(-1). Several studies show significant release of dissolved P (i.e., up to 8 kg P ha(-1) yr(-1)).

  15. Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci.

    Science.gov (United States)

    Mitsui, Yuki; Setoguchi, Hiroaki

    2012-12-28

    Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian

  16. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Science.gov (United States)

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  17. A framework for profiling a lake's riparian area development potential

    Science.gov (United States)

    Pamela J. Jakes; Ciara Schlichting; Dorothy H. Anderson

    2003-01-01

    Some of the greatest challenges for managing residential development occur at the interface between the terrestrial and aquatic ecosystems -in a lake`s riparian area. Land use planners need a framework they can use to identify development hotspots, areas were the next push for development will most likely occur. Lake riparian development profiles provide a framework...

  18. SNAG AND LARGE WOODY DEBRIS DYNAMICS IN RIPARIAN FORESTS

    Science.gov (United States)

    Important components of riparian forests are snags and streamside large woody debris (LWD) because they are functional in maintaining water quality and providing habitat for numerous plants and animals. To effectively manage riparian forests, it is important to understand the dy...

  19. Riparian adaptive management symposium: a conversation between scientists and management

    Science.gov (United States)

    Douglas F. Ryan; John M. Calhoun

    2010-01-01

    Scientists, land managers and policy makers discussed whether riparian (stream side) forest management and policy for state, federal and private lands in western Washington are consistent with current science. Answers were mixed: some aspects of riparian policy and management have a strong basis in current science, while other aspects may not. Participants agreed that...

  20. Metal concentrations in urban riparian sediments along an urbanization gradient

    Science.gov (United States)

    Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat

    2012-01-01

    Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...

  1. Concentrated flow paths in riparian buffer zones of southern Illinois

    Science.gov (United States)

    R.C. Pankau; J.E. Schoonover; K.W.J. Willard; P.J. Edwards

    2012-01-01

    Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that...

  2. Riparian forests, a unique but endangered ecosystem in Benin

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2002-01-01

    Riparian forests are often small in area, but are of extreme ecological and economic value for local people. The interest of riparian forests lies in their resources: basically fertile and moist soils, water, wood and non-timber forest products that are utilised by neighbouring populations to

  3. Remote sensing analysis of riparian vegetation response to desert marsh restoration in the Mexican Highlands

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel; Pulliam, H. Ronald; Minckley, Robert L.; Gass, Leila; Tolle, Cindy; Coe, Michelle

    2014-01-01

    Desert marshes, or cienegas, are extremely biodiverse habitats imperiled by anthropogenic demands for water and changing climates. Given their widespread loss and increased recognition, remarkably little is known about restoration techniques. In this study, we examine the effects of gabions (wire baskets filled with rocks used as dams) on vegetation in the Cienega San Bernardino, in the Arizona, Sonora portion of the US-Mexico border, using a remote-sensing analysis coupled with field data. The Normalized Difference Vegetation Index (NDVI), used here as a proxy for plant biomass, is compared at gabion and control sites over a 27-year period during the driest months (May/June). Over this period, green-up occurred at most sites where there were gabions and at a few of the control sites where gabions had not been constructed. When we statistically controlled for differences among sites in source area, stream order, elevation, and interannual winter rainfall, as well as comparisons of before and after the initiation of gabion construction, vegetation increased around gabions yet did not change (or decreased) where there were no gabions. We found that NDVI does not vary with precipitation inputs prior to construction of gabions but demonstrates a strong response to precipitation after the gabions are built. Field data describing plant cover, species richness, and species composition document increases from 2000 to 2012 and corroborate reestablished biomass at gabions. Our findings validate that gabions can be used to restore riparian vegetation and potentially ameliorate drought conditions in a desert cienega.

  4. Establishment, maintenance, and re-establishment of the safe and efficient steady-following state

    International Nuclear Information System (INIS)

    Pan Deng; Zheng Ying-Ping

    2015-01-01

    We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functions are introduced to establish the corresponding mathematical models, which can describe the behavioral adjustment of the following vehicle steered by a well-experienced driver under complex vehicle following situations. According to the proposed mathematical models, the control laws of the following vehicle adjusting its own behavior can be calculated for its moving in safety, efficiency, and smoothness (comfort). Simulation results show that the safe and efficient steady-following state can be well established, maintained, and re-established by its own smooth (comfortable) behavioral adjustment with the synchronous control of the following vehicle’s velocity, acceleration, and the actual following distance. (paper)

  5. [Project summarize of "reestablishing disease prevention and control system of China"].

    Science.gov (United States)

    Hao, Mo; Yu, Jingjin; Yu, Mingzhu; Duan, Yong

    2005-01-01

    This paper introduced the project of "reestablishing the disease control and prevention system of China" in brief, including background, objectives, funding resources, researching objects and sampling methods. This project which funded by National Outstanding Younger Fund and the research fund of MOH aimed at nailing down the key problem existed in disease control and prevention system of China, demonstrating the reasons and mechanism of key problem, developing feasible policy idea and strategy. This paper also introduced some issues concerning the reestablishing of the disease control and prevention system of China: the definition of public function, the standard of human resource allocation and the standard of financing. The Centers for Disease Control and Prevention in 8 provinces, 80 cities and 80 counties have been sampled to provide information that project needed. In addition, this project also cited some data which come from the early study, in which 3 provinces, 12 counties, 49 towns, 179 villages and 9781 rural families have been sampled and investigated.

  6. Intra-urinoma Rendezvous Using a Transconduit Approach to Re-establish Ureteric Integrity

    International Nuclear Information System (INIS)

    Anderson, Hugh; Alyas, Faisal; Edwin, Patrick Joseph

    2005-01-01

    Ureteric discontinuity following injury has been traditionally treated surgically. With the advent of improved interventional instrumentation it is possible to stent these lesions percutaneously, retrogradely or failing that using a combined (rendezvous) technique. We describe an intra-urinoma rendezvous procedure combining a percutaneous antegrade-transconduit retrograde technique of stent insertion to successfully re-establish ureteric integrity that was used following the failure of a percutaneous retrograde approach. We illustrate its usefulness as an alternative to surgery

  7. An Application of BLM's Riparian Inventory Procedure to Rangeland Riparian Resources in the Kern and Kaweah River Watersheds

    Science.gov (United States)

    Patricia Gradek; Lawrence Saslaw; Steven Nelson

    1989-01-01

    The Bakersfield District of the Bureau of Land Management conducted an inventory of rangeland riparian systems using a new method developed by a Bureau-wide task force to inventory, monitor and classify riparian areas. Data on vegetation composition were collected for 65 miles of streams and entered into a hierarchical vegetation classification system. Ratings of...

  8. Re-establishment of rigor mortis: evidence for a considerably longer post-mortem time span.

    Science.gov (United States)

    Crostack, Chiara; Sehner, Susanne; Raupach, Tobias; Anders, Sven

    2017-07-01

    Re-establishment of rigor mortis following mechanical loosening is used as part of the complex method for the forensic estimation of the time since death in human bodies and has formerly been reported to occur up to 8-12 h post-mortem (hpm). We recently described our observation of the phenomenon in up to 19 hpm in cases with in-hospital death. Due to the case selection (preceding illness, immobilisation), transfer of these results to forensic cases might be limited. We therefore examined 67 out-of-hospital cases of sudden death with known time points of death. Re-establishment of rigor mortis was positive in 52.2% of cases and was observed up to 20 hpm. In contrast to the current doctrine that a recurrence of rigor mortis is always of a lesser degree than its first manifestation in a given patient, muscular rigidity at re-establishment equalled or even exceeded the degree observed before dissolving in 21 joints. Furthermore, this is the first study to describe that the phenomenon appears to be independent of body or ambient temperature.

  9. The re-establishment of hypersensitive cells in the crypts of irradiated mouse intestine

    International Nuclear Information System (INIS)

    Ijiri, K.; Potten, C.S.

    1984-01-01

    Two doses of γ-radiation separated by various time intervals have been used to investigate when after irradiation the cell population susceptible to acute cell death is re-established. Dead cells were scored 3 or 6 h after the second dose. Within 1-2 days of small doses (0.5 Gy) the sensitive cells, recognized histologically as apoptotic cells, are re-established at the base of the crypt (around cell position 6). After higher doses (9.0 Gy) they are not re-established until about the fourth day after irradiation. Even in the enlarged regenerating crypts the sensitive cells are found at the same position at the crypt base. It has been estimated that the crypt contains five or six cells that are susceptible to low doses (0.5 Gy) (hypersensitive cells) and up to a total of only seven or eight susceptible cells that can be induced by any dose to enter the sequence of changes implicit in apoptosis. Between 4 and 10 days after an intitial irradiation of 9.0 Gy the total number of susceptible cells increased from seven to eight to about 10 to 13 per crypt. (author)

  10. Adaptation of the QBR index for use in riparian forests of central Ohio

    Science.gov (United States)

    Stephanie R. Colwell; David M. Hix

    2008-01-01

    Although high quality riparian forests are an endangered ecosystem type throughout the world, there has been no ecological index to measure the habitat quality of riparian forests in Ohio. The QBR (qualitat del bosc de ribera, or riparian forest quality) index was developed to assess the quality of habitat in Mediterranean forested riparian areas, and we have modified...

  11. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  12. Survey of vegetation and its diametric distribution in an area of cerrado sensu stricto and riparian forest fragment at Dois Irmãos stream in the Area of Environmental Protection (APA of Cafuringa, Federal District, Brazil.

    Directory of Open Access Journals (Sweden)

    José Elias de Paula

    2009-09-01

    Full Text Available All individual trees with a diameter at breast height (DBH of over 5cm, as well as the natural succession, were identified in 2,500m2 of the savannah (cerrado sensu stricto area and in 5,000m2 of the “Dois Irmãos” riparian forest vegetation (15º30’19”S and 48º06’18”W. The floristic composition of the cerrado sensu stricto was composed by 100 trees distributed in 25 species, and the riparian forest consisted of 155 trees distributed in 55 species. The natural regeneration was formed with 211 and 287 individuals in the cerrado sensu stricto and riparian forest distributed into 38 and 55 species respectively. The basal areas of the trees occupied 3.40m2.ha-1 in the cerrado sensu stricto and 5.08m2.ha-1 in the riparian forest. The diametric distribution curves for both plant communities, adjusted by the Meyers equation, demonstrated a typical tendency of reversed-J shape with strongly antropic action in the 11 to 17cm diametric classes.

  13. Niche construction within riparian corridors. Part II: The unexplored role of positive intraspecific interactions in Salicaceae species

    Science.gov (United States)

    Corenblit, Dov; Garófano-Gómez, Virginia; González, Eduardo; Hortobágyi, Borbála; Julien, Frédéric; Lambs, Luc; Otto, Thierry; Roussel, Erwan; Steiger, Johannes; Tabacchi, Eric; Till-Bottraud, Irène

    2018-03-01

    Within riparian corridors, Salicaceae trees and shrubs affect hydrogeomorphic processes and lead to the formation of wooded fluvial landforms. These trees form dense stands and enhance plant anchorage, as grouped plants are less prone to be uprooted than free-standing individuals. This also enhances their role as ecosystem engineers through the trapping of sediment, organic matter, and nutrients. The landform formation caused by these wooded biogeomorphic landforms probably represents a positive niche construction, which ultimately leads, through facilitative processes, to an improved capacity of the individual trees to survive, exploit resources, and reach sexual maturity in the interval between destructive floods. The facilitative effects of riparian vegetation are well established; however, the nature and intensity of biotic interactions among trees of the same species forming dense woody stands and constructing the niche remain unclear. Our hypothesis is that the niche construction process also comprises more direct intraspecific interactions, such as cooperation or altruism. Our aim in this paper is to propose an original theoretical framework for positive intraspecific interactions among riparian Salicaceae species operating from establishment to sexual maturity. Within this framework, we speculate that (i) positive intraspecific interactions among trees are maximized in dynamic river reaches; (ii) during establishment, intraspecific facilitation (or helping) occurs among trees and this leads to the maintenance of a dense stand that improves survival and growth because saplings protect each other from shear stress and scour; (iii) in addition to the improved capacity to trap mineral and organic matter, individuals that constitute the dense stand can cooperate to mutually support a mycorrhizal network that will connect plants, soil, and groundwater and influence nutrient transfer, cycling, and storage within the shared constructed niche; (iv) during post

  14. Impacts of artificial inundation of ephemeral creek beds on mature riparian eucalypts in semi-arid northwest Australia

    Science.gov (United States)

    Argus, Rachel; Page, Gerald; Grierson, Pauline

    2014-05-01

    The resilience of riparian ecosystems of intermittent rivers to changes in their hydrological regimes is not well understood. In the Pilbara region of northwest Australia, streams flow only occasionally, reflecting a highly dynamic and extremely variable cycle of prolonged droughts punctuated by occasional floods. However, discharge of ground water pumped from mining activities over recent years has resulted in localised areas with constant surface water. Here we sought to assess impacts of prolonged saturation on the health and functioning of two co-occurring eucalypts (Eucalyptus camaldulensis and Eucalyptus victrix). While riparian vegetation is clearly adapted to partial root-zone hypoxia, we hypothesised that trees in inundated areas experience reduced root function due to an energy crisis, which will be reflected by symptoms in the foliage. We expected that complete saturation of the entire root system for an extended time period reduces physiological function through lower stomatal conductance and more negative water potential, results in canopy sparseness and reduces accumulation of foliar nitrogen and phosphorus. Trees (n=26) were assessed at two sites with artificially permanent surface water (discharge sites) and compared to trees (n=21) at a site with a naturally occurring permanent groundwater fed pool ('reference site'). Trees were sampled from a range of positions including the stream bed, the lower bank and the upper bank, in order to determine the extent of influence of the discharge water. No eucalypts grew in the stream bed at the reference site, indicating either the stream bed conditions were unsuitable for seedling survival or eucalypts were outcompeted by the flood tolerant tree Melaleuca argentea (which was absent from the impact sites). Soil redox potential, an indicator of oxygen availability and other soil chemical conditions, was measured with platinum redox probes at 25 cm depth. Trees were assessed for canopy cover, foliage water

  15. 76 FR 28209 - Notice of Intent To Reestablish the National Genetic Resources Advisory Council, and Request for...

    Science.gov (United States)

    2011-05-16

    ... appointed members will be from the general public including leaders in, fields of public policy, trade... DEPARTMENT OF AGRICULTURE Agricultural Research Service Notice of Intent To Reestablish the National Genetic Resources Advisory Council, and Request for Nominations AGENCY: Agricultural Research...

  16. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, Julien [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Gagnon, Daniel [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada); Truax, Benoit; Lambert, France [Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada)

    2010-07-15

    In this paper the potential of five hybrid poplar clones (Populus spp.) to provide biomass and wood volume in the riparian zone is assessed in four agroecosystems of southern Quebec (Canada). For all variables measured, significant Site effects were detected. Survival, biomass yield and volume yield were highest at the Bromptonville site. After 6 years of growth, total aboveground biomass production (stems + branches + leaves) reached 112.8 tDM/ha and total leafless biomass production (stems + branches) reached 101.1 tDM/ha at this site, while stem wood volume attained 237.5 m{sup 3}/ha. Yields as low as 14.2 tDM/ha for total biomass and 24.8 m{sup 3}/ha for total stem volume were also observed at the Magog site. Highest yields were obtained on the most fertile sites, particularly in terms of NO{sub 3} supply rate. Mean stem volume per tree was highly correlated with NO{sub 3} supply rate in soils (R{sup 2} = 0.58, p < 0.001). Clone effects were also detected for most of the variables measured. Total aboveground biomass and total stem volume production were high for clone 3729 (Populus nigra x P. maximowiczii) (73.1 tDM/ha and 134.2 m{sup 3}/ha), although not statistically different from clone 915311 (P. maximowiczii x P. balsamifera). However, mean whole-tree biomass (including leaves) was significantly higher for clone 3729 (38.8 kgDM/tree). Multifunctional agroforestry systems such as hybrid poplar riparian buffer strips are among the most sustainable ways to produce a high amount of biomass and wood in a short time period, while contributing to alleviate environmental problems such as agricultural non-point source pollution. (author)

  17. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Zangrando Toneli

    2011-09-01

    Full Text Available Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation.

  18. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Boswellia serrata Roxb. ex Colebr. (Indian Frankincense tree) of Burseraceae is a large-sized deciduous tree that is native to India. Bark is thin, greenish-ash-coloured that exfoliates into smooth papery flakes. Stem exudes pinkish resin ... Fruit is a three-valved capsule. A green gum-resin exudes from the ...

  19. Flowering Trees

    Indian Academy of Sciences (India)

    IAS Admin

    Flowering Trees. Ailanthus excelsa Roxb. (INDIAN TREE OF. HEAVEN) of Simaroubaceae is a lofty tree with large pinnately compound alternate leaves, which are ... inflorescences, unisexual and greenish-yellow. Fruits are winged, wings many-nerved. Wood is used in making match sticks. 1. Male flower; 2. Female flower.

  20. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Gyrocarpus americanus Jacq. (Helicopter Tree) of Hernandiaceae is a moderate size deciduous tree that grows to about 12 m in height with a smooth, shining, greenish-white bark. The leaves are ovate, rarely irregularly ... flowers which are unpleasant smelling. Fruit is a woody nut with two long thin wings.

  1. Flowering Trees

    Indian Academy of Sciences (India)

    More Details Fulltext PDF. Volume 8 Issue 8 August 2003 pp 112-112 Flowering Trees. Zizyphus jujuba Lam. of Rhamnaceae · More Details Fulltext PDF. Volume 8 Issue 9 September 2003 pp 97-97 Flowering Trees. Moringa oleifera · More Details Fulltext PDF. Volume 8 Issue 10 October 2003 pp 100-100 Flowering Trees.

  2. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  3. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  4. Improved Mapping of Riparian Wetlands Using Reach Topography (ECOSERV)

    Science.gov (United States)

    Riparian wetlands provide a suite of ecosystems services including floodwater retention, biogeochemical processing, and habitat provisioning. However in one mid-Atlantic watershed the National Wetlands Inventory was shown to underrepresent these systems by greater than 50%. These...

  5. Improved Mapping of Riparian Wetlands Using Reach Topography

    Science.gov (United States)

    Riparian wetlands provide a suite of ecosystems services including floodwater retention, biogeochemical processing, and habitat provisioning. However in one mid-Atlantic watershed the National Wetlands Inventory was shown to underrepresent these systems by greater than 50%. These...

  6. Advances on Modelling Riparian Vegetation-Hydromorphology Interactions

    NARCIS (Netherlands)

    Solari, L.; Van Oorschot, M.; Belletti, B.; Hendriks, D.; Rinaldi, M.; Vargas-Luna, A.

    2016-01-01

    Riparian vegetation actively interacts with fluvial systems affecting river hydrodynamics, morphodynamics and groundwater. These interactions can be coupled because both vegetation and hydromorphology (i.e. the combined scientific study of hydrology and fluvial geomorphology) involve dynamic

  7. RESEARCH SHOWS IMPORTANCE OF RIPARIAN BUFFERS FOR AQUATIC HEALTH

    Science.gov (United States)

    Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten aquatic ecosystem health. Riparian buffers -- the vegetated region adjacent to streams and wetlands -- are thought to be effective at intercepting and controlling excess ...

  8. Riparian zone controls on base cation concentrations in boreal streams

    Science.gov (United States)

    Ledesma, J. L. J.; Grabs, T.; Futter, M. N.; Bishop, K. H.; Laudon, H.; Köhler, S. J.

    2013-01-01

    Forest riparian zones are a major in control of surface water quality. Base cation (BC) concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM) was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  9. Post-wildfire natural restoration of riparian vegetation under stable hydro-geomorphic conditions: Nahal Grar, Northern Negev Desert, Israel

    Science.gov (United States)

    Egozi, Roey

    2015-04-01

    Wildfires are common to the Mediterranean region due to its defined dry season and long historical anthropogenic activities. Most of post-wildfire studies focus on mountains areas and thus refer to the hill-slope and its physical characteristics, e.g. morphology, length, angles, and aspect; its soil characteristics, e.g. type, infiltration rate, repellency; and its vegetative covers, e.g. planted trees vs. natural forest or native vs. exotic vegetation. In contrary there is very limited literature focusing on ecological and hydro-geomorphic aspects of post-wildfire of riparian vegetation / zone probably because of its negligible burned area relative to the spread of the fire, sometimes, over the whole watershed area. The limited literature on the topic is surprising given the fact that riparian vegetation zone has been acknowledged as a unique and important habitat supporting rich biodiversity. Herein we report on a wildfire event occurred on October 14th 2009 in a river section of Nahal Grar, Northern Negev Desert, Israel. The wildfire although was limited in its area (only 3 hectare) extended over the channel alone from bank to bank and thus provide a unique case study of completely burn down of riparian vegetation, mainly dense stands of Common Red (Australis Phragmites. Therefore a detailed study of this event provides an opportunity to tackle one of the basics questions which is determining the rate of natural restoration process that act at the immediate time after the wildfire event occurred. This type of information is most valuable to professional and stakeholders for better management of post-fire riparian zones. The results of the study suggest that under stable conditions, i.e. no major flood events occurred; disturbance time was short and ranged over 200 days due to, almost, immediate recovery of the riparian vegetation. However the re-growth of the riparian vegetation was not even but rather deferential and more complex then reported in the literature

  10. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  11. Fight for your breeding right: hierarchy re-establishment predicts aggression in a social queue.

    Science.gov (United States)

    Wong, Marian; Balshine, Sigal

    2011-04-23

    Social aggression is one of the most conspicuous features of animal societies, yet little is known about the causes of individual variation in aggression within social hierarchies. Recent theory suggests that when individuals form queues for breeding, variation in social aggression by non-breeding group members is related to their probability of inheriting breeding status. However, levels of aggression could also vary as a temporary response to changes in the hierarchy, with individuals becoming more aggressive as they ascend in rank, in order to re-establish dominance relationships. Using the group-living fish, Neolamprologus pulcher, we show that subordinates became more aggressive after they ascended in rank. Female ascenders exhibited more rapid increases in aggression than males, and the increased aggression was primarily directed towards group members of adjacent rather than non-adjacent rank, suggesting that social aggression was related to conflict over rank. Elevated aggression by ascenders was not sustained over time, there was no relationship between rank and aggression in stable groups, and aggression given by ascenders was not sex-biased. Together, these results suggest that the need to re-establish dominance relationships following rank ascension is an important determinant of variation in aggression in animal societies.

  12. Relationships between salmon abundance and tree-ring δ 15N: three objective tests

    Science.gov (United States)

    D.C. Drake; Paul J. Sheppard; Robert J. Naiman

    2011-01-01

    Quantification of a relationship between salmon escapement in rivers and riparian tree-ring δ 15N could allow reconstruction of prehistorical salmon abundance. Unfortunately, attempts to quantify this link have met with little success. We examined the feasibility of the approach using natural abundance of δ 15...

