WorldWideScience

Sample records for reesei enzymatic hydrolysis

  1. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  2. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  3. Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, QiuZhuo [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); Cai, WeiMin [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China)

    2008-12-15

    To minimize the cost of cellulase production, both pretreatment of the rice straw and on-site enzyme production were realized. Rice straw was first pretreated by 2% NaOH, which could increase cellulose by 54.83%, and decreased hemicellulose by 61.07% and lignin by 36.24%, respectively. Detected by SEM, significant morphological changes were observed in the tissue. Through orthogonal experiments, temperature 35 C, initial pH value 4.5 and the rotation speed of shaking bed 180 rpm were determined to be the optimal conditions for hydrolysis of rice straw by Trichoderma reesei ZM4-F3. After hydrolysis for 96 h, the production of FPA and reducing sugars could achieve 2.231 g l{sup -1} and 12.92 U ml{sup -1}, respectively. Moreover, T. reesei ZM4-F3 can decompose 68.21% of pretreated rice straw after 120 h of hydrolysis. By GC analysis, it showed that glucose is the main component of the enzymatic hydrolysates, which made GC seem to be more effective than the DNS method for analysis of the enzymatic hydrolysates as it can detect the concentration of each kind of monosaccharide more accurately. (author)

  4. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  5. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  6. Glucose obtained from rice bran by ultrasound-assisted enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Raquel Cristine Kuhn

    2015-05-01

    Full Text Available In this work ultrasound-assisted solid-state enzymatic hydrolysis of rice bran to obtain fermentable sugars was investigated. For this purpose, process variables such as temperature, enzyme concentration and moisture content were evaluated during the enzymatic hydrolysis with and without ultrasound irradiation. The enzyme used is a blend of amylases derived from genetically modified strains of Trichoderma reesei. Kinetic of the enzymatic hydrolysis of rice bran at the constant-reaction rate period were measured. The best results for the ultrasound-assisted enzymatic hydrolysis was obtained using 3 wt% of enzyme, 60 oC and moisture content of 65 wt%, yielding 0.38 g sugar/g rice bran, whereas for the hydrolysis in the absence of ultrasound the highest yield was 0.20 g sugar/g rice bran using 3 wt% of enzyme, 60 oC and moisture content of 50 wt%. The use of ultrasound-assisted enzymatic hydrolysis of rice bran was intensified, obtaining around 74% more fermentable sugar than in the absence, showing that the use of ultrasound is a promising technology to be used in enzymatic reaction as an alternative of process intensification.

  7. Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Grous, W.; Converse, A.; Grethlein, H.; Lynd, L.

    1985-01-01

    The enzymatic hydrolysis of cellulose to glucose involves the formation of cellobiose as an intermediate. It has been found necessary to add cellobiase from Aspergillus niger (NOVO) to the cellobiase component of Trichoderma reesei mutant Rut C-30 (Natick) cellulase enzymes in order to obtain after 48 h complete conversion of the cellobiose formed in the enzymatic hydrolysis of biomass. This study of the cellobiase activity of these two enzyme sources was undertaken as a first step in the formation of a kinetic model for cellulose hydrolysis that can be used in process design. In order to cover the full range of cellobiose concentrations, it was necessary to develop separate kinetic parameters for high- and low-concentration ranges of cellobiose for the enzymes from each organism. Competitive glucose inhibition was observed with the enzymes from both organisms. Substrate inhibition was observed only with the A. niger enzymes.

  8. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  9. Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.

    Science.gov (United States)

    Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da

    2015-01-01

    The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials

    Directory of Open Access Journals (Sweden)

    Murakami Katsuji

    2009-10-01

    Full Text Available Abstract Background Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi. Results We compared A. cellulolyticus and T. reesei cellulase activity against the three lignocellulosic materials: eucalyptus, Douglas fir and rice straw. Saccharification analysis using the supernatant from each culture demonstrated that the enzyme mixture derived from A. cellulolyticus exhibited 2-fold and 16-fold increases in Filter Paper enzyme and β-glucosidase specific activities, respectively, compared with that derived from T. reesei. In addition, culture supernatant from A. cellulolyticus produced glucose more rapidly from the lignocellulosic materials. Meanwhile, culture supernatant derived from T. reesei exhibited a 2-fold higher xylan-hydrolyzing activity and produced more xylose from eucalyptus (72% yield and rice straw (43% yield. Although the commercial enzymes Acremonium cellulase (derived from A. cellulolyticus, Meiji Seika Co. demonstrated a slightly lower cellulase specific activity than Accellerase 1000 (derived from T. reesei, Genencor, the glucose yield (over 65% from lignocellulosic materials by Acremonium cellulase was higher than that of Accellerase 1000 (less than 60%. In addition, the mannan-hydrolyzing activity of Acremonium cellulase was 16-fold higher than that of Accellerase 1000, and the conversion of mannan to mannobiose and mannose by Acremonium cellulase was more efficient. Conclusion We investigated the hydrolysis of lignocellulosic materials by cellulase derived from two types of filamentous fungi. We

  11. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum bagasse

    International Nuclear Information System (INIS)

    Negro, M.J.; Martinez, J.M.; Manero, J.; Saez, F.; Martin, C.

    1990-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equiped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 o C and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesei. Results show a high solubilization rate of hemicelluloses ands variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, correspondig the highest values obtained to 210 o C; 2 min. and 210 o C; 4 min. for sorghum bagasse and eucaliptus wood respectivelly. (Author). 13 refs

  12. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw

    Directory of Open Access Journals (Sweden)

    Billard Hélène

    2012-02-01

    Full Text Available Abstract Background An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Methods Six enzymes, CBH1 (Cel7a, CBH2 (Cel6a, EG1 (Cel7b, EG2 (Cel5a, as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. Results The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25% which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. Conclusions The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.

  13. Mathematical model for enzymatic hydrolysis and fermentation of cellulose by Trichoderma

    Energy Technology Data Exchange (ETDEWEB)

    Peitersen, N; Ross, Jr, E W

    1979-06-01

    This paper describes a mathematical model for the enzymatic hydrolysis and fermentation of cellulose by Trichoderma reesei. The principal features of the model are the assumption of two forms of cellulose (crystalline and amorphous), two sugars (cellobiose and glucose), and two enzymes (cellulase and ..beta..-glucosidase). An inducer-repressor-messenger RNA mechanism is used to predict enzyme formation, and pH effects are included. The model consists of 12 ordinary differential equations for 12 state variables and contains 38 parameters. The parameters were estimated from four sets of experimental data by optimization. The results appear satisfactory, and the computer programs permit simulation of a variety of system changes.

  14. Preparation of immobilized growing cells and enzymatic hydrolysis of sawdust

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization using porous materials such as non-woven material and sawdust, and the enzymatic hydrolysis of sawdust with the enzyme solution from the immobilized growing cells was studied. The filter paper activity, which shows the magnitude of cellulase production in the immobilized cells, was comparable with that in the intact cells. The filter paper activity was affected by addition concentration of monomer and porous materials. The cells in the immobilized cells grew to be adhered on the surface of the fibrous polymers. Sawdust, which was pretreated by irradiation technique, was effectively hydrolyzed with the enzyme solution resulting from the culture of the immobilized cells, in which the glucose yield increased increasing the culture time of the immobilized cells. (author)

  15. Genetic engineering of Trichoderma reesei cellulases and their production.

    Science.gov (United States)

    Druzhinina, Irina S; Kubicek, Christian P

    2017-11-01

    Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  17. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger

    NARCIS (Netherlands)

    Jiang, Yanping; Duarte, Alexandra Vivas; van Den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P.; Zhou, Zhihua; Benoit, Isabelle

    2015-01-01

    Objectives: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. Results: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-d-glucosidase

  18. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger

    NARCIS (Netherlands)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    OBJECTIVES: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. RESULTS: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase

  19. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  20. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  2. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    Science.gov (United States)

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  3. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  4. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Treebupachatsakul, Treesukon; Shioya, Koki; Nakazawa, Hikaru; Kawaguchi, Takashi; Morikawa, Yasushi; Shida, Yosuke; Ogasawara, Wataru; Okada, Hirofumi

    2015-12-01

    The capacity of Trichoderma reesei cellulase to degrade lignocellulosic biomass has been enhanced by the construction of a recombinant T. reesei strain expressing Aspergillus aculeatus β-glucosidase I. We have confirmed highly efficient ethanol production from converge-milled Japanese cedar by recombinant T. reesei expressing A. aculeatus β-glucosidase I (JN11). We investigated the ethanol productivity of JN11 and compared it with the cocktail enzyme T. reesei PC-3-7 with reinforced cellobiase activity by the commercial Novozyme 188. Results showed that the ethanol production efficiency under enzymatic hydrolysis of JN11 was comparable to the cocktail enzyme both on simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF) processes. Moreover, the cocktail enzyme required more protein loading for attaining similar levels of ethanol conversion as JN11. We propose that JN11 is an intrinsically economical enzyme that can eliminate the supplementation of BGL for PC-3-7, thereby reducing the cost of industrial ethanol production from lignocellulosic biomass. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Radiation degradation and the subsequent enzymatic hydrolysis of waste paper

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    Various studies have been carried out to find methods for the pretreatment of waste cellulosic materials to make them more susceptible to enzymatic hydrolysis. In the work reported here, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis have been studied

  6. Enzymatic hydrolysis of biomass at high-solids loadings – A review

    International Nuclear Information System (INIS)

    Modenbach, Alicia A.; Nokes, Sue E.

    2013-01-01

    Enzymatic hydrolysis is the unit operation in the lignocellulose conversion process that utilizes enzymes to depolymerize lignocellulosic biomass. The saccharide components released are the feedstock for fermentation. When performed at high-solids loadings (≥15% solids, w/w), enzymatic hydrolysis potentially offers many advantages over conversions performed at low- or moderate-solids loadings, including increased sugar and ethanol concentrations and decreased capital and operating costs. The goal of this review is to provide a consolidated source of information on studies using high-solids loadings in enzymatic hydrolysis. Included in this review is a brief discussion of the limitations, such as a lack of available water, difficulty with mixing and handling, insufficient mass and heat transfer, and increased concentration of inhibitors, associated with the use of high solids, as well as descriptions and findings of studies that performed enzymatic hydrolysis at high-solids loadings. Reactors designed and/or equipped for improved handling of high-solids slurries are also discussed. Lastly, this review includes a brief discussion of some of the operations that have successfully scaled-up and implemented high-solids enzymatic hydrolysis at pilot- and demonstration-scale facilities. -- Highlights: •High solids enzymatic hydrolysis needed for conversion process to be cost-effective. •Limitations must be addressed before benefits of high-solid loadings fully realized. •Some success with high-solids loadings at pilot and demonstration scale

  7. Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using β-d-glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation.

    Science.gov (United States)

    Mallek-Fakhfakh, Hanen; Fakhfakh, Jawhar; Walha, Kamel; Hassairi, Hajer; Gargouri, Ali; Belghith, Hafedh

    2017-10-01

    This work aims at realizing an optimal hydrolysis of pretreated Alfa fibers (Stipa tenacissima) through the use of enzymes produced from Talaromyces thermophilus AX4, namely β-d-glucosidase and xylanase, by a solid state fermentation process of an agro-industrial waste (wheat bran supplemented with lactose). The carbon source was firstly selected and the optimal values of three other parameters were determined: substrate loading (10g), moisture content (85%) and production time (10days); which led to an optimized enzymatic juice. The outcome was then supplemented with cellulases of T. reesei and used to optimize the enzymatic saccharification of alkali-pretreated Alfa fibers (PAF). The maximum saccharification yield of 83.23% was achieved under optimized conditions (substrate concentration 3.7% (w/v), time 144h and enzyme loading of 0.8 FPU, 15U CMCase, 60U β-d-glucosidase and 125U xylanase).The structural modification of PAF due to enzymatic saccharification was supported by the changes of morphologic and chemical composition observed through macroscopic representation, FTIR and X-Ray analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

    Science.gov (United States)

    Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott

    2016-01-01

    Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...

  9. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.

    Directory of Open Access Journals (Sweden)

    Pankaj Agrawal

    Full Text Available Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight. Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C and wider pH optima (pH 3.0 to 7.0 than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the

  10. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    Science.gov (United States)

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  12. Short-time ultrasonication treatment in enzymatic hydrolysis of biomass

    Science.gov (United States)

    Zengqian Shi; Zhiyong Cai; Siqun Wang; Qixin Zhong; Joseph J. Bozell

    2013-01-01

    To improve the conversion of enzymatic hydrolysis of biomass in an energy-efficient manner, two shorttime ultrasonication strategies were applied on six types of biomass with different structures and components. The strategies include pre-sonication before the hydrolysis and intermittent sonication during the ongoing hydrolysis. The microstructures of each type of...

  13. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  14. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  15. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ait Si Mamar, S.; Hadjadj, A.

    1990-01-01

    The conversion of wheat straw agricultural cellulosic wastes to reducing sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution. (author)

  16. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    Science.gov (United States)

    Mamar, S. Ait Si; Hadjadj, A.

    The conversion of wheat straw agricultural cellulosic wastes to reduning sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution.

  17. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw

    Directory of Open Access Journals (Sweden)

    Dashtban Mehdi

    2012-05-01

    Full Text Available Abstract Background Trichoderma reesei is a widely used industrial strain for cellulase production, but its low yield of β-glucosidase has prevented its industrial value. In the hydrolysis process of cellulolytic residues by T. reesei, a disaccharide known as cellobiose is produced and accumulates, which inhibits further cellulases production. This problem can be solved by adding β-glucosidase, which hydrolyzes cellobiose to glucose for fermentation. It is, therefore, of high vvalue to construct T. reesei strains which can produce sufficient β-glucosidase and other hydrolytic enzymes, especially when those enzymes are capable of tolerating extreme conditions such as high temperature and acidic or alkali pH. Results We successfully engineered a thermostable β-glucosidase gene from the fungus Periconia sp. into the genome of T. reesei QM9414 strain. The engineered T. reesei strain showed about 10.5-fold (23.9 IU/mg higher β-glucosidase activity compared to the parent strain (2.2 IU/mg after 24 h of incubation. The transformants also showed very high total cellulase activity (about 39.0 FPU/mg at 24 h of incubation whereas the parent strain almost did not show any total cellulase activity at 24 h of incubation. The recombinant β-glucosidase showed to be thermotolerant and remains fully active after two-hour incubation at temperatures as high as 60°C. Additionally, it showed to be active at a wide pH range and maintains about 88% of its maximal activity after four-hour incubation at 25°C in a pH range from 3.0 to 9.0. Enzymatic hydrolysis assay using untreated, NaOH, or Organosolv pretreated barley straw as well as microcrystalline cellulose showed that the transformed T. reesei strains released more reducing sugars compared to the parental strain. Conclusions The recombinant T. reesei overexpressing Periconia sp. β-glucosidase in this study showed higher β-glucosidase and total cellulase activities within a shorter incubation

  18. Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery.

    Science.gov (United States)

    Gurram, Raghu N; Menkhaus, Todd J

    2014-07-01

    Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.

  19. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...

  20. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ardica, S.; Calderaro, E.; Cappadona, C.

    1985-01-01

    The effect of γ-ray pre-irradiation of cellulose materials such as wood chips, paper, grain straw, hay and kapok on glucose production on enzymatic hydrolysis by cellulase has been investigated. These materials have been irradiated in air, water and acetate buffer solution over the dose range 10 3 to 4 x 10 6 Gy. In the relatively low dose range, up to about 5 x 10 5 Gy, the glucose yields after enzymatic hydrolysis are practically insensitive to radiation. At higher dose levels, up to 1.7 to 2 x 10 6 Gy, the pre-irradiation becomes very effective on enzymatic cellulose conversion. It has been found that the radiation-induced degradation of cellulose into low molecular weight polysaccharides is dependent on the nature and chemical composition of the cellulose materials and on the radiation environmental conditions. Further increases of dose causes radiation-induced structural modifications in polysaccharides previously produced, which can lead to a decrease in glucose production by enzymatic hydrolysis. (author)

  1. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  2. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger.

    Science.gov (United States)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    2016-01-01

    To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase activities of the best mutant were increased from 1.8 IU/ml, 0.1 IU/ml and 0.05 IU/ml to 4.8 IU/ml, 0.4 IU/ml and 0.3 IU/ml, respectively. The sugar yield of wheat straw saccharification by combining enzymes from this mutant and the Aspergillus niger genetically modified strain ΔcreA/xlnR c/araR c was improved up to 7.5 mg/ml, a 229 % increase compared to the combination of wild type strains. Mixing enzymes from T. reesei and A. niger combined with the genetic modification of transcription factors is a promising strategy to increase saccharification efficiency.

  3. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  4. Optimization of Glucose Production of Cocopeat Using Whole Cell Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Zaki Muhammad

    2018-01-01

    Full Text Available The high content of cellulose in cocopeat makes this material convertible into glucose. The converting process of cellulose into glucose can be done by hydrolysis. In this research, the coocopeat hydrolyzed enzymatically using cellulose ezyme from Trichoderma reesei. The purpose of this study was to obtain optimum conditions of glucose yield and to know the effect of concentration of NaOH, molasses mass, and the effect of hydrolisis time on glucose yield produced. The variabel used was hydrolisis time (0; 124; and 240 hour, NaOH concenteration (1%; 2%; and 3%, and molasses mass (40; 50; and 60 gr/l. The result showed the higest glucose level obtained at 2% NaOH concenteration, molasses mass 60 gram, and hydrolysis time 240 hours, while the predicted resulted of the optimum conditions of glucose level produced using the software Design Expert 6.08 is 776.771 mg/l at NaOH concenteration 1,35%, molasses mass 59.96 mg/l and hydrolisis time 215.62 hours.

  5. Combined enzymatic hydrolysis and fermentation of hemicellulose to 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Yu, E.K.C.; Deschatelets, L.; Saddler, J.N.

    1984-06-01

    Hemicellulose-rich fractions from several agricultural residues were converted to 2,3-butanediol by a combined enzymatic hydrolysis and fermentation process. Culture filtrates from Trichoderma harzianum E58 were used to hydrolyze the substrates while Klebsiella pneumoniae fermented the liberated sugars to 2,3-butanediol. Approximately 50-60% of a 5% (w/v) xylan preparation could be hydrolyzed and quantitatively converted to 2,3-butanediol using this procedure. Although enzymatic hydrolysis was optimal at pH 5.0 and 50/sup 0/C, the combined hydrolysis and fermentation was most efficient at pH 6.5 and 30/sup 0/C. Combined hydrolysis and fermentation resulted in butanediol levels that were 20-40% higher than could be obtained with a separate hydrolysis and fermentation process. The hemicellulose-rich water-soluble fractions obtained from a variety of steam-exploded agricultural residues could be readily used by the combined hydrolysis and fermentation approach resulting in butanediol yields of 0.4-0.5 g/g of reducing sugar utilized.