  13. Revegetation of the riparian zone of the Three Gorges Dam Reservoir leads to increased soil bacterial diversity.

    Science.gov (United States)

    Ren, Qingshui; Li, Changxiao; Yang, Wenhang; Song, Hong; Ma, Peng; Wang, Chaoying; Schneider, Rebecca L; Morreale, Stephen J

    2018-06-06

    As one of the most active components in soil, bacteria can affect soil physicochemical properties, its biological characteristics, and even its quality and health. We characterized dynamics of the soil bacterial diversity in planted (with Taxodium distichum) and unplanted soil in the riparian zone of the Three Gorges Dam Reservoir (TGDR), in southwestern China, in order to accurately quantify the changes in long-term soil bacterial community structure after revegetation. Measurements were taken annually in situ in the TGDR over the course of 5 years, from 2012 to 2016. Soil chemical properties and bacterial diversity were analyzed in both the planted and unplanted soil. After revegetation, the soil chemical properties in planted soil were significantly different than in unplanted soil. The effects of treatment, time, and the interaction of both time and treatment had significant impacts on most diversity indices. Specifically, the bacterial community diversity indices in planted soil were significantly higher and more stable than that in unplanted soil. The correlation analyses indicated that the diversity indices correlated with the pH value, organic matter, and soil available nutrients. After revegetation in the riparian zone of the TGDR, the soil quality and health is closely related to the observed bacterial diversity, and a higher bacterial diversity avails the maintenance of soil functionality. Thus, more reforestation should be carried out in the riparian zone of the TGDR, so as to effectively mitigate the negative ecological impacts of the dam. Vegetating the reservoir banks with Taxodium distichum proved successful, but planting mixed stands of native tree species could promote even higher riparian soil biodiversity and improved levels of ecosystem functioning within the TGDR.

  14. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  15. Tree Nut Allergies

    Science.gov (United States)

    ... Blog Vision Awards Common Allergens Tree Nut Allergy Tree Nut Allergy Learn about tree nut allergy, how ... a Tree Nut Label card . Allergic Reactions to Tree Nuts Tree nuts can cause a severe and ...

  16. River water infiltration enhances denitrification efficiency in riparian groundwater.

    Science.gov (United States)

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.

    Science.gov (United States)

    Hultine, K R; Bush, S E; Ehleringer, J R

    2010-03-01

    Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater

  18. Flowering Trees

    Indian Academy of Sciences (India)

    medium-sized handsome tree with a straight bole that branches at the top. Leaves are once pinnate, with two to three pairs of leaflets. Young parts of the tree are velvety. Inflorescence is a branched raceme borne at the branch ends. Flowers are large, white, attractive, and fragrant. Corolla is funnel-shaped. Fruit is an ...

  19. Flowering Trees

    Indian Academy of Sciences (India)

    Cassia siamia Lamk. (Siamese tree senna) of Caesalpiniaceae is a small or medium size handsome tree. Leaves are alternate, pinnately compound and glandular, upto 18 cm long with 8–12 pairs of leaflets. Inflorescence is axillary or terminal and branched. Flowering lasts for a long period from March to February. Fruit is ...

  20. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Cerbera manghasL. (SEA MANGO) of Apocynaceae is a medium-sized evergreen coastal tree with milky latex. The bark is grey-brown, thick and ... Fruit is large. (5–10 cm long), oval containing two flattened seeds and resembles a mango, hence the name Mangas or. Manghas. Leaves and fruits contain ...

  1. Flowering Trees

    Indian Academy of Sciences (India)

    user

    Flowering Trees. Gliricidia sepium(Jacq.) Kunta ex Walp. (Quickstick) of Fabaceae is a small deciduous tree with. Pinnately compound leaves. Flower are prroduced in large number in early summer on terminal racemes. They are attractive, pinkish-white and typically like bean flowers. Fruit is a few-seeded flat pod.

  2. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Acrocarpus fraxinifolius Wight & Arn. (PINK CEDAR, AUSTRALIAN ASH) of. Caesalpiniaceae is a lofty unarmed deciduous native tree that attains a height of 30–60m with buttresses. Bark is thin and light grey. Leaves are compound and bright red when young. Flowers in dense, erect, axillary racemes.

  3. Talking Trees

    Science.gov (United States)

    Tolman, Marvin

    2005-01-01

    Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…

  4. Drawing Trees

    DEFF Research Database (Denmark)

    Halkjær From, Andreas; Schlichtkrull, Anders; Villadsen, Jørgen

    2018-01-01

    We formally prove in Isabelle/HOL two properties of an algorithm for laying out trees visually. The first property states that removing layout annotations recovers the original tree. The second property states that nodes are placed at least a unit of distance apart. We have yet to formalize three...

  5. Flowering Trees

    Indian Academy of Sciences (India)

    Srimath

    Grevillea robusta A. Cunn. ex R. Br. (Sil- ver Oak) of Proteaceae is a daintily lacy ornamental tree while young and growing into a mighty tree (45 m). Young shoots are silvery grey and the leaves are fern- like. Flowers are golden-yellow in one- sided racemes (10 cm). Fruit is a boat- shaped, woody follicle.

  6. Efeito de um protetor físico na semeadura direta de duas espécies florestais em área de domínio ciliar The effects of a shelter upon seeding of two forest tree species in a riparian area

    Directory of Open Access Journals (Sweden)

    Ubirajara Contro Malavasi

    2010-10-01

    Full Text Available O ensaio avaliou o uso de uma garrafa plástica tipo PET de 2.000 mL como protetor físico na semeadura direta de Enterolobium contortisiliquum (Vell. Morong. e Peltophorum dubium (Spreng. Taub. em área de domínio ciliar no Oeste do Paraná. Nas semeaduras executadas no outono, inverno e primavera, utilizaram-se quatro sementes pré-embebidas de cada espécie por cova. As avaliações constaram da percentagem acumulada de plântulas vivas por parcela 30 dias após a semeadura (emergência, da percentagem de plântulas vivas 90 dias após a semeadura (sobrevivência e da percentagem de covas por parcela (formada por 15 covas com pelo menos uma plântula viva 90 dias após a semeadura (densidade populacional, assim como da altura e diâmetro do colo das plântulas. A semeadura realizada no outono resultou em 45% de plântulas de timburi vivas 30 dias após a semeadura, enquanto a emergência de plântulas de canafistula (média de 75,5% foi indiferente às épocas de semeadura. O uso do protetor aumentou a emergência de plântulas das espécies estudadas quando semeadas no outono (12% ou no inverno (10%, assim como na sobrevivência da semeadura da primavera, e na densidade populacional nas semeaduras de outono e da primavera em covas semeadas com canafístula.The study compared the effects of a plastic bottle as a shelter on direct spot seeding of two forest species. Four water soaked seeds of Enterolobium contortisiliquum (Vell. Morong. (timburi or Peltophorum dubium (Spreng. Taub. (canafistula were spot seeded in autumn, winter or spring in a riparian area located on the western portion of Parana state, Brazil. Calculation of population variables included accumulative percentage of live germinants 30 days after seeding (emergency, percentage of live seedlings 90 days after seeding (survival, percentage of seeded spots per plot (formed by 15 seeding spots with at least one live seedling (population density, as well as seedling height and

  7. The dark side of suibsidies: quantifying contaminant exposure to riparian predators via stream insects

    Science.gov (United States)

    Aquatic insects provide a critical nutrient subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated relationships between aquatic (resource utilization) and contaminant exposure for a riparian invert...

  8. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    Science.gov (United States)

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  9. Riparian Raptors on USACE Projects: Red-Shouldered Hawk (Buteo lineatus)

    National Research Council Canada - National Science Library

    Mitchell, Wilma

    2000-01-01

    ...) reservoir operations. For management purposes, these raptors are considered riparian generalists because they inhabit the riparian zones surrounding streams and lakes on Corps project lands but may seasonally use adjacent...

  10. Will cross-ownership reestablish market power in the Nordic power market?

    International Nuclear Information System (INIS)

    Amundsen, Eirik S.; Bergman, Lars

    2000-01-01

    The integration of the power markets in Norway and Sweden in 1996 significantly constrained the major power companies' ability to exercise market power within their national borders. In recent years, however, mergers and reciprocal acquisition of shares have reduced the number of independent players on the Norwegian-Swedish power market. The aim of this paper is to explore to what extent increasing cross-ownership among major power companies in Norway and Sweden might re-establish the market power that was lost when the two national power markets were integrated. The analysis is based on a numerical model, assuming Cournot quantity setting behaviour, of the Norwegian-Swedish power market. The simulation results suggest that partial ownership relations between major generators and other power-producing firms tend to increase horizontal market power and thus the market price of electricity. (author)

  11. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    Science.gov (United States)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  12. Research on the re-establishment of the classification criteria of strategic items

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong Mi; Yang, Seunghyo; Shin, Dong Hoon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-05-15

    According to these export control laws and regulations, the exporters have to apply the review for classification and export licensing to their own government. In this process, a technical review institute such as Korea Institute of Nuclear Nonproliferation and Control (institute under the NSSC) are referring to Minister's Regulation for the Export and Import of Strategic Goods. In this regulation, there are many criteria to classify the strategic items to be exported. But there are some problems in these criteria. At Typical problem is that classification criteria of Trigger List Items generally is very qualitative and very obscure in contrast with Dual Use Items. So, in most cases, this characteristics of classification criteria of trigger list items have caused much trouble for stakeholders such as government and nuclear related companies. So, there were needs that the classification criteria had to be more correct, obvious and objective. To solve these problems, the past classification cases for technology were re-analyzed and the general criteria were deducted in this study. Previously mentioned, the classification process and criteria were very qualitative and very obscure for the Trigger List Items. So, the re-establishment of the classification criteria was done to solve these problems in this study. Each extracted results were shown in Tables I and II. This re-established criteria are expected to contribute to quantification, disambiguation and objectification of the classification review process. As the future works, we will establish the probability or numerical factor for the extracted criteria through statistical surveys, to make better use of these criteria. And we will push ahead with the NSSC approval to use as the classification guidelines of the trigger list items in review processes.

  13. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  14. Evaluation of the riparian forest state program in Pitangueiras county, Parana

    OpenAIRE

    Peres, Marli Candalaft Alcantara Parra; Universidade Estadual de Londrina/UEL; Ralisch, Ricardo; Universidade Estadual de Londrina/UEL; Ripol, Cristovon Videira; Instituto Paranaense de Assistência Técnica e Extensão Rural do Paraná/EMATER

    2009-01-01

    Riparian forest restoration is fundamental for maintenance of vegetable, animal and human life. The objective of this study was to evaluate the efficiency of a Riparian Forest state program in the enlargement of the riparian forests in Pitangueiras county, state of Paraná, in the period of 2004 to 2006. Concerning the riparian reforestation, it was ansewered the reasons that convinced the farmers to join the program, the main difficulties found in its execution, and their views on environment...

  15. Phylogenetic trees

    OpenAIRE

    Baños, Hector; Bushek, Nathaniel; Davidson, Ruth; Gross, Elizabeth; Harris, Pamela E.; Krone, Robert; Long, Colby; Stewart, Allen; Walker, Robert

    2016-01-01

    We introduce the package PhylogeneticTrees for Macaulay2 which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals.

  16. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    Science.gov (United States)

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  17. Climate change and wildfire effects in aridland riparian ecosystems: An examination of current and future conditions

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch

    2017-01-01

    Aridland riparian ecosystems are limited, the climate is changing, and further hydrological change is likely in the American Southwest. To protect riparian ecosystems and organisms, we need to understand how they are affected by disturbance processes and stressors such as fire, drought, and non-native plant invasions. Riparian vegetation is critically important as...

  18. SOIL NITROUS OXIDE, NITRIC OXIDE, AND AMMONIA EMISSIONS FROM A RECOVERING RIPARIAN ECOSYSTEM IN SOUTHERN APPALACHIA

    Science.gov (United States)

    The paper presents two years of seasonal nitric oxide, ammonia, and nitrous oxide trace gas fluxes measured in a recovering riparian zone with cattle excluded and in an adjacent riparian zone grazed by cattle. In the recovering riparian zone, average nitric oxide, ammonia, and ni...

  19. Soil water nitrate concentrations in giant cane and forest riparian buffer zones

    Science.gov (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver

    2003-01-01

    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...

  20. Influences of watershed geomorphology on extent and composition of riparian vegetation

    Science.gov (United States)

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  1. Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    2016-01-01

    In mountainous areas such as the southern Appalachians USA, riparian zones are difficult to define. Vegetation is a commonly used riparian indicator and plays a key role in protecting water resources, but adequate knowledge of floristic responses to riparian disturbances is lacking. Our objective was to quantify changes in stand-level floristic diversity of...

  2. Understanding the Science Behind Riparian Forest Buffers: Effects on Plant and Animal Communities

    OpenAIRE

    Klapproth, Julia C.; Johnson, James E. (James Eric), 1952-

    2009-01-01

    Discusses riparian forests' ability to support many species of wildlife and explains that the importance of a particular riparian area for wildlife will depend on the size of the area, adjoining land uses, riparian vegetation, features inside the area, and the wildlife species of interest.

  3. Riparian Habitat Management for Reptiles and Amphibians on Corps of Engineers Projects

    National Research Council Canada - National Science Library

    Dickerson, Dena

    2001-01-01

    ... important taxonomic groups such as reptiles and amphibians. This note provides an overview of the importance of riparian habitat at Corps projects for reptiles and amphibians, identifies riparian zone functions and habitat characteristics, provides examples of representative taxa and regional comparisons, and describes impacts of riparian habitat modification.

  4. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam, South Dakota

    Science.gov (United States)

    Greene, Samantha L.; Knox, James C.

    2014-01-01

    Floods increase fluvial complexity by eroding established surfaces and creating new alluvial surfaces. As dams regulate channel flow, fluvial complexity often decreases and the hydro-eco-geomorphology of the riparian habitat changes. Along the Missouri River, flow regulation resulted in channel incision of 1-3 m within the study area and disconnected the pre-dam floodplain from the channel. Evidence of fluvial complexity along the pre-dam Missouri River floodplain can be observed through the diverse depositional environments represented by areas of varying soil texture. This study evaluates the role of flow regulation and depositional environment along the Missouri River in the riparian invasion of red cedar downstream of Gavins Point dam, the final dam on the Missouri River. We determine whether invasion began before or after flow regulation, determine patterns of invasion using Bayesian t-tests, and construct a Bayesian multivariate linear model of invaded surfaces. We surveyed 59 plots from 14 riparian cottonwood stands for tree age, plot composition, plot stem density, and soil texture. Red cedars existed along the floodplain prior to regulation, but at a much lower density than today. We found 2 out of 565 red cedars established prior to regulation. Our interpretation of depositional environments shows that the coarser, sandy soils reflect higher energy depositional pre-dam surfaces that were geomorphically active islands and point bars prior to flow regulation and channel incision. The finer, clayey soils represent lower energy depositional pre-dam surfaces, such as swales or oxbow depressions. When determining patterns of invasion for use in a predictive statistical model, we found that red cedar primarily establishes on the higher energy depositional pre-dam surfaces. In addition, as cottonwood age and density decrease, red cedar density tends to increase. Our findings indicate that flow regulation caused hydrogeomorphic changes within the study area that

  5. Water-use dynamics of an alien-invaded riparian forest within the Mediterranean climate zone of the Western Cape, South Africa

    Science.gov (United States)

    Scott-Shaw, Bruce C.; Everson, Colin S.; Clulow, Alistair D.

    2017-09-01

    In South Africa, the invasion of riparian forests by alien trees has the potential to affect the country's limited water resources. Tree water-use measurements have therefore become an important component of recent hydrological studies. It is difficult for South African government initiatives, such as the Working for Water (WfW) alien clearing program, to justify alien tree removal and implement rehabilitation unless hydrological benefits are known. Consequently, water use within a riparian forest along the Buffeljags River in the Western Cape of South Africa was monitored over a 3-year period. The site consisted of an indigenous stand of Western Cape afrotemperate forest adjacent to a large stand of introduced Acacia mearnsii. The heat ratio method of the heat pulse velocity sap flow technique was used to measure the sap flow of a selection of indigenous species in the indigenous stand, a selection of A. mearnsii trees in the alien stand and two clusters of indigenous species within the alien stand. The indigenous trees in the alien stand at Buffeljags River showed significant intraspecific differences in the daily sap flow rates varying from 15 to 32 L day-1 in summer (sap flow being directly proportional to tree size). In winter (June), this was reduced to only 7 L day-1 when limited energy was available to drive the transpiration process. The water use in the A. mearnsii trees showed peaks in transpiration during the months of March 2012, September 2012 and February 2013. These periods had high average temperatures, rainfall and high daily vapor pressure deficits (VPDs - average of 1.26 kPa). The average daily sap flow ranged from 25 to 35 L in summer and approximately 10 L in the winter. The combined accumulated daily sap flow per year for the three Vepris lanceolata and three A. mearnsii trees was 5700 and 9200 L, respectively, clearly demonstrating the higher water use of the introduced Acacia trees during the winter months. After spatially upscaling the

  6. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  7. Flowering Trees

    Indian Academy of Sciences (India)

    Srimath

    shaped corolla. Fruit is large, ellipsoidal, green with a hard and smooth shell containing numerous flattened seeds, which are embedded in fleshy pulp. Calabash tree is commonly grown in the tropical gardens of the world as a botanical oddity.

  8. Loss and re-establishment of desiccation tolerance in the germinated seeds of Sesbania virgata (Cav. (Pers.

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    2015-08-01

    Full Text Available This research aimed to investigate the cellular alterations during the loss and re-establishment of desiccation tolerance (DT in germinated Sesbania virgata seeds. The loss of DT was characterized in germinated seeds with increasing radicle lengths (1, 2, 3, 4 and 5 mm when subjected to dehydration in silica gel, followed by rehydration. To re-establish DT, the germinated seeds were incubated for 72h in polyethylene glycol (PEG, -2.04 MPa with or without ABA (100 μM before dehydration in silica gel. Cell viability was assessed by seedling survival, and DNA integrity was evaluated by gel electrophoresis. Seeds with 1 mm radicle length survived dehydration to the original moisture content (MC of the dry seed (approximately 10%. PEG treatment was able to re-establish DT, at least partially, with 2, 3 and 4 mm but not in 5 mm radicle lengths. Germinated seeds treated with PEG+ABA performed better than those treated only with PEG, and DT was re-established even in germinated seeds with a 5 mm radicle length. Among the PEG-treated germinated seeds dehydrated to 10% MC, DNA integrity was maintained only in those with a 1 mm radicle length.

  9. 76 FR 22924 - Re-Establishment of the National Space-Based Positioning, Navigation, and Timing (PNT) Advisory...

    Science.gov (United States)

    2011-04-25

    ... Government is necessary and in the public interest. Accordingly, NASA is re-establishing the National Space... advice on U.S. space-based PNT policy, planning, program management, and funding profiles in relation to... Advisory Board will function solely as an advisory body and will comply fully with the provisions of the...

  10. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data

    Science.gov (United States)

    Sooyoung Kim; Robert J. McGaughey; Hans-Erik Andersen; Gerard. Schreuder

    2009-01-01

    Tree species identification is important for a variety of natural resource management and monitoring activities including riparian buffer characterization, wildfire risk assessment, biodiversity monitoring, and wildlife habitat assessment. Intensity data recorded for each laser point in a LIDAR system is related to the spectral reflectance of the target material and...

  11. Flood-ring formation and root development in response to experimental flooding of young Quercus robur trees

    NARCIS (Netherlands)

    Copini, Paul; Ouden, den Jan; Robert, Elisabeth M.R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of

  12. Legal ecotones: A comparative analysis of riparian policy protection in the Oregon Coast Range, USA.

    Science.gov (United States)

    Boisjolie, Brett A; Santelmann, Mary V; Flitcroft, Rebecca L; Duncan, Sally L

    2017-07-15

    Waterways of the USA are protected under the public trust doctrine, placing responsibility on the state to safeguard public resources for the benefit of current and future generations. This responsibility has led to the development of management standards for lands adjacent to streams. In the state of Oregon, policy protection for riparian areas varies by ownership (e.g., federal, state, or private), land use (e.g., forest, agriculture, rural residential, or urban) and stream attributes, creating varying standards for riparian land-management practices along the stream corridor. Here, we compare state and federal riparian land-management standards in four major policies that apply to private and public lands in the Oregon Coast Range. We use a standard template to categorize elements of policy protection: (1) the regulatory approach, (2) policy goals, (3) stream attributes, and (4) management standards. All four policies have similar goals for achieving water-quality standards, but differ in their regulatory approach. Plans for agricultural lands rely on outcome-based standards to treat pollution, in contrast with the prescriptive policy approaches for federal, state, and private forest lands, which set specific standards with the intent of preventing pollution. Policies also differ regarding the stream attributes considered when specifying management standards. Across all policies, 25 categories of unique standards are identified. Buffer widths vary from 0 to ∼152 m, with no buffer requirements for streams in agricultural areas or small, non-fish-bearing, seasonal streams on private forest land; narrow buffer requirements for small, non-fish-bearing perennial streams on private forest land (3 m); and the widest buffer requirements for fish-bearing streams on federal land (two site-potential tree-heights, up to an estimated 152 m). Results provide insight into how ecosystem concerns are addressed by variable policy approaches in multi-ownership landscapes, an

  13. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil.

    Science.gov (United States)

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species' specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  14. Morphodynamic effects of riparian vegetation growth after stream restoration

    NARCIS (Netherlands)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Antonius J.F.; Keesstra, Saskia D.; Uijttewaal, Wim S.J.

    2018-01-01

    The prediction of the morphological evolution of renaturalized streams is important for the success of restoration projects. Riparian vegetation is a key component of the riverine landscape and is therefore essential for the natural rehabilitation of rivers. This complicates the design of

  15. Fire history of coniferous riparian forests in the Sierra Nevada

    Science.gov (United States)

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  16. Recovery of the Chaparral Riparian Zone After Wildfire

    Science.gov (United States)

    Frank W. Davis; Edward A. Keller; Anuja Parikh; Joan Florsheim

    1989-01-01

    After the Wheeler Fire in southern California in July 1985, we monitored sediment deposition and vegetation recovery in a section of the severely burned chaparral riparian zone of the North Fork of Matilija Creek, near Ojai, California. Increased runoff was accompanied by low magnitude debris flows and fluvial transport of gravel, most of which was added to the channel...

  17. Feasibility of Mapping Riparian Habitats Under Natural Conditions in California

    Science.gov (United States)

    David R. Dawdy

    1989-01-01

    The California State Water Resources Control Board is conducting hearings to set quantity and quality standards for river flows into San Francisco Bay. Comparisons of present conditions with "natural conditions" prior to European settlement were introduced into the hearings. Consumptive use relations were developed for various riparian and water-related...

  18. Identifying spatially integrated floodplains/riparian areas and wetlands

    Science.gov (United States)

    Floodplain delineation may play an important role in managing wetlands and riparian areas at multiple scales - local, state, and federal. This poster demonstrates multiple GIS-based approaches to delimiting floodplains and contrasts these with observed flooding events from a majo...

  19. Panel - People and riparian ecosystems: Past, present, and future

    Science.gov (United States)

    Richard D. Periman; Carol Raish; Frank E. Wozniak; David S. Brookshire; Michael McKee; Christian Schmidt; Tony Barron

    1996-01-01

    The purpose of this panel is to review past, present, and future human needs and desires associated with riparian environments. Our focus concerns the diverse demands, interactions, and expectations that people have for the riverine lands. The discussion is designed to take place within historic, economic, and social/cultural contexts.

  20. Effects of riparian vegetation development in a restored lowland stream

    NARCIS (Netherlands)

    Vargas-Luna, A.; Crosato, A.; Hoitink, A.J.F.; Groot, J.; Uijttewaal, W.S.J.

    2016-01-01

    This paper presents the morphodynamic effects of riparian vegetation growth in a lowland restored stream. Hydrological series, high-resolution bathymetric data and aerial photographs are combined in the study. The vegetation root system was found to assert a strong control on soil stabilization,

  1. Linked in: connecting riparian areas to support forest biodiversity

    Science.gov (United States)

    Marie Oliver; Kelly Burnett; Deanna Olson

    2010-01-01

    Many forest-dwelling species rely on both terrestrial and aquatic habitat for their survival. These species, including rare and little-understood amphibians and arthropods, live in and around headwater streams and disperse overland to neighboring headwater streams. Forest management policies that rely on riparian buffer strips and structurebased management—practices...