  6. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    Science.gov (United States)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  7. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  9. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Chandra, Richard P; Saddler, Jack N

    2007-01-01

    Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.

  10. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    International Nuclear Information System (INIS)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-01-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose

  11. Improving enzymatic hydrolysis of industrial hemp ( Cannabis sativa L.) by electron beam irradiation

    Science.gov (United States)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-09-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  12. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo-Jeong [Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Sung, Yong Joo [KT and G Central Research Institute, 302 Shinseong-Dong, Yuseong-Gu, Daejeon 305-805 (Korea, Republic of)], E-mail: yosung17@yahoo.co.kr

    2008-09-15

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  13. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Tseng-Hsing; Lu, Shin

    2013-06-01

    The effective production of xylooligosaccharides (XOS) from wheat bran was investigated. Wheat bran contains rich hemicellulose which can be hydrolyzed by enzyme; the XOS were obtained by microwave assisted enzymatic hydrolysis. To improve the productivity of XOS, repeated microwave assisted enzymatic hydrolysis and activated carbon adsorption method was chosen to eliminate macromolecules in the XOS. On the basis of experimental data, an industrial XOS production process consisting of pretreatment, repeated microwave assisted enzymatic treatment and purification was designed. Using the designed process, 3.2g dry of purified XOS was produced from 50 g dry wheat bran powder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  15. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  16. Enzymatic hydrolsis of pretreated rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, E.Y.; Shoemaker, S.P. [California Inst. of Food and Agricultural Research, Davis, CA (United States); Ding, H. [California Univ., Davis (Canada). Dept. of Food Science and Technology; Labavitch, J.M. [California Univ., Davis, CA (United States). Dept. of Pomology

    1997-02-01

    California rice straw is being evaluated as a feedstock for production of power and fuel. This paper examines the initial steps in the process: pretreatment of rice straw and enzymatic hydrolysis of the polysaccharides in the pretreated material to soluble sugars. Rice straw was subjected to three distinct pretreatment procedures: acid-catalyzed steam explosion (Swan Biomass Company), acid hydrolysis (U.S. DOE National Renewable Energy Laboratory), and ammonia fiber explosion or AFEX (Texas A and M University). Standard conditions for each pretreatment were used, but none was optimized for rice straw specifically. Six commercial cellulases, products of Genencor International (USA), Novo (Denmark), Iogen (Canada) and Fermtech (Russia) were used for hydrolysis. The Swan- and the acid-pretreatments effectively removed hemicellulose from rice straw, providing high yields of fermentable sugars. The AFEX-pretreatment was distinctly different from other pretreatments in that it did not significantly solubilize hemicellulose. All three pretreatment procedures substantially increased enzymatic digestibility of rice straw. Three commercial Trichoderma-reesei-derived enzyme preparations: Cellulase 100L (Iogen), Spezyme CP (Genencor), and Al (Fermtech), were more active on pretreated rice straw compared than others tested. Conditions for hydrolysis of rice straw using Cellulase 100L were evaluated. The supplementation of this enzyme preparation with cellobiase (Novozyme 188) significantly improved the parameters of hydrolysis for the Swan- and the acid-pretreated materials, but did not affect the hydrolysis of the AFEX-pretreated rice straw. (Author)

  17. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes ...... the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels....

  18. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    cellobiose and glucose. The reported KI for glucose on the T. reesei cellulases and -glucosidase varies from 0.04 to 5 g/L. The type of inhibition is debated, and probably varies for different -glucosidases, but with a required goal of sufficient glucose concentration to support ethanol concentrations....... This is because the currently used Trichoderma reesei derived cellulases, i.e. exoglucanases (mainly the cellobiohydrolases Cel7A and Cel6A), endo-1,4--glucanases, and now boosted with -glucosidase and other enzymes, now considered the “industry standard” enzymes, are significantly inhibited by the products...... of minimum ∼5–6% v/v, the glucose product concentrations exceed the critical limit for product inhibition. Hence, regardless of the recent progress in enzyme development for cellulose hydrolysis, the glucose product inhibition remains an issue, which is exacerbated as the reaction progresses, especially...

  19. Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Koo, Bon-Wook; Min, Byeong-Cheol; Gwak, Ki-Seob; Lee, Soo-Min; Choi, Joon-Weon; Yeo, Hwanmyeong; Choi, In-Gyu

    2012-01-01

    Although organosolv pretreatment removed substantial amounts of lignin and xylan, the yield of glucan which is a major sugar source for fermentation to ethanol is more than 90% in most conditions of the organosolv pretreatment. Relative lignin contents of all pretreated biomass were more than 200 g kg −1 , however enzymatic conversions were increased dramatically comparing to untreated biomass. Therefore the correlation between lignin and enzymatic hydrolysis could not be explained just by lignin content, and other changes resulting from lignin removal affected enzymatic hydrolysis. Results on enzymatic conversion and sugar recovery suggested that the critical temperature improving enzymatic hydrolysis significantly was between 120 °C and 130 °C. Microscopic analysis using Field emission scanning electron microscopy (FE-SEM) showed that structural lignin changes happened through organosolv pretreatment. Lignins were isolated from lignin carbohydrate complex (LCC) at the initial stage and then migrated to the surface of biomass. The isolated and migrated lignins were finally redistributed onto surface. These structural changes formed droplets on surface and increased pore volume in pretreated biomass. The increase in pore volume also increased available surface area and enzyme adsorption at initial stage, and thus enzymatic conversion increased significantly through organosolv pretreatment. It was verified that the droplets were mainly composed of lignin and the lignin droplets inhibited enzymatic hydrolysis through adsorption with cellulase. -- Highlights: ► Just lignin contents cannot explain a correlation with enzymatic hydrolysis. ► Several changes resulted from lignin removal must affect enzymatic hydrolysis. ► Droplets are formed by structural changes in lignin during organosolv pretreatment. ► Formation of the lignin droplet increases the pore volume in biomass. ► The increase in pore volume enhances the enzymatic hydrolysis.

  20. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.

    Science.gov (United States)

    Fitzpatrick, J; Kricka, W; James, T C; Bond, U

    2014-07-01

    To compare the production of recombinant cellulase enzymes in two Saccharomyces species so as to ascertain the most suitable heterologous host for the degradation of cellulose-based biomass and its conversion into bioethanol. cDNA copies of genes representing the three major classes of cellulases (Endoglucanases, Cellobiohydrolases and β-glucosidases) from Trichoderma reesei were expressed in Saccharomyces pastorianus and Saccharomyces cerevisiae. The recombinant enzymes were secreted by the yeast hosts into the medium and were shown to act in synergy to hydrolyse cellulose. The conditions required to achieve maximum release of glucose from cellulose by the recombinant enzymes were defined and the activity of the recombinant enzymes was compared to a commercial cocktail of T. reesei cellulases. We demonstrate that significantly higher levels of cellulase activity were achieved by expression of the genes in S. pastorianus compared to S. cerevisiae. Hydrolysis of cellulose by the combined activity of the recombinant enzymes was significantly better at 50°C than at 30°C, the temperature used for mesophilic yeast fermentations, reflecting the known temperature profiles of the native enzymes. The results demonstrate that host choice is important for the heterologous production of cellulases. On the basis of the low activity of the T. reesei recombinant enzymes at fermentation temperatures, we propose a two-step process for the hydrolysis of cellulose and its fermentation into alcohol using cellulases produced in situ. © 2014 The Society for Applied Microbiology.

  1. Enzymatic Hydrolysis of Pretreated Fibre Pressed Oil Palm Frond by using Sacchariseb C6

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Rahman, R. A.; Illias, R. M.

    2017-06-01

    Enzymatic hydrolysis becomes a prominent technology for conversion of cellulosic biomass to its glucose monomers that requires an action of cellulolytic enzymes in a sequential and synergistic manner. In this study, the effect of agitation speed, glucan loading, enzyme loading, temperature and reaction time on the production of glucose from fibre pressed oil palm frond (FPOPF) during enzymatic hydrolysis was screened by a half factorial design 25-1 using Response Surface Methodology (RSM). The FPOPF sample was first delignified by alkaline pretreatment at 4.42 (w/v) sodium hydroxide for an hour prior to enzymatic hydrolysis using commercial cellulase enzyme, Sacchariseb C6. The effect of enzymatic hydrolysis on the structural of FPOPF has been evaluated by Scanning Electron Microscopy (SEM) analysis. Characterization of raw FPOPF comprised of 4.5 extractives, 40.7 glucan, 26.1 xylan, 26.2 lignin and 1.8 ash, whereas for pretreated FPOPF gave 0.3 extractives, 61.4 glucan, 20.4 xylan, 13.3 lignin and 1.3 ash. From this study, it was found that the best enzymatic hydrolysis condition yielded 33.01 ± 0.73 g/L of glucose when performed at 200 rpm of agitation speed, 60 FPU/mL of enzyme loading, 4 (w/w) of glucan loading, temperature at 55 □ and 72 hours of reaction time. The model obtained was significant with p-value enzymatic hydrolysis from pretreated FPOPF produce high amount of glucose that enhances it potential for industrial application. This glucose can be further used to produce high-value products.

  2. Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach

    Science.gov (United States)

    Jamil, N. M.; Wang, Q.

    2016-06-01

    Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.

  3. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  4. Aqueous two-phase systems for extractive enzymatic hydrolysis of biomass

    DEFF Research Database (Denmark)

    Bussamra, Bianca Consorti; Azzoni, Sindelia Freitas; Mussatto, Solange I.

    and enzymes, phase diagrams and volumetric ratios. The results of this project will make possible to design a process that enables high sugar concentration during the hydrolysis reaction, overcoming one of the biggest drawbacks regarding the production of second-generation ethanol: the enzymatic inhibition...... optimal aqueous two-phase systems for the separation of sugars and enzymes, which allow the development of an improved second-generation ethanol process.......Sugars derived from lignocellulosic materials are the main carbon sources in bio-based processes aiming to produce renewable fuels and chemicals. One of the major drawbacks during enzymatic hydrolysis of lignocellulosic materials to obtainsugars is the inhibition of enzymes by reaction products...

  5. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  6. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  7. Effects of lipids on enzymatic hydrolysis and physical properties of starch.

    Science.gov (United States)

    Ai, Yongfeng; Hasjim, Jovin; Jane, Jay-lin

    2013-01-30

    This study aimed to understand effects of lipids, including corn oil (CO), soy lecithin (SL), palmitic acid (PA), stearic acid (SA), oleic acid (OA), and linoleic acid (LA), on the enzymatic hydrolysis and physical properties of normal corn (NCS), tapioca (TPS), waxy corn (WCS), and high-amylose corn (HA7) starch, and to elucidate mechanisms of interactions between the starches and lipids. After cooking with the lipids (10%, w/w, dsb), NCS, TPS, and HA7 showed significant decreases in enzymatic hydrolysis, and their DSC thermograms displayed amylose-lipid-complex dissociation peaks except with the CO. (13)C NMR spectra of amylodextrin with CO showed downfield changes in the chemical shifts of carbons 1 and 4 of the anhydroglucose unit, indicating helical complex formation. Generally, free fatty acids (FFAs) reduced, but SL increased the peak viscosities of starches. FFAs and SL decreased, but CO increased the gel strength of NCS. These lipids displayed little impacts on the enzymatic hydrolysis and physical properties of WCS because it lacked amylose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. High-solids loading enzymatic hydrolysis of waste papers for biofuel production

    International Nuclear Information System (INIS)

    Wang, Lei; Templer, Richard; Murphy, Richard J.

    2012-01-01

    Highlights: ► Waste papers have great potential as a feedstock for bioethanol production. ► A wet blending step would significantly enhance enzymatic hydrolysis efficiency. ► High-solids loading saccharification was performed successfully on waste papers. ► Saccharification data were from four types of paper and two enzyme alternatives. ► Enzymatic hydrolysis kinetic models were validated by experimental data. -- Abstract: Waste papers (newspaper, office paper, magazines and cardboard in this study) with 50–73% (w/w oven dry weight) carbohydrate contents have considerable potential as raw materials for bioethanol production. A particle size reduction step of wet blending prior to enzymatic hydrolysis of newspaper was found to increase the glucan conversion efficiency by up to 10%. High-solids loading hydrolysis at 15% (w/w) of four types of paper using two enzyme alternatives, Celluclast 1.5L supplemented with Novozyme 188 and Cellic Ctec 1 (Novozymes A/S, Demark), at various enzyme concentrations were successfully performed in a lab-scale overhead-stirred reactor. This work has identified the relative saccharification performance for the four types of paper and shows office paper and cardboard to be more suitable for producing bioethanol than newspaper or magazine paper. The experimental data were also very well described by a modified, simple three parameter glucan and xylan hydrolysis model. These findings provide the possibility for incorporating this validated kinetic model into process designs required for commercial scale bioethanol production from waste paper resources.

  9. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry - SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Haekkinen, M.; Pakula, T. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anne.kallioinen@vtt.fi

    2010-10-15

    In SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as a raw material for production of sugars to be processed further to ethanol and other chemicals. These raw materials containing high proportion of carbohydrates have been analysed and pretreated for enzyme hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Birch and bagasse could easily be pretreated with steam explosion. Catalytic and alkaline oxidation treatment of spruce produced material with superior hydrolysability to steam exploded material. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could be detected only with catalytically oxidised spruce. In addition, the hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  10. Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants

    International Nuclear Information System (INIS)

    Menegol, Daiane; Scholl, Angélica Luisi; Fontana, Roselei Claudete; Dillon, Aldo José Pinheiro; Camassola, Marli

    2014-01-01

    Highlights: • Milling is an attractive method to enhance the enzymatic hydrolysis of biomass. • Surfactants improve the efficiency of lignocellulose enzymatic hydrolysis. • Pretreatment with NaOH, smaller particle size and Tween 80® were more efficient. - Abstract: In the search for renewable energy sources, elephant grass is an alternative substrate for ethanol production, but this substrate must be hydrolyzed by cellulases and xylanases to liberate fermentable sugars. During enzymatic hydrolysis, cellulase activity is reduced by the irreversible adsorption of cellulase onto cellulose, decreasing the rate of hydrolysis. Adding surfactants during hydrolysis can improve the process. The effects of Tween® and Triton® surfactants on the enzymatic hydrolysis of elephant grass were evaluated in this context. The data indicate that pretreatment with sodium hydroxide, along with a smaller particle size (0.075–0.152 mm) and the use of Tween 80®, increased the efficiency of releasing reducing sugars from pretreated elephant grass biomass. Thus, it is possible to reduce grinding costs in second-generation ethanol production through the use of surfactants, as they allow efficient hydrolysis of larger biomass particles

  11. Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    The effect of pretreatment by radiation and acids—sulfuric, hydrochloric and acetic—on the enzymatic hydrolysis of chaff was studied. The combination of radiation and acids accelerates subsequent crushing and enzymatic hydrolysis. The percentage of fine powder below 115 mesh, after the crushing and the glucose yield on subsequent enzymatic hydrolysis, increased with increasing acid concentration, treatment time and irradiation dose. Radiation and hydrochloric acid pretreatment was the most effective in giving a high glucose conversion yield (about 90%). Irradiation dose, acid concentration, treatment temperature and treatment time were 20 Mrad, 0·5%, 70°C, and 5 h, respectively

  12. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    . The work involved evaluation of 1) possible ways to increase the glucose release from the commercial cellulase product Celluclast by boosting with other enzyme activities to increase the enzymatic hydrolysis, 2) comparing differently pretreated feedstock substrates and 3) evaluating a fed-batch substrate...... mixture resulted in a glucose release corresponding to ~84 % of the glucose release from Celluclast. It was therefore suggested that other enzyme activities than the 4 four main cellulase activities in Celluclast are necessary for optimal hydrolysis of lignocellulose. Even though Celluclast...... is a multicomponent cellulase mixture, there are still possibilities for further improvement in terms of providing the most efficient cellulase mixture for lignocellulose hydrolysis. It was shown that substrates evaluated all had some residual hemicellulose in the solid cellulose fraction after pretreatment...

  13. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.

    Science.gov (United States)

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    Enzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework. In this study, we present a method to image cellulosic substrates with complex three-dimensional structure, such as filter paper, undergoing hydrolysis under conditions relevant to industrial saccharification processes (i.e., temperature of 50°C, using commercial cellulolytic cocktails). Fluorescence intensities resulting from confocal images were used to estimate parameters for a diffusion and reaction model. Furthermore, the observation of a relatively constant bound enzyme fluorescence signal throughout hydrolysis supported our modeling assumption regarding the structure of biomass during hydrolysis. The observed behavior suggests that pore evolution can be modeled as widening of infinitely long slits. The resulting model accurately predicts the concentrations of soluble carbohydrates obtained from independent saccharification experiments conducted in bulk, demonstrating its relevance to biomass conversion work. © 2014 Wiley Periodicals, Inc.

  14. Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1987-09-01

    The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the recalcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original filter paper activity could be recovered. When steam-treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis process, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of cellulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc. (Refs. 14).

  15. Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions

    DEFF Research Database (Denmark)

    Ashraf, Muhammad Tahir; Thomsen, Mette Hedegaard; Schmidt, Jens Ejbye

    2017-01-01

    Utilization of multi-specie feedstocks is imperative for application of lignocellulosic biorefineries in arid regions. Different lignocellulosic residues vary in composition and anatomical features. Pretreatment and enzymatic hydrolysis are two processes at the front end of any lignocellulosics...... biorefinery applying biochemical pathway, and have to efficiently deal with the variance in the feedstock composition and properties. However, there is limited knowledge about effect of mixing different lignocellulosics on pretreatment and enzymatic hydrolysis yields. In this study effect of mixing...... on the yields from hydrothermal pretreatment and enzymatic hydrolysis was analyzed by mixing three different lignocellulosic residues — Bermuda grass, Jasmine hedges, and date palm fronds. Results showed that the individual and the mixed lignocellulosics gave same yields when treated under similar conditions...

  16. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass.