  2. Lowland riparian herpetofaunas: the San Pedro River in southeastern Arizona

    Science.gov (United States)

    Philip C. Rosen

    2005-01-01

    Previous work has shown that southeastern Arizona has a characteristic, high diversity lowland riparian herpetofauna with 62-68 or more species along major stream corridors, and 46-54 species in shorter reaches within single biomes, based on intensive fieldwork and museum record surveys. The San Pedro River supports this characteristic herpetofauna, at least some of...

  3. Nitrogen transformation and retention in riparian buffer zones

    NARCIS (Netherlands)

    Hefting, Maria Margaretha

    2003-01-01

    Diffuse pollution of nutrients and pesticides from agricultural areas is increasingly recognised as a major problem in water management. Ecotechnological measures as constructed wetlands and riparian buffer zones clearly have an important role in the reduction of diffuse pollution by removing and

  4. A phytosociological study of riparian forests in Benin (West Africa)

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2004-01-01

    Floristic ordination and classification of riparian forests in Benin were derived from a comprehensive floristic inventory. TWINSPAN classification and DCA analysis of a data set of 818 plant species and 180 releve's yielded 12 plant communities. Importance of waterways, relief, topography, latitude

  5. A baseline classification of riparian woodland plant communities in ...

    African Journals Online (AJOL)

    The plots were placed along a gradient from the main water body to the drier fringe of the riparian zone. Plant species present in each plot were recorded with their estimated percentage cover using the Braun–Blanquet cover abundance scale. Hierarchical cluster analysis was used to determine vegetation communities.

  6. Sex and the single Salix: considerations for riparian restoration

    Science.gov (United States)

    Thomas D. Landis; David R. Dreesen; R. Kasten Dumroese

    2003-01-01

    Most restoration projects strive to create a sustain able plant community but exclusive use of vegetatively propagated material may be preventing this goal. The dioecious willows and cottonwoods of the Salicaceae are widely used in riparian restoration projects. Hardwood cuttings have traditionally been used to propagate these species in nurseries, and live stakes,...

  7. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    Science.gov (United States)

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  8. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  9. Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks

    Science.gov (United States)

    Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...

  10. Riparian Meadow Response to Modern Conservation Grazing Management

    Science.gov (United States)

    Oles, Kristin M.; Weixelman, Dave A.; Lile, David F.; Tate, Kenneth W.; Snell, Laura K.; Roche, Leslie M.

    2017-09-01

    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.

  11. Vegetative zonation patterns in depression and riparian wetlands of ...

    African Journals Online (AJOL)

    ELO

    2012-01-05

    Jan 5, 2012 ... The vegetation of depressional and riparian wetlands in the Sanjiang ... Three transplanted species showed different effects of biomass ... nutrient concentrations in soil, as well as disturbance, ... (2) to discern underlying environmental variables that .... variance (ANOVA) and the construction of scatter plots.

  12. Characterising the water use and hydraulic properties of riparian ...

    African Journals Online (AJOL)

    Daily transpiration was strongly correlated to solar radiation (R2 > 0.81) while the air vapour pressure deficit (VPD) constrained transpiration at high VPD values. We conclude that the water use of the poplar invasions is significantly lower than that of other riparian invasions. The impact of these invasions on the water ...

  13. Vegetative zonation patterns in depression and riparian wetlands of ...

    African Journals Online (AJOL)

    One hundred and seventy-two (172) sampling plots in depression and riparian wetland was used. Samples were classified in 9 groups at the fourth level using two-way indicator species analysis (TWINSPAN): Four marsh communities, one meadow marsh community, one wet meadow community, two swamp communities ...

  14. A COMPARISON OF APPROACHES TO PRIORITIZING SITES FOR RIPARIAN RESTORATION

    Science.gov (United States)

    This study compares the results of Olson and Harris (1997) and Russell et al.(1997)in their work to prioritize sites for riparian restoration in the San Luis Rey River watershed. Olson and Harris defined reaches of the mainstem and evaluated the relative potential for restoration...

  15. Developing rapid methods for analyzing upland riparian functions and values.

    Science.gov (United States)

    Hruby, Thomas

    2009-06-01

    Regulators protecting riparian areas need to understand the integrity, health, beneficial uses, functions, and values of this resource. Up to now most methods providing information about riparian areas are based on analyzing condition or integrity. These methods, however, provide little information about functions and values. Different methods are needed that specifically address this aspect of riparian areas. In addition to information on functions and values, regulators have very specific needs that include: an analysis at the site scale, low cost, usability, and inclusion of policy interpretations. To meet these needs a rapid method has been developed that uses a multi-criteria decision matrix to categorize riparian areas in Washington State, USA. Indicators are used to identify the potential of the site to provide a function, the potential of the landscape to support the function, and the value the function provides to society. To meet legal needs fixed boundaries for assessment units are established based on geomorphology, the distance from "Ordinary High Water Mark" and different categories of land uses. Assessment units are first classified based on ecoregions, geomorphic characteristics, and land uses. This simplifies the data that need to be collected at a site, but it requires developing and calibrating a separate model for each "class." The approach to developing methods is adaptable to other locations as its basic structure is not dependent on local conditions.

  16. Effects of riparian buffers on hydrology of northern seasonal ponds

    Science.gov (United States)

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  17. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  18. Influence of microtopography on soil chemistry and understory riparian vegetation

    Science.gov (United States)

    Irene M. Unger; Rose-Marie Muzika

    2008-01-01

    The success of riparian forest restoration efforts depends in part on an understanding of the relationship between soil characteristics and vegetation patterns and how these change with site conditions. To examine these relationships for floodplains in northern Missouri, we chose three unchannelized streams as study areas. A sampling grid was established at two plots...

  19. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    Science.gov (United States)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  20. Progress toward interrupting wild poliovirus circulation in countries with reestablished transmission--Africa, 2009-2010.

    Science.gov (United States)

    2011-03-18

    Through efforts of the Global Polio Eradication Initiative (GPEI), begun in 1988, indigenous transmission of wild poliovirus (WPV) had been interrupted in all but four countries (Afghanistan, Pakistan, India, and Nigeria) by 2006. Since 2002, a total of 39 previously polio-free countries experienced outbreaks following importation of WPV of Indian or Nigerian origin. Most outbreaks were stopped 12 months following importation before 2009. A key milestone of the GPEI 2010-2012 strategic plan was to interrupt WPV transmission in these African countries with reestablished transmission by the end of 2010. As of March 8, 2011, the milestone appeared to be on track only in Sudan. In Sudan, WPV type 1 (WPV1) was introduced in 2004, but no cases were detected for a 31-month period during 2005-2008. When resurgence occurred in 2008, surveillance and eradication efforts were enhanced, and no case has been detected since June 2009. In Chad, WPV type 3 (WPV3) transmission has persisted since 2007, although undetected for 7 months in 2010. In Angola, WPV1 circulation has persisted following importation in 2007, and became more widespread in 2010, with subsequent importations into DRC and Republic of the Congo (ROC). In DRC, WPV1 circulation has persisted since introduction in 2006. Achieving polio eradication depends on stopping WPV transmission in the four endemic countries and overcoming substantial, ongoing programmatic weaknesses in Chad, Angola, and DRC.

  1. A new technology aimed at re-establishing a global sulphur supply/demand balance

    International Nuclear Information System (INIS)

    Slavens, A.F.; Jorgensen, C.; Ogg, D.

    2009-01-01

    The world's sulphur supply is mainly determined by involuntary production of elemental sulphur during the processing of oil and gas. As a result, sulphur supply is decoupled from demand, resulting in an imbalance between the two. For almost two decades, sulphur supply has exceeded demand, which has raised significant concerns for oil and gas producers such as where to store all of the excess sulphur, and how to transport a low-value commodity to market in an economically attractive fashion. Black and Veatch is involved in the development of a new technology called sulphur to energy process (STEP TM ) which has the potential to assist in balancing global sulphur supply and demand, as well as affording other benefits such as low-emission energy production. This paper presented the potential merits of the STEP as a means to reestablish a global sulphur supply/demand balance for the world trading market. It explored the other potential benefits that may result from the use of this new technology and compared STEP to other technologies and operating schemes that regulate sulphur supply. It was concluded that STEP has the potential to allow the processor to produce elemental sulphur when demand is high, or to provide safe and ecological disposal when demand is low, with the added benefits of energy recovery from the sulphur combustion process, and sour gas reservoir sweetening over time as sulphur dioxide reacts with hydrogen sulphide present in the reservoir. 13 refs., 3 tabs., 22 figs

  2. Erasure and reestablishment of random allelic expression imbalance after epigenetic reprogramming.

    Science.gov (United States)

    Jeffries, Aaron Richard; Uwanogho, Dafe Aghogho; Cocks, Graham; Perfect, Leo William; Dempster, Emma; Mill, Jonathan; Price, Jack

    2016-10-01

    Clonal level random allelic expression imbalance and random monoallelic expression provides cellular heterogeneity within tissues by modulating allelic dosage. Although such expression patterns have been observed in multiple cell types, little is known about when in development these stochastic allelic choices are made. We examine allelic expression patterns in human neural progenitor cells before and after epigenetic reprogramming to induced pluripotency, observing that loci previously characterized by random allelic expression imbalance (0.63% of expressed genes) are generally reset to a biallelic state in induced pluripotent stem cells (iPSCs). We subsequently neuralized the iPSCs and profiled isolated clonal neural stem cells, observing that significant random allelic expression imbalance is reestablished at 0.65% of expressed genes, including novel loci not found to show allelic expression imbalance in the original parental neural progenitor cells. Allelic expression imbalance was associated with altered DNA methylation across promoter regulatory regions, with clones characterized by skewed allelic expression being hypermethylated compared to their biallelic sister clones. Our results suggest that random allelic expression imbalance is established during lineage commitment and is associated with increased DNA methylation at the gene promoter. © 2016 Jeffries et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Re-Establishment of Standard Radiation Qualities for Calibration of Dosemeter in Diagnostic Radiology - RQR Series

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Norhayati Abdullah; Mohd Firdaus Abd Rahman

    2016-01-01

    After repairing the high voltage (HV) generator for Philips MG165 X-Ray Machine, the reestablishment of the standard radiation qualities has been done at Medical Physics Calibration Laboratory to meet the IEC and IAEA standard. Standard radiation qualities are the important criteria for calibration of dosemeter in diagnostic radiology. Standard radiation qualities are defined as the added filtration needed to produce and the half value layer (HVL) of the beam for specifies x-ray tube kilo voltage (kV). For calibration of dosemeter in diagnostic radiology, standard radiation qualities RQR represent the beam incident on the patient in general radiography, fluoroscopy and dental application. The HVL were measured using PTW ion chamber of volume 1 cm"3 with PTW electrometer and aluminium filter with 99.9 % purity was used as additional filter for RQR and filter for HVL. The first establishment of standard radiation qualities was made in 2009 for the radiation qualities of RQR. The results of additional filter and 1st HVL from 2009 to 2016 will be discussed further in paper. The ratios of the measured HVL to the standard IEC HVL value for the RQR series also described in this paper. The details of the measurement and the results are described in this paper. (author)

  4. Delineation of a Re-establishing Drainage Network Using SPOT and Landsat Images

    Science.gov (United States)

    Bailey, J. E.; Self, S.; Mouginis-Mark, P. J.

    2008-12-01

    The 1991 eruption of Mt. Pinatubo, The Philippines, provided a unique opportunity to study the effects on the landscape of a large eruption in part because it took place after the advent of regular satellite-based observations. The eruption formed one large (>100km2) ignimbrite sheet, with over 70% of the total deposit deposited in three primary drainage basins to the west of the volcano. High-resolution (20 m/pixel) satellite images, showing the western drainage basins and surrounding region both before and after the eruption were used to observe the re-establishment and evolution of drainage networks on the newly emplaced ignimbrite sheet. Changes in the drainage networks were delineated from a time series of SPOT (Satellite Pour l'Observation de la Terre) and Landsat multi-spectral satellite images. The analysis of which was supplemented by ground- based observations. The satellite images showed that the blue prints for the new drainage systems were established early (within days of the eruption) and at a large-scale followed the pre-eruption pattern. However, the images also illustrated the ephemeral nature of many channels due to the influence of secondary pyroclastic flows, lahar- dammed lake breakouts, stream piracy and shifts due to erosion. Characteristics of the defined drainage networks were used to infer the relative influence on the lahar hazard within each drainage basin.

  5. Recovery of endemic dragonflies after removal of invasive alien trees.

    Science.gov (United States)

    Samways, Michael J; Sharratt, Norma J

    2010-02-01

    Because dragonflies are very sensitive to alien trees, we assessed their response to large-scale restoration of riparian corridors. We compared three types of disturbance regime--alien invaded, cleared of alien vegetation, and natural vegetation (control)--and recorded data on 22 environmental variables. The most significant variables in determining dragonfly assemblages were percentage of bank cover and tree canopy cover, which indicates the importance of vegetation architecture for these dragonflies. This finding suggests that it is important to restore appropriate marginal vegetation and sunlight conditions. Recovery of dragonfly assemblages after the clearing of alien trees was substantial. Species richness and abundance at restored sites matched those at control sites. Dragonfly assemblage patterns reflected vegetation succession. Thus, initially eurytopic, widespread species were the main beneficiaries of the removal of alien trees, and stenotopic, endemic species appeared after indigenous vegetation recovered over time. Important indicator species were the two national endemics (Allocnemis leucosticta and Pseudagrion furcigerum), which, along with vegetation type, can be used to monitor return of overall integrity of riparian ecology and to make management decisions. Endemic species as a whole responded positively to restoration, which suggests that indigenous vegetation recovery has major benefits for irreplaceable and widespread generalist species.

  6. Riparian erosion vulnerability model based on environmental features.

    Science.gov (United States)

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  7. Explaining linkages (and lack of) between riparian vegetation biodiversity and geomorphic complexity in restored streams of northern Sweden

    Science.gov (United States)

    Polvi, Lina; Maher Hasselquist, Eliza; Nilsson, Christer

    2014-05-01

    Ecological theory suggests that species richness and habitat heterogeneity are positively correlated; therefore stream restoration often relies on increasing geomorphic complexity to promote biodiversity. However, past studies have failed to demonstrate a link between post-restoration biodiversity and geomorphic complexity. These studies have usually relied on only one metric for quantifying complexity, rather than a holistic metric for complexity that represents several aspects of the channel morphology, and have based their observations in catchments with widespread land-use impacts. We use a geomorphic complexity gradient based on five geomorphic aspects (longitudinal, cross-sectional, planform, sediment texture, and instream wood) to determine whether streams with higher levels of complexity also have greater riparian vegetation biodiversity. We also compare biodiversity values with the potential complexity of reaches based on the large-scale controls of valley and channel gradient and the presence of large glacial legacy sediment (boulders). We focus on tributary channels in boreal forests of northern Sweden, where stream modification associated with log-floating from the 1850s to the 1960s created highly simplified channels. Driven by concerns for fish, restoration began in the 1970s by returning large cobbles and boulders into the main channel from the channel edge, and evolved into 'demonstration restoration,' placing very large boulders and trees into the channel, reopening side channels, and constructing fish spawning areas. We evaluate 22 reaches along tributaries of the Vindel River in northern Sweden with four restoration statuses: channelized, restored, demonstration restored, and unimpacted. Detailed morphologic, sediment, and instream wood data allow calculation of 29 metrics of geomorphic complexity, from which a complexity gradient was identified using multivariate statistics. The percent cover of riparian vegetation was identified in 0.5 x 0.5 m

  8. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  9. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  10. Biomass yielding potential of naturally regenerated Prosopis juliflora tree stands at three varied ecosystems in southern districts of Tamil Nadu, India.

    Science.gov (United States)

    Saraswathi, K; Chandrasekaran, S

    2016-05-01

    Fuel energy demand is of great concern in recent times due to the depletion of fossil fuel resources. Biomass serves as widely available primary renewable energy source. Hence, a study was performed to assess the above-ground biomass yielding capability of fuel wood tree Prosopis juliflora in three varied ecosystems viz., coastal, fallow land and riparian ecosystems in southern districts of Tamil Nadu. The results showed that the biomass production potential and above-ground net primary productivity of P. juliflora depend on the age of the tree stands and the nature of ecosystem. A higher biomass yield was observed for P. juliflora trees with 5 to 10 years old when compared to less than 5 years of their age. Among the three ecosystems, the maximum biomass production was recorded in riparian ecosystem. The stands with less than 5-year-old P. juliflora trees gave 1.40 t/ha, and 5- to 10-year-old tree stands produced 27.69 t/ha in riparian ecosystem. Above-ground net primary productivity of both the age groups was high in fallow land ecosystem. In riparian ecosystem, the wood showed high density and low sulphur content than the other two ecosystems. Hence, P. juliflora biomass can serve as an environmentally and economically feasible fuel as well as their utilization proffers an effective means to control its invasiveness.

  11. Flowering Trees

    Indian Academy of Sciences (India)

    deciduous tree with irregularly-shaped trunk, greyish-white scaly bark and milky latex. Leaves in opposite pairs are simple, oblong and whitish beneath. Flowers that occur in branched inflorescence are white, 2–. 3cm across and fragrant. Calyx is glandular inside. Petals bear numerous linear white scales, the corollary.

  12. Flowering Trees

    Indian Academy of Sciences (India)

    Berrya cordifolia (Willd.) Burret (Syn. B. ammonilla Roxb.) – Trincomali Wood of Tiliaceae is a tall evergreen tree with straight trunk, smooth brownish-grey bark and simple broad leaves. Inflorescence is much branched with white flowers. Stamens are many with golden yellow anthers. Fruit is a capsule with six spreading ...

  13. Flowering Trees

    Indian Academy of Sciences (India)

    Canthium parviflorum Lam. of Rubiaceae is a large shrub that often grows into a small tree with conspicuous spines. Leaves are simple, in pairs at each node and are shiny. Inflorescence is an axillary few-flowered cymose fascicle. Flowers are small (less than 1 cm across), 4-merous and greenish-white. Fruit is ellipsoid ...

  14. Flowering Trees

    Indian Academy of Sciences (India)

    sriranga

    Hook.f. ex Brandis (Yellow. Cadamba) of Rubiaceae is a large and handsome deciduous tree. Leaves are simple, large, orbicular, and drawn abruptly at the apex. Flowers are small, yellowish and aggregate into small spherical heads. The corolla is funnel-shaped with five stamens inserted at its mouth. Fruit is a capsule.

  15. Flowering Trees

    Indian Academy of Sciences (India)

    Celtis tetrandra Roxb. of Ulmaceae is a moderately large handsome deciduous tree with green branchlets and grayish-brown bark. Leaves are simple with three to four secondary veins running parallel to the mid vein. Flowers are solitary, male, female and bisexual and inconspicuous. Fruit is berry-like, small and globose ...

  16. Flowering Trees

    Indian Academy of Sciences (India)

    IAS Admin

    Aglaia elaeagnoidea (A.Juss.) Benth. of Meliaceae is a small-sized evergreen tree of both moist and dry deciduous forests. The leaves are alternate and pinnately compound, terminating in a single leaflet. Leaflets are more or less elliptic with entire margin. Flowers are small on branched inflorescence. Fruit is a globose ...

  17. Flowering Trees

    Indian Academy of Sciences (India)

    user

    Flowers are borne on stiff bunches terminally on short shoots. They are 2-3 cm across, white, sweet-scented with light-brown hairy sepals and many stamens. Loquat fruits are round or pear-shaped, 3-5 cm long and are edible. A native of China, Loquat tree is grown in parks as an ornamental and also for its fruits.

  18. Flowering Trees

    Indian Academy of Sciences (India)

    mid-sized slow-growing evergreen tree with spreading branches that form a dense crown. The bark is smooth, thick, dark and flakes off in large shreds. Leaves are thick, oblong, leathery and bright red when young. The female flowers are drooping and are larger than male flowers. Fruit is large, red in color and velvety.

  19. Flowering Trees

    Indian Academy of Sciences (India)

    Andira inermis (wright) DC. , Dog Almond of Fabaceae is a handsome lofty evergreen tree. Leaves are alternate and pinnately compound with 4–7 pairs of leaflets. Flowers are fragrant and are borne on compact branched inflorescences. Fruit is ellipsoidal one-seeded drupe that is peculiar to members of this family.

  20. Flowering Trees

    Indian Academy of Sciences (India)

    narrow towards base. Flowers are large and attrac- tive, but emit unpleasant foetid smell. They appear in small numbers on erect terminal clusters and open at night. Stamens are numerous, pink or white. Style is slender and long, terminating in a small stigma. Fruit is green, ovoid and indistinctly lobed. Flowering Trees.

  1. Flowering Trees

    Indian Academy of Sciences (India)

    Muntingia calabura L. (Singapore cherry) of. Elaeocarpaceae is a medium size handsome ever- green tree. Leaves are simple and alternate with sticky hairs. Flowers are bisexual, bear numerous stamens, white in colour and arise in the leaf axils. Fruit is a berry, edible with several small seeds embedded in a fleshy pulp ...

  2. ~{owering 'Trees

    Indian Academy of Sciences (India)

    . Stamens are fused into a purple staminal tube that is toothed. Fruit is about 0.5 in. across, nearly globose, generally 5-seeded, green but yellow when ripe, quite smooth at first but wrinkled in drying, remaining long on the tree ajier ripening.

  3. Tree Mortality

    Science.gov (United States)

    Mark J. Ambrose

    2012-01-01

    Tree mortality is a natural process in all forest ecosystems. However, extremely high mortality also can be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....

  4. Flowering Trees

    Indian Academy of Sciences (India)

    Guaiacum officinale L. (LIGNUM-VITAE) of Zygophyllaceae is a dense-crowned, squat, knobbly, rough and twisted medium-sized ev- ergreen tree with mottled bark. The wood is very hard and resinous. Leaves are compound. The leaflets are smooth, leathery, ovate-ellipti- cal and appear in two pairs. Flowers (about 1.5.

  5. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.

    Science.gov (United States)

    Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C

    2004-05-01

    Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf

  6. Niche construction within riparian corridors. Part I: Exploring biogeomorphic feedback windows of three pioneer riparian species (Allier River, France)

    Science.gov (United States)

    Hortobágyi, Borbála; Corenblit, Dov; Steiger, Johannes; Peiry, Jean-Luc

    2018-03-01

    Within riparian corridors, biotic-abiotic feedback mechanisms occur between woody vegetation strongly influenced by hydrogeomorphic constraints (e.g., sediment transport and deposition, shear stress, hydrological variability), fluvial landforms, and morphodynamics, which in turn are modulated by the established vegetation. During field investigations in spring 2015, we studied 16 alluvial bars (e.g., point and lateral bars) within the dynamic riparian corridor of the Allier River (France) to assess the aptitude of three pioneer riparian Salicaceae species (Populus nigra L., Salix purpurea L., and Salix alba L.) to establish and act as ecosystem engineers by trapping sediment and constructing fluvial landforms. Our aim is to empirically identify the preferential establishment area (EA; i.e., the local areas where species become established) and the preferential biogeomorphic feedback window (BFW; i.e., where and to what extent the species and geomorphology interact) of these three species on alluvial bars within a 20-km-long river reach. Our results show that the EA and BFW of all three species vary significantly along the longitudinal profile, i.e., upstream-downstream exposure on the alluvial bars, as well as transversally, i.e., the main hydrological connectivity gradient from the river channel toward the floodplain. In the present-day context of the Allier River, P. nigra is the most abundant species, appearing to act as the main engineer species affecting landform dynamics at the bar scale; S. purpurea is established and acts as an ecosystem engineer at locations on alluvial bars that are most exposed to hydrosedimentary flow dynamics, while S. alba is established on the bar tail close to secondary channels and affects the geomorphology in mixed patches along with P. nigra. Our study highlights the role of functional trait diversity of riparian engineer species in controlling the extent of fluvial landform construction along geomorphic gradients within riparian

  7. Riparian woodland encroachment following flow regulation: a comparative study of Mediterranean and Boreal streams

    Directory of Open Access Journals (Sweden)

    Dolores Bejarano M.

    2011-10-01

    Full Text Available Water development accompanying mankind development has turned rivers into endangered ecosystems. Improving the understanding of ecological responses to river management actions is a key issue for assuring sustainable water management. However, few studies have been published where ecological metrics have been quantified in response to various degrees of flow alteration. In this work, changes in natural distribution of trees and shrubs within the riparian corridor (as indicator of the ecological status of the fluvial ecosystem were quantified at multiple sites along a flow alteration gradient (as indicator of impact along two regulated river reaches, one Boreal and the other Mediterranean, each downstream of a dam. Based on the obtained relationships we evaluated differences in response trends related to local physico-climatic factors of the two biomes and regarding to differing life-forms. Woody vegetation establishment patterns represented objective indicators of ecological responses to flow alteration. We found different responses between life-forms. Both trees and shrubs migrated downwards to the channel after dam closure, but shrubs were most impacted under higher degrees of flow alteration in terms of lateral movement. In addition, our results show clear longitudinal recovery trends of natural patterns of tree and shrub distribution corresponding to a decrease in intensity of hydrologic alteration in the Boreal river. However, vegetation encroachment persisted along the entire Mediterranean study reach. This may result from a relatively low gradient of decrease of hydrologic alteration with distance from the dam, coupled with other overlapping pressures and the mediating effect of physico-climatic characteristics on vegetation responses.

  8. Explaining landholders' decisions about riparian zone management: the role of behavioural, normative, and control beliefs.

    Science.gov (United States)

    Fielding, Kelly S; Terry, Deborah J; Masser, Barbara M; Bordia, Prashant; Hogg, Michael A

    2005-10-01

    Water quality is a key concern in the current global environment, with the need to promote practices that help to protect water quality, such as riparian zone management, being paramount. The present study used the theory of planned behaviour as a framework for understanding how beliefs influence decisions about riparian zone management. Respondents completed a survey that assessed their behavioural, normative, and control beliefs in relation to intentions to manage riparian zones on their property. The results of the study showed that, overall, landholders with strong intentions to manage their riparian zones differed significantly in terms of their beliefs compared to landholders who had weak intentions to manage their riparian zones. Strong intentions to manage riparian zones were associated with a favourable cost-benefit analysis, greater perceptions of normative support for the practice and lower perceptions of the extent to which barriers would impede management of riparian zones. It was also evident that willingness to comply with the recommendations of salient referents, beliefs about the benefits of riparian zone management and perceptions of the extent to which barriers would impede riparian zone management were most important for determining intentions to manage riparian zones. Implications for policy and extension practice are discussed.

  9. Orthodontic extrusion of subgingivally fractured tooth using a removable appliance: an alternative treatment to reestablish biological width.

    Science.gov (United States)

    Verma, Kanika Gupta; Juneja, Suruchi; Kumar, Sandeep; Goyal, Tanya

    2014-01-01

    Restoration of a traumatically injured tooth presents a clinical challenge for a predictable aesthetic outcome. This case report describes a multidisciplinary approach of a subgingivally fractured permanent maxillary central incisor. A removable orthodontic appliance was used for orthodontic extrusion of root, and surgical gingival recontouring was done with electrocautery to reestablish the biological width. Form and function were restored establishing biological width and esthetics was repaired with porcelain fused to metal crown.

  10. Ultrasonographic differentiation of biliary atresia and neonatal hepatitis: Reestablishment of size criteria of the gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Sun; Cheon, Jung Eun; Koh, Young Hwan; Kim, In One; Yeon, Kyung Mo [Seoul National University College of Medicine and Institude of Radiation Medicion, Seoul (Korea, Republic of)

    2001-12-15

    To reestablish the size criterion of the gallbladder on ultrasonography (US) for the differentiation diagnosis of biliary atresia from neonatal hepatitis. Abdominal US ws performed in 201 patients with jaundice and 40 patients without evidence of jaundice or hepatobiliary illness (all with the age less than 4 months). US was performed in fasting (fasting for at least 4 hours) to measure the length of the gallbladder and calculated the area of the gallbladder lumen. The morphology of the gallbladder was classified into three types: normal, elongated and atretic. To evaluate the contractibility of the gallbladder, the length of the gallbladder and area of the gallbladder lumen was again measured 1 hour after feeding. The final diagnosis included biliary atresia in 79 patients and neonatal hepatitis in 83 patients. Differences in the length, area, and morphology of the gallbladder were statistically significant among three groups, the normal group, neonatal hepatitis group and biliary atresia group (length and area of gallbladder; normal group>neonatal hepatitis>biliary atresia). The differences in the length and area of gallbladder between pre- and postmeal state were statistically significant in the normal and neonatal hepatitis groups whereas those of biliary atresia were not significant (p=0.85). When the empirical size criterion of the gallbladder (<15 mm in length) was applied, the sensitivity, specificity and diagnostic accuracy for the differential diagnosis of biliary atresia from hepatitis were 52%, 82%, and 67%, respectively. Meanwhile, if the area criterion(<30 mm{sup 2} in area) was applied, the sensitivity, the specificity and diagnostic accuracy were 67%, 85%, and 75%, respectively. Ultrasonographic evaluation of the morphology as well as size of the gallbladder are helpful in the differential diagnosis of biliary atresia from neonatal hepatitis. Therefore, since the measurement of the area of gallbladder lumen on US reflect both size and morphology of

  11. Riparian swallows as integrators of landscape change in a multiuse river system: implications for aquatic-to-terrestrial transfers of contaminants.

    Science.gov (United States)

    Alberts, Jeremy M; Sullivan, S Mažeika P; Kautza, A

    2013-10-01

    Recent research has highlighted the transfer of contaminants from aquatic to terrestrial ecosystems via predation of aquatic emergent insects by riparian consumers. The influence of adjacent land use and land cover (LULC) on aquatic-to-terrestrial contaminant transfer, however, has received limited attention. From 2010 to 2012, at 11 river reaches in the Scioto River basin (OH, USA), we investigated the relationships between LULC and selenium (Se) and mercury (Hg) concentrations in four species of riparian swallows. Hg concentrations in swallows were significantly higher at rural reaches than at urban reaches (t=-3.58, Pemergent insects. For example, tree swallows (Tachycineta bicolor) at urban reaches exhibited a higher proportion of aquatic prey in their diet, fed at a higher trophic level, and exhibited elevated Se levels. We also found that both Se and Hg concentrations in adult swallows were significantly higher than those observed in nestlings at both urban and rural reaches (Se: t=-2.83, P=0.033, df=3; Hg: t=-3.22, P=0.024, df=3). Collectively, our results indicate that riparian swallows integrate contaminant exposure in linked aquatic-terrestrial systems and that LULC may strongly regulate aquatic contaminant flux to terrestrial consumers. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Determination of priority areas for the re-establishment of forest cover, based on the use of geotechnologies

    Directory of Open Access Journals (Sweden)

    Nelson Wellausen Dias

    2012-12-01

    Full Text Available The determination of priority areas for the re-establishment of forest cover in watersheds is directly associated to the probability of effective success of restoration processes. However, considering the complexity of the analysis and the large amount of spatial data necessary to accomplish that purpose, state of the art technological tools capable of processing multi-criteria analysis to support decision making are necessary. Thus, the current work developed for an area of 476 km² corresponding to the Una river watershed in the municipal district of Taubaté, SP, used a multi-criteria analysis based on the continuous classification and on Analytical Hierarchy Process (AHP paired comparisons techniques, available in the complete GIS package named SPRING (Georeferenced Information Processing System for generating a map of priority areas for the re-establishment of forest cover in that watershed. Results revealed a large area (26.6% of the entire watershed falling in the “Extreme Priority” class for forest cover re-establishment, what indicates the urgent need of environmental recovery of this basin considering that it is used for Taubaté city water supply. Results from this research support the decision making for resource optimization applied to priority areas in an operational way.

  13. Climate, streamflow, and legacy effects on growth of riparian Populus angustifolia in the arid San Luis Valley, Colorado

    Science.gov (United States)

    Andersen, Douglas

    2016-01-01

    Knowledge of the factors affecting the vigor of desert riparian trees is important for their conservation and management. I used multiple regression to assess effects of streamflow and climate (12–14 years of data) or climate alone (up to 60 years of data) on radial growth of clonal narrowleaf cottonwood (Populus angustifolia), a foundation species in the arid, Closed Basin portion of the San Luis Valley, Colorado. I collected increment cores from trees (14–90 cm DBH) at four sites along each of Sand and Deadman creeks (total N = 85), including both perennial and ephemeral reaches. Analyses on trees conditions was common. Models for trees farther from the channel or over a deep water table explained 23–71% of SGI variability, and 4 of 5 contained a streamflow variable. Analyses using solely climate variables over longer time periods explained 17–85% of SGI variability, and 10 of 12 included a variable indexing summer precipitation. Three large, abrupt shifts in recent decades from wet to dry conditions (indexed by a seasonal Palmer Drought Severity Index) coincided with dramatically reduced radial growth. Each shift was presumably associated with branch dieback that produced a legacy effect apparent in many SGI series: uncharacteristically low SGI in the year following the shift. My results suggest trees in locations distant from the active channel rely on the regional shallow unconfined aquifer, summer rainfall, or both to meet water demands. The landscape-level differences in the water supplies sustaining these trees imply variable effects from shifts in winter-versus monsoon-related precipitation, and from climate change versus streamflow or groundwater management.

  14. Responses of riparian reptile communities to damming and urbanization

    Science.gov (United States)

    Hunt, Stephanie D.; Guzy, Jacquelyn C.; Price, Steven J.; Halstead, Brian J.; Eskew, Evan A.; Dorcas, Michael E.

    2013-01-01

    Various anthropogenic pressures, including habitat loss, threaten reptile populations worldwide. Riparian zones are critical habitat for many reptile species, but these habitats are also frequently modified by anthropogenic activities. Our study investigated the effects of two riparian habitat modifications-damming and urbanization-on overall and species-specific reptile occupancy patterns. We used time-constrained search techniques to compile encounter histories for 28 reptile species at 21 different sites along the Broad and Pacolet Rivers of South Carolina. Using a hierarchical Bayesian analysis, we modeled reptile occupancy responses to a site's distance upstream from dam, distance downstream from dam, and percent urban land use. The mean occupancy response by the reptile community indicated that reptile occupancy and species richness were maximized when sites were farther upstream from dams. Species-specific occupancy estimates showed a similar trend of lower occupancy immediately upstream from dams. Although the mean occupancy response of the reptile community was positively related to distance downstream from dams, the occupancy response to distance downstream varied among species. Percent urban land use had little effect on the occupancy response of the reptile community or individual species. Our results indicate that the conditions of impoundments and subsequent degradation of the riparian zones upstream from dams may not provide suitable habitat for a number of reptile species.

  15. Recent land cover history and nutrient retention in riparian wetlands

    Science.gov (United States)

    Hogan, D.M.; Walbridge, M.R.

    2009-01-01

    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  16. Sensitivity Analysis of a Riparian Vegetation Growth Model

    Directory of Open Access Journals (Sweden)

    Michael Nones

    2016-11-01

    Full Text Available The paper presents a sensitivity analysis of two main parameters used in a mathematic model able to evaluate the effects of changing hydrology on the growth of riparian vegetation along rivers and its effects on the cross-section width. Due to a lack of data in existing literature, in a past study the schematization proposed here was applied only to two large rivers, assuming steady conditions for the vegetational carrying capacity and coupling the vegetal model with a 1D description of the river morphology. In this paper, the limitation set by steady conditions is overcome, imposing the vegetational evolution dependent upon the initial plant population and the growth rate, which represents the potential growth of the overall vegetation along the watercourse. The sensitivity analysis shows that, regardless of the initial population density, the growth rate can be considered the main parameter defining the development of riparian vegetation, but it results site-specific effects, with significant differences for large and small rivers. Despite the numerous simplifications adopted and the small database analyzed, the comparison between measured and computed river widths shows a quite good capability of the model in representing the typical interactions between riparian vegetation and water flow occurring along watercourses. After a thorough calibration, the relatively simple structure of the code permits further developments and applications to a wide range of alluvial rivers.

  17. Effect of organic matter and roots in soil respiration in a Mediterranean riparian areas in Central Spain

    Science.gov (United States)

    Gonzalez-Garrido, Laura; Delgado, Juan Antonio; Martinez, Teodora

    2010-05-01

    Soil respiration is one of the largest carbon flux components within terrestrial ecosystems, and small changes in the magnitude of soil respiration could have a large effect on the concentration of CO2 in the atmosphere. The main objective is evaluating the factors controlling soil respiration on the global carbon cycle in riparian areas of Henares River. We evaluated total soil respiration as it was affected by soil temperature, soil moisture, root respiration and organic matter in four areas differing in vegetation cover. We specifically assessed the contribution of soil organic matter and fine root biomass (≤1 mm.) in soil carbon dioxide flux. The study area is located on the riverbanks of Henares River where it passes through the municipal term of Alcala de Henares (Madrid) in Central Spain. Measurements were performed in spring and autumn of 2009. The study was conducted on four different types of riparian vegetation: natural Mediterranean riparian forest, reforestation of 1994, reforestation of 1999 and riparian grassland without trees. In each area of study 3, 25x25 m, plots were delimited and within each plot three sampling units of 50x50 cm were selected at random. The temperature of the ground was taken during the measures from respiration using a Multi-thermometer (-50°C - +300°C) at 5 cm depth. The moisture content of the ground was measured at 5 cm of depth with a HH2 Moisture meter (Delta Devices, Cambridge, UK). The measures of respiration of the ground were realised in field by means of LCI portable (LC pro ADC Bioscientific, Ltd. UK) connected to a ground respiration camera. We introduced the camera 3 cm into the soil just after eliminating the vegetation grass of the surface of measurement cutting carefully the aerial part, without damaging the roots. Soil CO2 flux measurements were registered after stabilization. Immediately after CO2 measurements, we obtained soil samples by means of a drill of 2.18 cm of diameter taking samples to 10 cm and

  18. Surface tree languages and parallel derivation trees

    NARCIS (Netherlands)

    Engelfriet, Joost

    1976-01-01

    The surface tree languages obtained by top-down finite state transformation of monadic trees are exactly the frontier-preserving homomorphic images of sets of derivation trees of ETOL systems. The corresponding class of tree transformation languages is therefore equal to the class of ETOL languages.

  19. Occurrence of termites (Isoptera on living and standing dead trees in a tropical dry forest in Mexico

    Directory of Open Access Journals (Sweden)

    Nancy Calderón-Cortés

    2018-05-01

    Full Text Available Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2 than in riparian forests (0.022 and 0.027 trees/m2, even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2 than in larger class sizes (0–0.02 trees/m2. Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  20. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    Science.gov (United States)

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  1. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  2. Wildlife Response to Riparian Restoration on the Sacramento River

    Directory of Open Access Journals (Sweden)

    Gregory H Golet

    2008-06-01

    Full Text Available Studies that assess the success of riparian restoration projects seldom focus on wildlife. More generally, vegetation characteristics are studied, with the assumption that animal populations will recover once adequate habitats are established. On the Sacramento River, millions of dollars have been spent on habitat restoration, yet few studies of wildlife response have been published. Here we present the major findings of a suite of studies that assessed responses of four taxonomic groups (insects, birds, bats, and rodents. Study designs fell primarily into two broad categories: comparisons of restoration sites of different ages, and comparisons of restoration sites with agricultural and remnant riparian sites. Older restoration sites showed increased abundances of many species of landbirds and bats relative to younger sites, and the same trend was observed for the Valley elderberry longhorn beetle (Desmocerus californicus dimorphus, a federally threatened species. Species richness of landbirds and ground-dwelling beetles appeared to increase as restoration sites matured. Young restoration sites provided benefits to species that utilize early successional riparian habitats, and after about 10 years, the sites appeared to provide many of the complex structural habitat elements that are characteristic of remnant forest patches. Eleven-year old sites were occupied by both cavity-nesting birds and special-status crevice-roosting bats. Restored sites also supported a wide diversity of bee species, and had richness similar to remnant sites. Remnant sites had species compositions of beetles and rodents more similar to older sites than to younger sites. Because study durations were short for all but landbirds, results should be viewed as preliminary. Nonetheless, in aggregate, they provide convincing evidence that restoration along the Sacramento River has been successful in restoring riparian habitats for a broad suite of faunal species. Not only did

  3. Do invasive riparian Tamarix alter hydrology of riparian areas of arid and semi-arid regions under climate change scenarios?

    Science.gov (United States)

    Bhattarai, M. P.; Acharya, K.; Chen, L.

    2012-12-01

    Competitiveness of riparian invasive species, Tamarix, in arid and semi-arid riparian areas of the southwestern United States under climate change scenario (SRES A2) was investigated. Tamarix has been replacing native vegetation along the riparian corridors of these areas for the past several decades and is thought to alter water balance. Changes in depth to groundwater, soil moisture distribution and flood frequency are critical in survival and growth of a facultative phreatophyte such as Tamarix. In this study, a fully coupled 2d surface flow and 3d subsurface flow hydrologic model, HydroGeoSphere, was used to simulate surface-subsurface hydrology of the lower Virgin River basin (4500 sq. km), located in Nevada, Utah and Arizona. The hydrologic model results, depth to groundwater and soil saturation, were then applied to the species distribution model, Maxent, along with other bioclimatic parameters to asses future Tamarix distribution probability. Simulations were made for the climate scenarios of the end of 21st centry conditions. Depth to groundwater is found to be the most important predictor variable to the Maxent model. Future Tamarix distribution range is not uniform across the basin. It is likely to decrease at lower elevations and increase in some higher elevation areas.

  4. Trees are good, but…

    Science.gov (United States)

    E.G. McPherson; F. Ferrini

    2010-01-01

    We know that “trees are good,” and most people believe this to be true. But if this is so, why are so many trees neglected, and so many tree wells empty? An individual’s attitude toward trees may result from their firsthand encounters with specific trees. Understanding how attitudes about trees are shaped, particularly aversion to trees, is critical to the business of...

  5. Expansion of the agricultural frontier on riparian vegetation of Santa Cruz River, Cuba

    Directory of Open Access Journals (Sweden)

    Felipe Carricarte Rodríguez

    2016-12-01

    Full Text Available The work was developed in the Los Amaros, the Santa Cruz river, Artemisa, Cuba. The objective was to evaluate how it influences the expansion of the agricultural frontier on riparian vegetation where the semi-deciduous mesophytic forest (BsdMe predominates. A floristic characterization was performed, identifying the effects of disturbances on the structure and composition of these forests and their relation to human disturbance. A semi-structured interview was applied to all landowners in the study area. Species richness, dominance, basal area, total number of individuals, width of the strip covered by trees and shrubs, and area without vegetation on both banks of the river, respectively were considered as variables. There are differences in the structure and patterns of diversity of the studied forest, as a result of disturbances, with the consequent reduction of species; also anthropogenic disturbances, are the main factors that explain changes in the structure of these forests. They are identified as major species: Cupania macrophylla A. Rich., Roystonea regia HBK O. F. Cook., Guarea guidonia L. Sleumer and Trichilia hirta  L. It is proposed to deepen the effect of the expansion of agriculture into other sectors of the river in interaction with local communities.

  6. Phenology of Guarea macrophylla Vahl (Meliaceae in subtropical riparian forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    A. Müller

    2017-08-01

    Full Text Available Abstract Climate is one of the main factors that affect plant behavior. The phenology of Guarea macrophylla Vahl, which is a small tree used for reforestation of degraded areas, was monitored for 18 months in a riparian forest at the Schmidt Stream, Campo Bom, in the state of Rio Grande do Sul, southern Brazil. Vegetative (leaf fall and leaf flushing and reproductive events were observed, with the latter divided into flowering (flower buds and anthesis and fruiting (unripe, ripening and ripe fruit. Phenological events were related to temperature, photoperiod and precipitation and their seasonality was verified by circular statistical analysis. Vegetative phenophases were continuous; they were not related to climate factors and presented low intensity, emphasizing the perennial aspect of the species. Flowering occurred during spring and summer. Both flower buds and anthesis were related to temperature and photoperiod. Fruiting was constant and went through all stages of development. Unripe fruits developed during the months with the lowest photoperiod and ripen more intensely in winter, on colder days. Ripe fruit became available for dispersal in spring, in times of longer photoperiod and higher temperatures. Except for leaf fall, all other phenological events showed seasonality in their manifestation. The one-month difference between the onsets of the flowering phases observed in this study indicated that local climate changes induced the early occurrence of this phenophase.

  7. INDICATED SPECIES TO RESTORATION OF RIPARIAN FORESTS IN SUBWATERSHED OF PEIXE-BOI RIVER, PARÁ STATE

    Directory of Open Access Journals (Sweden)

    Igor do Vale

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815736This study aims to indicate native species to be used in the restoration of degraded riparian forests in the subwatershed of Peixe-Boi river. All trees and shrubs with diameter at breast height (DBH > 5 cm were inventoried in ten areas of secondary forest and six areas of igapó forest. The results were analyzed by Principal Component Analysis and the silviculture of the species was assessed by literature review. In Igapó areas 66 species were found; the areas had low richness and low diversity index of Shannon, when compared with data from the secondary forests. The floristic composition was heterogeneous, and the floristic similarity is higher between areas that are closer geographically. In the secondary forests were found 175 species; the areas showed high abundance of individuals, high species richness, diversity and evenness. Secondary forests were separated according to geographic proximity and age, which is directly linked to the successional stage. The PCA analysis established the ecological importance of 29 tree species; however only ten species had enough silvicultural information. Due to a greater ecological importance and viable silvicultural techniques available in the literature, Carapa guianensis, Pachira aquatica, Spondias mombin, Tapirira guianensis and Virola guianensis are the most suitable species to restore the degraded areas, in association with Inga edulis, Jacaranda copaia, Pseudopiptadenia psilostachya, Simarouba amara and Vismia guianensis of the secondary forests, that can be planted in the borders and in the nearby areas of igapó forests.

  8. Modular tree automata

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular...

  9. Simple street tree sampling

    Science.gov (United States)

    David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry. Bond

    2015-01-01

    Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...

  10. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    Science.gov (United States)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on

  11. Chinese Privet (Ligustrum sinense) removal and its effect on native plant communities of Riparian Forests

    Science.gov (United States)

    James Hanula; Scott Horn; John W. Taylor

    2010-01-01

    Chinese privet is a major invasive shrub within riparian zones throughout the southeastern United States. Weremoved privet shrubs from four riparian forests in October 2005 with a GyrotracH mulching machine or by handfelling with chainsaws and machetes to determine how well these treatments controlled privet and how they affected plant...

  12. Stream channel designs for riparian and wet meadow rangelands in the southwestern United States

    Science.gov (United States)

    Roy Jemison; Daniel G. Neary

    2000-01-01

    Inappropriate land uses have degraded wetland and riparian ecosystems throughout the Southwestern United States. In 1996, the Cibola National Forest in New Mexico implemented a channel relocation project, as part of a road improvement project, to determine the feasibility of restoring wet meadow and riparian ecosystems degraded by inappropriately located roads and...

  13. Reconstructing Historical Riparian Conditions of Two River Basins in Eastern Oregon, USA

    Science.gov (United States)

    McAllister, Lynne S.