    Science.gov (United States)

    Yu, Zhiying; Gwak, Ki-Seob; Treasure, Trevor; Jameel, Hasan; Chang, Hou-min; Park, Sunkyu

    2014-07-01

    The impact of lignin-derived inhibition on enzymatic hydrolysis is investigated by using lignins isolated from untreated woods and pretreated wood pulps. A new method, biomass reconstruction, for which isolated lignins are precipitated onto bleached pulps to mimic lignocellulosic biomass, is introduced, for the first time, to decouple the lignin distribution issue from lignin chemistry. Isolated lignins are physically mixed and reconstructed with bleached pulps. Lignins obtained from pretreated woods adsorb two to six times more cellulase than lignins obtained from untreated woods. The higher adsorption of enzymes on lignin correlates with decreased carbohydrate conversion in enzymatic hydrolysis. In addition, the reconstructed softwood substrate has a lower carbohydrate conversion than the reconstructed hardwood substrate. The degree of condensation of lignin increases significantly after pretreatment, especially with softwood lignins. In this study, the degree of condensation of lignin (0.02 to 0.64) and total OH groups in lignin (1.7 to 1.1) have a critical impact on cellulase adsorption (9 to 70%) and enzymatic hydrolysis (83.2 to 58.2%); this may provide insights into the more recalcitrant nature of softwood substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry- SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Hytoenen, E.; Haekkinen, M. (VTT Technical Research Centre of Finland, Espoo (Finland)), email: anne.kallioinen@vtt.fi (and others)

    2011-11-15

    In the SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as raw materials for production of sugars to be processed further to ethanol or other chemicals. These raw materials, containing high proportion of carbohydrates have been analysed and pretreated for enzymatic hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Small carboxylic acids were an interesting side product from oxidation pretreatment. For feasibility study, 8 process cases have been selected and will be compared. Optimal enzyme mixtures have been determined for hydrolysis of pretreated materials. Results show that optimal enzyme composition depends clearly on the raw material and the pretreatment method. Pretreated raw materials were also hydrolysed efficiently in high dry matter conditions with commercial enzymes. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could only be detected with catalytically oxidised spruce. In addition, the induction of hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  18. Cross-synergism in enzymatic hydrolysis of lignocellulosics: mathematical correlations according to a hyperbolic model

    Energy Technology Data Exchange (ETDEWEB)

    Tarantili, P.A.; Koullas, D.P.; Christakopoulos, P.; Kekos, D.; Koukios, E.G.; Macris, B.J. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

    1996-10-01

    The effect of cross-synergism in enzymatic hydrolysis of ball-milled Avicell, alkali-treated straw cellulose (ATSC), cotton and filter paper was investigated using mixtures of Fusarium oxysporum and Neurospora crassa enzymes. The experimental data were fitted according to an empirical hyperbolic model which utilized two parameters, the maximum conversion ({chi}{sub max}) and the enzymatic hydrolysis time corresponding to 50% of {chi}{sub max} (t{sub 1/2}). The model can predict conversion of polysaccharides as a function of hydrolysis time. Both model parameters were found to be strongly dependent on the crystallinity index as well as on the degree of delignification of the substrate. Up to 60% cellulose hydrolysis can be achieved when the crystallinity index of Avicell is reduced from 94.8% to 63.3%. The percentage increase of {chi}{sub max} due to delignification was higher than the corresponding increase of t{sub 1/2}. The extent of cross-synergism depends strongly on crystallinity index and degree of delignification. This type of synergism has been found to be significant in the case of substrates which are resistant to hydrolysis, such as Avicell (with high crystallinity index) or cotton. Cross-synergism phenomena caused by enzymatic mixtures can double cellulose hydrolysis yield with delignified straw as compared to the hydrolysis yields achieved by single-microorganism cellulases. (author)

  19. Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose

    Directory of Open Access Journals (Sweden)

    A. de A. Guilherme

    Full Text Available ABSTRACT This work studied the enzymatic hydrolysis of sugarcane bagasse aiming at the production of glucose and xylose. The bagasse was subjected to two different pretreatments: combined acid and alkalinepretreatment and hydrogen peroxidepretreatment. The enzymatic hydrolysis was optimized and a kinetic study was carried out in a stirred tank reactor (STR in batch mode. Optimal conditions were obtained by subjecting the bagasse to the hydrogen peroxide pretreatment followed by enzymatic hydrolysis. The addition of xylanases to the enzymatic mixture improved the production of fermentable sugars by 48%.

  20. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    Directory of Open Access Journals (Sweden)

    Dennis J. Díaz-Rincón

    2017-01-01

    Full Text Available Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1 were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.

  1. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    Science.gov (United States)

    Díaz-Rincón, Dennis J.; Duque, Ivonne; Osorio, Erika; Rodríguez-López, Alexander; Espejo-Mojica, Angela; Parra-Giraldo, Claudia M.

    2017-01-01

    Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile. PMID:28951785

  2. Comparison of the economics of acid and enzymatic hydrolysis of newsprint

    Energy Technology Data Exchange (ETDEWEB)

    Grethlein, H E

    1978-04-01

    In order to compare the process economics of making glucose from cellulose, a plant design is presented using acid hydrolysis which can be compared with a published design using enzyme hydrolysis. A common design basis is used; namely, an input capacity of 885 ton/day newsprint with a common technique of cost estimation. The cost of making glucose is in the range of 1.75 to 2.45 cents/lb, depending on the slurry concentration fed to the reactor for the acid hydrolysis. This cost range is less than the published estimate of 5.2 cents/lb for enzymatic hydrolysis.

  3. The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions

    Science.gov (United States)

    Joseph R. Samaniuk; C. Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2011-01-01

    Enzymatic hydrolysis of lignocellulosic biomass in a high shear environment was examined. The conversion of cellulose to glucose in samples mixed in a torque rheometer producing shear flows similar to those found in twin screw extruders was greater than that of unmixed samples. In addition, there is a synergistic effect of mixing and enzymatic hydrolysis; mixing...

  4. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    Science.gov (United States)

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2017-03-01

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.

  5. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  6. Radiation degration and the subsequent enzymatic hydrolysis of waste papers

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    In recent years, many methods have been proposed for the hydrolysis of waste cellulose to utilize it as a new source of alcohol. Because it is difficult to hydrolyze waste cellulosic materials effectivley with an enzyme, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis was studied. Preirradiation (x rays from 60 Co) accelerated the hydrolysis rate of newspaper by cellulase and the reducing-sugar yield increased with increasing irradiation dose. It is thought that preirradiation probably contributes to loosening and releasing the compactly entangled structure of cellulose and lignin in the materials by radiation degradation

  7. Switchgrass storage effects on the recovery of carbohydrates after liquid hot water pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Danielle Julie Carrier

    2016-08-01

    Full Text Available Perennial grasses that would be used for bioenergy and bioproducts production will need to be stored for various periods of time to ensure a continual feedstock supply to a bioprocessing facility. The effects of storage practices on grass composition and the response of grasses to subsequent bioprocesses such as pretreatment and enzymatic hydrolysis needs to be understood to develop the most efficient storage protocols. This study examined the effect of outdoor storage of round switchgrass bales on composition before and after liquid hot water pretreatment (LHW and enzymatic hydrolysis. This study also examined the effect of washing LHW pretreated biomass prior to enzymatic hydrolysis. It was determined that switchgrass composition after baling was stable. As expected, glucan and lignin contents increased after LHW due to decreases in xylan and galactan. Washing biomass prior to enzymatic hydrolysis reduced saccharification, especially in samples from the interior of the bale, by at least 5%.

  8. Enzymatic Hydrolysis of Oleuropein from Olea europea (Olive Leaf Extract and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Jiao-Jiao Yuan

    2015-02-01

    Full Text Available Oleuropein (OE, the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  9. Study on the technology of compound enzymatic hydrolysis of whole passion fruit

    Science.gov (United States)

    Yang, Yu-xia; Duan, Zhen-hua; Kang, Chao; Zhu, Xiang-hao; Li, Ding-jin

    2017-12-01

    Fresh Whole Passion Fruit was used as raw material, The enzymatic hydrolysis technology of Passion Fruit by Complex enzyme were studied, The effects of enzyme dosage, Enzyme ratio(cellulose: pectinase), pH, temperature and time on the hydrolysis were investigated by single-tests and orthogonal tests, the hydrolysis indicators of single-factor tests and orthogonal tests were juice yield. The optimal hydrolysis conditions of Passion Fruit by Complex enzyme were enzyme dosage 0.12%, Enzyme ratio 5:1, hydrolysis temperature 50°C, pH4.0 and time 3.5 h. Under such conditions, juice yield of Passion Fruit was 92.91%.

  10. Enteral Tube Feeding Nutritional Protein Hydrolysate Production Under Different Factors By Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Nguyen ThiQuynhHoa

    2015-01-01

    Full Text Available Abstract Hydrolysis of proteins involves the cleavage of peptide bonds to give peptides of varying sizes and amino acid composition. There are a number of types of hydrolysis enzymatic acid or alkali hydrolysis. Chemical hydrolysis is difficult to control and reduces the nutritional quality of products destroying L-form amino acids and producing toxic substances such as lysino-alanine. Enzymatic hydrolysis works without destructing amino acids and by avoiding the extreme temperatures and pH levels required for chemical hydrolysis the nutritional properties of the protein hydrolysates remain largely unaffected. In this research we investigate the fat removal and protein hydrolysis from pork meat to produce the enteral tube feeding nutritional protein hydrolysate for patient. Our results are as follows meat moisture 75.1 protein 22.6 lipid 1.71 ash 0.5 vitamin B1 1.384mg100g n hexantreatment at 80oCin 45 minutes and drying 30 minutes in 90oC.Viscosity of the hydrolysate is very low 2.240 0.092 cPand high degree of hydrolysis 31.390 0.138 . The final protein powder has balance nutritional components and acid amines low microorganisms which are safety for human consumption.

  11. Two Major Facilitator Superfamily Sugar Transporters from Trichoderma reesei and Their Roles in Induction of Cellulase Biosynthesis*

    Science.gov (United States)

    Zhang, Weixin; Kou, Yanbo; Xu, Jintao; Cao, Yanli; Zhao, Guolei; Shao, Jing; Wang, Hai; Wang, Zhixing; Bao, Xiaoming; Chen, Guanjun; Liu, Weifeng

    2013-01-01

    Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the Δstp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement. PMID:24085297

  12. Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Zhu, Duming; Li, Zihao; Zhan, Ningxin; Zheng, Jieyi; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-10-01

    Effect of the molecular structure of lignin-based polyoxyethylene ether (EHL-PEG) on enzymatic hydrolysis of Avicel and corn stover was investigated. With the increase of PEG contents and molecular weight of EHL-PEG, glucose yield of corn stover increased. EHL-PEG enhanced enzymatic hydrolysis of corn stover significantly at buffer pH 4.8-5.5. Glucose yield of corn stover at 20% solid content increased from 32.8% to 63.8% by adding EHL-PEG, while that with PEG4600 was 54.2%. Effect of EHL-PEG on enzymatic hydrolysis kinetics of cellulose film was studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). An enhancing mechanism of EHL-PEG on enzymatic hydrolysis kinetics of cellulose was proposed. Cellulase aggregates dispersed by EHL-PEG excavated extensive cavities into the surface of cellulose film, making the film become more loose and exposed. After the maximum enzymatic hydrolysis rate, the film was mainly peeled off layer by layer until equilibrium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  14. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin.

    Science.gov (United States)

    De Maria, Serena; Ferrari, Giovanna; Maresca, Paola

    2017-08-01

    The extent of enzymatic proteolysis mainly depends on accessibility of the peptide bonds, which stabilize the protein structure. The high hydrostatic pressure (HHP) process is able to induce, at certain operating conditions, protein displacement, thus suggesting that this technology can be used to modify protein resistance to the enzymatic attack. This work aims at investigating the mechanism of enzymatic hydrolysis assisted by HHP performed under different processing conditions (pressure level, treatment time). Bovine serum albumin was selected for the experiments, solubilized in sodium phosphate buffer (25 mg mL -1 , pH 7.5) with α-chymotrypsin or trypsin (E/S ratio = 1/10) and HPP treatment (100-500 MPa, 15-25 min). HHP treatment enhanced the extent of the hydrolysis reaction of globular proteins, being more effective than conventional hydrolysis. At HHP treatment conditions maximizing the protein unfolding, the hydrolysis degree of proteins was increased as a consequence of the increased exposure of peptide bonds to the attack of proteolytic enzymes. The maximum hydrolysis degree (10% and 7% respectively for the samples hydrolyzed with α-chymotrypsin and trypsin) was observed for the samples processed at 400 MPa for 25 min. At pressure levels higher than 400 MPa the formation of aggregates was likely to occur; thus the degree of hydrolysis decreased. Protein unfolding represents the key factor controlling the efficiency of HHP-assisted hydrolysis treatments. The peptide produced under high pressure showed lower dimensions and a different structure with respect to those of the hydrolysates obtained when the hydrolysis was carried out at atmospheric pressure, thus opening new frontiers of application in food science and nutrition. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.

    Science.gov (United States)

    Banerjee, Goutami; Car, Suzana; Liu, Tongjun; Williams, Daniel L; Meza, Sarynna López; Walton, Jonathan D; Hodge, David B

    2012-04-01

    Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass-to-ethanol pipeline. Here, the feasibility of scaling-up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H(2) O(2) /g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose- and xylose-utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922-931. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  16. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    Science.gov (United States)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  17. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B; Huyghebaert, A

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  18. Nutritional composition of different grades of edible bird's nest and its enzymatic hydrolysis

    Science.gov (United States)

    Noor, Hidayati Syamimi Mohd; Babji, Abdul Salam; Lim, Seng Joe

    2018-04-01

    Edible bird nest (EBN) is a powerful and nutritious food usually consumed by the Chinese Community and it is considered among the most expensive animal products which are made up by salivation of swiftlets (Aerodramus fuciphagus). The other 5% to 10% are made up of foreign matters such as feathers, faecal matter and dirt. The EBN is graded based on its aesthetics as well as its cleaning processes. The aim of this study were to determine and compare EBN of different grades (A, B, C, D) in terms of proximate composition and amino acid profile, and next to enzymatically hydrolyse and determine the degree of hydrolysis (DH) and the recovery percentage of EBN hydrolysates. The enzymatic hydrolysis were performed as an alternative cleaning process of the various grades of EBN, where the glycoproteins were hydrolysed to glycopeptides, making them soluble and leaving behind other insoluble impurities. The results in this study showed that EBN contained high crude protein content: 60.59% (EBNA), 59.50% (EBNB), 54.29% (EBNC) and 56.57% (EBND). Lower grade EBNs (EBNC and EBND) has much higher ash content, i.e. impurities, compared to higher grade EBNs (EBNA and EBNB). In terms of amino acid profile, EBND showed the highest total amino acids compared to EBNA, EBNB and EBNC, with serine and aspartic acid being the main amino acids. Treating the EBN with alcalase for 1.0 - 4.0 hours produced hydrolysates with different degree of hydrolysis (DH), ranging from 10.83 %DH (EBNA) to 13.79 %DH (EBNC). The recovery of EBN after enzymatic hydrolysis range from 89 % (EBNB) to 99% (EBNA). Overall, results showed nutritional composition and amino acid profile of EBN of various grades were significantly different in its nutritional quality, while the enzymatic hydrolysis has successfully separated the impurities from the lower grades EBN.

  19. ENZYMATIC HYDROLYSIS OF SWITCHGRASS AND COASTAL BERMUDA GRASS PRETREATED USING DIFFERENT CHEMICAL METHODS

    Directory of Open Access Journals (Sweden)

    Jiele Xu

    2011-06-01

    Full Text Available To investigate the effects of biomass feedstock and pretreatment method on the enzyme requirement during hydrolysis, swichgrass and coastal Bermuda grass pretreated using H2SO4, NaOH, and Ca(OH2 at the optimal conditions were subjected to enzymatic hydrolysis using two enzyme combinations: NS 50013 + NS 50010 and Cellic CTec + Cellic HTec. The enzyme loadings were optimized, and correlations between feedstock property, pretreatment strategy, and enzyme usage were evaluated. The results show that pretreatment methods resulting in greater lignin contents in the pretreated biomass were generally associated with higher enzyme requirements. More sugars could be recovered from alkaline-pretreated biomass during enzymatic hydrolysis due to the better carbohydrate preservation achieved at mild pretreatment temperatures. The cellulase enzyme, Cellic CTec, was more efficient in catalyzing the hydrolysis of coastal Bermuda grass, a feedstock more digestible than the pretreated swichgrass, following pretreatment with NaOH or Ca(OH2.

  20. Influence of enzymatic hydrolysis on the allergenic reactivity of processed cashew and pistachio.

    Science.gov (United States)

    Cuadrado, Carmen; Cheng, Hsiaopo; Sanchiz, Africa; Ballesteros, Isabel; Easson, Michael; Grimm, Casey C; Dieguez, M Carmen; Linacero, Rosario; Burbano, Carmen; Maleki, Soheila J

    2018-02-15

    Cashew and pistachio allergies are considered a serious health problem. Previous studies have shown that thermal processing, pressurization and enzymatic hydrolysis may reduce the allergenic properties of food by changing the protein structure. This study assesses the allergenic properties of cashew and pistachio after thermal treatment (boiling and autoclaving), with or without pressure (autoclaving), and multiple enzymatic treatments under sonication, by SDS-PAGE, western blot and ELISA, with serum IgE of allergic individuals, and mass spectroscopy. Autoclaving and enzymatic hydrolysis under sonication separately induced a measurable reduction in the IgE binding properties of pastes made from treated cashew and pistachio nuts. These treatments were more effective with pistachio allergens. However, heat combined with enzymatic digestion was necessary to markedly lower IgE binding to cashew allergens. The findings identify highly effective simultaneous processing conditions to reduce or even abolish the allergenic potency of cashew and pistachio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enzymatic hydrolysis (pepsin assisted by ultrasound in the functional Properties of hydrolyzates from different collagens

    Directory of Open Access Journals (Sweden)

    Alessandra Roseline Vidal

    2018-03-01

    Full Text Available ABSTRACT: Enzymatic hydrolysis (pepsin assisted with or without ultrasound in the functional properties of hydrolyzates from different collagens were analyzed. Degree of hydrolysis, antioxidant activity (DPPH and antimicrobial activity (MIC were assessed. The treatment that resulted in greater antioxidant activity for the fiber sample was with the use of 4% of enzyme and concomitant ultrasound (40.7%, leading to a degree of hydrolysis of 21.7%. For the powdered fiber sample the hydrolysis treatment with use of 4% of enzyme resulted in lower protein content (6.97mg/mL, higher degree of hydrolysis (19.9% and greater antioxidant activity (38.6%. The hydrolyzates showed inhibitory capacity against gram-negative bacteria Salmonella choleraesuis and gram-positive bacteria Staphylococcus aureus. It can be concluded that enzymatic hydrolysis concomitant or not with the use of ultrasound increased the functionality of the fiber and powdered fiber samples, for the other samples its use as supplementary treatment was not productive, due to the worse results of antioxidant activity (DPPH reported. However, it provided greater hydrolysis degree.