    2008-09-01

    As land use continues to alter riparian areas, historical information is increasingly needed to help establish reference conditions for monitoring and assessment. I developed and applied a procedure in the John Day and Deschutes river basins of eastern Oregon for synthesizing historical documentary records available across broad spatial areas to reconstruct 19th-century riparian conditions. The study area was stratified by ecoregion and stream physical characteristics to partition regional variability. Three primary data sources—General Land Office survey notes, historical photographs, and written accounts—provided descriptive records, which were grouped by topic to develop common riparian attributes. The number of records for each attribute was tallied by stratum to compare and contrast riparian structure and composition across strata and ecoregions. Detailed descriptions of historical riparian conditions using the original documentary records further illustrated the unique riparian conditions in each stratum. Similarities and differences in historical riparian structure and composition at the stratum and ecoregion levels were evident based on the distributional pattern and numbers of records of attributes across strata. A high number of repeated observations within and among primary data sources helped to corroborate descriptive data. Although these reference data cannot provide the detail needed for rigorous quantitative assessments, they do describe a range of conditions approaching a minimally disturbed condition and provide an important perspective for conducting riparian assessments in highly disturbed regions where least-disturbed reference sites are often poor examples of a desired condition.

  14. Where should buffers go? modeling riparian habitat connectivity in northeast Kansas

    Science.gov (United States)

    Gary Bentrup; Todd Kellerman

    2004-01-01

    Through many funding programs, riparian buffers are being created on agricultural lands to address significant water quality problems. Society and landowners are demanding many other environmental and social services (e.g., wildlife habitat and income diversification) from this practice. Resource planners therefore need to design riparian buffer systems in the right...

  15. Analysis of microbial populations, denitrification, and nitrous oxide production in riparian buffers

    Science.gov (United States)

    Riparian buffers are used extensively to protect water bodies from nonpoint source nitrogen pollution. However there is relatively little information on the impact of these buffers on production of nitrous oxide (N2O). In this study, we assessed nitrous oxide production in riparian buffers of the so...

  16. Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient

    NARCIS (Netherlands)

    Veen, G.F.; Sarneel, J.M.; Ravensbergen, Lone; Huig, N.; van Paassen, José; Rip, W.; Bakker, E.S.

    2013-01-01

    Summary The establishment of riparian plants is determined by abiotic conditions and grazing, although it is usually presumed that the former are most important. We tested the impact of aquatic grazers on the survival and growth of establishing riparian plants and whether the impact of grazing

  17. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  18. Cicada emergence in southwestern riparian forest: Influences of wildfire and vegetation composition

    Science.gov (United States)

    D. Max Smith; Jeffrey Kelly; Deborah M. Finch

    2006-01-01

    Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown....

  19. Assessing Riparian Vegetation Condition and Function in Disturbed Sites of the Arid Northwestern Mexico

    Directory of Open Access Journals (Sweden)

    Lara Cornejo-Denman

    2018-01-01

    Full Text Available Transformation or modification of vegetation distribution and structure in arid riparian ecosystems can lead to the loss of ecological function. Mexico has 101,500,000 ha of arid lands, however there is a general lack of information regarding how arid riparian ecosystems are being modified. To assess these modifications, we use eight sites in the San Miguel River (central Sonora to analyze (1 riparian vegetation composition, structure and distribution using field sampling and remote sensing data from Unmanned Aerial Vehicles (UAV; (2 productivity (proxies, using vegetation indices derived from satellite data; and (3 variability posed by riparian vegetation and vegetation adjacent to riparian habitats. The development of a simple yet informative Anthropogenic-disturbance Index (ADI allowed us to classify and describe each study site. We found sharp differences in vegetation composition and structure between sites due to the absence/presence of obligate-riparian species. We also report significant difference between EVI (Enhanced Vegetation Index values for the dry season among vegetation types that develop near the edges of the river but differ in composition, suggesting that land cover changes form obligate-riparian to facultative-riparian species can lead to a loss in potential productivity. Finally, our tests suggest that sites with higher disturbance present lower photosynthetic activity.

  20. Human impacts on riparian ecosystems of the Middle Rio Grande Valley during historic times

    Science.gov (United States)

    Frank E. Wozniak

    1996-01-01

    The development of irrigation agriculture in historic times has profoundly impacted riparian ecosystems in the Middle Rio Grande Valley of New Mexico. A vital relationship has existed between water resources and settlement in the semi-arid Southwest since prehistoric times. Levels of technology have influenced human generated changes in the riparian ecosystems of the...

  1. Flora of the San Pedro Riparian National Conservation Area, Cochise County, Arizona

    Science.gov (United States)

    Elizabeth Makings

    2005-01-01

    The flora of the San Pedro Riparian National Conservation Area (SPRNCA) consists of 618 taxa from 92 families, including a new species of Eriogonum and four new State records. The vegetation communities include Chihuahuan Desertscrub, cottonwood-willow riparian corridors, mesquite terraces, sacaton grasslands, rocky outcrops, and cienegas. Species...

  2. Evaluating the ecological economic success of riparian restoration projects in Arizona (Abstract)

    Science.gov (United States)

    Gary B. Snider

    2000-01-01

    The past 4 years the Arizona Water Protection Fund provided more than $25 million to individuals and organizations for stream and riparian restoration projects in Arizona. Information which increases the awareness of the value of Arizona's riparian systems is crucial to the incorporation of ecosystem services into decision-making frameworks, which are largely...

  3. Water quality modeling based on landscape analysis: Importance of riparian hydrology

    Science.gov (United States)

    Thomas Grabs

    2010-01-01

    Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...

  4. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Science.gov (United States)

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  5. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Science.gov (United States)

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  6. The Importance and Future Condition of Western Riparian Ecosystems as Migratory Bird Habitat

    Science.gov (United States)

    Susan K. Skagen; Rob Hazlewood; Michael L. Scott

    2005-01-01

    Riparian forests have long been considered important habitats for breeding western landbirds, and growing evidence reinforces their importance during the migratory period as well. Extensive modification of natural flow regimes, grazing, and forest clearing along many rivers in the western U.S. have led to loss and simplification of native riparian forests and to...

  7. Geography of spring landbird migration through riparian habitats in southwestern North America

    Science.gov (United States)

    Susan K. Skagen; Jeffrey F. Kelly; Charles van Riper III; Richard L. Hutto; Deborah M. Finch; David J. Krueper; Cynthia P. Melcher

    2005-01-01

    Migration stopover resources, particularly riparian habitats, are critically important to landbirds migrating across the arid southwestern region of North America. To explore the effects of species biogeography and habitat affinity on spring migration patterns, we synthesized existing bird abundance and capture data collected in riparian habitats of the borderlands...

  8. Initial riparian down wood dynamics in relation to thinning and buffer width

    Science.gov (United States)

    Paul D. Anderson; Deanna H. Olson; Adrian. Ares

    2013-01-01

    Down wood plays many functional roles in aquatic and riparian ecosystems. Simplifi cation of forest structure and low abundance of down wood in stream channels and riparian areas is a common legacy of historical management in headwater forests west of the Cascade Range in the US northwest. Contemporary management practices emphasize the implementation of vegetation...

  9. Thinning and riparian buffer configuration effects on down wood abundance in headwater streams in coniferous forests

    Science.gov (United States)

    Adrian Ares; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Down wood is associated with the function, structure, and diversity of riparian systems. Considerable knowledge has been generated regarding down wood stocks and dynamics in temperate forests, but there are few studies on effects of silvicultural practices and riparian buffer design on down wood, particularly in headwater streams. We analyzed interactive eff ects of...

  10. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning

    Science.gov (United States)

    Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann

    2016-01-01

    Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...

  11. Identifying Riparian Buffer Effects on Stream 1 Nitrogen in Southeastern Coastal Plain Watersheds

    Science.gov (United States)

    Riparian areas have long demonstrated their ability to attenuate nutrients and sediments from agricultural runoff at the field scale; however, to inform effective nutrient management choices, the impact of riparian buffers on water quality services must be assessed at watershed s...

  12. Avian nest box selection and nest success in burned and unburned southwestern riparian forests

    Science.gov (United States)

    D. Max Smith; Jeffrey F. Kelly; Deborah M. Finch

    2007-01-01

    Riparian forest communities in the southwestern United States were historically structured by a disturbance regime of annual flooding. In recent decades, however, frequency of flooding has decreased and frequency of wildfires has increased. Riparian forests provide important breeding habitat for a large variety of bird species, and the effects of this altered...

  13. The brown-headed cowbird and its riparian-dependent hosts in New Mexico

    Science.gov (United States)

    Sara H. Schweitzer; Deborah M. Finch; David M Leslie

    1998-01-01

    Numbers of brown-headed cowbirds ( Molothrus ater) are increasing in some regions of North America, while certain populations of long-distance, neotropical migratory songbirds (NTMs) are declining. In the Southwestern United States, several species of NTMs nest only in riparian habitats. The significant decline of two species of NTMs dependent upon riparian habitat,...

  14. Riparian restoration in the Southwest: Species selection, propagation, planting methods, and case studies

    Science.gov (United States)

    David Dreesen; John Harrington; Tom Subirge; Pete Stewart; Greg Fenchel

    2002-01-01

    Riparian plant communities, though small in overall area, are among the most valuable natural areas in the Southwest. The causes of degradation of southwestern riparian zones range from excessive cattle and elk grazing in montane watersheds to invasive woody exotic species and lack of natural flooding in the cottonwood forests, "bosque," of low elevation...

  15. Evaluation of methods for delineating riparian zones in a semi-arid montane watershed

    Science.gov (United States)

    Jessica A. Salo; David M. Theobald; Thomas C. Brown

    2016-01-01

    Riparian zones in semi-arid, mountainous regions provide a disproportionate amount of the available wildlife habitat and ecosystem services. Despite their importance, there is little guidance on the best way to map riparian zones for broad spatial extents (e.g., large watersheds) when detailed maps from field data or high-resolution imagery and terrain data...

  16. Riparian buffer and density management influences on microclimate of young headwater forests of Western Oregon.

    Science.gov (United States)

    Paul D. Anderson; David J. Larson; Samuel S. Chan

    2007-01-01

    Thinning of 30- to 70-year-old Douglas-fir (Psuedotsuga menziesii [Mirb.] Franco) stands is a common silvicultural activity on federal forest lands of the Pacific Northwest, United States. Empirical relationships among riparian functions, silvicultural treatments, and different riparian buffer widths are not well documented for small headwater...

  17. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  18. 78 FR 16705 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2013-03-18

    ...-FF08RSRC00] Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/ Fish Screen Facility Protection... removal and management of invasive plant species would occur at the Riparian Sanctuary. No active... impact statement and environmental impact report (EIS/EIR) for the Llano Seco Riparian Sanctuary Unit...

  19. 77 FR 26569 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2012-05-04

    ...-FF08RSRC00] Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/ Fish Screen Facility Protection... would occur at the Riparian Sanctuary. No active restoration of native plants would occur. Maintenance... statement and environmental impact report (EIS/EIR) for the Llano Seco Riparian Sanctuary Unit Restoration...

  20. City of Pittsburgh Trees

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Trees cared for and managed by the City of Pittsburgh Department of Public Works Forestry Division. Tree Benefits are calculated using the National Tree Benefit...

  1. Comparing herbaceous plant communities in active and passive riparian restoration.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Understanding the efficacy of passive (reduction or cessation of environmental stress and active (typically involving planting or seeding restoration strategies is important for the design of successful revegetation of degraded riparian habitat, but studies explicitly comparing restoration outcomes are uncommon. We sampled the understory herbaceous plant community of 103 riparian sites varying in age since restoration (0 to 39 years and revegetation technique (active, passive, or none to compare the utility of different approaches on restoration success across sites. We found that landform type, percent shade, and summer flow helped explain differences in the understory functional community across all sites. In passively restored sites, grass and forb cover and richness were inversely related to site age, but in actively restored sites forb cover and richness were inversely related to site age. Native cover and richness were lower with passive restoration compared to active restoration. Invasive species cover and richness were not significantly different across sites. Although some of our results suggest that active restoration would best enhance native species in degraded riparian areas, this work also highlights some of the context-dependency that has been found to mediate restoration outcomes. For example, since the effects of passive restoration can be quite rapid, this approach might be more useful than active restoration in situations where rapid dominance of pioneer species is required to arrest major soil loss through erosion. As a result, we caution against labeling one restoration technique as better than another. Managers should identify ideal restoration outcomes in the context of historic and current site characteristics (as well as a range of acceptable alternative states and choose restoration approaches that best facilitate the achievement of revegetation goals.

  2. Random River Fluctuations Shape the Root Profile of Riparian Plants

    Science.gov (United States)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  3. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    Science.gov (United States)

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  4. Difference of stand-scale transpiration between ridge and riparian area in a watershed with Japanese cypress plantation

    Science.gov (United States)

    Kume, T.; Tsuruta, K.; Komatsu, H.; Shinohara, Y.; Otsuki, K.

    2011-12-01

    Several different methods to assess water use are available, and the sap flux measurement technique is one of the most promising methods, especially in monotonous watershed. Previously, three spatial levels of scaling have been used to obtain bottom-up transpiration estimates based on the sap flux technique: from within-tree to tree, from tree to stand, and from stand to watershed or landscape. Although there are considerable variations that must be taken into account at each step, few studies have examined plot-to-plot variability of stand-scale transpirations. To design optimum sampling method to accurately estimate transpiration at the watershed-scale, it is indispensable to understand heterogeneity of stand-scale transpiration in a forested watershed and the factors determining the heterogeneity. This study was undertaken to clarify differences of stand-scale transpirations within a watershed and the factors determining the differences. To this aim, we conducted sap flux-based transpiration estimates in two plots such as a lower riparian (RZ) and an upper ridge (UZ) zone in a watershed with Japanese cypress plantation, Kyushu, Japan in two years. Tree height and diameter of breast height (DBH) were lager in RZ than those of UZ. The stand sapwood area (As) was lager in RZ than UZ (21.9 cm2h a-1, 16.8 cm2ha-1, respectively). Stand mean sap flux (Js) in RZ was almost same as that of UZ when relatively lower Js, while, Js in RZ was higher than that of UZ when relatively higher Js (i.e., bright days in summer season). Consequently, daily stand-scale transpiration (E), which is the multiple of As and Js, differed by two times between RZ and UZ in summer season. This study found significant heterogeneity of stand-scale transpiration within the watershed and that the differences could be caused by two aspects such as stand structure and sap flux velocity.

  5. BPA riparian fencing and alternative water development projects completed within Asotin Creek Watershed ; 2000 and 2001 Asotin Creek fencing final report of accomplishments

    International Nuclear Information System (INIS)

    Johnson, B.J.Bradley J.

    2002-01-01

    ,191 trees and shrubs in the Asotin Creek Watershed. In addition BPA and private cost-share dollars were utilized to drill 3 wells, provide 15 off-site alternative water developments (troughs), 5 spring developments, and 9,100 feet of riparian fencing. The trees will provide shade and long-term LWD recruitment to the stream. The wells, alternative water developments, springs and fencing will reduce direct animal impacts on the stream. In one area alone, a well, 3,000 ft of riparian fence with 5 alternative water developments will exclude 300 head of cattle from using the stream as a source of drinking water during the winter months

  6. Scales of form roughness on riverbanks with different riparian vegetation

    Science.gov (United States)

    Konsoer, K. M.; Rhoads, B. L.; Best, J.; Langendoen, E. J.; Ursic, M.; Abad, J. D.; Garcia, M. H.

    2013-12-01

    Riverbanks often include topographic irregularities that occur over a range of scales and that are produced by interactions among erosional processes, vegetation, and the geotechnical properties of the banks and floodplains. Irregularity of the bank surface can increase form drag, affecting the overall flow resistance, near-bank shear stresses, and patterns of sediment transport. Understanding how dominant scales of form roughness influence the near-bank flow structure, and thus the shear stress partitioning, is vital for the development of accurate predictive morphodynamic models. In this paper, the scales of bank roughness are examined for two meander bends of a large alluvial river with differing riparian vegetation on the Wabash River near Grayville, Illinois. Detailed measurements of bank topography were obtained using terrestrial LiDAR during low flow events and a multibeam echo sounder (MBES) during bankfull events. These measurements yielded high spatial resolution maps (~5-10 cm) that were used to analyze scales of roughness at different elevations along the banks during both subaerial and subaqueous conditions. The results of these analyses provide insight into the influence of riparian vegetation on form roughness and patterns of near-bank flow structure as documented using acoustic Doppler current profilers (ADCP).

  7. Preliminary indicators for restoration assessment in riparian reforestations

    Directory of Open Access Journals (Sweden)

    Daniele Nogueira dos Reis

    2014-12-01

    Full Text Available The restoration success in forest ecosystems can be adequately assessed by correct selection of indicators that represent the achievement of established goals. The discriminant analysis technique on indicators selection consists of separation and classification of new observations on pre-defined groups, reducing the number of variables that are discriminant functions linearly dependent of the original variables. This study aims to define an index composed by structural attributes (number of species and individuals planted, height, basal area, number of regenerant species and individuals and chemical and pedological soil attributes to classify riparian reforested environments regarding to restoration taking as reference reforestation around the the Volta Grande reservoir, Minas Gerais State, Brazil. Eleven variables were used for previous classification of plots in partially restored or unrestored groups and also used for discriminant analysis. Variables selected by the discriminant function generated were: number of species and basal area of planted individuals, number of regenerant species and individuals litter accumulation and soil cation exchange capacity. Compatibility of 98% from previous plot classifications and after index formation, show the representativeness of the selected variables on evaluation of restoration of riparian reforestations.

  8. Impact of dam-induced hydrological changes on riparian vegetation

    Science.gov (United States)

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2010-05-01

    Hydrological disturbances are a key factor for the riparian vegetation, which is a highly dynamic ecosystem prone to external forcing. Random fluctuations of water stages drive in fact the alternation of periods of floods and exposure of the vegetated plots. During flooding, the plots are submerged and vegetation is damaged by burial, uprooting and anoxia, while during exposure periods vegetation grows according to the soil moisture content and the phreatic water table depth. The distribution of vegetation along the riparian transect is then directly connected to the stochasticity of river discharges. River damming can have remarkable impacts on the hydrology of a river and, consequently, on the riparian vegetation. Several field studies show how the river regulation induced by artificial reservoirs can greatly modify the statistical moments and the autocorrelation of the discharge time series. The vegetation responds to these changes reducing its overall heterogeneity, declining - substituted by exotic species - and shifting its starting position nearer or far away from the channel center. These latter processes are known as narrowing and widening, respectively. In our work we explore the effects of dam-induced hydrological changes on the narrowing/widening process and on the total biomass along the transect. To this aim we use an eco-hydrological stochastic model developed by Camporeale and Ridolfi [2006], which is able to give a realistic distribution of the biomass along the transect as a function of a few hydrologic, hydraulic and vegetation parameters. We apply the model to an exemplifying case, by investigating the vegetation response to a set of changes in mean discharge and coefficient of variation. The range of these changes is deduced from the analysis of field data in pre- and post-dam conditions. Firstly, we analyze the narrowing/widening process. In particular, we analyze two percentage differences of the starting transversal position with respect to

  9. Riparian landscape management in the midstream of Ciliwung River as supporting Water Sensitive Cities program with priority of productive landscape

    Science.gov (United States)

    Noviandi, T. U. Z.; Kaswanto, R. L.; Arifin, H. S.

    2017-10-01

    Nowadays, Ciliwung River is facing problem of the settlement occupation in its riparian zones. This phenomenon caused ecological damage in riparian, so it can aggravate the disaster of annual flooding in Jakarta. As an effort to control this catastrophe, riparian landscape management of Ciliwung River is needed. Based on its topography, Ciliwung River is divided into three segments, there are the upstream, the midstream, and the downstream. Data shows that riparian in the midstream is the largest area, it covers more than 60% of the total riparian area. This segment is very important to be managed in order to reduce runoff towards the downstream. The method used was comparing many standards to get the ideal riparian width in the midstream, which is 50 m for urban areas and 100 m for outside the urban areas. Next method was analyzing spatially to get riparian landscape characteristic of Ciliwung River. The result showed that 37.11% of riparian zones in the midstream had occupied by settlement. Analysis of riparian function and utilization had held by using Analytical Hierarchy Process. Priority of riparian function in the midstream of Ciliwung River is production. This can be realized with the plan of community garden or inland fisheries. Riparian landscape management in the midstream aims to support the food consumption diversification, and maximize the function of water catchment and water retention in order to support the program of Water Sensitive Cities.

  10. Categorizing ideas about trees: a tree of trees.

    Science.gov (United States)

    Fisler, Marie; Lecointre, Guillaume

    2013-01-01

    The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a "tree of trees." Then, we categorize schools of tree-representations. Classical schools like "cladists" and "pheneticists" are recovered but others are not: "gradists" are separated into two blocks, one of them being called here "grade theoreticians." We propose new interesting categories like the "buffonian school," the "metaphoricians," and those using "strictly genealogical classifications." We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization.

  11. Urban tree growth modeling

    Science.gov (United States)

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  12. Keeping trees as assets

    Science.gov (United States)

    Kevin T. Smith

    2009-01-01

    Landscape trees have real value and contribute to making livable communities. Making the most of that value requires providing trees with the proper care and attention. As potentially large and long-lived organisms, trees benefit from commitment to regular care that respects the natural tree system. This system captures, transforms, and uses energy to survive, grow,...

  13. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  14. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    Science.gov (United States)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  15. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    Science.gov (United States)

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  16. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    Science.gov (United States)

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Quantifying the contribution of riparian soils to the provision of ecosystem services.

    Science.gov (United States)

    de Sosa, Laura L; Glanville, Helen C; Marshall, Miles R; Prysor Williams, A; Jones, Davey L

    2018-05-15

    Riparian areas, the interface between land and freshwater ecosystems, are considered to play a pivotal role in the supply of regulating, provisioning, cultural and supporting services. Most previous studies, however, have tended to focus on intensive agricultural systems and only on a single ecosystem function. Here, we present the first study which attempts to assess a wide range of ecological processes involved in the provision of the ecosystem service of water quality regulation across a diverse range of riparian typologies. Specifically, we focus on 1) evaluating the spatial variation in riparian soils properties with respect to distance with the river and soil depth in contrasting habitat types; 2) gaining further insights into the underlying mechanisms of pollutant removal (i.e. pesticide sorption/degradation, denitrification, etc.) by riparian soils; and 3) quantify and evaluate how riparian vegetation across different habitat types contribute to the provision of watercourse shading. All the habitats were present within a single large catchment and included: (i) improved grassland, (ii) unimproved (semi-natural) grassland, (iii) broadleaf woodland, (iv) coniferous woodland, and (iv) mountain, heath and bog. Taking all the data together, the riparian soils could be statistically separated by habitat type, providing evidence that they deliver ecosystem services to differing extents. Overall, however, our findings seem to contradict the general assumption that soils in riparian area are different from neighbouring (non-riparian) areas and that they possess extra functionality in terms of ecosystem service provision. Watercourse shading was highly habitat specific and was maximal in forests (ca. 52% shade cover) in comparison to the other habitat types (7-17%). Our data suggest that the functioning of riparian areas in less intensive agricultural areas, such as those studied here, may be broadly predicted from the surrounding land use, however, further research

  18. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  19. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate

    Science.gov (United States)

    Kellermann, Jherime L.; van Riper, Charles

    2015-01-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  20. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  1. Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro

    Science.gov (United States)

    Vericat, Damia; Batalla, Ramon J.; Garcia, Celso

    2006-06-01

    Changes in armour layer during floods under supply limited conditions are little known. This paper describes the breakup and the reestablishment of the bed armour layer in the regulated gravel-bed Ebro River during a flooding period. The study was conducted over a 28-km study reach from 2002 to 2004. The surface, subsurface and bed load grain size distribution constitute the bases for the analysis of bed-armouring dynamics. The results indicate that the magnitude of floods controlled the degree of armouring of the river bed. The initial mean armouring ratio was 2.3, with maximum values reaching 4.4. Floods in the winter of 2002-2003 ( Q8) caused the breakup of the armour layer in several sections. This resulted in the erratic bed load pattern observed during the December 2002 flushing flow and in the increase in bed load transport during successive events. Most grain size classes were entrained and transported, causing river bed incision. The mean armouring ratio decreased to 1.9. In contrast, during low magnitude floods in 2003-2004 ( Q2), the coarsest fractions (64 mm) did not take part in the bed load while finer particles were winnowed, thus surface deposits coarsened. As a result, the armour layer was reestablished (i.e., the mean armouring ratio increased to 2.3), and the supply of subsurface sediment decreased. The supply and transport of bed material appear to be in balance in the river reach immediately below the dam. In contrast, the transport of medium and finer size classes in the downstream reaches was higher than their supply from upstream, a phenomenon that progressively reduced their availability in the river bed surface, hence the armour layer reworking.

  2. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    Science.gov (United States)

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  3. The role of habitat factors in successful invasion of alien plant Acer negundo in riparian zones.

    Science.gov (United States)

    Sikorski, Piotr; Sikorska, Daria

    2016-04-01

    Ash-leaved maple (Acer negundo) is one of the most invasive species occurring in riparian zones. The invasion is especially effective in disturbed areas, as the plant favours anthropogenic sites. The plant was also observed to be able to penetrate into sandy bars, also those separated from the land, inaccessible to people. It's removal is time-consuming and laborious, often involves damage done to sensitive vegetation and the results are doubtful, as the plant quickly regenerates. The invasion patterns and establishment of ash-leaved maple in natural ecosystems are poorly investigated. The aim of this study was to test how habitat factors such as: light availability, soil characteristics and competition contribute to ash-leaved maple effective colonization of natural sand bars free from anthropogenic pressure. In 2014 sand bars located in Vistula River Valley in Warsaw were inventoried and classified basing on their development stage as 1 - initial, 2 - unstable, 3 - stable. Apart from the occurrence of the invasive ash-leaved maple the plants competing with it were recognized and the percentage of the shoots of shrubs and herbaceous plants was estimated. PAR was measured at ground level and 1 meter above ground, the thickness of organic layer formed on the top of the sand was also measured as the indicator of sand bar development stage. The maple's survival in extremely difficult conditions resembles the strategy of willows and poplars naturally occurring in the riparian zones, which are well adapted to this environment. The success of invasion strongly depends on the plants establishment during sand bars initial stage of development. The seedlings growth correlates with the age of the sand bar (r1=0,41, r2=0,42 i r3=0,57). The colonization lasts for 4-6 years and the individuals start to cluster in bigger parches. After that period the maple turns into the phase of competition for space. Habitat factors such as shading (r2=0,41 i r3=0,51) and organic layer

  4. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  5. Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon.

    Science.gov (United States)

    Celentano, Danielle; Rousseau, Guillaume Xavier; Engel, Vera Lex; Façanha, Cristiane Lima; Oliveira, Elivaldo Moreira de; Moura, Emanoel Gomes de

    2014-01-27

    Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including 'free-listing' of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Slash-and-burn agriculture is the main source of livelihood

  6. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  7. INFLUENCE OF ECOLOGICAL GROUP COMPOSITION, PLANTATION SPACING AND ARRANGEMENT IN THE RESTORATION OF RIPARIAN FOREST ON RESERVOIR SHORES

    Directory of Open Access Journals (Sweden)

    Alvaro Augusto Vieira Soares

    2016-01-01

    Full Text Available This work aimed to assess the effect of spacing, arrangement and ecological group composition of planted seedlings on the restoration process of artificial reservoir shores in southeastern Brazil. The assessments were performed 12 years after the settlement of the experiment in which five mixed stand models were tested. First, a general evaluation of the stand was performed when we surveyed the overstory and understory, seed bank and soil for chemical analysis.Then, the restoration indicators survival of planted trees, basal area and density of the tree community, litter accumulated on the soil and canopy closure index were utilized to compare the plantation models and to assess the influence the experimental factors on these parameters. In the general analysis, we found that the studied stand presents low diversity, poor regeneration, and seed bank dominated mostly by one planted exotic tree species and weeds, which may jeopardize the self- maintenance of the stand in the future. The factor that most influenced the models was the ecological group composition with the best performance found for models in which both pioneer and non-pioneer groups were used. Probably, the plantation arrangement and spacing did not have greater influence due to both plant mortality and natural regeneration that has developed to this age. Hence, it is not recommended the use of only pioneer species in the implantation of riparian forest and the proportion of 50% pioneers and 50% non-pioneers using as much species as possible is indicated for areas that might present constraints for the natural regeneration.

  8. Transport and transformation of nitrate in a riparian wetland

    DEFF Research Database (Denmark)

    Petersen, Rasmus Jes; Prinds, Christian; Iversen, Bo Vangsø

    Even though riparian wetlands have been intensively studied during the past 30 years these areas still function as a “black box” with regards to removal of nitrogen input from surrounding areas. To comply with regulations of the European Water Framework Directive, Danish agriculture is to reduce....... Depending on the saturation state of the wetland soils and the amount of water entering during precipitation events, a part of the water infiltrates into the wetland sediments and travels towards the stream. Some of the infiltrated water may be caught by drains within the wetland soils and transported...... directly to the stream. The remaining water can be either evapotranspired or transported directly to the stream via overland flow. Preliminary results show an efficient denitrification of nitrate infiltrating into the studied wetland soils. The nitrogen removal efficiency at different drain outlets seems...

  9. Comparison of water-use by alien invasive pine trees growing in riparian and non-riparian zones in the Western Cape Province, South Africa

    CSIR Research Space (South Africa)

    Dzikiti, Sebinasi

    2013-04-01

    Full Text Available invasive pines growing adjacent to and away from a perennial stream, and to determine the driving factors behind the variations. The study was conducted in a self-established 20-year old mixed pine forest occupied by roughly equal proportions of Pinus...

  10. There's Life in Hazard Trees

    Science.gov (United States)

    Mary Torsello; Toni McLellan

    The goals of hazard tree management programs are to maximize public safety and maintain a healthy sustainable tree resource. Although hazard tree management frequently targets removal of trees or parts of trees that attract wildlife, it can take into account a diversity of tree values. With just a little extra planning, hazard tree management can be highly beneficial...

  11. Riparian landscapes: Linking geodiversity with habitat and biodiversity

    Science.gov (United States)

    Chmieleski, Jana; Danzeisen, Laura

    2017-04-01

    Keywords: Oder valley, biodiversity, geodiversity River landscapes of all scales originally showed a high diversity of structures and habitats at a small spatial entity, such as the stream beds, terrasses, sand and gravel banks. This variety, with a lot of different elements, patches and patterns, represents not only a variety of geoelements or geomorhological features but also a large biodiversity, both of habitats and species. Riparian landscapes are both, a natural as well as a geoheritage, often even a cultural heritage (sustainabe land use practices). Embankments, utilization for agriculture, constructions for navigation, management measures lead to a strong loss of these structures. This impacts the value of the landscape as well ecosystem functions, not only the biodiversity and the geodiversity but also the recreation function or the aesthetic values. A case study from the National Park Lower Oder Valley in the Northeastern part of Germany, wich is also part of a Geopark („Eiszeitland am Oderrand") presents the connections of the diversity of geomorphological features with biodiversity and shows the loss of features (loss of values) due to intensive utilisation by using GIS-analysis and landscape-metrics. The Northern part of the Oder valley (National Park, transnational protection area of Germany and Poland) have been modified by man since centuries but even so remained in near-natural state that allows semi-(natural) stream dynamics. While the Oder's reparian zone is marked by the stream itself, by its bayous, reed beds, periodically flooded wet meadows and by its natural riparian forest the mineral morainic plateaus are marked by semi-natural forests and dry grasslands. Two areas of different degradation states, a) near-natural and wilderness area and b) grassland area will be compared in order to identify: quantity and extent of features, relation of measure and coverage, connectivity with other features, quantity and types of habitats (with

  12. Denitrification Potential, Root Biomass, and Organic Matter in Degraded and Restored Urban Riparian Zones

    Science.gov (United States)

    Hydrologic changes associated with urbanization often lead to lower water tables and drier, more aerobic soils in riparian zones. These changes reduce the potential for denitrification, an anaerobic microbial process that converts nitrate, a common water pollutant, into nitrogen...

  13. Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis

    Science.gov (United States)

    Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluv...

  14. Hot spots and hot moments in riparian zones: potential for improved water quality management

    Science.gov (United States)

    Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...

  15. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  16. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  17. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  18. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    Science.gov (United States)

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  19. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    Science.gov (United States)

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  20. EnviroAtlas - Portland, OR - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  1. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  2. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  3. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  4. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  5. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  6. Spatial Characterization of Riparian Buffer Effects on Sediment Loads from Watershed Systems

    Science.gov (United States)

    Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural lands...

  7. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  8. Stream characteristics and their implications for the protection of riparian fens and meadows

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, A.; Larsen, S.E.; Andersen, Peter Mejlhede

    2011-01-01

    the influence of stream size, morphology and chemical water characteristics for the distribution of water-dependent terrestrial habitat types, i.e. alkaline fens, periodically inundated meadows and meadows in riparian areas in Denmark using an extensive data set covering a total of 254 stream reaches. A species......1. Running waters, including associated riparian areas, are embraced by international legal frameworks outlining targets for the preservation, protection and improvement of the quality of the environment. Interactions between stream and river processes and riparian habitats have not received much...... attention in the management of stream ecosystems, and integrated measures that consider both the ecological status of streams and rivers (sensu EU Water Framework Directive, WFD) and the conservation status of riparian habitats and species (sensu EU Habitats Directive, HD) are rare. 2. Here, we analysed...

  9. Riparian spiders as sentinels of PCB contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the ...

  10. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  11. Throughfall and stemflow dynamics in a riparian cedar swamp: possible ecohydrological feedbacks

    Science.gov (United States)

    Duval, T. P.

    2012-12-01

    Partitioning of rainfall through forest canopies as throughfall and stemflow have deservedly been the subject of much research in the past; however, very little is known about the fluxes of water and solutes through forested wetland communities. Temperate swamps are characterized by intermittent canopy coverage, with areas that are denser than upland forests of similar species, but also contain canopy gaps of meadow and marsh communities,. Understanding the role of vegetation on the distribution of precipitation in these ecosystems is necessary to effectively constrain water balance estimates and predict possible community responses to shifting climate regimes. This study examines throughfall, stemflow, and interception dynamics in a riparian cedar swamp in Alliston, Ontario, Canada over the 2012 growing season. Throughfall averaged 76 % of above-canopy rainfall; however, there were spatial-magnitude interaction variations within the swamp. For events less than 20 mm, between 17 and 75 % of the measured swamp floor received greater depth of rain than above the canopy, whereas for events greater than 20 mm only between 2 and 23 % of the sampled swamp floor received more water than the actual event. The observed spatial variability in throughfall was not related to leaf area index, suggesting remote sensing modelling efforts may not be an accurate method for quantification of wetland precipitation dynamics. Stemflow along the predominantly cedar trees averaged 5 %; therefore, net precipitation on a seasonal basis in this cedar swamp was 81 % of above canopy rainfall. Throughfall DOC and total nitrogen concentrations averaged 31 and 2.2 mg/L, respectively, with stemflow DOC and TN concentrations averaging 109 and 6.5 mg/L, respectively. These values are much higher than reported for upland forest species. In general, throughfall magnitudes increased and solute concentrations decreased with increasing distance from the existing forest boles. The delivery of high

  12. Biodiversity and Phytosociological Studies of Upstream and Downstream Riparian Areas of Pakistan: Special Reference to Taunsa Wildlife Sanctuary and Keti Shah Forests

    International Nuclear Information System (INIS)

    Arfeen, R. Z.; Saleem, A.; Mirza, S. N.; Tayyab, H. M.; Akmal, M.; Afzal, O.

    2015-01-01

    Pakistan riparian zone mostly belongs to Sindh and Punjab provinces and prone to climatic problems and anthropogenic activities. The research was conduct to estimate and compare the structure and composition of riverine floral diversity in low riparian zone of River Indus. The data was collected from Keti Shah forest and Taunsa wildlife sanctuary. Total 14259 plants/individuals were recorded, which belong to 54 plant species with 18 different families. In Taunsa pre-monsoon survey, total 30 plant species were found with 4476 plants from 16 different families. In Taunsa post-monsoon survey total 3348 individuals were recorded from 20 plant species and 9 families. Similarly, in Keti Shah forest, total 3975 individual were recorded from 22 species and 11 families during the pre-monsoon season and 2460 plants were recorded in post-monsoon season, belonging to 16 species and 10 families. These species mostly belong to Fabaceae, Poaceae, Cyperaceae and Asclepiadaceae. Different phytosociological parameters indicate Tamarix dioca, Cynodon dactylon, Desmostachya bipinnata, Imperata cylindrica, Fimbristylis hispidula, Acacia nilotica, Phragmites karka, Tamarix sp. and Saccharum bengalense as dominant species. The biodiversity in upstream and downstream areas were rich in pre-monsoon season in comparison to post-monsoon season in surveyed areas. This study is useful for management of the area in the future as conservation strategies can be made through considering the adaptive tree species in future plantation and endangered species can be conserved. (author)

  13. Active ex situ protection and reestablishment of Dianthus gratianopolitanus Vill. in the “Goździk siny w Grzybnie” reserve (Wielkopolska Province

    Directory of Open Access Journals (Sweden)

    Jańczyk-Węglarska Jolanta

    2013-12-01

    Full Text Available The following paper presents the results of observations of the size and condition of cheddar pink (Dianthus gratianopolitanus Vill. population in the “Goździk siny w Grzybnie” reserve (Wielkopolska Province, as well as active cultivation of the species in ex situ controlled conditions and its reestablishment supporting the natural, endangered population in the reserve

  14. Re-establishment of the air kerma and ambient dose equivalent standards for the BIPM protection-level 60Co beam

    International Nuclear Information System (INIS)

    Kessler, C.; Roger, P.

    2005-07-01

    The air kerma and ambient dose equivalent standards for the protection-level 60 Co beam have been re-established following the repositioning of the irradiator and modifications to the beam. Details concerning the standards and the new uncertainty budgets are described in this report with their implications for dosimetry comparisons and calibrations. (authors)

  15. Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2016-06-01

    Full Text Available The aim of the study was to estimate the soil organic carbon (SOC storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05. Statistical differences were not detected (p>0.05 between agricultural matrices (rice fields and pastures in any of the variables. The sampling position (matrix and the edge and interior of forests had a significant impact (p<0.05 just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05 by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

  16. Impact of native ungulates and beaver on riparian communities in the intermountain west

    OpenAIRE

    Kay, Charles E.

    1994-01-01

    This paper reviews the impact native ungulates, primarily elk and moose, and beaver can have on riparian communities in the Western United States. In Yellowstone National Park and in other areas where ungulates are not managed, repeated browsing has reduced tall willow, aspen, and cottonwood communities by approximately 95 percent since the late 1800's. Native ungulates can also severely reduce or eliminate palatable grasses and forbs from herbaceous riparian communities. By eliminating woody...

  17. Riparian plant community responses to increased flooding: a meta-analysis.

    Science.gov (United States)

    Garssen, Annemarie G; Baattrup-Pedersen, Annette; Voesenek, Laurentius A C J; Verhoeven, Jos T A; Soons, Merel B

    2015-08-01

    A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta-analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta-analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both 'quiescence' and 'escape' proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient-rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain-fed lowland streams). Species richness usually increased at sites in desert and semi-arid climate regions (e.g. intermittent

  18. Deer use of riparian zones and adjacent pine plantations in Texas

    Science.gov (United States)

    Micah L. Poteet; Ronald E. Thill; R. Montague Whiting; R. Lee Rayburn

    1996-01-01

    The authors monitored white-tailed deer (Odocoileus virginianus) use of riparian zones (RZ’s) and adjacent pine plantations of 3 age classes (young, 1 to 3 years old; intermediate, 5 to 7 years old; and older, 9 to 13 years old) using radio telemetry for 2 years on a 1,300 ha study area near Alto, TX. Riparian zones comprised 22.0 percent of the area; young,...

  19. Presence of riparian vegetation increases biotic condition of fish assemblages in two Brazilian reservoirs

    OpenAIRE

    Ferreira, Fabio Cop; Souza, Ursulla Pereira; Petrere Junior2, Miguel

    2015-01-01

    Abstract The riparian vegetation in lakes and reservoirs is source of course wood structures such as trunks and branches and is used as sheltering, spawning and foraging habitats for fishes. The reduction of these submerged structures can thus, affect the composition and structure of fish assemblages in reservoirs. Aim To evaluate the influence of riparian vegetation on the biotic condition of fish assemblage by adapting the Reservoir Fish Assemblage Index (RFAI) to two reservoirs in the Upp...

  20. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    Science.gov (United States)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  1. An assessment of riparian environmental quality by using butterflies and disturbance susceptibility scores

    Science.gov (United States)

    Nelson, S. Mark; Andersen, Douglas C.

    1994-01-01

    The butterfly community at a revegetated riparian site on the lower Colorado River near Parker, Arizona, was compared to that found in a reference riparian site. Data indicated that the herbaceous plant community, which was lacking at the revegetated site, was important to several butterfly taxa. An index using butterfly sensitivity to habitat change (species classified into risk groups) and number of taxa was developed to monitor revegetation projects and to determine restoration effectiveness.

  2. Bird community structure in riparian environments in Cai River, Rio Grande do Sul, Brazil

    OpenAIRE

    Jaqueline Brummelhaus; Marcia Suelí Bohn; Maria Virginia Petry

    2012-01-01

    Urbanization produces changes in riparian environments, causing effects in the structure of bird communities, which present different responses to the impacts. We compare species richness, abundance, and composition of birds in riparian environments with different characteristics in Cai River, Rio Grande do Sul, Brazil. We carried out observations in woodland, grassland, and urban environments, between September 2007 and August 2008. We listed 130 bird species, 29 species unique to woodland e...

  3. Characterising the water use and hydraulic properties of riparian ...

    African Journals Online (AJOL)

    2018-04-10

    Apr 10, 2018 ... Exacerbating the effects of the invasions in these regions is the fact that the ... tree size, drop size, and physiological factors. In this study ... irrigation. The climate ... extent of the active xylem vessels (sapwood depth) where the.

  4. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera in Cerrado areas

    Directory of Open Access Journals (Sweden)

    Helena S.R. Cabette

    Full Text Available ABSTRACT Preserved riparian vegetation usually has greater environmental complexity than the riparian vegetation modified by human actions. These systems may have a greater availability and diversity of food resources for the species. Our objective was to evaluate the effect of changes on the structure of the riparian forest on species richness, beta diversity and composition of butterfly species in the Cerrado of Mato Grosso. We tested the hypotheses that: (i higher species richness and (ii beta diversity would be recorded in more preserved environments; and (iii species composition would be more homogeneous in disturbed habitats. For hypothesis testing, the riparian vegetation of eight streams were sampled in four periods of the year in a fixed transect of 100 m along the shores. The richness of butterfly species is lower in disturbed than in preserved areas. However, species richness is not affected by habitat integrity. Beta diversity differed among sites, such that preserved sites have greater beta diversity, showing greater variation in species composition. In addition, beta diversity was positively affected by environmental heterogeneity. A total of 23 of the 84 species sampled occurred only in the changed environment, 42 were exclusive to preserved sites and 19 occurred in both environments. The environmental change caused by riparian forest removal drastically affects the butterfly community. Therefore, riparian vegetation is extremely important for butterfly preservation in the Cerrado and may be a true biodiversity oasis, especially during the dry periods, when the biome undergoes water stress and resource supply is more limited.

  5. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.

    Science.gov (United States)

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-12-23

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.

  6. [Distribution pattern of rare plants along riparian zone and its implication for conservation in Shennongjia area].

    Science.gov (United States)

    Jiang, Mingxi; Deng, Hongbing; Cai, Qinghua

    2002-11-01

    Due to the importance of riparian zone in maintaining and protecting regional biodiversity, more and more ecologists paid their attentions to riparian zone, and had been aware of the important effects of riparian zone in basic study and practical management. In this study, forty sampling belts (10 m x 100 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia area were selected to investigate the riparian vegetation and rare plants. Fourteen species of rare plants were found in riparian zone, accounting for 42.4% of total rare plant species in Shennongjia area. The main distribution range of the fourteen rare plant species was the mixed evergreen and deciduous broadleaved forest at elevation of 1200-1800 m, where species diversity of plant community was the maximum at the moderate elevation. Fourteen rare plant species could be divided into three groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation group. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out the important function of riparian zone on rare plant species protection.

  7. Pavement and riparian forest shape the bird community along an urban river corridor

    Directory of Open Access Journals (Sweden)

    Christopher J.W. McClure

    2015-07-01

    Full Text Available Knowledge of habitat use by animals within urban-riparian corridors during the breeding season is important for conservation, yet remains understudied. We examined the bird community along an urban-riparian corridor through metropolitan Boise, Idaho and predicted that occupancy of individual species and species richness would be greater in forested areas than in urbanized areas. We surveyed birds throughout the summers of 2009 and 2010 and quantified the m2 of each cover-type within 50-m, 100-m, and 200-m buffers surrounding each survey location using satellite imagery. Occupancy modeling revealed that eight of 14 species analyzed were positively associated with riparian forest, and no species avoided forest. Species richness was negatively associated with the amount of paved surface within 100 m of a survey site with richness declining by more than two species for every hectare of paved surface. Most associations with cover-types–especially riparian forest–were at ⩾100 m. Therefore, the riparian forest within 100 m of a given site along an urban-riparian corridor should be the most important for maintaining species richness.

  8. Biocrust re-establishment trials demonstrate beneficial prospects for mine site rehabilitation in semi-arid landscapes of Australia

    Science.gov (United States)

    Williams, Wendy; Williams, Stephen; Galea, Vic

    2015-04-01

    Biocrusts live at the interface between the atmosphere and the soil; powered by photosynthesis they strongly influence a range of soil micro-processes. At Jacinth-Ambrosia mine site, on the edge of the Nullarbor Plain (South Australia), biocrusts are a significant component of the semi-arid soil ecosystem and comprised mainly of cyanobacteria, lichens and mosses. Cyanobacteria directly contribute to soil surface stabilisation, regulation of soil moisture and, provide a biogeochemical pathway for carbon and nitrogen fertilisation. Following disturbance, rehabilitation processes are underpinned by early soil stabilisation that can be facilitated by physical crusts or bio-active crusts in which cyanobacteria are ideal soil surface colonisers. Biocrust growth trials were carried out in autumn and winter (2012) to test the re-establishment phases of highly disturbed topsoil associated with mine site operations. The substrate material originated from shallow calcareous sandy loam typically found in chenopod shrublands. The biocrust-rich substrates (1-5 cm) were crushed (biocrush) or fine sieved followed by an application of concentrated cyanobacterial inoculum. Each treatment comprised four replicated plots that were natural or moisture assisted (using subsurface mats). After initial saturation equal amounts of water were applied for 30 days at which time half of all of the plots were enclosed with plastic to increase humidity. From 30-60 days water was added as required and from 60-180 days all treatments were uncovered and subjected periodic wet-dry cycles. At 180 days diverse biocrusts had re-established across the majority of the treatments, incorporating a mix of cyanobacterial functional groups that were adapted to surface and subsurface habitats. There were no clear trends in diversity and abundance. Overall, the moisture assisted biocrush and sieved biocrush appeared to have 80% cyanobacterial diversity in common. Differences were found between the surface and

  9. Trees and highway safety.

    Science.gov (United States)

    2011-03-01

    To minimize the severity of run-off-road collisions of vehicles with trees, departments of transportation (DOTs) : commonly establish clear zones for trees and other fixed objects. Caltrans clear zone on freeways is 30 feet : minimum (40 feet pref...