  3. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  4. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    Science.gov (United States)

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  5. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio) by Enzymatic Hydrolysis

    OpenAIRE

    Saputra, Dede; Nurhayati, Tati

    2016-01-01

    Fish Protein Hydrolysates (FPH) is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified ...

  6. Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulosic material for bioethanol production

    Directory of Open Access Journals (Sweden)

    M. Idrees

    2014-06-01

    Full Text Available To change the recalcitrant nature of the lignocellulosic material for maximum hydrolysis yield, a comprehensive study was done by using sulphuric acid as an exclusive catalyst for the pretreatment process. The enzymatic digestibility of the biomass [Water Hyacinth: Eichhornia crassipes] after pretreatment was determined by measuring the hydrolysis yield of the pretreated material obtained from twenty four different pretreatment conditions. These included different concentrations of sulphuric acid (0.0, 1.0, 2.0 and 3.0%, at two different temperatures (108 and 121 ºC for different residence times (1.0, 2.0 and 3.0h.The highest reducing sugar yield (36.65 g/L from enzymatic hydrolysis was obtained when plant material was pretreated at 121 ºC for 1.0 h residence time using 3.0% (v/v sulphuric acid and at 1:10 (w/v solid to liquid ratio. The total reducing sugars obtained from the two-stage process (pretreatment + enzymatic hydrolysis was 69.6g/L. The resulting sugars were fermented into ethanol by using Saccharomyces cerevisiae. The ethanol yield from the enzymatic hydrolyzate was 95.2% of the theoretical yield (0.51g/g glucose, as determined by GS-MS, and nearly 100% since no reducing sugars were detected in the fermenting media by TLC and DNS analysis.

  7. Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran.

    Science.gov (United States)

    Long, Liangkun; Zhao, Haoyuan; Ding, Dafan; Xu, Meijuan; Ding, Shaojun

    2018-05-01

    Feruloyl esterase (FAE)-encoding genes AnfaeA and AnfaeB were isolated from Aspergillus niger 0913. For overexpression of the two genes in Trichoderma reesei, constitutive and inductive expression plasmids were constructed based on parental plasmid pAg1-H3. The constructed plasmids contained AnfaeA or AnfaeB gene under the control of glyceraldehyde-3-phosphate dehydrogenase A gene (gpdA) promoter (from A. nidulans) or cellobiohydrolases I (cbh I) gene promoter (from T. reesei), and cbh I terminator from T. reesei. The target plasmids were transferred into T. reesei D-86271 (Rut-C30) by Agrobacterium tumefaciens-mediated transformation (ATMT), respectively. A high level of feruloyl esterase was produced by the recombinant fungal strains under solid-state fermentation, and the cbh I promoter was more efficient than the gpdA promoter in the expression of AnfaeA. The optimum temperatures and pH values were 50 °C and 5.0 for AnFAEA, and 35 °C and 6.0 for AnFAEB. The maximum production levels were 20.69 U/gsd for AnFAEA and 15.08 U/gsd for AnFAEB. The recombinant fungal enzyme systems could release 62.9% (for AnFAEA) and 52.2% (for AnFAEB) of total ferulic acids from de-starched wheat bran, which was higher than the 46.3% releasing efficiency of A. niger 0913. The supplement of xylanase from T. longibrachiatum in the enzymatic hydrolysis led to a small increment of the ferulic acids release.

  8. Effect of Enzymatic Hydrolysis on the Antioxidant Properties of Alcoholic Extracts of Oilseed Cakes

    Directory of Open Access Journals (Sweden)

    Jacek Arct

    2013-01-01

    Full Text Available The aim of the present study is to compare changes in the total phenolic, flavonoid and reducing sugar content and antioxidant activity of alcoholic extracts of Oenothera biennis, Borago officinalis and Nigella sativa oilseed cakes before and after enzymatic hydrolysis. Extraction with ethanol and hydrolysis with different commercially available glycosidases: α-amylase, β-glucosidase, β-glucanase and their combinations in a ratio of 1:1:1 were investigated. Total phenolic, flavonoid and reducing sugar content, iron-chelating activity and antioxidant activity according to DPPH and ABTS tests were measured in non-hydrolysed extracts and compared with the results obtained for the extracts after the application of immobilised enzymes. As a result, the hydrolysed extracts had a higher phenolic and reducing sugar content as well as higher iron-chelating and antioxidant activities. Total phenolic content of Oenothera biennis, Borago officinalis and Nigella sativa oilseed cake extracts after enzymatic hydrolysis was higher in comparison with non-hydrolysed extracts, i.e. 2 times (for the enzyme combination, and 1.5 and 2 times (for β-glucanase (p<0.05, respectively. The best results in increasing the flavonoid and sugar content as well as in iron-chelating activity were obtained after enzymatic hydrolysis of oilseed cake extracts by β-glucanase. Oilseed cake extracts after hydrolysis with an enzyme combination in a ratio of 1:1:1 had the highest increase in antioxidant activity.

  9. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk

    Directory of Open Access Journals (Sweden)

    Rudy Agustriyanto

    2012-12-01

    Full Text Available Coconut husk is classified as complex lignocellulosic material that contains cellulose, hemicellulose, lignin, and some other extractive compounds. Cellulose from coconut husk can be used as fermentation substrate after enzymatic hydrolysis. In contrary, lignin content from the coconut husk will act as an inhibitor in this hydrolysis process. Therefore, a pretreatment process is needed to enhance the hydrolysis of cellulose. The objective of this research is to investigate the production of the glucose through dilute acid pretreatment and to obtain its optimum operating conditions. In this study, the pretreatment was done using dilute sulfuric acid in an autoclave reactor. The pretreatment condition were varied at 80°C, 100°C, 120°C and 0.9%, 1.2%, 1.5% for temperature and acid concentration respectively. The acid pretreated coconut husk was then hydrolyzed using commercial cellulase (celluclast and β-glucosidase (Novozyme 188. The hydrolysis time was 72 hours and the operating conditions were varied at several temperature and pH. From the experimental results it can be concluded that the delignification temperature variation has greater influence than the acid concentration. The optimum operating condition was obtained at pH 4 and 50°C which was pretreated at 100°C using 1.5% acid concentration. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012, Revised: 2nd October 2012, Accepted: 4th October 2012[How to Cite: R. Agustriyanto, A. Fatmawati, Y. Liasari. (2012. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 137-141. doi:10.9767/bcrec.7.2.4046.137-141] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4046.137-141 ] | View in 

  10. Electron beam irradiation pretreatment and enzymatic saccharification of used newsprint and paper mill wastes

    International Nuclear Information System (INIS)

    Khan, A.W.; Labrie, J.-P.; McKeown, Joseph

    1987-01-01

    Electron beam pretreatment of used newsprint, pulp, as well as pulp recovered from clarifier sludge and paper mill sludge, caused the dissociation of cellulose from lignin, and rendered them suitable for enzymatic hydrolysis. A maximum dose of 1 MGy for newsprint and 1.5-2.0 MGy for pulp and paper mill sludge was required to render cellulose present in them in a form which, could be enzymatically saccharified to 90% of completion. Saccharification approaching the theoretical yield was obtained in 2 days with a cellulolytic enzyme system obtained from Trichoderma reesei. As a result of irradiation, water soluble lignin breakdown products, NaOH- soluble lignin, free cellobiose, glucose, mannose, xylose and their polymers, and acetic acid were produced from these materials. (author)

  11. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues.

    Science.gov (United States)

    Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin

    2015-10-01

    This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    .7% of the theoretical maximum value. Pretreatment at 200 C with oxygen exhibited enhanced enzymatic efficiency but lower xylose recovery and formation of the degradation products such as acetate, furfural and HMF of 7.6, 3.3 and 1.0 g/L, respectively. In the hydrolysis, the total sugars (glucose + xylose) yielded...

  13. HYDROLYSIS OF AGRICULTURAL BIOMASS BY COMBINED PRETREATMENT AND ENZYMATIC METHODS IN ORDER TO PRODUCE BIOFUELS (ETHANOL, BIOGAS

    Directory of Open Access Journals (Sweden)

    STEFANA JURCOANE

    2009-05-01

    Full Text Available The use of energy crops (maize straw, wheat straw, barley straw etc. as substrate for renewable energy production (e.g. biogas is more efficient when it is degraded by different hydrolysis methods. However, fibers contained inside energy crops (e.g. cellulose and hemicellulose are only hardly and slowly degraded by anaerobic bacteria. The slow degradation of these substances can decrease the methane yields of agricultural biogas plants.In the present study, we investigated the efficiency of combined pretreatment (different concentrations H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis. Testing different concentration of H2SO4, good results were obtained for maize whole crop when we used combined pretreatment (3% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.9 fold higher and for Gavott Maize Straw when we used combined pretreatment (2% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.6 fold higher comparing with untreated samples.

  14. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei

    Science.gov (United States)

    Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme. PMID:26656155

  15. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Shu-Yang Wang

    Full Text Available The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger or mutagenesis via mixed Trichoderma viride (T. viride culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA, endoglucanase (EG and β-glucosidase (BGL activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  16. Effective of Microwave-KOH Pretreatment on Enzymatic Hydrolysis of Bamboo

    Science.gov (United States)

    Zhiqiang Li; Zehui Jiang; Yan Yu; Zhiyong Cai

    2012-01-01

    Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the fea- sibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was car- ried out by...

  17. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  18. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    International Nuclear Information System (INIS)

    Benhabiles, M.S.; Abdi, N.; Drouiche, N.; Lounici, H.; Pauss, A.; Goosen, M.F.A.; Mameri, N.

    2012-01-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5–2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 °C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m −2 bar −1 . However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: ► Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. ► Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. ► Valorization of sardine waste was realized by enzymatic hydrolysis process. ► Performances of this enzyme gave comparable results to those obtained with commercial pepsin. ► The nutritional quality of the FPH produced appears to be satisfactory.

  19. Enzymatic Hydrolysis Does Not Reduce the Biological Reactivity of Soybean Proteins for All Allergic Subjects.

    Science.gov (United States)

    Panda, Rakhi; Tetteh, Afua O; Pramod, Siddanakoppalu N; Goodman, Richard E

    2015-11-04

    Many soybean protein products are processed by enzymatic hydrolysis to attain desirable functional food properties or in some cases to reduce allergenicity. However, few studies have investigated the effects of enzymatic hydrolysis on the allergenicity of soybean products. In this study the allergenicity of soybean protein isolates (SPI) hydrolyzed by Alcalase, trypsin, chymotrypsin, bromelain, or papain was evaluated by IgE immunoblots using eight soybean-allergic patient sera. The biological relevance of IgE binding was evaluated by a functional assay using a humanized rat basophilic leukemia (hRBL) cell line and serum from one subject. Results indicated that hydrolysis of SPI by the enzymes did not reduce the allergenicity, and hydrolysis by chymotrypsin or bromelain has the potential to increase the allergenicity of SPI. Two-dimensional (2D) immunoblot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the chymotrypsin-hydrolyzed samples indicated fragments of β-conglycinin protein are responsible for the apparent higher allergenic potential of digested SPI.

  20. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages

    International Nuclear Information System (INIS)

    Negro, M. J.; Martinez, J. M.; Manero, J.; Saez, F.; Martin, C.

    1991-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs

  1. Statistical optimization of recycled-paper enzymatic hydrolysis for simultaneous saccharification and fermentation via central composite design.

    Science.gov (United States)

    Liu, Qing; Cheng, Ke-ke; Zhang, Jian-an; Li, Jin-ping; Wang, Ge-hua

    2010-01-01

    A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 degrees C, 20 FPU g(-1) substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l(-1) was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.

  2. Properties important for solid–liquid separations change during the enzymatic hydrolysis of pretreated wheat straw

    DEFF Research Database (Denmark)

    Weiss, Noah Daniel; Felby, Claus; Thygesen, Lisbeth Garbrecht

    2018-01-01

    Objectives The biochemical conversion of lignocellulosic biomass into renewable fuels and chemicals provides new challenges for industrial scale processes. One such process, which has received little attention, but is of great importance for efficient product recovery, is solid–liquid separations......, which may occur both after pretreatment and after the enzymatic hydrolysis steps. Due to the changing nature of the solid biomass during processing, the solid–liquid separation properties of the biomass can also change. The objective of this study was to show the effect of enzymatic hydrolysis...... of cellulose upon the water retention properties of pretreated biomass over the course of the hydrolysis reaction. Results Water retention value measurements, coupled with 1H NMR T2 relaxometry data, showed an increase in water retention and constraint of water by the biomass with increasing levels...

  3. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, Jim

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  4. Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrate

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, J

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  5. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv.

    Science.gov (United States)

    Yu, Hailong; Xing, Yang; Lei, Fuhou; Liu, Zhiping; Liu, Zuguang; Jiang, Jianxin

    2014-09-01

    Furfural residues (FRs) were pretreated with ethanol and a green liquor (GL) catalyst to produce fermentable sugar. Anthraquinone (AQ) was used as an auxiliary reagent to improve delignification and reduce cellulose decomposition. The results showed that 42.7% of lignin was removed and 96.5% of cellulose was recovered from substrates pretreated with 1.0 mL GL/g of dry substrate and 0.4% (w/w) AQ at 140°C for 1h. Compared with raw material, ethanol-GL pretreatment of FRs increased the glucose yield from 69.0% to 85.9% after 96 h hydrolysis with 18 FPU/g-cellulose for cellulase, 27 CBU/g-cellulose for β-glucosidase. The Brauner-Emmett-Teller surface area was reduced during pretreatment, which did not inhibit the enzymatic hydrolysis. Owing to the reduced surface area, the unproductive binding of cellulase to lignin was decreased, thus improving the enzymatic hydrolysis. The degree of polymerization of cellulose from FRs was too low to be a key factor for improving enzymatic hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of γ-rays radiation pretreatment on enzymatic hydrolysis of corn straw for producing sugar

    International Nuclear Information System (INIS)

    Tang Hongtao; Ha Yiming; Wang Feng

    2011-01-01

    The effect of γ-rays radiation pretreatment on enzymatic of corn straw for producing sugar was studied. The relationship between irradiation-dosage and content of reducing sugar was investigated in DNS method. After 1000 kGy irradiation, the content of reducing sugar reached about 317.35%. A synergistic effect between irradiation and enzyme was observed. The reducing sugar yield after enzymatic hydrolysis reached 20.51% when the corn straw powder (0.15 mm) irradiated with a dose of 1000 kGy. The result shows that the irradiation had significant influence on enzymatic hydrolysis of corn straw. At the 500 kGy pre-irradiation, compared with initial yield, the maximum sugar yield of sample had increased by 13.68% while the irradiated corn straw stored in 20 days. (authors)

  7. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Comparison of sodium carbonate pretreatment for enzymatic hydrolysis of wheat straw stem and leaf to produce fermentable sugars.

    Science.gov (United States)

    Jin, Yongcan; Huang, Ting; Geng, Wenhui; Yang, Linfeng

    2013-06-01

    The specific characteristics of biomass structure and chemical composition of straw stem and leaf may result in different behavior of pretreatment and enzymatic hydrolysis. In this work, sodium carbonate (SC) was employed as a pretreatment to improve the enzymatic digestibility of wheat straw. The chemical composition and enzymatic hydrolysis of wheat straw stem and leaf (sheath included) were investigated comparatively. Most of the polysaccharides are kept in the solid fractions after SC pretreatment, while the stem has better delignification selectivity than leaf at high temperature. The enzymatic hydrolysis efficiency of wheat straw leaf is significantly higher than that of stem. The maximum total sugar yield from SC pretreated leaf was about 16% higher than stem. The results show that sodium carbonate is of great potential to be used as a pretreatment for the production of bioethanol from straw handling waste in a straw pulp mill with a low feedstock cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.; Chauvigne-Hines, Lacie M.; Zink, Erika M.; Purvine, Samuel O.; Smith, Richard D.; Callister, Stephen J.; Magnuson, Jon M.; Wright, Aaron T.

    2013-12-01

    Development of alternative, non-petroleum based sources of bioenergy that can be applied in the short-term find great promise in the use of highly abundant and renewable lignocellulosic plant biomass.1 This material obtained from different feedstocks, such as forest litter or agricultural residues, can yield liquid fuels and other chemical products through biorefinery processes.2 Biofuels are obtained from lignocellulosic materials by chemical pretreatment of the biomass, followed by enzymatic decomposition of cellulosic and hemicellulosic compounds into soluble sugars that are converted to desired chemical products via microbial metabolism and fermentation.3, 4 To release soluble sugars from polymeric cellulose multiple enzymes are required, including endoglucanase, exoglucanase, and β-glucosidase.5, 6 However, the enzymatic hydrolysis of cellulose into soluble sugars remains a significant limiting factor to the efficient and economically viable utilization of lignocellulosic biomass for transport fuels.7, 8 The primary industrial source of cellulose and hemicellulases is the mesophilic soft-rot fungus Trichoderma reesei,9 having widespread applications in food, feed, textile, pulp, and paper industries.10 The genome encodes 200 glycoside hydrolases, including 10 cellulolytic and 16 hemicellulolytic enzymes.11 The hypercellulolytic catabolite derepressed strain RUT-C30 was obtained through a three-step UV and chemical mutagenesis of the original T. reesei strain QM6a,12, 13 in which strains M7 and NG14 were intermediate, having higher cellulolytic activity than the parent strain but less activity and higher catabolite repression than RUT-C30.14 Numerous methods have been employed to optimize the secreted enzyme cocktail of T. reesei including cultivation conditions, operational parameters, and mutagenesis.3 However, creating an optimal and economical enzyme mixture for production-scale biofuels synthesis may take thousands of experiments to identify.

  10. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    Energy Technology Data Exchange (ETDEWEB)

    Benhabiles, M.S.; Abdi, N. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Drouiche, N., E-mail: nadjibdrouiche@yahoo.fr [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Silicon Technology Development Unit (UDTS) 2, Bd Frantz Fanon BP140, Alger-7 Merveilles, 16000 (Algeria); Lounici, H. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Pauss, A. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France); Goosen, M.F.A. [Alfaisal University, Riyadh (Saudi Arabia); Mameri, N. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France)

    2012-05-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5-2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 Degree-Sign C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m{sup -2} bar{sup -1}. However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: Black-Right-Pointing-Pointer Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. Black-Right-Pointing-Pointer Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. Black-Right-Pointing-Pointer Valorization of sardine waste was realized by enzymatic hydrolysis process. Black-Right-Pointing-Pointer Performances of this enzyme gave comparable results to those obtained with commercial pepsin. Black-Right-Pointing-Pointer The nutritional quality of the FPH produced appears to be satisfactory.

  11. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  12. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps.

    Science.gov (United States)

    Pirota, Rosangela D P B; Baleeiro, Flávio C F; Farinas, Cristiane S

    2013-01-01

    The enzymatic hydrolysis of steam-exploded sugarcane bagasse (SESB) was investigated using enzymatic extracts (EE) and whole fermentation media (WM), produced in-house, from Aspergillus niger 3T5B8 and Trichoderma reesei Rut-C30 cultivated on wheat bran under solid-state fermentation (SSF). A detailed and quantitative comparison of the different hydrolysis conditions tested was carried out using the Chrastil approach for modeling enzymatic reactions by fitting the experimental data of total reducing sugar (TRS) released according to hydrolysis time. Conversion of SESB using A. niger enzymatic complex were up to 3.2-fold higher (in terms of TRS) than T. reesei at similar enzyme loadings, which could be correlated to the higher β-glucosidase levels (up to 35-fold higher) of A. niger enzymatic complex. Conversion yields after 72 h exceeded 40% in terms of TRS when the WM was supplemented with a low dosage of a commercial enzyme preparation. When the combination of WM (from either T. reesei or A. niger) and commercial cellulase was used, the dosage of the commercial enzyme could be reduced by half, while still providing a hydrolysis that was up to 36% more efficient. Furthermore, SESB hydrolysis using either EE or WM resulted in similar yields, indicating that the enzyme extraction/filtration steps could be eliminated from the overall process. This procedure is highly advantageous in terms of reduced enzyme and process costs, and also avoids the generation of unnecessary effluent streams. Thus, the enzymatic conversion of SESB using the WM from SSF is cost-effective and compatible with the biorefinery concept. © 2013 American Institute of Chemical Engineers.

  13. Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production

    International Nuclear Information System (INIS)

    Ruangmee, Arrisa; Sangwichien, Chayanoot

    2013-01-01

    Highlights: • The cellulose of pretreated sample was higher than untreated sample. • Lower hemicellulose and lignin were enhanced of hydrolyzed cellulose to sugar. • The predicted result of enzymatic hydrolysis process was fitted by quadratic model. • Predicted data was good agreement with the experimental data; with 95% confidence. - Abstract: Narrow-leaf cattail was employed as lignocellulosic biomass substrate for the investigation of the hydrolysis process of lignocellulosic ethanol. Cellulose saccharification into a high yield of fermentable sugar is an important step in ethanol production. Response surface methodology was utilized in the study of variables affecting enzymatic hydrolysis on the released glucose and xylose. Five levels (−2, −1, 0, +1, +2) of independent variable factors; cellulase (5–25 FPU/g substrate), β-glucosidase (0–20 U/g substrate), hydrolysis temperature (30–50 °C), and hydrolysis time (24–96 h), were randomly setup by using the Design of Experiment program. The significance of the regression model was high; with 95% confidence interval (less than 5% error). The predicted result after optimization was also in good agreement with the experimental data. An optimal condition; 13.50 FPU/g substrate, 16.50 U/g substrate, 50 °C and 24 h, was obtained, yielding a released glucose of 552.9 mg/g substrate (75.6% saccharification) and a released xylose of 74.0 mg/g substrate (45.6% saccharification)

  14. Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production.

    Science.gov (United States)

    Qi, Benkun; Chen, Xiangrong; Wan, Yinhua

    2010-07-01

    Pretreating wheat straw (WS) with combined use of varied sulfuric acid concentration (0-3%, w/v) and Tween 20 concentration (0-1%) was investigated in an attempt to enhance the hydrolysis and fermentability of pretreated WS. Enzymatic hydrolysis yield of glucan and xylan and ethanol production by simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) were significantly affected by the amount of Tween 20 added during acid pretreatment. Any further addition of Tween 20 in either hydrolysis stage or fermentation stage only led to small increase in glucan conversion and ethanol production. Determination of adsorption of cellulases during hydrolysis showed that Tween 20-assisted acid treated straw solution contained more free cellulases than individual acid treated straw solution, indicating that modification of lignin surface by Tween 20 added during pretreatment likely occurred. In addition, the effects of pretreatment conditions on overall recovery of glucose and xylose after pretreatment and enzymatic hydrolysis were also investigated. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. DEXTRINIZED SYRUPS OBTAINING THROUGH THE ENZYMATIC HYDROLYSIS OF SORGHUM STARCH

    Directory of Open Access Journals (Sweden)

    Leyanis Rodríguez Rodríguez

    2015-10-01

    Full Text Available The main objective of this work was the production of syrups dextrinized by enzymatic hydrolysis of starch red sorghum CIAPR-132 using α-amylase on solutions at different concentrations, with different concentrations of enzyme and enzyme hydrolysis time. The response variable was the dextrose equivalent in each obtained syrup (ED using the modified Lane-Eynon method. In some of the experiments, we used a full factorial design 23 and in others we worked with intermediate concentration and higher hydrolysis time with different levels of enzyme. The obtained products were syrups dextrinized ED between 10,25 and 33,97% (values we can find within the established ones for these types of syrups, which can be used for their functional properties as intermediates syrups or as raw material for different processes of the food industry. This allows you to set a pattern for the use of sorghum feedstock in unconventional obtaining products from its starch.

  16. Use of a two-chamber reactor to improve enzymatic hydrolysis and fermentation of lignocellulosic materials

    International Nuclear Information System (INIS)

    Viola, E.; Zimbardi, F.; Valerio, V.; Nanna, F.; Battafarano, A.

    2013-01-01

    Highlights: ► A two-chamber reactor is proposed to improve bioethanol production. ► Hydrolysis and fermentation can be made simultaneous at different temperatures. ► The residue of lignin can be easily separated at the end of the process. -- Abstract: A special type of bioreactor was designed and tested in order to improve the bioethanol production from lignocellulosic materials via enzymatic hydrolysis and fermentation. The reactor consists of two chambers kept at different temperatures and separated by a porous medium, through which the solutes can diffuse. The reactor was tested using as substrate wheat straw previously steam exploded and detoxified. The yields of cellulose hydrolysis and glucose fermentation obtained using this reactor were compared to those obtained by simultaneous enzymatic hydrolysis and fermentation (SSF) carried out in only one vessel. The results showed that a significant increase in the ethanol yield (20%) can be achieved by using this bioreactor. An additional advantage of the reactor is the confinement of the solid lignin in one chamber, allowing a simplified separation process between broth and unreacted residue.

  17. Structural Changes of Lignin after Liquid Hot Water Pretreatment and Its Effect on the Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2016-01-01

    Full Text Available During liquid hot water (LHW pretreatment, lignin is mostly retained in the pretreated biomass, and the changes in the chemical and structural characteristics of lignin should probably refer to re-/depolymerization, solubilization, or glass transition. The residual lignin could influence the effective enzymatic hydrolysis of cellulose. The pure lignin was used to evaluate the effect of LHW process on its structural and chemical features. The surface morphology of LHW-treated lignin observed with the scanning electron microscopy (SEM was more porous and irregular than that of untreated lignin. Compared to the untreated lignin, the surface area, total pore volume, and average pore size of LHW-treated lignin tested with the Brunner-Emmet-Teller (BET measurement were increased. FTIR analysis showed that the chemical structure of lignin was broken down in the LHW process. Additionally, the impact of untreated and treated lignin on the enzymatic hydrolysis of cellulose was also explored. The LHW-treated lignin had little impact on the cellulase adsorption and enzyme activities and somehow could improve the enzymatic hydrolysis of cellulose.

  18. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue

    DEFF Research Database (Denmark)

    Sørensen, H.R.; Pedersen, S.; Meyer, Anne Boye Strunge

    2006-01-01

    with a 50:50 mixture of an enzyme preparation from Humicola insolens, Ultraflo L, and a cellulolytic enzyme preparation from Trichoderma reesei, Celluclast 1.5 L. This enzyme mixture was previously shown to exhibit a synergistic action on arabinoxylan degradation. The viscosity of vinasse decreased...... of enzyme-catalyzed hydrolysis of arabinoxylan, beta-glucan, and cellulose. In designed response surface experiments, the optimal enzyme reaction conditions with respect to pH and temperature of the vinasse, the vinasse supernatant (mainly soluble material), and the vinasse sediment (mainly insoluble...

  19. Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production.

    Science.gov (United States)

    Pérez-Rodríguez, N; García-Bernet, D; Domínguez, J M

    2016-12-01

    Due to their lignocellulosic nature, corn cob and vine trimming shoots (VTS) could be valorized by anaerobic digestion for biogas production. To enhance the digestibility of substrates, pretreatments of lignocellulosic materials are recommended. The effect of enzymatic hydrolysis, ultrasounds pretreatments (US) and the combination of both was assayed in lignocellulosic composition, methane, and biogas yields. The pretreatments leaded to a reduction in lignin and an increase in neutral detergent soluble compounds making corn cob and VTS more amendable for biogas conversion. The US were negative for biogas production from both substrates and in particular strongly detrimental for VTS. On the opposite side, the enzymatic hydrolysis was certainly beneficial increasing 59.8% and 14.6% the methane production from VTS and corn cob, respectively. The prior application of US did not potentiate (or not sufficiently) the improvement in the methane production reflected by the enzymatic hydrolysis pretreatment of VTS and corn cob. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Degradation of Collagen Increases Nitrogen Solubilisation During Enzymatic Hydrolysis of Fleshing Meat

    NARCIS (Netherlands)

    Anzani, Cecilia; Prandi, Barbara; Tedeschi, Tullia; Baldinelli, Chiara; Sorlini, Giovanni; Wierenga, Peter A.; Dossena, Arnaldo; Sforza, Stefano

    2017-01-01

    Abstract: The meat portion directly attached to bovine hides (fleshing meat) is a by-product of leather industry that is a potential new source of proteins. In literature different enzymatic and chemical methods have been proposed to hydrolyze and solubilize fleshing meat. Enzyme hydrolysis is

  1. Enzymatic hydrolysis of esters from 2-carboxy-6- methoxy-2,3 ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-02

    Nov 2, 2009 ... Full Length Research Paper. Enzymatic hydrolysis .... ml), followed by water (2 × 15 ml) and dried with anhydrous sodium .... dOptical purity of the acid was determined as the methyl ester by HPLC. eE values ..... Harada I, Hirose Y, Nakaozaki M (1968). ... Nicholas WR, Yang CG, Shi Z, He C (2006). Gold(I)- ...

  2. Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation.

    Science.gov (United States)

    Wang, Wen; Chen, Xiaoyan; Tan, Xuesong; Wang, Qiong; Liu, Yunyun; He, Minchao; Yu, Qiang; Qi, Wei; Luo, Yu; Zhuang, Xinshu; Yuan, Zhenhong

    2017-03-01

    The black liquor (BL) generated in the alkaline pretreatment process is usually thought as the environmental pollutant. This study found that the pure alkaline lignin hardly inhibited the enzymatic hydrolysis of cellulose (EHC), which led to the investigation on the feasibility of reusing BL as the buffer via pH adjustment for the subsequent enzymatic hydrolysis and fermentation. The pH value of BL was adjusted from 13.23 to 4.80 with acetic acid, and the alkaline lignin was partially precipitated. It deposited on the surface of cellulose and negatively influenced the EHC via blocking the access of cellulase to cellulose and adsorbing cellulase. The supernatant separated from the acidified BL scarcely affected the EHC, but inhibited the ethanol fermentation. The 4-times diluted supernatant and the last-time waste wash water of the alkali-treated sugarcane bagasse didn't inhibit the EHC and ethanol production. This work gives a clue of saving water for alkaline pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  4. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.

    Science.gov (United States)

    Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-01-01

    The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis

  5. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    NARCIS (Netherlands)

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the

  6. Mechano-Enzymatic Deconstruction with a New Enzymatic Cocktail to Enhance Enzymatic Hydrolysis and Bioethanol Fermentation of Two Macroalgae Species

    Directory of Open Access Journals (Sweden)

    Sameh Amamou

    2018-01-01

    Full Text Available The aim of this study was to explore the efficiency of a mechano-enzymatic deconstruction of two macroalgae species for sugars and bioethanol production, by using a new enzymatic cocktail (Haliatase and two types of milling modes (vibro-ball: VBM and centrifugal milling: CM. By increasing the enzymatic concentration from 3.4 to 30 g/L, the total sugars released after 72 h of hydrolysis increased (from 6.7 to 13.1 g/100 g TS and from 7.95 to 10.8 g/100 g TS for the green algae U. lactuca and the red algae G. sesquipedale, respectively. Conversely, total sugars released from G. sesquipedale increased (up to 126% and 129% after VBM and CM, respectively. The best bioethanol yield (6 geth/100 g TS was reached after 72 h of fermentation of U. lactuca and no increase was obtained after centrifugal milling. The latter led to an enhancement of the ethanol yield of G. sesquipedale (from 2 to 4 g/100 g TS.

  7. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2013-01-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  8. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  9. Improvements on enzymatic hydrolysis of human hair for illicit drug determination by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Míguez-Framil, Martha; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar; López, Patricia; Tabernero, María Jesús; Bermejo, Ana María

    2007-11-15

    The use of ultrasound energy for accelerating the pronase E enzymatic hydrolysis of human hair for extracting illicit drugs has been novelty tested. The enzymatic extracts obtained after 30 min of sonication in an ultrasonic water bath were subjected to an optimized solid-phase extraction process, which involved a solution of 2.0% (v/v) acetic acid in methanol as eluting solution and concentration by N2 stream evaporation. A gas chromatography/mass spectrometry method was used to separate and determine cocaine, benzoylecgonine, codeine, morphine, and 6-monoacethylmorphine in 20 min. Variables affecting ultrasound-assisted pronase E hydrolysis such as hydrolysis temperature, hydrolysis time, enzyme concentration, catalyzer (1,4-dithiothreitol) concentration, ionic strength, pH, and ultrasound frequency were simultaneously evaluated by a Plackett-Burman design 2(8) PBD of resolution III. The most statistically significant variables were ionic strength and pH, which means that analyte extraction is mainly attributed to pronase E activity. The optimization or evaluation of all the factors has led to an accelerated pronase E hydrolysis of human hair, which can be completed in 30 min. Results have been found to be statistically similar to those obtained with conventional pronase E hydrolysis. The accelerated method was finally applied to several human hair samples from multidrug abusers.

  10. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    Science.gov (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  11. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

    Science.gov (United States)

    Yang, Bin; Wyman, Charles E

    2006-07-05

    Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis. (c) 2006 Wiley Periodicals, Inc.

  12. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  13. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    Science.gov (United States)

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – The impact of lignin relocation and plant tissues on enzymatic accessibility

    DEFF Research Database (Denmark)

    Hansen, Mads Anders Tengstedt; Kristensen, Jan Bach; Felby, Claus

    2011-01-01

    , after 144 h of enzymatic hydrolysis the cortex had vanished, exposing the heavier lignified vascular tissue. Accumulation of lignin droplets and exposure of residual lignin could be part of the explanation for the decreasing hydrolysis rate. Flattening of macrofibrils after pretreatment together...... with more indentations on the surfaces was also observed, possibly caused by a proposed synergistic effect of cellobiohydrolases and endoglucanases. Keywords: Lignocellulose; Plant tissues; Lignin accumulation; Atomic Force Microscopy; Scanning Electron Microscopy...

  15. Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Steen, Andrew

    2010-01-01

    explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps in anoxic organic carbon degradation in long-term incubations of sediments from the Arctic and the North Sea. These sediments were incubated under anaerobic conditions for 24 months at temperatures of 0, 10......, and 20 ºC. The short-term temperature response of the active microbial community was tested in temperature gradient block incubations. The temperature optimum of extracellular enzymatic hydrolysis, as measured with a polysaccharide (chondroitin sulfate), differed between Arctic and temperate habitats...

  16. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry - SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Siika-aho, M.; Kallioinen, A.; Pakula, T. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), email: matti.siika-aho@vtt.fi

    2009-10-15

    In SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as a raw material for production of sugars to be processed further to ethanol and other chemicals. These raw materials containing high proportion of carbohydrates have been analysed and pretreated for enzyme hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Birch and bagasse could easily be pretreated with steam explosion. Catalytic oxidation treatment of spruce produced material with superior hydrolysability to steam exploded material. Enzyme adsorption and desorption were studied aiming at recycling of enzymes in the hydrolysis process. Purified cellulase enzymes were found to have high tendency to adsorption on lignocellulosic substrate. Adsorption could be decreased by additives, e.g. urea and BSA. In addition, the hydrolytic system of Trichoderma reesei in the presence of different substrates has been studied. (orig.)

  17. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  18. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    2016-01-01

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  19. Pungent Components from Thioglucosides in Armoracia rusticana Grown in China, Obtained by Enzymatic Hydrolysis

    OpenAIRE

    Rong Li; Jimmy C. Yu; Zi-Tao Jiang

    2006-01-01

    The conditions of enzymatic hydrolysis of thioglucosides, which are the precursors of the pungent components in Armoracia rusticana grown in China, were studied. The effects of incubation time, temperature, pH and the addition of ascorbic acid on the hydrolysis of thioglucosides were determined. The optimum hydrolytic conditions for the pungent components from thioglucosides were time, 120 min; temperature, 65 oC; pH=4.0 and ascorbic acid, 2 mg/g. The mixture of pungent components in a pale-y...

  20. Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Dale, B.E.; Craig, W.K.

    1988-11-01

    Aspenwood, wheat straw, wheat chaff and alfalfa stems were treated under pressure with either steam or ammonia. The material was then water or methanol/water extracted. The extent of enzymatic hydrolysis of the cellulose portion of the treated substrates was compared using two different cellulases, a commercial preparation, Celluclast, and those from the fungus Trichoderma harzianum. Both steam and ammonia treatment enhanced the accessibility of the cellulose as measured by hydrolysis. Methanol extraction of steamed material generally reduced the access of the enzyme to the cellulose, whereas methanol extraction of ammonia-treated material increased accessibility. The optimum combinations of pretreatment and extraction method depended on the substrate and on the enzyme system; no treatment suitable for all situations could be selected.

  1. Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars.