  10. Subsidence Reversal in a Re-established Wetland in the Sacramento-San Joaquin Delta, California, USA

    Directory of Open Access Journals (Sweden)

    Robin L. Miller

    2008-10-01

    Full Text Available The stability of levees in the Sacramento-San Joaquin Delta is threatened by continued subsidence of Delta peat islands. Up to 6 meters of land-surface elevation has been lost in the 150 years since Delta marshes were leveed and drained, primarily from oxidation of peat soils. Flooding subsided peat islands halts peat oxidation by creating anoxic soils, but net accumulation of new material in restored wetlands is required to recover land-surface elevations. We investigated the subsidence reversal potential of two 3 hectare, permanently flooded, impounded wetlands re-established on a deeply subsided field on Twitchell Island. The shallower wetland (design water depth 25 cm was almost completely colonized by dense emergent marsh vegetation within two years; whereas, the deeper wetland (design water depth 55 cm which developed spatially variable depths as a result of heterogeneous colonization by emergent vegetation, still had some areas remaining as open water after nine years. Changes in land-surface elevation were quantified using repeated sedimentation-erosion table measurements. New material accumulating in the wetlands was sampled by coring. Land-surface elevations increased by an average of 4 cm/yr in both wetlands from 1997 to 2006; however, the rates at different sites in the wetlands ranged from -0.5 to +9.2 cm/yr. Open water areas of the deeper wetland without emergent vegetation had the lowest rates of land-surface elevation gain. The greatest rates occurred in areas of the deeper wetland most isolated from the river water inlets, with dense stands of emergent marsh vegetation (tules and cattails. Vegetated areas of the deeper wetland in the transition zones between open water and mature emergent stands had intermediate rates of land-surface gain, as did the entire shallower wetland. These results suggest that the dominant component contributing to land-surface elevation gain in these wetlands was accumulation of organic matter, rather

  11. Decision-Tree Program

    Science.gov (United States)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  12. Minnesota's Forest Trees. Revised.

    Science.gov (United States)

    Miles, William R.; Fuller, Bruce L.

    This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…

  13. D2-tree

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Sioutas, Spyros; Pantazos, Kostas

    2015-01-01

    We present a new overlay, called the Deterministic Decentralized tree (D2-tree). The D2-tree compares favorably to other overlays for the following reasons: (a) it provides matching and better complexities, which are deterministic for the supported operations; (b) the management of nodes (peers...

  14. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  15. Winter Birch Trees

    Science.gov (United States)

    Sweeney, Debra; Rounds, Judy

    2011-01-01

    Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…

  16. Total well dominated trees

    DEFF Research Database (Denmark)

    Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.

    cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....

  17. TreePics: visualizing trees with pictures

    Directory of Open Access Journals (Sweden)

    Nicolas Puillandre

    2017-09-01

    Full Text Available While many programs are available to edit phylogenetic trees, associating pictures with branch tips in an efficient and automatic way is not an available option. Here, we present TreePics, a standalone software that uses a web browser to visualize phylogenetic trees in Newick format and that associates pictures (typically, pictures of the voucher specimens to the tip of each branch. Pictures are visualized as thumbnails and can be enlarged by a mouse rollover. Further, several pictures can be selected and displayed in a separate window for visual comparison. TreePics works either online or in a full standalone version, where it can display trees with several thousands of pictures (depending on the memory available. We argue that TreePics can be particularly useful in a preliminary stage of research, such as to quickly detect conflicts between a DNA-based phylogenetic tree and morphological variation, that may be due to contamination that needs to be removed prior to final analyses, or the presence of species complexes.

  18. Spatial and temporal variability of nitrate sinks and sources in riparian soils of a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg; Huber, Benjamin; Shrestha, Juna; Samaritani, Emanuela; Niklaus, Pascal A.

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified. Of particular interest is the ability of riparian functional processing zones (FPZ) to remove nitrate from infiltrating river water or agricultural runoff. Processes involved are removal of nitrate by denitrification and immobilisation of nitrogen in plant or microbial biomass. On the other hand, mineralisation followed by nitrification can lead to an increase in leachable nitrate. The latter process is fueled by the frequent input of fresh dissolved or particle bound organic matter, characteristic for temporarily flooded riparian zones. The objective of this study was to characterize the spatial and temporal variability of nitrate concentrations in the soil solution of a restored reach of the Alpine river Thur in northeastern Switzerland. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three FPZ representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits. (iii) The mixed forest is a mature riparian hardwood forest developed on older overbank sediments with ash and maple as dominant trees. The study period was between summer 2008 and winter 2009/2010 including three flood events in August 2008, June 2009 and July 2009. The second flood inundated the

  19. Systematic assessment of the various controversies, difficulties, and current trends in the reestablishment of lost occlusal planes in edentulous patients.

    Science.gov (United States)

    Sahoo, S; Singh, D; Raghav, D; Singh, G; Sarin, A; Kumar, P

    2014-05-01

    Accurate occlusal plane orientation is an essential factor in the fabrication of complete denture prosthesis. Over the years, it has received a number of methodologies by several researchers utilizing various anatomical landmarks however none of them is considered as perfect that could orient ideal occlusal plane. The presented literature review is an attempt to enlighten historical perspectives, pioneer researches, different controversies, difficulties and current trends for re-establishment of lost occlusal plane in edentulous patients. An extensive literature search was performed using Medline/PubMed interface and other scholarly research bibliographic databases using Medical Subject Headings. Studies describing research studies, case series and assorted clinical reports were retrieved and evaluated from 1963 to 2013. Most of the studies have suggest and evidence to consider Camper's plane for artificial orientation of occlusal plane however there is a substantial lack of genuine long term studies and authentic data that could recommend a single reliable landmark for perfect occlusal plane reorientation in a variety of cases.

  20. Re-establishing an ecological discourse in the policy debate over how to value ecosystems and biodiversity.

    Science.gov (United States)

    Spash, Clive L; Aslaksen, Iulie

    2015-08-15

    In this paper we explore the discourses of ecology, environmental economics, new environmental pragmatism and social ecological economics as they relate to the value of ecosystems and biodiversity. Conceptualizing biodiversity and ecosystems as goods and services that can be represented by monetary values in policy processes is an economic discourse being increasingly championed by ecologists and conservation biologists. The latter promote a new environmental pragmatism internationally as hardwiring biodiversity and ecosystems services into finance. The approach adopts a narrow instrumentalism, denies value pluralism and incommensurability, and downplays the role of scientific knowledge. Re-establishing an ecological discourse in biodiversity policy implies a crucial role for biophysical indicators as independent policy targets, exemplified in this paper by the Nature Index for Norway. Yet, there is a recognisable need to go beyond a traditional ecological approach to one recognising the interconnections of social, ecological and economic problems. This requires reviving and relating to a range of alternative ecologically informed discourses, including an ecofeminist perspective, in order to transform the increasingly dominant and destructive relationship of humans separated from and domineering over Nature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carbon gas fluxes in re-established wetlands on organic soils differ relative to plant community and hydrology

    Science.gov (United States)

    Miller, Robin L.

    2011-01-01

    We measured CO2 and CH4 fluxes for 6 years following permanent flooding of an agriculturally managed organic soil at two water depths (~25 and ~55 cm standing water) in the Sacramento–San Joaquin Delta, California, as part of research studying C dynamics in re-established wetlands. Flooding rapidly reduced gaseous C losses, and radiocarbon data showed that this, in part, was due to reduced oxidation of "old" C preserved in the organic soils. Both CO2 and CH4 emissions from the water surface increased during the first few growing seasons, concomitant with emergent marsh establishment, and thereafter appeared to stabilize according to plant communities. Areas of emergent marsh vegetation in the shallower wetland had greater net CO2 influx (-485 mg Cm-1 h-1), and lower CH4 emissions (11.5 mg Cm-2 h-1), than in the deeper wetland (-381 and 14.1 mg Cm-2 h-1, respectively). Areas with submerged and floating vegetation in the deeper wetland had CH4 emissions similar to emergent vegetation (11.9 and 12.6 mg Cm-2 h-1, respectively), despite lower net CO2 influx (-102 gC m-2 h-1). Measurements of plant moderated net CO2 influx and CH4 efflux indicated greatest potential reduction of greenhouse gases in the more shallowly flooded wetland.

  2. Spectra of chemical trees

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees

  3. Refining discordant gene trees.

    Science.gov (United States)

    Górecki, Pawel; Eulenstein, Oliver

    2014-01-01

    Evolutionary studies are complicated by discordance between gene trees and the species tree in which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism. We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the deep coalescence and the Robinson-Foulds costs. Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for unrooted and non-binary gene trees together with the linear time reductions provided here for computing these costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.

  4. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  5. Quantifying Phosphorus Retnention in Soils of Riparian Buffers Influenced by Different Land Use Practices

    Science.gov (United States)

    Lancellotti, B.; Ross, D. S.; Adair, C.; Schroth, A. W.; Perdrial, J. N.

    2017-12-01

    Excess phosphorus (P) loading to freshwater systems can lead to eutrophication, resulting in algal blooms and subsequent fish kills. Lake Champlain, located between Vermont, New York, and Quebec, has historically exhibited negative effects of eutrophication due to P overloading from non-point sources. To reduce P inputs to the Lake, the Vermont Agency of Natural Resources requires and provides guidelines for the management of riparian buffers, which help protect adjacent water bodies from nutrient and sediment runoff. To better understand how phosphorous retention in riparian buffers is influenced by soil wetness and adjacent land use, we explored differences in P content between riparian buffers located in forested and agricultural watersheds. Within each land use type, we focused on two paired riparian buffers with contrasting soil moisture levels (one wet transect and one dry transect). At each of the four sites, soil pits were dug along a transect perpendicular to the streambank and were placed strategically to capture convergent and divergent landscape positions. Soil samples were collected from each horizon within 0-30cm. In each of these samples, we measured orthophosphate, degree of phosphorus saturation (DPS), and trace elements. We investigated the relationship between DPS and aluminum (Al) and iron (Fe) concentrations to determine how much of the variability in DPS was explained by Al and Fe concentrations, and compared these relationships between the four riparian buffer sites. We also assessed how these relationships varied with depth in the soil profile. The results of these analyses allow us to identify the characteristics of riparian buffers that promote the most effective P sequestration, which is beneficial to the effective management of riparian areas within the Lake Champlain basin.

  6. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  7. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems.

    Science.gov (United States)

    Kraus, Johanna M; Gibson, Polly P; Walters, David M; Mills, Marc A

    2017-05-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI, USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r 2  > 0.78) and had similar mean ΣPCB concentrations when averaged across all years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa less effective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2017;36:1278-1286. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in

  8. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.

    Science.gov (United States)

    Lorion, Christopher M; Kennedy, Brian P

    2009-03-01

    Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach-scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore-detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15-month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics

  9. Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact

    Directory of Open Access Journals (Sweden)

    Tayierjiang Aishan

    2018-04-01

    Full Text Available Carbon management in forests has become the most important agenda of the first half of the 21st century in China in the context of the mitigation of climate change impact. As the main producer of the inland river basin ecosystem in arid region of Northwest China, the desert riparian forest maintains the regional environment and also holds a great significance in regulating the regional/global carbon cycle. In this study, we estimated the total biomass, carbon storage, as well as monetary ecosystem service values of desert riparian Populus euphratica Oliv. in the lower reaches of the Tarim River based on terrestrial forest inventory data within an area of 100 ha (100 plots with sizes of 100 m × 100 m and digitized tree data within 1000 ha (with 10 m × 10 m grid using a statistical model of biomass estimation against tree height (TH and diameter at breast height (DBH data. Our results show that total estimated biomass and carbon storage of P. euphratica within the investigated area ranged from 3.00 to 4317.00 kg/ha and from 1.82 to 2158.73 kg/ha, respectively. There was a significant negative relationship (p < 0.001 between biomass productivity of these forests and distance to the river and groundwater level. Large proportions of biomass (64% of total biomass are estimated within 200 m distance to the river where groundwater is relatively favorable for vegetation growth and biomass production. However, our data demonstrated that total biomass showed a sharp decreasing trend with increasing distance to the river; above 800 m distance, less biomass and carbon storage were estimated. The total monetary value of the ecosystem service “carbon storage” provided by P. euphratica was estimated to be $6.8 × 104 USD within the investigated area, while the average monetary value was approximately $70 USD per ha, suggesting that the riparian forest ecosystem in the Tarim River Basin should be considered a relevant regional carbon sink. The findings of

  10. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem

    International Nuclear Information System (INIS)

    Rier, S. T.; Tuchman, N. C.; Wetzel, R. G.

    2005-01-01

    The effects of elevated carbon dioxide on the chemistry and subsequent response of stream microorganisms growing on leaf litter of three riparian tree species (quaking aspen, white willow and sugar maple) were studied. Results showed that the effects were species-specific, i.e. aspen leaves contained high concentrations of lignin, maple leafs contained higher concentrations of soluble phenolic compounds and willow leaves contained higher concentrations of carbohydrate-bound condensed tannins. Initially, the higher concentrations of soluble phenolic compounds in maple leaves were rapidly leached in stream water, but overall, the impact of altered leaf chemistry on riparian trees grown under elevated carbon dioxide was clearly variable; no strongly suppressed microbial activity during stream incubation was observed. Any evidence of suppression observed, was species-specific. 49 refs., 2 tabs., 3 figs

  11. Floral ecology and insect visitation in riparian Tamarix sp. (saltcedar)

    Science.gov (United States)

    Andersen, D.C.; Nelson, S.M.

    2013-01-01

    Climate change projections for semiarid and arid North America include reductions in stream discharge that could adversely affect riparian plant species dependent on stream-derived ground water. In order to better understand this potential impact, we used a space-for-time substitution to test the hypotheses that increasing depth-to-groundwater (DGW) is inversely related to Tamarix sp. (saltcedar) flower abundance (F) and nectar production per flower (N). We also assessed whether DGW affected the richness or abundance of insects visiting flowers. We examined Tamarix floral attributes and insect visitation patterns during 2010 and 2011 at three locations along a deep DWG gradient (3.2–4.1 m) on a floodplain terrace adjacent to Las Vegas Wash, an effluent-dominated Mojave Desert stream. Flower abundance and insect visitation patterns differed between years, but no effect from DGW on either F or N was detected. An eruption of a novel non-native herbivore, the splendid tamarisk weevil (Coniatus splendidulus), likely reduced flower production in 2011.

  12. Water table monitoring in a mined riparian zone

    Directory of Open Access Journals (Sweden)

    Thomaz Marques Cordeiro Andrade

    2010-04-01

    Full Text Available The objective of this study was to test an easily fabricated tool that assist in the manual installation of piezometers, as well as water table monitor in the research site, located at the Gualaxo do Norte River Watershed, state of Minas Gerais, Brazil. The tool is made of iron pipes and is a low-cost alternative for shallow groundwater observation wells. The measurements were done in a riparian zone after being gold mined, when vegetation and upper soil layers were removed. The wells were installed in three areas following a transect from the river bank. The method was viable for digging up to its maximum depth of 3 meters in a low resistance soil and can be improved to achieve a better resistance over impact and its maximum depth of perforation. Water table levels varied distinctly according to its depth in each point. It varies most in the more shallow wells in different areas, while it was more stable in the deeper ones. The water table profile reflected the probably profile f the terrain and can be a reference for its leveling in reconstitution of degraded banks where upper layers of the soil were removed. Groundwater monitoring can be also an indicator of the suitability of the substrate for soil reconstitution in terms of the maintenance of an infiltration capacity similar to the original material.

  13. Competition favors elk over beaver in a riparian willow ecosystem

    Science.gov (United States)

    Baker, B.W.; Peinetti, H.R.; Coughenour, M.C.; Johnson, T.L.

    2012-01-01

    Beaver (Castor spp.) conservation requires an understanding of their complex interactions with competing herbivores. Simulation modeling offers a controlled environment to examine long-term dynamics in ecosystems driven by uncontrollable variables. We used a new version of the SAVANNA ecosystem model to investigate beaver (C. Canadensis) and elk (Cervus elapses) competition for willow (Salix spp.). We initialized the model with field data from Rocky Mountain National Park, Colorado, USA, to simulate a 4-ha riparian ecosystem containing beaver, elk, and willow. We found beaver persisted indefinitely when elk density was or = 30 elk km_2. The loss of tall willow preceded rapid beaver declines, thus willow condition may predict beaver population trajectory in natural environments. Beaver were able to persist with slightly higher elk densities if beaver alternated their use of foraging sites in a rest-rotation pattern rather than maintained continuous use. Thus, we found asymmetrical competition for willow strongly favored elk over beaver in a simulated montane ecosystem. Finally, we discuss application of the SAVANNA model and mechanisms of competition relative to beaver persistence as metapopulations, ecological resistance and alternative state models, and ecosystem regulation.

  14. Chemical elements in Leucaena leucocephala leaves of riparian zones of the municipality of Piracicaba, São Paulo, Brazil

    International Nuclear Information System (INIS)

    França, Elvis J. de; Fernandes, Elisabete A.N.; Lira, Marcelo G.; Ferreira, Fabiano S.; Cavalca, Isabel P.O.; Rodrigues, Vanessa S.; Camilli, Leandro

    2017-01-01

    The species Leucaena leucocephala can be found in several riparian ecosystems, acting as one of the main invasive and harmful species for the forest restoration of the permanent preservation areas. It has also been studied for the phytoremediation of some chemical elements, due to their potential accumulation of chemical substances. Therefore, the present study aimed to evaluate the accumulation of chemical elements in leaves of Leucaena leucocephala trees by Instrumental Neutronic Activation Analysis - INAA. Samples of leaves were collected in eight samples from riverside areas of the Piracicaba Municipality, São Paulo, Brazil, during the dry and rainy season. After collection, washing with water and drying in a forced circulation oven, the samples were comminuted and encapsulated in polyethylene capsules and subjected to a thermal neutron flux of 10 13 cm -2 s -1 for 8 hours in the Nuclear Research Reactor IEA-R1 of IPEN / CNEN. Thermal neutron flux monitoring was performed by Ni-Cr alloy fragments with known concentrations of the chemical monitors elements. After measurements of radioactivity induced by HPGe detectors, the concentrations of the chemical elements were calculated by the k0 method using the Quantu computer program. Certified reference materials were also analyzed for quality assurance of the analytical procedure. The results indicated high concentrations of La and lanthanoids (Ce, Eu, Sm, Tb and Yb) in leaves of L. leucocephala in both periods analyzed. It was possible to observe a decrease in the concentrations of the chemical elements in the rainy season, probably associated to the washing of the geological material deposited on the leaves of the trees by the rains, except for K, Mo, Rb, Sb and Zn, whose values remained or increased in the leaves collected during the rainy season. Considering the constant leaf production, L. leucocephala can greatly affect the cycling of chemical elements due to its accumulation capacity demonstrated by this

  15. Riparian bird density decline in response to biocontrol of Tamarix from riparian ecosystems along the Dolores River in SW Colorado, USA

    Science.gov (United States)

    Darrah, Abigail J.; van Riper, Charles

    2018-01-01

    Biocontrol of invasive tamarisk (Tamarix spp.) in the arid Southwest using the introduced tamarisk beetle (Diorhabda elongata) has been hypothesized to negatively affect some breeding bird species, but no studies to date have documented the effects of beetle-induced defoliation on riparian bird abundance. We assessed the effects of tamarisk defoliation by monitoring defoliation rates, changes in vegetation composition, and changes in density of six obligate riparian breeding bird species at two sites along the Dolores River in Colorado following the arrival of tamarisk beetles. We conducted bird point counts from 2010 to 2014 and modeled bird density as a function of native vegetation density and extent of defoliation using hierarchical distance sampling. Maximum annual defoliation decreased throughout the study period, peaking at 32–37% in 2009–2010 and dropping to 0.5–15% from 2011–2014. Stem density of both tamarisk and native plants declined throughout the study period until 2014. Density of all bird species declined throughout most of the study, with Song Sparrow disappearing from the study sites after 2011. Blue Grosbeak, Yellow-breasted Chat, and Yellow Warbler densities were negatively related to defoliation in the previous year, while Lazuli Bunting exhibited a positive relationship with defoliation. These findings corroborate earlier predictions of species expected to be sensitive to defoliation as a result of nest site selection. Tamarisk defoliation thus had short-term negative impacts on riparian bird species; active restoration may be needed to encourage the regrowth of native riparian vegetation, which in the longer-term may result in increased riparian bird density.

  16. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    Science.gov (United States)

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  17. Population and Habitat Objectives for Avian Conservation in California's Central Valley Riparian Ecosystems

    Directory of Open Access Journals (Sweden)

    Kristen E. Dybala

    2017-03-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss1art5Riparian ecosystems provide important ecosystem services and recreational opportunities for people, and habitat for wildlife. In California’s Central Valley, government agencies and private organizations are working together to protect and restore riparian ecosystems, and the Central Valley Joint Venture provides leadership in the formulation of goals and objectives for avian conservation in riparian ecosystems. We defined a long-term conservation goal as the establishment of riparian ecosystems that provide sufficient habitat to support genetically robust, self-sustaining, and resilient bird populations. To achieve this goal, we selected a suite of 12 breeding riparian landbird focal species as indicators of the state of riparian ecosystems in each of four major Central Valley planning regions. Using recent bird survey data, we estimated that over half of the regional focal species populations are currently small (< 10,000 and may be vulnerable to extirpation, and two species have steeply declining population trends. For each focal species in each region, we defined long-term (100-year population objectives that are intended to be conservation endpoints that we expect to meet the goal of genetically robust, self-sustaining, and resilient populations. We then estimated the long-term species density and riparian restoration objectives required to achieve the long-term population objectives. To track progress toward the long-term objectives, we propose short-term (10- year objectives, including the addition of 12,919 ha (31,923 ac of riparian vegetation in the Central Valley (by planning region: 3,390 ha in Sacramento, 2,390 ha in Yolo–Delta, 3,386 ha in San Joaquin, and 3,753 ha in Tulare. We expect that reaching these population, density, and habitat objectives through threat abatement, habitat restoration, and habitat enhancement will result in improvements to riparian ecosystem function and

  18. TREE SPECIES DIRECT SOWING FOR FOREST RESTORATION

    Directory of Open Access Journals (Sweden)

    Robério Anastácio Ferreira

    2007-09-01

    Full Text Available The direct sowing to tropical forest restoration can be viable when the ecological and silvicultural aspects of species areknown. This work evaluated the effect of breaking seed dormancy and a physical protector on the initial growth of riparian treespecies. The experiment was carried out in a randomized blocks design, in a factorial (2x2, with four blocks and four plots for eachtreatment. The treatment to break seed dormancy used were: immersion in sulphuric acid for 20 minutes and washing in water for 1hour plus soaking for 24 hours for Trema micrantha; immersion in boiling water (100oC with following soaking until refreshing for24 hours to Senna multijuga and Senna macranthera and pre-soaking in water for 2 hours for Solanum granuloso-leprosum. Thephysical protector used was a transparent plastic cup (500mL. The breaking seed dormancy used was efficient in laboratory, exceptfor S. macranthera. In field conditions, it was efficient only for S. multijuga and S. macranthera. The physical protector did notpresented any benefit for the studied tree species regarding seedlings emergence and survival, but it provided significant differencesin height and base diameter for S. multijuga and in height for S. macranthera after three months. After 24 months, T. micranthapresented the highest values for height and basal diameter. S. macranthera presented the height relative growth and T. micrantha thehighest basal diameter. The studied species can be recommended for ecological forest restoration, using direct sowing.