    Science.gov (United States)

    Xue, Ying; Rusli, Jannov; Chang, Hou-Min; Phillips, Richard; Jameel, Hasan

    2012-02-01

    Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15-30% of the original enzyme loading) resulted in 5-10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.

  2. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Science.gov (United States)

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  3. A Factorial Analysis Study on Enzymatic Hydrolysis of Fiber Pressed Oil Palm Frond for Bioethanol Production

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Illias, R. M.; Rahman, R. A.

    2016-03-01

    Different technologies have been developed to for the conversion of lignocellulosic biomass to suitable fermentation substrates for bioethanol production. The enzymatic conversion of cellulose seems to be the most promising technology as it is highly specific and does not produce substantial amounts of unwanted byproducts. The effects of agitation speed, enzyme loading, temperature, pH and reaction time on the conversion of glucose from fiber pressed oil palm frond (FPOPF) for bioethanol production were screened by statistical analysis using response surface methodology (RSM). A half fraction two-level factorial analysis with five factors was selected for the experimental design to determine the best enzymatic conditions that produce maximum amount of glucose. FPOPF was pre-treated with alkaline prior to enzymatic hydrolysis. The enzymatic hydrolysis was performed using a commercial enzyme Cellic CTec2. From this study, the highest yield of glucose concentration was 9.736 g/L at 72 hours reaction time at 35 °C, pH 5.6, and 1.5% (w/v) of enzyme loading. The model obtained was significant with p-value model had a maximum point which is likely to be the optimum point and possible for the optimization process.

  4. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  5. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Wang, Ying; Radosevich, Mark; Hayes, Douglas; Labbé, Nicole

    2011-05-01

    Ionic liquids (ILs) have been increasingly recognized as novel solvents for dissolution and pretreatment of cellulose. However, cellulases are inactivated in the presence of ILs, even when present at low concentrations. To more fully exploit the benefits of ILs it is critical to develop a compatible IL-cellulases system in which the IL is able to effectively solubilize and activate the lignocellulosic biomass, and the cellulases possess high stability and activity. In this study, we investigated the stability and activity of a commercially available cellulases mixture in the presence of different concentrations of 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). A mixture of cellulases and β-glucosidase (Celluclast1.5L, from Trichoderma reesei, and Novozyme188, from Aspergillus niger, respectively) retained 77% and 65% of its original activity after being pre-incubated in 15% and 20% (w/v) IL solutions, respectively, at 50°C for 3 h. The cellulases mixture also retained high activity in 15% [Emim][OAc] to hydrolyze Avicel, a model substrate for cellulose analysis, with conversion efficiency of approximately 91%. Notably, the presence of different amounts of yellow poplar lignin did not interfere significantly with the enzymatic hydrolysis of Avicel. Using this IL-cellulase system (15% [Emim][OAc]), the saccharification of yellow poplar biomass was also significantly improved (33%) compared to the untreated control (3%) during the first hour of enzymatic hydrolysis. Together, these findings provide compelling evidence that [Emim][OAc] was compatible with the cellulase mixture, and this compatible IL-cellulases system is promising for efficient activation and hydrolysis of native biomass to produce biofuels and co-products from the individual biomass components. Copyright © 2010 Wiley Periodicals, Inc.

  6. Sweetening syrup production by enzymatic hydrolysis of starch variety yam (Dioscorea rotundata

    Directory of Open Access Journals (Sweden)

    Carlos Ramón Vidal Tovar

    2011-04-01

    Full Text Available Sweeteners syrups produced by enzymatic hydrolysis from starch of hawthorn yam (Dioscorea rotundata. The starch was extracted by a scratched, washed, sedimented and drying; the yield was quantified taking into account the amount of initial raw material and was determined the concentration of starch, amylose, amylopectin, crude fiber, ash, protein, fat and humidity in accordance with the requirements of the AOAC standards, and ICONTEC COVENIN. Enzymatic hydrolysis of starch was conducted using ∂-amylase, glucoamylase and pullulanase in starch solutions at 36 and 46 % w/w varying the order of application of glucoamylase and pullulanase were determined pH, Brix, moisture, reducing sugars (AR, total sugar (TS and the dextrose equivalent (ED in the syrups obtained. In the liquefaction were obtained with an intermediate syrups sweeteners ED 18.81% and 22.15%. Syrups low and medium conversion with an ED between 34-45% in the first saccharification and high conversion syrups with a DE between 75-79% as a final product. The above values allow the use of hawthorn yam starch syrup production for multiple uses in different food industry processes.

  7. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS FOR ENZYMATIC HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Doan Thai Hoa

    2017-11-01

    Full Text Available The cost of raw materials continues to be a limiting factor in the production of bio-ethanol from traditional raw materials, such as sugar and starch. At the same time, there are large amount of agricultural residues as well as industrial wastes that are of low or negative value (due to costs of current effluent disposal methods. Dilute sulfuric acid pretreatment of elephant grass and wood residues for the enzymatic hydrolysis of cellulose has been investigated in this study.    Elephant grass (agricultural residue and sawdust (Pulp and Paper Industry waste with a small particulate size were treated using different dilute sulfuric acid concentrations at a temperature  of 140-170°C within 0.5-3 hours. The appropriate pretreatment conditions give the highest yield of soluble saccharides and total reducing sugars.

  8. Onopordum nervosum as biomass source: some aspects of its production and transformation by enzymatic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P; Negro, M J; Saez, R; Martin, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables; Fernandez, J [ETSIA, Madrid (Spain). Dept. de Produccion Vegetal, Botanica y Proteccion Vegetal

    1993-01-01

    Onopordum nervosum, a lignocellulosic herbaceous species of the Iberian Peninsula, has been selected as a suitable biomass source to be used in transformation processes to obtain energy or industrial products. In this work, the effectiveness of different chemical pretreatments as a preliminary step to the enzymatic hydrolysis of this lignocellulosic biomass was evaluated. In order to determine biomass productivity, field assays were carried out in 1988 and 1989 using different planting densities and evaluating the effect to top fertilization. Biomass yields between 12 and 20 t ha[sup -1] were obtained, depending on the year and the planting density assayed. No significant differences were found in production rates when top fertilization was applied. Enzymatic hydrolysis of O.nervosum using a cellulolytic complex from Trichoderma longibrachiatum QM9414, gave low yields when untreated lignocellulosic biomass was used as substrate. Among different chemical pretreatments tested, ethanol and butanol solubilizations in the presence of a basic catalyst gave the best results. For the most effective pretreatment conditions, a delignification of about 30% and a complete recovery of glucose in the treated substrate were obtained both for butanol and ethanol. The highest enzymatic hydrolysis yields were found when ethanol was used as solvent, giving a saccharification efficiency of about 66% which, compared to the 23% for the native substrate, indicates the remarkable increment in the susceptibility of the cellulose to enzyme attack effected by this pretreatment. (author)

  9. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Rafał Łukajtis

    2018-03-01

    Full Text Available This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

  10. Beam irradiation pretreatment on enzymatic hydrolysis of biomass

    International Nuclear Information System (INIS)

    Yoo, Hah Young; Choi, Han Suk; Yang, Soo Jeong; Lee, Ja Hyun; Kim, Sung Bong; Jung, Da Un; Kim, Seung Wook

    2013-01-01

    As a renewable energy resource, lignocellulosic biomass has become great attention these days. Miscanthus is considered as one of the best feed stock for sugar production due to its high carbohydrate conversion, more efficient pretreatment process was necessary for removal of enzymatic hydrolysis barriers. In this study, electron beam irradiation pretreatment was utilized to Miscanthus straw for the enhancement of sugar conversion. The prepared samples were exposed 20 ∼ 500 kGy of doses and 5 ∼ 100 kGy of dose rate under 1 MeV of energy. Optimum irradiation conditions were 300 kGy of doses, 10 kGy of doses rate and 7.4 mA of current. Finally, compared with untreated Miscanthus, the glucose conversion was 2 fold increased under optimal conditions

  11. Rapid near infrared spectroscopy for prediction of enzymatic hydrolysis of corn bran after various pretreatments

    DEFF Research Database (Denmark)

    Baum, Andreas; Wittrup Agger, Jane; Meyer, Anne S.

    2012-01-01

    Efficient generation of a fermentable hydrolysate is a primary requirement in the utilization of fibrous plant biomass as feedstocks in bioethanol processes. The first biomass conversion step usually involves a hydrothermal pretreatment before enzymatic hydrolysis. The purpose of the pretreatment...... step is to increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from the starch industry which may be used as a feedstock for bioethanol production...... release of different levels of arabinose, xylose and glucose from all the differently pretreated destarched corn bran samples. The present study also demonstrates a generic, non-destructive solution to determine the enzymatic monosaccharide release from polymers in biomass side-streams, thereby...

  12. Selective ultrasound-enhanced enzymatic hydrolysis of oleuropein to its aglycon in olive (Olea europaea L.) leaf extracts.

    Science.gov (United States)

    Delgado-Povedano, María Del Mar; Priego-Capote, Feliciano; Luque de Castro, María Dolores

    2017-04-01

    Hydrolysis of oleuropein, the main phenol in olive (Olea europaea L.) leaf extracts, to oleuropein aglycon and other subsequent products in the hydrolytic pathway can be catalyzed by different enzymes. Three of the most used hydrolases were assayed to catalyze the process, and β-glucosidase from Aspergillus niger was selected. Acceleration of the enzymatic hydrolysis by ultrasound (US) was studied using a Box-Behnken design (duty cycle, amplitude, cycle time) and an oleuropein standard, and the optimum US conditions for achieving maximum yield of oleuropein aglycon were 0.5s/s duty cycle, 50% amplitude and 45s cycle. The method was applied to obtain oleuropein aglycon from commercial and laboratory extracts from olive leaves, which may have a pharmacological use as deduced by its healthy properties. The kinetics of the US-assisted enzymatic hydrolysis was monitored by analysis of the target compounds using liquid chromatography-tandem mass spectrometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw......, during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48-72 h of reaction recovered from 20......-40% to become approximate to 70% of the rate recorded during 6-24 h of reaction. Although Michaelis-Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis...

  14. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw.

    Science.gov (United States)

    Wang, Ping; Chang, Juan; Yin, Qingqiang; Wang, Erzhu; Zhu, Qun; Song, Andong; Lu, Fushan

    2015-10-01

    In order to increase corn straw degradation, the straw was kept in the combined solution of 15% (w/w) lime supernatant and 2% (w/w) sodium hydroxide with liquid-to-solid ratio of 13:1 (mL/g) at 83.92°C for 6h; and then added with 3% (v/v) H2O2 for reaction at 50°C for 2h; finally cellulase (32.3 FPU/g dry matter) and xylanase (550 U/g dry matter) was added to keep at 50°C for 48 h. The maximal reducing sugars yield (348.77 mg/g) was increased by 126.42% (Pcellulose, hemicellulose and lignin in pretreated corn straw with enzymatic hydrolysis were increased by 40.08%, 45.71% and 52.01%, compared with the native corn straw with enzymatic hydrolysis (P<0.05). The following study indicated that the combined microbial fermentation and enzymatic hydrolysis could further increase straw degradation and reducing sugar yield (442.85 mg/g, P<0.05). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.

    Science.gov (United States)

    Liu, Feng; Xi, Xingjun; Wang, Mei; Fan, Li; Geng, Yanling; Wang, Xiao

    2014-02-01

    Enzymatic hydrolysis pretreatment combined with high-speed counter-current chromatography for the transformation and isolation of arctigenin from Fructus Arctii was successfully developed. In the first step, the extract solution of Fructus Arctii was enzymatic hydrolyzed by β-glucosidase. The optimal hydrolysis conditions were 40°C, pH 5.0, 24 h of hydrolysis time, and 1.25 mg/mL β-glucosidase concentration. Under these conditions, the content of arctigenin was transformed from 2.60 to 12.59 mg/g. In the second step, arctigenin in the hydrolysis products was separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (10:25:15:20, v/v), and the fraction was analyzed by HPLC, ESI-MS, and (1)H NMR spectroscopy. Finally, 102 mg of arctigenin with a purity of 98.9% was obtained in a one-step separation from 200 mg of hydrolyzed sample. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars.

    Science.gov (United States)

    Kapu, N U S; Manning, M; Hurley, T B; Voigt, J; Cosgrove, D J; Romaine, C P

    2012-06-01

    Spent mushroom compost (SMC), a byproduct of commercial mushroom cultivation, poses serious environmental problems that have hampered the growth of this important agro-industry. In an effort to develop new applications for SMC, we explored its use as a feedstock for bioethanol production. SMC constitutes approximately 30%w/w polysaccharides, 66% of which is glucan. Following dilute-acid pretreatment and enzymatic hydrolysis, both in the presence of PEG 6000, 97% of glucan and 44% of xylan in SMC were converted into the corresponding monosaccharides. Incorporation of PEG 6000 reduced the cellulase requirement by 77%. Zwittergent 3-12 and 3-14 also significantly increased the efficacy of acid pretreatment and enzymatic hydrolysis. The use of SMC in bioethanol production represents a potential mitigation solution for the critical environmental issues associated with the stockpiling of the major byproduct of the mushroom industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    Science.gov (United States)

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ( 1 H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.

    OpenAIRE

    Sternberg, D; Mandels, G R

    1980-01-01

    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  19. Enhanced Enzymatic Hydrolysis and Structural Features of Corn Stover by NaOH and Ozone Combined Pretreatment

    Directory of Open Access Journals (Sweden)

    Wenhui Wang

    2018-05-01

    Full Text Available A two-step pretreatment using NaOH and ozone was performed to improve the enzymatic hydrolysis, compositions and structural characteristics of corn stover. Comparison between the unpretreated and pretreated corn stover was also made to illustrate the mechanism of the combined pretreatment. A pretreatment with 2% (w/w NaOH at 80 °C for 2 h followed by ozone treatment for 25 min with an initial pH 9 was found to be the optimal procedure and the maximum efficiency (91.73% of cellulose enzymatic hydrolysis was achieved. Furthermore, microscopic observation of changes in the surface structure of the samples showed that holes were formed and lignin and hemicellulose were partially dissolved and removed. X-ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR and Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR were also used to characterize the chemical structural changes after the combined pretreatment. The results were as follows: part of the cellulose I structure was destroyed and then reformed into cellulose III, the cellulose crystal indices were also changed; a wider space between the crystal layer was observed; disruption of hydrogen bonds in cellulose and disruption of ester bonds in hemicellulose; cleavage of bonds linkage in lignin-carbohydrate complexes; removal of methoxy in lignin and hemicellulose. As a result, all these changes effectively reduced recalcitrance of corn stover and promoted subsequent enzymatic hydrolysis of cellulose.

  20. Combined enzymatic hydrolysis and fermentation of aspenwood using enzymes derived from Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A project was initiated to study the conversion of aspenwood to ethanol, butanol or butanediol. The conversion method consisted of steam explosion pretreatment, followed by the enzymatic hydrolysis of the carbohydrate polymers, cellulose and hemicellulose. The enzyme was derived from a wild strain of the fungus Trichoderma harzianum E58, chosen because it produces a cellulose system that can degrade crystalline cellulose to glucose. The aspenwood was steamed at 240{degree}C for 80 seconds and then water and alkali extracted. The insoluble residue was 84% cellulose and was used for both enzyme production and the production of glucose, which was fermented to ethanol. Before fermentation of the water-soluble fraction was possible, the acetylxylan had to be hydrolyzed and the inhibitors (glucose, galactose, acetic and uronic acids, and lignin- and sugar-degradation products) removed. Enzymatic hydrolysis was found to generate less fermentation inhibitors than sulfuric acid hydrolysis. Due to market factors, fermentation research centred on the production of ethanol from hemicellulose, using the yeast Pichia stipitis. Although lignin had no effect on hydrolysis, it increased the bulk to be handled, in combination with small amounts of cellulose was found to strongly adsorb the cellulose enzymes, and broke down to produce inhibitors of the cellulose complex of T. harzanium and the enzyme production phase. Thus, it was advantageous to remove the lignin prior to enzyme production and cellular hydrolysis. None of the strategies were successful in decreasing the amount of cellulose required for enzyme production. It was concluded that T. harzianum E58 is unsuitable for use in a commercial bioconversion project. 59 refs., 31 figs., 31 tabs.

  1. Chondroitin sulphate extracted from antler cartilage using high hydrostatic pressure and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Chong-Tai Kim

    2014-12-01

    Full Text Available Chondroitin sulphate (CS, a major glycosaminoglycan, is an essential component of the extracellular matrix in cartilaginous tissues. Wapiti velvet antlers are a rich source of these molecules. The purpose of the present study was to develop an effective isolation procedure of CS from fresh velvet antlers using a combination of high hydrostatic pressure (100 MPa and enzymatic hydrolysis (papain. High CS extractability (95.1 ± 2.5% of total uronic acid was obtained following incubation (4 h at 50 °C with papain at pH 6.0 in 100 MPa compared to low extractability (19 ± 1.1% in ambient pressure (0.1 MPa. Antler CS fractions were isolated by Sephacryl S-300 chromatography and identified by western blot using an anti-CS monoclonal antibody. The antler CS fraction did not aggregate with hyaluronic acid in CL-2B chromatography and possessed DPPH radical scavenging activity at 78.3 ± 1.5%. The results indicated that high hydrostatic pressure and enzymatic hydrolysis procedure may be a useful tool for the isolation of CS from antler cartilaginous tissues.

  2. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  3. Effects of Ionic Strength on the Enzymatic Hydrolysis of Diluted and Concentrated Whey Protein Isolate

    NARCIS (Netherlands)

    Butré, C.I.; Wierenga, P.A.; Gruppen, H.

    2012-01-01

    To identify the parameters that affect enzymatic hydrolysis at high substrate concentrations, whey protein isolate (1–30% w/v) was hydrolyzed by Alcalase and Neutrase at constant enzyme-to-substrate ratio. No changes were observed in the solubility and the aggregation state of the proteins. With

  4. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    Science.gov (United States)

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  6. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Dede Saputra

    2016-03-01

    Full Text Available Fish Protein Hydrolysates (FPH is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified by analyzing the content of dissolved total nitrogen (NTT compared with nitrogen total ingredient (NTB in order to get the value of total soluble nitrogen/total nitrogen material (NTT/NTB. The hydrolysis processes were carried out in 0,26% (w/v papain, 60 οC for 3 hours. The result showed that the specific activity of papain enzyme was about 3.28 U/mg. Solubility of FPH by comparing NTT/NTB was about 0.29% (fish meat and 0.40% (fish viscera. Proximate test of protein content of fish meat was 18.34 ± 0.04 (g/100 g; while viscera was about 0.95±0.04 (g/100 g. The result indicated that product waste of fish carp had potential as a major of source of FPH.

  7. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.

    Science.gov (United States)

    Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R

    2010-07-01

    In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    Science.gov (United States)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  9. A Sequential Combination of Laccase Pretreatment and Enzymatic Hydrolysis for Glucose Production from Furfural Residues

    Directory of Open Access Journals (Sweden)

    Hailong Yu

    2014-06-01

    Full Text Available Furfural residues (FRs were pretreated with laccase or a laccase-mediator (1-hydroxybenzotriazole, HBT system to produce fermentable sugar for bioethanol production. Compared to laccase-only pretreatment, laccase-mediator pretreatment dissolved more lignin. Approximately 10.5% of the initially present lignin was removed when FRs were treated with a laccase loading of 100 U/g of dry substrate in 1% (w/w HBT at 48 °C for 24 h in an acetate buffer (pH 4.8. The enzymatic saccharification process was carried out by a combined laccase or laccase-mediator pretreatment without washing of the treated solids. The results showed that active laccase had a negative effect on the rate and yield of enzymatic hydrolysis. Laccase-oxidized HBT seriously reduced glucose yield. However, non-oxidized HBT increased glucose yield when laccase was deactivated at 121 °C for 20 min prior to enzymatic hydrolysis. The highest glucose yield, 80.9%, was obtained from the substrate pretreated with 100 U/g of dry substrate laccase and 1% (w/w HBT at 48 °C for 24 h in an acetate buffer (pH 4.8. Furthermore, the structures of FRs before and after laccase-mediator pretreatment were characterized by scanning electron microscopy (SEM and Fourier Transform Infrared spectroscopy (FT-IR.

  10. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    Science.gov (United States)

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  11. Combined enzymatic hydrolysis and fermentation of aspenwood using enzymes derived from Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    Energy, Mines and Resources Canada supported a project with Forintek Canada Corp. directed toward the conversion of aspenwood to ethanol. This conversion is carried out through three sequential steps, steam explosion/extraction, hydrolysis and fermentation. This investigation involved study of the factors which governed the rate and extent of cellulose hydrolysis. The physical and chemical state of the material to be hydrolysed, enzyme concentation and adsorption onto residue, end-product characterization and inhibition, recycling of enzymes and cellulose, and growth media for the fungus were among the variables examined. The research demonstrated the interdependency between pretreatment, cellulose hydrolysis, hemicellulose fermentation and enzyme production. It was also determined that because of the amount of cellulose required for enzyme production and the difficulties encountered in recovering/recycling the celluloses, further work is required in order to commercialize an enzymatic hydrolysis process based on Trichoderma harzianum E58.

  12. Enzymatic hydrolysis of Amaranth flour - differential scanning calorimetry and scanning electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Barba de la Rosa, A.P.; Paredes-Lopez, O.; Carabez-Trejo, A.; Ordorica-Falomir, C. (Instituto Politecnico Nacional, Irapuato (Mexico). Centro de Investigacion y de Estudios Avanzados)

    1989-11-01

    High-protein amaranth flour (HPAF) and carbohydrate rich fraction (CRF) were produced from raw flour in a single-step process using a heat-stable alpha-amylase preparation. Protein content of flour increased from 15 to about 30 or 39% at liquefaction temperatures of 70 or 90{sup 0}C, respectively and 30 min hydrolysis time. CRF exhibited 14-22 DE. Enzymatic action at 70{sup 0}C increased endotherm temperature and gelatinization enthalpy of HPAF, in relation to gelatinized flour, as assessed by differential scanning calorimetry (DSC). Hydrolysis at 90{sup 0}C did not affect significantly (P > 0.05) DSC peak temperature. It is suggested that these changes in DSC performance might result from differences in amount and type of low-molecular weight carbohydrates and residual starch. Scanning electron microscopy (SEM) demonstrated that hydrolysis temperature changed substantially the structural appearance of flour particles. HPAF and CRF might find applications as dry milk extender and sweetener, respectively. (orig.).

  13. Optimization of enzymatic hydrolysis of guar gum using response surface methodology

    OpenAIRE

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B. S.

    2012-01-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3–7), temperature (20–60 °C), reaction time (1–5 h) and cellulase concentration (0.25–1.25 mg/g) on viscosity d...

  14. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  15. Rapid enzymatic hydrolysis of masked deoxynivalenol and zearalenone prior to liquid chromatography mass spectrometry or immunoassay analysis

    Czech Academy of Sciences Publication Activity Database

    Nielen, M. F. V.; Weijers, C. A. G. M.; Peters, J.; Weignerová, Lenka; Zuilhof, H.; Franssen, M. C. R.

    2014-01-01

    Roč. 7, č. 2 (2014), s. 107-113 ISSN 1875-0710 Institutional support: RVO:61388971 Keywords : masked mycotoxins * enzymatic hydrolysis * 1,3-beta-glucanase Subject RIV: CE - Biochemistry Impact factor: 2.157, year: 2014

  16. Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei.

    Science.gov (United States)

    Wang, Juan; Zeng, Desheng; Liu, Gang; Wang, Shaowen; Yu, Shaowen

    2014-01-01

    To obtain high expression efficiency of a mannanase gene, ThMan5A, cloned from Trichoderma harzianum MGQ2, both the full-length gene and a truncated gene (ThMan5AΔCBM) that contains only the catalytic domain, were expressed in Trichoderma reesei QM9414 using the strong constitutive promoter of the gene encoding pyruvate decarboxylase (pdc), and purified to homogeneity, respectively. We found that truncation of the gene improved its expression efficiency as well as the enzymatic properties of the encoded protein. The recombinant strain expressing ThMan5AΔCBM produced 2,460 ± 45.1 U/ml of mannanase activity in the culture supernatant; 2.3-fold higher than when expressing the full-length ThMan5A gene. In addition, the truncated mannanase had superior thermostability compared with the full-length enzyme and retained 100 % of its activity after incubation at 60 °C for 48 h. Our results clearly show that the truncated ThMan5A enzyme exhibited improved characteristics both in expression efficiency and in its thermal stability. These characteristics suggest that ThMan5AΔCBM has potential applications in the food, feed, paper, and pulp industries.

  17. Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption

    Directory of Open Access Journals (Sweden)

    Wiman Magnus

    2011-05-01

    Full Text Available Abstract Background When scaling up lignocellulose-based ethanol production, the desire to increase the final ethanol titer after fermentation can introduce problems. A high concentration of water-insoluble solids (WIS is needed in the enzymatic hydrolysis step, resulting in increased viscosity, which can cause mass and heat transfer problems because of poor mixing of the material. In the present study, the effects of mixing on the enzymatic hydrolysis of steam-pretreated spruce were investigated using a stirred tank reactor operated with different impeller speeds and enzyme loadings. In addition, the results were related to the power input needed to operate the impeller at different speeds, taking into account the changes in rheology throughout the process. Results A marked difference in hydrolysis rate at different impeller speeds was found. For example, the conversion was twice as high after 48 hours at 500 rpm compared with 25 rpm. This difference remained throughout the 96 hours of hydrolysis. Substantial amounts of energy were required to achieve only minor increases in conversion during the later stages of the process. Conclusions Impeller speed strongly affected both the hydrolysis rate of the pretreated spruce and needed power input. Similar conversions could be obtained at different energy input by altering the mixing (that is, energy input, enzyme load and residence time, an important issue to consider when designing large-scale plants.

  18. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    Science.gov (United States)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  19. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose

    DEFF Research Database (Denmark)

    Murphy, Leigh; Cruys-Bagger, Nicolaj; Baumann, Martin J.

    2012-01-01

    by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B...

  20. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Rasmussen, Erik Lumby; McFarland, K.C.

    2011-01-01

    analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (conversion) but becomes proportional to enzyme dosage......Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis...... rate with a detection limit of about 500 pmol glucose s−1. Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose–response experiments with a typical cellulase cocktail enabled a multidimensional...

  1. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    OpenAIRE

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the (food) industry, for example for the production of beer or bio-ethanol. In industry, it is usually preceded by gelatinisation to make the starch molecules available for the enzymes. Both gelatinisation...

  2. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    Science.gov (United States)

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    Science.gov (United States)

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  4. Heterologous expression, purification, crystallization and preliminary X-ray analysis of Trichoderma reesei xylanase II and four variants

    International Nuclear Information System (INIS)

    Wan, Qun; Kovalevsky, Andrey; Zhang, Qiu; Hamilton-Brehm, Scott; Upton, Rosalynd; Weiss, Kevin L.; Mustyakimov, Marat; Graham, David; Coates, Leighton; Langan, Paul

    2013-01-01

    The wild-type protein and four active-site mutants of xylanase II from Trichoderma reesei that catalyzes the hydrolysis of glycosidic bonds in xylan have successfully been crystallized. The crystallization of several structures including ligand-free and protein ligand complexes containing the substrate (xylohexaose) or product (xylotriose) are detailed. Xylanase II from Trichoderma reesei catalyzes the hydrolysis of glycosidic bonds in xylan. Crystallographic studies of this commercially important enzyme have been initiated to investigate its reaction mechanism, substrate binding and dependence on basic pH conditions. The wild-type protein was heterologously expressed in an Escherichia coli host using the defined medium and four active-site amino acids were replaced to abolish its activity (E177Q and E86Q) or to change its pH optimum (N44D and N44H). Cation-exchange and size-exclusion chromatography were used to obtain >90% protein purity. The ligand-free proteins and variant complexes containing substrate (xylohexaose) or product (xylotriose) were crystallized in several different space groups and diffracted to high resolutions (from 1.07 to 1.55 Å)

  5. Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis

    Directory of Open Access Journals (Sweden)

    Zhen-Hong Fang

    2014-09-01

    Full Text Available Currently short-chain polyols such as ethanediol, propanediol, and butanediol are produced either from the petroleum feedstock or from the starch-based food crop feedstock. In this study, a combinational process of enzymatic hydrolysis with catalytic hydrogenolysis for short-chain polyols production using corn stover as feedstock was developed. The enzymatic hydrolysis of the pretreated corn stover was optimized to produce stover sugars at the minimum cost. Then the stover sugars were purified and hydrogenolyzed into polyols products catalyzed by Raney nickel catalyst. The results show that the yield of short-chain polyols from the stover sugars was comparable to that of the corn-based glucose. The present study provided an important prototype for polyols production from lignocellulose to replace the petroleum- or corn-based polyols for future industrial applications.

  6. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    Science.gov (United States)

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2009-06-01

    Full Text Available Abstract Background Working at high solids (substrate concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown. Results The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w. Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield. Conclusion Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition

  8. Use of Sugarcane Bagasse with Different Particle Sizes to Determine the Relationship between Physical Properties and Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Jingbo Li

    2016-04-01

    Full Text Available The supramolecular structures of a substrate, such as crystallinity, specific surface area, average pore size, and cellulase adsorption capacity, etc., affect the enzymatic hydrolysis of a lignocellulosic biomass. It is unclear which of these factors is most important for efficient hydrolysis. To eliminate the influence of the hemicellulose content and the lignin, sugarcane bagasse samples with the same cellulose, hemicellulose, and lignin content but with different particle sizes were used as substrates to investigate the relationship between physical properties and enzymatic conversion efficiency. When the content of hemicellulose and lignin was not significantly different, the decrease in the crystallinity index (CrI and the increase in the specific surface area (SSA, cellulase adsorption, average pore size, and the cellulase adsorption per SSA could give rise to higher enzymatic convertibility. The effects of the CrI and the average pore size were more pronounced than the effects of the SSA, the cellulase adsorption capacity, and the cellulase adsorption per SSA. According to the developed formula, the CrI was more influential than the average pore size under the specific conditions.

  9. Improved antimelanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis.

    Science.gov (United States)

    Liu, Zi-Jun; Wang, Ya-Lan; Li, Qi-Ling; Yang, Liu

    2018-01-01

    Cuscuta chinensis polysaccharide (CPS) was extracted using hot water and enzymatically hydrolyzed C. chinensis polysaccharide (ECPS) was produced by the mannase enzymatic hydrolysis process. The purpose of this research was to investigate the antimelanogenic activity of ECPS and CPS in B16F10 melanoma cells. The in vitro antioxidant activity was assessed by their ferric iron reducing power and DPPH free radical scavenging activities. The molecular mass distribution of polysaccharides was determined using SEC-MALLS-RI. CPS was successfully enzymatically degraded using mannase and the weighted average molecular weights of CPS and ECPS were 434.6 kDa and 211.7 kDa. The results of biological activity assays suggested that the enzymatically hydrolyzed polysaccharide had superior antimelanogenic activity and antioxidant effect than the original polysaccharide. ECPS exhibited antimelanogenic activity by down-regulating the expression of tyrosinase, MITF, and TRP-1 without cytotoxic effects in B16F10 melanoma cells. In conclusion, ECPS have the potential to become a skin whitening product.

  10. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis.

    Science.gov (United States)

    Xin, Donglin; Yang, Zhong; Liu, Feng; Xu, Xueru; Zhang, Junhua

    2015-01-01

    The effect of two pretreatments methods, aqueous ammonia (SAA) and dilute acid (DA), on the chemical compositions, cellulose crystallinity, morphologic change, and enzymatic hydrolysis of bamboo fractions (bamboo yellow, timber, green, and knot) was compared. Bamboo fractions with SAA pretreatment had better hydrolysability than those with DA pretreatment. High crystallinity index resulted in low hydrolysis yield in the conversion of SAA pretreated bamboo fractions, not DA pretreated fractions. The increase of cellulase loading had modestly positive effect in the hydrolysis of both SAA and DA pretreated bamboo fractions, while supplement of xylanase significantly increased the hydrolysis of the pretreated bamboo fractions, especially after SAA pretreatment. The results indicated that SAA pretreatment was more effective than DA pretreatment in conversion of bamboo fractions, and supplementation of xylanase was necessary in effective conversion of the SAA pretreated fractions into fermentable sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).

    Science.gov (United States)

    Zeng, Meijuan; Ximenes, Eduardo; Ladisch, Michael R; Mosier, Nathan S; Vermerris, Wilfred; Huang, Chia-Ping; Sherman, Debra M

    2012-02-01

    Lignin content, composition, distribution as well as cell wall thickness, structures, and type of tissue have a measurable effect on enzymatic hydrolysis of cellulose in lignocellulosic feedstocks. The first part of our work combined compositional analysis, pretreatment and enzyme hydrolysis for fractionated pith, rind, and leaf tissues from a hybrid stay-green corn, in order to identify the role of structural characteristics on enzyme hydrolysis of cell walls. The extent of enzyme hydrolysis follows the sequence rind cellulose to glucose in 24 h in the best cases. Physical fractionation of corn stalks or other C(4) grasses into soft and hard tissue types could reduce cost of cellulose conversion by enabling reduced enzyme loadings to hydrolyze soft tissue, and directing the hard tissue to other uses such as thermal processing, combustion, or recycle to the land from which the corn was harvested. Copyright © 2011 Wiley Periodicals, Inc.

  12. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production.

    Science.gov (United States)

    Gao, Yueshu; Xu, Jingliang; Yuan, Zhenhong; Zhang, Yu; Liu, Yunyun; Liang, Cuiyi

    2014-09-01

    Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process. Copyright © 2014. Published by Elsevier Ltd.

  13. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

    Science.gov (United States)

    Hao Liu; Junyong Zhu

    2010-01-01

    This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...

  14. Evaluation of lime and hydrothermal pretreatments for efficient enzymatic hydrolysis of raw sugarcane bagasse.

    Science.gov (United States)

    Grimaldi, Maira Prearo; Marques, Marina Paganini; Laluce, Cecília; Cilli, Eduardo Maffud; Sponchiado, Sandra Regina Pombeiro

    2015-01-01

    Ethanol production from sugarcane bagasse requires a pretreatment step to disrupt the cellulose-hemicellulose-lignin complex and to increase biomass digestibility, thus allowing the obtaining of high yields of fermentable sugars for the subsequent fermentation. Hydrothermal and lime pretreatments have emerged as effective methods in preparing the lignocellulosic biomass for bioconversion. These pretreatments are advantageous because they can be performed under mild temperature and pressure conditions, resulting in less sugar degradation compared with other pretreatments, and also are cost-effective and environmentally sustainable. In this study, we evaluated the effect of these pretreatments on the efficiency of enzymatic hydrolysis of raw sugarcane bagasse obtained directly from mill without prior screening. In addition, we evaluated the structure and composition modifications of this bagasse after lime and hydrothermal pretreatments. The highest cellulose hydrolysis rate (70 % digestion) was obtained for raw sugarcane bagasse pretreated with lime [0.1 g Ca(OH)2/g raw] for 60 min at 120 °C compared with hydrothermally pretreated bagasse (21 % digestion) under the same time and temperature conditions. Chemical composition analyses showed that the lime pretreatment of bagasse promoted high solubilization of lignin (30 %) and hemicellulose (5 %) accompanied by a cellulose accumulation (11 %). Analysis of pretreated bagasse structure revealed that lime pretreatment caused considerable damage to the bagasse fibers, including rupture of the cell wall, exposing the cellulose-rich areas to enzymatic action. We showed that lime pretreatment is effective in improving enzymatic digestibility of raw sugarcane bagasse, even at low lime loading and over a short pretreatment period. It was also demonstrated that this pretreatment caused alterations in the structure and composition of raw bagasse, which had a pronounced effect on the enzymes accessibility to the

  15. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose...... on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms......, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase...

  16. Building blocks for the solution phase synthesis of oligonucleotides: regioselective hydrolysis of 3',5'-Di-O-levulinylnucleosides using an enzymatic approach.

    Science.gov (United States)

    García, Javier; Fernández, Susana; Ferrero, Miguel; Sanghvi, Yogesh S; Gotor, Vicente

    2002-06-28

    A short and convenient synthesis of 3'- and 5'-O-levulinyl-2'-deoxynucleosides has been developed from the corresponding 3',5'-di-O-levulinyl derivatives by regioselective enzymatic hydrolysis, avoiding several tedious chemical protection/deprotection steps. Thus, Candida antartica lipase B (CAL-B) was found to selectively hydrolyze the 5'-levulinate esters, furnishing 3'-O-levulinyl-2'-deoxynucleosides 3 in >80% isolated yields. On the other hand, immobilized Pseudomonas cepacia lipase (PSL-C) and Candida antarctica lipase A (CAL-A) exhibit the opposite selectivity toward the hydrolysis at the 3'-position, affording 5'-O-levulinyl derivatives 4 in >70% yields. A similar hydrolysis procedure was successfully extended to the synthesis of 3'- and 5'-O-levulinyl-protected 2'-O-alkylribonucleosides 7 and 8. This work demonstrates for the first time application of commercial CAL-B and PSL-C toward regioselective hydrolysis of levulinyl esters with excellent selectivity and yields. It is noteworthy that protected cytidine and adenosine base derivatives were not adequate substrates for the enzymatic hydrolysis with CAL-B, whereas PSL-C was able to accommodate protected bases during selective hydrolysis. In addition, we report an improved synthesis of dilevulinyl esters using a polymer-bound carbodiimide as a replacement for dicyclohexylcarbodiimide (DCC), thus considerably simplifying the workup for esterification reactions.