  19. Forestry best management practices relationships with aquatic and riparian fauna: A review

    Science.gov (United States)

    Warrington, Brooke M.; Aust, W. Michael; Barrett, Scott M.; Ford, W. Mark; Dolloff, C. Andrew; Schilling, Erik B.; Wigley, T. Bently; Bolding, M. Chad

    2017-01-01

    Forestry best management practices (BMPs) were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1) a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2) data-specific relationships between forestry BMPs and reviewed species are limited; (3) forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs) are important particularly for protection of water quality and aquatic species; (4) stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5) SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.

  20. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microbial community structure across a wastewater-impacted riparian buffer zone in the southeastern coastal plain.

    Science.gov (United States)

    Ducey, T F; Johnson, P R; Shriner, A D; Matheny, T A; Hunt, P G

    2013-01-01

    Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.

  2. Environmental and Anthropogenic Factors Influencing Salamanders in Riparian Forests: A Review

    Directory of Open Access Journals (Sweden)

    Hannah L. Clipp

    2014-11-01

    Full Text Available Salamanders and riparian forests are intimately interconnected. Salamanders are integral to ecosystem functions, contributing to vertebrate biomass and complex food webs in riparian forests. In turn, these forests are critical ecosystems that perform many environmental services, facilitate high biodiversity and species richness, and provide habitat to salamander populations. Due to the global decline of amphibians, it is important to understand, as thoroughly and holistically as possible, the roles of environmental parameters and the impact of human activities on salamander abundance and diversity in riparian forests. To determine the population responses of salamanders to a variety of environmental factors and anthropogenic activities, we conducted a review of published literature that compared salamander abundance and diversity, and then summarized and synthesized the data into general patterns. We identify stream quality, leaf litter and woody debris, riparian buffer width, and soil characteristics as major environmental factors influencing salamander populations in riparian forests, describe and explain salamander responses to those factors, and discuss the effects of anthropogenic activities such as timber harvest, prescribed fires, urbanization, road construction, and habitat fragmentation. This review can assist land and natural resource managers in anticipating the consequences of human activities and preparing strategic conservation plans.

  3. Forestry Best Management Practices Relationships with Aquatic and Riparian Fauna: A Review

    Directory of Open Access Journals (Sweden)

    Brooke M. Warrington

    2017-09-01

    Full Text Available Forestry best management practices (BMPs were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1 a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2 data-specific relationships between forestry BMPs and reviewed species are limited; (3 forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs are important particularly for protection of water quality and aquatic species; (4 stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5 SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.

  4. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  5. Nitrogen removal and microbial communities in a three-stage system simulating a riparian environment.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this 'engineered riparian system'. The results demonstrated that stage 1 of this system accounted for 41-51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m(2)/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m(2)/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.

  6. Presence of riparian vegetation increases biotic condition of fish assemblages in two Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Fabio Cop Ferreira

    2015-09-01

    Full Text Available Abstract The riparian vegetation in lakes and reservoirs is source of course wood structures such as trunks and branches and is used as sheltering, spawning and foraging habitats for fishes. The reduction of these submerged structures can thus, affect the composition and structure of fish assemblages in reservoirs. Aim To evaluate the influence of riparian vegetation on the biotic condition of fish assemblage by adapting the Reservoir Fish Assemblage Index (RFAI to two reservoirs in the Upper Paranapanema river basin, São Paulo State, Brazil. Methods The RFAI was adapted from metrics related to the functional characteristics and composition of fish assemblages through a protocol of metric selection and validation, and to its response to the presence of riparian vegetation. Results The final RFAI was composed by nine metrics, been lower in sites without riparian vegetation as consequence of the predominance of larger individuals and the percent of piscivorous and detritivorous fishes. Conclusions These results suggest that increasing shore habitat complexity in reservoirs by maintaining riparian vegetation increases fish biotic integrity.

  7. Effects of climate factors and vegetation on the CO2 fluxes and δ13C from re-established grassland

    Science.gov (United States)

    Bezyk, Yaroslav; Dorodnikov, Maxim; Sówka, Izabela

    2017-11-01

    The relationship between stable carbon isotope composition (δ13C -CO2) of soil CO2 flux, vegetation cover and weather conditions was investigated in a short-term campaign at a temperate re-established grassland in Germany. During August-September 2016, we measured surface CO2 flux with a closed-chamber method at high and low soil moisture content (`wet', `dry'), with and without above ground vegetation (`planted', `clear-cut') and estimated the effects of treatments on respective δ13C -CO2 values. The concentration and stable carbon isotope composition of CO2 were determined using the gas chromatography and mass spectrometry analyses. The δ13C -CO2 of the soil fluxes decreased over sampling time for the `dry-warm' conditions and canopy manipulation. The ecosystem-derived δ13C -CO2 values (corrected for the atmospheric δ13C -CO2) which included predominately soil-and rhizosphere respiration were -26.2 ± 0.8‰ for the `dry-warm' conditions and decreased down to -28.1 ± 1.4‰ over a period of 28 days from late August to the end of September. The decrease coincided with the lowering of CO2 flux and could be attributed to changes in plant physiological processes at the end of the vegetation season. Though the removal of shoots did not significantly affect the δ13C -CO2 values as compared with the control, the pattern of further δ13C -CO2 decrease (down to -28.8 ± 0.8‰) supported the role of living vegetation in a contribution of 13C-enriched CO2 to the ecosystem respiration.

  8. Causality re-established.

    Science.gov (United States)

    D'Ariano, Giacomo Mauro

    2018-07-13

    Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  9. Re-establishing dignity

    DEFF Research Database (Denmark)

    Høy, Bente; Hall, E.O.C

    2012-01-01

    appearance’. The study documents that caring for older people is about creating small everyday circumstances in which patient dignity can flourish. Shortcomings of a secondary analysis are discussed and suggestions for future research, such as how older hospital patients experience caring and dignity...

  10. The valuative tree

    CERN Document Server

    Favre, Charles

    2004-01-01

    This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.

  11. Recreation conflict of riparian landowners with personal watercraft and motorboat use along the New York's Great Lakes

    Science.gov (United States)

    Cheng-Ping Wang; Chad P. Dawson

    2002-01-01

    Riparian landowners of the New York's Great Lakes (NYGL) are reportedly in conflict with some motorboat and personal watercraft (PWC) use. Goal interference theory was used to explain landowners' perceived conflict caused by motorboat and PWC use. A study conducted in the NYGL area surveyed the riparian landowners' perceived conflict and problems caused...

  12. Response of herbaceous plant community diversity and composition to overstorey harvest within riparian management zones in Northern Hardwoods

    Science.gov (United States)

    Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn

    2013-01-01

    Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...

  13. Variable density management in riparian reserves: lessons learned from an operational study in managed forests of western Oregon, USA.

    Science.gov (United States)

    Samuel Chan; Paul Anderson; John Cissel; Larry Lateen; Charley Thompson

    2004-01-01

    A large-scale operational study has been undertaken to investigate variable density management in conjunction with riparian buffers as a means to accelerate development of late-seral habitat, facilitate rare species management, and maintain riparian functions in 40-70 year-old headwater forests in western Oregon, USA. Upland variable retention treatments include...

  14. Post-wildfire recovery of riparian vegetation during a period of water scarcity in the southwestern USA

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Christian Gunning; Roy Jemison; Jeffrey F. Kelly

    2009-01-01

    Wildland fires occur with increasing frequency in southwestern riparian forests, yet little is known about the effects of fire on populations of native and exotic vegetation. From 2003 to 2006, we monitored recovering woody vegetation in wildfire sites in the bosque (riparian forest) along the Middle Rio Grande of central New Mexico, USA. To examine recovery potential...

  15. Effects of climate-induced increases in summer drought on riparian plant species : a meta-analysis

    NARCIS (Netherlands)

    Garssen, Annemarie G.; Verhoeven, Jos T. A.; Soons, Merel B.

    Frequency and duration of summer droughts are predicted to increase in the near future in many parts of the world, with considerable anticipated effects on riparian plant community composition and species richness. Riparian plant communities along lowland streams are characterised by high species

  16. Repeatability of riparian vegetation sampling methods: how useful are these techniques for broad-scale, long-term monitoring?

    Science.gov (United States)

    Marc C. Coles-Ritchie; Richard C. Henderson; Eric K. Archer; Caroline Kennedy; Jeffrey L. Kershner

    2004-01-01

    Tests were conducted to evaluate variability among observers for riparian vegetation data collection methods and data reduction techniques. The methods are used as part of a largescale monitoring program designed to detect changes in riparian resource conditions on Federal lands. Methods were evaluated using agreement matrices, the Bray-Curtis dissimilarity metric, the...

  17. Conflicts in River Management: A Conservationist's Perspective on Sacramento River Riparian Habitats—Impacts, Threats, Remedies, Opportunities, and Consensus

    Science.gov (United States)

    Richard Spotts

    1989-01-01

    The Sacramento River's historic riparian habitats have been reduced by over 98 percent due to cumulative, adverse human activities. These activities continue to jeopardize the remaining riparian habitats. The results of these trends is more endangered species conflicts and listings, coupled with less fish, beautiful scenery, and other resource values. This paper...

  18. 78 FR 76317 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2013-12-17

    ...-FF08RSRC00] Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/ Fish Screen Facility Protection... and Wildlife (CDFW), announce that the record of decision (ROD) for the Llano Seco Riparian Sanctuary...: www.fws.gov/refuge/sacramento river/ and http://www.riverpartners.org/where-we-work/sanctuary...

  19. An initial evaluation of potential options for managing riparian reserves of the Aquatic Conservation Strategy of the Northwest Forest Plan

    Science.gov (United States)

    Gordon H. Reeves; Brian R. Pickard; K. Norman. Johnson

    2016-01-01

    The Aquatic Conservation Strategy (ACS) of the Northwest Forest Plan guides management of riparian and aquatic ecosystems on federal lands in western Oregon, western Washington, and northern California. We applied new scientific findings and tools to evaluate two potential options, A and B, for refining interim riparian reserves to meet ACS goals and likely challenges...

  20. Carbon pools in stream-riparian corridors: legacy of disturbance along mountain streams of south-eastern Wyoming

    Science.gov (United States)

    Claire M. Ruffing; Kathleen A. Dwire; Melinda D. Daniels

    2016-01-01

    Streams and their accompanying riparian environments are intrinsic components of terrestrial carbon cycling. However, they have been understudied in terms of the magnitude of their storage components and the role of disturbance in determining carbon storage capacity. This study presents partial carbon budgets for stream-riparian corridors along six study...

  1. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  2. Morocco - Fruit Tree Productivity

    Data.gov (United States)

    Millennium Challenge Corporation — Date Tree Irrigation Project: The specific objectives of this evaluation are threefold: - Performance evaluation of project activities, like the mid-term evaluation,...

  3. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes

    2013-12-01

    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  4. Evapotranspiration Calculation on the Basis of the Riparian Zone Water Balance

    Directory of Open Access Journals (Sweden)

    SZILÁGYI, József

    2008-01-01

    Full Text Available Riparian forests have a strong influence on groundwater levels and groundwater sustainedstream baseflow. An empirical and a hydraulic version of a new method were developed to calculateevapotranspiration values from riparian zone groundwater levels. The new technique was tested on thehydrometeorological data set of the Hidegvíz Valley (located in Sopron Hills at the eastern foothills ofthe Alps experimental catchment. Evapotranspiration values of this new method were compared tothe Penman-Monteith evapotranspiration values on a half hourly scale and to the White methodevapotranspiration values on a daily scale. Sensitivity analysis showed that the more reliable hydraulicversion of our ET estimation technique is most sensitive (i.e., linearly to the values of the saturatedhydraulic conductivity and specific yield taken from the riparian zone.

  5. Floristic composition of the riparian forest in the lower Gramame river, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Hermes de Oliveira Machado Filho

    2015-09-01

    Full Text Available Riparian forest has a key ecological and economic significance to productive chains associated with it. This study aimed to conduct a floristic survey of riparian forest stretches in the Gramame river, state of Paraíba, Brazilian Northeast region, and analyze the floristic similarity with Brazilian riparian vegetation fragments. We found 136 species belonging to 106 genera and 43 families. The most representative families were: Fabaceae (19 spp., Cyperaceae (16 spp., and Rubiaceae (11 spp.. The predominant habit was herbaceous and the best represented biological spectrum was camephyte. Regarding the geographic distribution, there was a predominance of widely distributed species associated with the Neotropical province. The distribution patterns have shown a low similarity between areas, and largely distributed species stand out. Similarity analysis pointed out that the area was floristically related to other two coastal areas in the Brazilian Northeast and Southeast regions. Only species typically related to estuarine environments might explain the floristic connections detected.

  6. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  7. The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r2 =0.25, d.f.=51, p2=0.80, d.f.=34, p Keywords: riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate

  8. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    Science.gov (United States)

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  9. Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index

    Directory of Open Access Journals (Sweden)

    Russell L. Scott

    2013-08-01

    Full Text Available Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa based on the Enhanced Vegetation Index (EVI from the Moderate Resolution Imaging Spectrometer (MODIS sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo. The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI − c], where the term (1 − e−bEVI is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73. It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89 difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  10. Power and Conflict in Adaptive Management: Analyzing the Discourse of Riparian Management on Public Lands

    Directory of Open Access Journals (Sweden)

    Jennifer S. Arnold

    2012-03-01

    Full Text Available Adaptive collaborative management emphasizes stakeholder engagement as a crucial component of resilient social-ecological systems. Collaboration among diverse stakeholders is expected to enhance learning, build social legitimacy for decision making, and establish relationships that support learning and adaptation in the long term. However, simply bringing together diverse stakeholders does not guarantee productive engagement. Using critical discourse analysis, we examined how diverse stakeholders negotiated knowledge and power in a workshop designed to inform adaptive management of riparian livestock grazing on a National Forest in the southwestern USA. Publicly recognized as a successful component of a larger collaborative effort, we found that the workshop effectively brought together diverse participants, yet still restricted dialogue in important ways. Notably, workshop facilitators took on the additional roles of riparian experts and instructors. As they guided workshop participants toward a consensus view of riparian conditions and management recommendations, they used their status as riparian experts to emphasize commonalities with stakeholders supportive of riparian grazing and accentuate differences with stakeholders skeptical of riparian grazing, including some Forest Service staff with power to influence management decisions. Ultimately, the management plan published one year later did not fully adopt the consensus view from the workshop, but rather included and acknowledged a broader diversity of stakeholder perspectives. Our findings suggest that leaders and facilitators of adaptive collaborative management can more effectively manage for productive stakeholder engagement and, thus, social-ecological resilience if they are more tentative in their convictions, more critical of the role of expert knowledge, and more attentive to the knowledge, interests, and power of diverse stakeholders.

  11. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Directory of Open Access Journals (Sweden)

    John M. Boland

    2016-06-01

    Full Text Available The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp., an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball, and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav. Pers.. Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60% in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70% of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley

  12. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California.

    Science.gov (United States)

    Boland, John M

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  13. Water-borne hyphomycetes in tree canopies of Kaiga (Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Naga M. Sudheep

    2013-12-01

    Full Text Available The canopy samples such as trapped leaf litter, trapped sediment (during summer, stemflow and throughfall (during monsoon from five common riparian tree species (Artocarpus heterophyllus, Cassia fistula, Ficus recemosa, Syzygium caryophyllatum and Xylia xylocarpa in Kaiga forest stand of the Western Ghats of southwest India were evaluated for the occurrence of water-borne hyphomycetes. Partially decomposed trapped leaf litter was incubated in bubble chambers followed by filtration to assess conidial output. Sediments accumulated in tree holes or junction of branches were shaken with sterile leaf disks in distilled water followed by incubation of leaf disks in bubble chamber and filtration to find out colonized fungi. Stemflow and throughfall samples were filtered directly to collect free conidia. From five canopy niches, a total of 29 water-borne hyphomycetes were recovered. The species richness was higher in stemflow and throughfall than trapped leaf litter and sediments (14-16 vs. 6-10 species. Although sediments of Syzygium caryophyllatum were acidic (5.1, the conidial output was higher than other tree species. Stemflow and throughfall of Xylea xylocarpa even though alkaline (8.5-8.7 showed higher species richness (6-12 species as well as conidial load than rest of the tree species. Flagellospora curvula and Triscelophorus acuminatus were common in trapped leaf litter and sediments respectively, while conidia of Anguillospora crassa and A. longissima were frequent in stemflow and throughfall. Diversity of water-borne hyphomycetes was highest in throughfall of Xylea xylocarpa followed by throughfall of Ficus recemosa. Our study reconfirms the occurrence and survival of diverse water-borne hyphomycetes in different niches of riparian tree canopies of the Western Ghats during wet and dry regimes and predicts their possible role in canopy as saprophytes, endophytes and alternation of life cycle between canopy and aquatic habitats.

  14. Are trees long-lived?

    Science.gov (United States)

    Kevin T. Smith

    2009-01-01

    Trees and tree care can capture the best of people's motivations and intentions. Trees are living memorials that help communities heal at sites of national tragedy, such as Oklahoma City and the World Trade Center. We mark the places of important historical events by the trees that grew nearby even if the original tree, such as the Charter Oak in Connecticut or...

  15. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    Science.gov (United States)

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  16. Community Structure of Riparian Community of Sematang Borang River of South Sumatera

    Directory of Open Access Journals (Sweden)

    Yetty Hastiana

    2015-12-01

    Full Text Available Vegetasi riparian adalah sebagai ekoton antara habitat teresterial dengan sistem perairan (sungai. Penyangga riparian berfungsi untuk menjaga kelestarian fungsi sungai dengan cara menahan atau menangkap tanah (lumpur yang tererosi serta unsur hara dan bahan kimia termasuk pestisida yang terbawa dari lahan dibagian kiri kanan sungai agar tidak masuk ke perairan. Sungai Sematang Borang merupakan bagian dari Daerah Aliran Sungai (DAS Musi, Sungai Sematang Borang memiliki karaketeristik struktur sungai dengan panjang seitar 5 km, lebar sungai mencapai 70 m dan kedalaman sekitar 10 m. Saat ini sungai ini mulai terancam mengalami penurunan kualitas baik fisik, kimia maupun biologi Selain kehilangan habitat alami ikan yang akan berdampak pada penurunan kelimpahan dan biodiversity, perairan ini juga mengalami abrasi pada sisi kiri kanan tebing sungai. Keberadaan vegetasi riparian menjadi penting, selain untuk mencegah abrasi, juga berperan dalam produksi serasah. Produksi serasah berkontribusi dalam transfer bahan organik vegetasi ke dalam tanah. Unsur hara yang dhasilkan dari proses dekomposisi serasah dalam tanah sangat penting bagi kelangsungan hidup vegetasi dan sebagai sumber detritus bagi ekosistem dalam menyokong kehidupan organisme akuatik. Pentingnya kontribusi vegetasi riparian dalam suatu ekosistem, maka perlu dilakukan penelitian terhadap diversitas dan profil vegetasi. Kajian aspek vegetasi, diperkuat dengan melakukan pengamatan terhadap kondisi fisik kimia perairan Sematang Borang. Parameter fisik kimiaperairan yang diamati meliputi: suhu, kedalaman, kecepatan arus, COD, BOD, DO, pH, dan Salinitas. Penelitian menerapkan metode ekologi deskriptif kuantitatif dan kualitatif, untuk analisis kualitas fisik kimia perairan didukung analisis laboratorium dan survei. Hasil penelitian teridentifikasi 15 species riparian dengan kategori indeks keanekaragaman riparian 0,09-1,03 dan memiliki pola penyebaran cenderung berkelompok

  17. The role of near-stream riparian zones in the hydrology of steep upland catchments

    Science.gov (United States)

    McDonnell, Jeffery J.; McGlynn, B.L.; Kendall, K.; Shanley, J.; Kendall, C.

    1998-01-01

    Surface and subsurface waters were monitored and sampled at various topographic positions in a 40.5-ha headwater catchment to test several hypotheses of runoff generation and stream chemical and isotopic evolution during snowmelt. Transmissivity feedback was observed on the hillslopes during the melt period. Groundwater levels and stream DOC were highly correlated with stream discharge. Hysteresis in the groundwater-streamflow relation suggests that localized water flux from the riparian areas controlled the rising limb and main peak response of the melt hydrograph, whilst hillslope drainage controlled the timing and volume of the falling limb. Lateral flow from upslope positions was detected in the riparian zone.

  18. PHYTOCOENOSES OF URBAN RIPARIAN FORESTS ON THE EXAMPLE OF THE LAS OSOBOWICKI FOREST (WROCŁAW

    Directory of Open Access Journals (Sweden)

    Ewa Stefańska-Krzaczek

    2014-10-01

    Full Text Available The Las Osobowicki forest is remnant riparian woodland of the Odra valley. Floristic data were collected from circular 100m2 plots (with a radius of 5.64m which were systematically chosen in forest communities. Four plant communities were determined within data set. They were represented Fagetalia order and Querco-Fagetea class. Flood prevention caused disappearance of riparian forest species, expansion of common hornbeam and Norway maple expansion and a decrease of species richness. However, spatial distribution of phytocoenoses proves the river influence on the vegetation.

  19. An operational methodology for riparian land cover fine scale regional mapping for the study of landscape influence on river ecological status

    Science.gov (United States)

    Tormos, T.; Kosuth, P.; Souchon, Y.; Villeneuve, B.; Durrieu, S.; Chandesris, A.

    2010-12-01

    eco-regional model to study links between land cover spatial indicators calculated at local and watershed scales, and river ecological status assessed with macroinvertebrate indicators. Application of the OBIA scheme produced a detailed (62 classes) LCRA map which allowed the model to highlight influence of specific land use patterns: (i) the significant beneficial effect of 20-m riparian tree vegetation strip near a station and 20-m riparian grassland strip along the upstream network of a station and (ii) the negative impact on river ecological status of urban areas and roads on the upstream flood plain of a station. Results of these two experimentations highlight that (i) the application of an OBIA scheme using multi-source spatial data provides an efficient approach for mapping and monitoring LCRA that can be implemented operationally at regional or national scale and (ii) and the interest of using LCRA-maps derived from very high spatial resolution imagery (satellite or airborne) and/or metric spatial thematic data to study landscape influence on river ecological status and support managers in the definition of optimized riparian preservation and restoration strategies.

  20. Fragmentation of random trees

    International Nuclear Information System (INIS)

    Kalay, Z; Ben-Naim, E

    2015-01-01

    We study fragmentation of a random recursive tree into a forest by repeated removal of nodes. The initial tree consists of N nodes and it is generated by sequential addition of nodes with each new node attaching to a randomly-selected existing node. As nodes are removed from the tree, one at a time, the tree dissolves into an ensemble of separate trees, namely, a forest. We study statistical properties of trees and nodes in this heterogeneous forest, and find that the fraction of remaining nodes m characterizes the system in the limit N→∞. We obtain analytically the size density ϕ s of trees of size s. The size density has power-law tail ϕ s ∼s −α with exponent α=1+(1/m). Therefore, the tail becomes steeper as further nodes are removed, and the fragmentation process is unusual in that exponent α increases continuously with time. We also extend our analysis to the case where nodes are added as well as removed, and obtain the asymptotic size density for growing trees. (paper)