  17. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.

    Science.gov (United States)

    Maehara, Larissa; Pereira, Sandra C; Silva, Adilson J; Farinas, Cristiane S

    2018-02-01

    The efficient use of renewable lignocellulosic feedstocks to obtain biofuels and other bioproducts is a key requirement for a sustainable biobased economy. This requires novel and effective strategies to reduce the cost contribution of the cellulolytic enzymatic cocktails needed to convert the carbohydrates into simple sugars, in order to make large-scale commercial processes economically competitive. Here, we propose the use of the whole solid-state fermentation (SSF) medium of mixed filamentous fungi as an integrated one-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production. Ten different individual and mixed cultivations of commonly used industrial filamentous fungi (Aspergillus niger, Aspergillus oryzae, Trichoderma harzianum, and Trichoderma reesei) were performed under SSF and the whole media (without the extraction step) were used in the hydrolysis of pretreated sugarcane bagasse. The cocultivation of T. reesei with A. oryzae increased the amount of glucose released by around 50%, compared with individual cultivations. The release of glucose and reducing sugars achieved using the whole SSF medium was around 3-fold higher than obtained with the enzyme extract. The addition of soybean protein (0.5% w/w) during the hydrolysis reaction further significantly improved the saccharification performance by blocking the lignin and avoiding unproductive adsorption of enzymes. The results of the alcoholic fermentation validated the overall integrated process, with a volumetric ethanol productivity of 4.77 g/L.h, representing 83.5% of the theoretical yield. These findings demonstrate the feasibility of the proposed one-pot integrated strategy using the whole SSF medium of mixed filamentous fungi for on-site enzymes production, biomass hydrolysis, and ethanol production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  18. Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo.

    Science.gov (United States)

    Li, Kena; Wang, Xiao; Wang, Jingfeng; Zhang, Junhua

    2015-09-01

    Effects of additives (BSA, PEG 6000, and Tween 80) on enzymatic hydrolysis of bamboo shoot and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branches) by cellulases and/or xylanase were evaluated. The addition of additives was comparable to the increase of cellulase loadings in the conversion of cellulose and xylan in bamboo fractions. Supplementation of xylanase (1 mg/g DM) with cellulases (10 FPU/g DM) in the hydrolysis of bamboo fractions was more efficient than addition of additives in the production of glucose and xylose. Moreover, addition of additives could further increase the glucose release from different bamboo fractions by cellulases and xylanase. Bamboo green exhibited the lowest hydrolyzability. Almost all of the polysaccharides in pretreated bamboo shoot fractions were hydrolyzed by cellulases with the addition of additives or xylanase. Additives and xylanase showed great potential for reducing cellulase requirement in the hydrolysis of bamboo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The effect of nonenzymatic protein on lignocellulose enzymatic hydrolysis and simultaneous saccharification and fermentation.

    Science.gov (United States)

    Wang, Hui; Kobayashi, Shinichi; Hiraide, Hatsue; Cui, Zongjun; Mochidzuki, Kazuhiro

    2015-01-01

    Nonenzymatic protein was added to cellulase hydrolysis and simultaneous saccharification and fermentation (SSF) of different biomass materials. Adding bovine serum albumin (BSA) and corn steep before cellulase enhanced enzyme activity in solution and increased cellulose and xylose conversion rates. The cellulose conversion rate of filter paper hydrolysis was increased by 32.5 % with BSA treatment. When BSA was added before cellulase, the remaining activity in the solution was higher than that in a control without BSA pretreatment. During SSF with pretreated rice straw as the substrate, adding 1.0 mg/mL BSA increased the ethanol yield by 13.6 % and final xylose yield by 42.6 %. The results indicated that lignin interaction is not the only mechanism responsible for the positive BSA effect. BSA had a stabilizing effect on cellulase and relieved cumulative sugar inhibition of enzymatic hydrolysis of biomass materials. Thus, nonenzymatic protein addition represents a promising strategy in the biorefining of lignocellulose materials.

  20. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation.

    Science.gov (United States)

    de Araújo, Cynthia Kérzia Costa; de Oliveira Campos, Alan; de Araújo Padilha, Carlos Eduardo; de Sousa Júnior, Francisco Canindé; do Nascimento, Ruthinéia Jéssica Alves; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2017-08-01

    This work investigated the influence of chemical (Triton X-100) and biological surfactant preparation (rhamnolipids) in coconut husk hydrolysis that was subjected to pretreatment with acid-alkali or alkaline hydrogen peroxide. The natural and pretreated biomass was characterized using the National Renewable Energy Laboratory protocol analysis as well as X-ray diffraction and scanning electron microscopy. The results demonstrated that in terms of the total reducing sugars, there was no significant difference between the hydrolysis using Triton X-100 and rhamnolipids, regardless of the pretreatment. A cellulosic conversion value as high as 33.0% was obtained in experiments with rhamnolipids. The coconut husk was observed to be a potential biomass that could produce second generation ethanol, and the rhamnolipid preparation can be used to support for the enzymatic hydrolysis, enhancing the advantage of cellulose conversion into glucose over chemical surfactants because it is an environmentally friendly approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    OpenAIRE

    Wei Han; Yingting Yan; Yiwen Shi; Jingjing Gu; Junhong Tang; Hongting Zhao

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35?g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen prod...

  2. STUDY OF THE PREPARATION OF SUGAR FROM HIGH-LIGNIN LIGNOCELLULOSE APPLYING SUBCRITICAL WATER AND ENZYMATIC HYDROLYSIS: SYNTHESIS AND CONSUMABLE COST EVALUATION

    Directory of Open Access Journals (Sweden)

    HANNY F. SANGIAN

    2015-05-01

    Full Text Available This study concern sugars hydrolyzed from the high-lignin coconut coir dust using moderate subcritical water (SCW hydrolysis at pressures 20-40 bar for 1 h and to evaluate the consumable costs driver generated. The SCW method produced two products, sugar liquid and solid (SCW-treated substrate. The solid was proceeded to prepare the sugar via enzymatic hydrolysis using pure cellulase. Yield of sugar hydrolyzed from lignocellulose by SCW technique was 0.25 gram sugar/gram cellulose +hemicellulose, or 0.09-gram sugar/gram lignocellulose at 160 °C and 40 bar. While, the maximum yield of sugar liberated enzymatically from SCW-treated solid was 0.35-gram sugar/gram cellulose+hemicellulose, or 0.13-gram sugar/gram SCW-treated solid. It was found that carbon dioxide gas was the highest cost driving in SCW hydrolysis.

  3. fA cellular automaton model of crystalline cellulose hydrolysis by cellulases

    Directory of Open Access Journals (Sweden)

    Little Bryce A

    2011-10-01

    Full Text Available Abstract Background Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. Results The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall

  4. Anti-Inflammatory and Antioxidant Properties of Peptides Released from β-Lactoglobulin by High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis.

    Science.gov (United States)

    Bamdad, Fatemeh; Bark, Seonghee; Kwon, Chul Hee; Suh, Joo-Won; Sunwoo, Hoon

    2017-06-07

    β-lactoglobulin hydrolysates (BLGH) have shown antioxidant, antihypertensive, antimicrobial, and opioid activity. In the current study, an innovative combination of high hydrostatic pressure and enzymatic hydrolysis (HHP-EH) was used to increase the yield of short bioactive peptides, and evaluate the anti-inflammatory and antioxidant properties of the BLGH produced by the HHP-EH process. BLG was enzymatically hydrolyzed by different proteases at an enzyme-to-substrate ratio of 1:100 under HHP (100 MPa) and compared with hydrolysates obtained under atmospheric pressure (AP-EH at 0.1 MPa). The degree of hydrolysis (DH), molecular weight distribution, and the antioxidant and anti-inflammatory properties of hydrolysates in chemical and cellular models were evaluated. BLGH obtained under HHP-EH showed higher DH than the hydrolysates obtained under AP-EH. Free radical scavenging and the reducing capacity were also significantly stronger in HHP-BLGH compared to AP-BLGH. The BLGH produced by alcalase (Alc) (BLG-Alc) showed significantly higher antioxidant properties among the six enzymes examined in this study. The anti-inflammatory properties of BLG-HHP-Alc were observed in lipopolysaccharide-stimulated macrophage cells by a lower level of nitric oxide production and the suppression of the synthesis of pro-inflammatory cytokines. Peptide sequencing revealed that 38% of the amino acids in BLG-HHP-Alc are hydrophobic and aromatic residues, which contribute to its anti-inflammatory properties. Enzymatic hydrolysis of BLG under HHP produces a higher yield of short bioactive peptides with potential antioxidant and anti-inflammatory effects.

  5. Cassava Pulp as a Biofuel Feedstock of an Enzymatic Hydrolysis Proces

    Directory of Open Access Journals (Sweden)

    Djuma’ali Djuma’ali

    2013-03-01

    Full Text Available Cassava pulp, a low cost solid byproduct of cassava starch industry, has been proposed as a high potential ethanolic fermentation substrate due to its high residual starch level, low ash content and small particle size of the lignocellulosic fibers. As the economic feasibility depends on complete degradation of the polysaccharides to fermentable glucose, the comparative hydrolytic potential of cassava pulp by six commercial enzymes were studied. Raw cassava pulp (12% w/v, particle size <320 μm hydrolyzed by both commercial pectinolytic (1 and amylolytic (2 enzymes cocktail, yielded 70.06% DE. Hydrothermal treatment of cassava pulp enhanced its susceptibility to enzymatic cleavageas compared to non-hydrothermal treatment raw cassava pulp. Hydrothermal pretreatment has shown that a glucoamylase (3 was the most effective enzyme for hydrolysis process of cassava pulp at temperature 65 °C or 95 °C for 10 min and yielded approximately 86.22% and 90.18% DE, respectively. Enzymatic pretreatment increased cassava pulp vulnerability to cellulase attacks. The optimum conditions for enzymatic pretreatment of 30% (w/v cassava pulp by a potent cellulolytic/ hemicellulolytic enzyme (4 was achieves at 50 °C for 3, meanwhile for liquefaction and saccharification by a thermo-stable α-amylase (5 was achieved at 95 °C for 1 and a glucoamylase (3 at 50 °C for 24 hours, respectively, yielded a reducing sugar level up to 94,1% DE. The high yield of glucose indicates the potential use of enzymatic-hydrothermally treated cassava pulp as a cheap substrate for ethanol production.

  6. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Chundawat, Shishir P S; Balan, Venkatesh; Dale, Bruce E

    2008-04-15

    Several factors will influence the viability of a biochemical platform for manufacturing lignocellulosic based fuels and chemicals, for example, genetically engineering energy crops, reducing pre-treatment severity, and minimizing enzyme loading. Past research on biomass conversion has focused largely on acid based pre-treatment technologies that fractionate lignin and hemicellulose from cellulose. However, for alkaline based (e.g., AFEX) and other lower severity pre-treatments it becomes critical to co-hydrolyze cellulose and hemicellulose using an optimized enzyme cocktail. Lignocellulosics are appropriate substrates to assess hydrolytic activity of enzyme mixtures compared to conventional unrealistic substrates (e.g., filter paper, chromogenic, and fluorigenic compounds) for studying synergistic hydrolysis. However, there are few, if any, high-throughput lignocellulosic digestibility analytical platforms for optimizing biomass conversion. The 96-well Biomass Conversion Research Lab (BCRL) microplate method is a high-throughput assay to study digestibility of lignocellulosic biomass as a function of biomass composition, pre-treatment severity, and enzyme composition. The most suitable method for delivering milled biomass to the microplate was through multi-pipetting slurry suspensions. A rapid bio-enzymatic, spectrophotometric assay was used to determine fermentable sugars. The entire procedure was automated using a robotic pipetting workstation. Several parameters that affect hydrolysis in the microplate were studied and optimized (i.e., particle size reduction, slurry solids concentration, glucan loading, mass transfer issues, and time period for hydrolysis). The microplate method was optimized for crystalline cellulose (Avicel) and ammonia fiber expansion (AFEX) pre-treated corn stover. Copyright 2008 Wiley Periodicals, Inc.

  7. CONTINUOUS AND SEMICONTINUOUS REACTION SYSTEMS FOR HIGH-SOLIDS ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSICS

    Directory of Open Access Journals (Sweden)

    A. González Quiroga

    2015-12-01

    Full Text Available Abstract An attractive operation strategy for the enzymatic hydrolysis of lignocellulosics results from dividing the process into three stages with complementary goals: continuous enzyme adsorption at low-solids loading (5% w/w with recycling of the liquid phase; continuous liquefaction at high-solids content (up to 20% w/w; and, finally, continuous or semicontinuous hydrolysis with supplementation of fresh enzymes. This paper presents a detailed modeling and simulation framework for the aforementioned operation strategies. The limiting micromixing situations of macrofluid and microfluid are used to predict conversions. The adsorption and liquefaction stages are modeled as a continuous stirred tank and a plug flow reactor, respectively. Two alternatives for the third stage are studied: a train of five cascading stirred tanks and a battery of batch reactors in parallel. Simulation results show that glucose concentrations greater than 100 g L-1 could be reached with both of the alternatives for the third stage.

  8. Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading

    DEFF Research Database (Denmark)

    Georgieva, T.I.; Hou, Xiaoru; Hilstrøm, Troels

    2008-01-01

    was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high...... and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%....

  9. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2004-01-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis.Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98.Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  10. [Effects of hot-NaOH pretreatment on Jerusalem artichoke stalk composition and subsequent enzymatic hydrolysis].

    Science.gov (United States)

    Wang, Qing; Qiu, Jingwen; Li, Yang; Shen, Fei

    2015-10-01

    In order to explore the possibility of Jerusalem artichoke stalk for bioenergy conversion, we analyzed the main composition of whole stalk, pitch, and core of the stalk. Meanwhile, these parts were pretreated with different NaOH concentrations at 121 degrees C. Afterwards, enzymatic hydrolysis was performed to evaluate the pretreatment efficiency. Jerusalem artichoke stalk was characterized by relatively high lignin content (32.0%) compared with traditional crop stalks. The total carbohydrate content was close to that of crop stalks, but with higher cellulose content (40.5%) and lower hemicellulose (19.6%) than those of traditional crop stalks. After pretreatment, the lignin content in the whole stalk, pitch, and core decreased by 13.1%-13.4%, 8.3%-13.5%, and 19.9%-27.2%, respectively, compared with the unpretreated substrates. The hemicellulose content in the whole stalk, pitch, and core decreased 87.8%-96.9%, 87.6%-95.0%, and 74.0%-90.2%, respectively. Correspondingly, the cellulose content in the pretreated whole stalk, pitch, and core increased by 56.5%-60.2%, 52.2%-55.4%, and 62.7%-73.2%, respectively. Moreover, increase of NaOH concentration for pretreatment could improve the enzymatic hydrolysis of the whole stalk and pitch by 2.3-2.6 folds and 10.3-18.5 folds, respectively. The hydrolysis of pretreated stalk core decreased significantly as 2.0 mol/L NaOH was employed, although the increased NaOH concentration can also improve its hydrolysis performance. Based on these results, hot-NaOH can be regarded as an option for Jerusalem artichoke stalk pretreatment. Increasing NaOH concentration was beneficial to hemicellulose and lignin removal, and consequently improved sugar conversion. However, the potential decrease of sugar conversion of the pretreated core by higher NaOH concentration suggested further optimization on the pretreatment conditions should be performed.

  11. Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis

    Science.gov (United States)

    Witantri, R. G.; Purwoko, T.; Sunarto; Mahajoeno, E.

    2017-07-01

    Cassava peels waste contains, cellulose which is quite high at 43.626%, this is a potential candidate as a raw for bioethanol production. The purpose of this study was to determine the performance of the enzymatic hydrolysis, microbiological (Effective microbe) and fermentation in cassava peel waste is known from the results of quantitative measurement of multiple ethanol parameters (DNS Test, pH, ethanol concentration). This research was carried out in stages, the first stage is hydrolysis with completely randomized design with single factor variation of the catalyst, consisting of three levels ie cellulase enzymes, multienzyme and effective microbial EM4. The second stage is fermentation with factorial randomized block design, consisting of three groups of variations of catalyst, and has two factors: variations of fermipan levels 1, 2, 3% and the duration of fermentation, 2,4,6 days. The parameters in the test is a reducing sugar, pH and concentration of ethanol. The results showed that variation of hydrolysis treatment, fermentation time, and fermipan levels has real effect on the fermentation process. On average the highest ethanol content obtained from the treatment with multienzyme addition, with the addition of 2% fermipan levels and on the 2nd day of fermentation that is equal to 3.76%.

  12. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  13. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends.

    Science.gov (United States)

    Cianchetta, Stefano; Bregoli, Luca; Galletti, Stefania

    2017-11-01

    Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H 2 SO 4 0.2-2%, w/v) or alkali (NaOH 0.02-0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2  = 0.5), indicating a role for other accessory enzymes.

  14. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from ...

  15. Pungent Components from Thioglucosides in Armoracia rusticana Grown in China, Obtained by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Rong Li

    2006-01-01

    Full Text Available The conditions of enzymatic hydrolysis of thioglucosides, which are the precursors of the pungent components in Armoracia rusticana grown in China, were studied. The effects of incubation time, temperature, pH and the addition of ascorbic acid on the hydrolysis of thioglucosides were determined. The optimum hydrolytic conditions for the pungent components from thioglucosides were time, 120 min; temperature, 65 oC; pH=4.0 and ascorbic acid, 2 mg/g. The mixture of pungent components in a pale-yellow liquid and a yield of 0.85 % were isolated and analyzed by GC/MS. Nine constituents were identified, representing 92.1 % of the pungent components. The major constituents were allyl isothiocyanate (78.4 %, 3-butenyl isothiocyanate (1.5 %, 2-pentyl isothiocyanate (2.1 % and β-phenylethyl isothiocyanate (9.4 %.

  16. Radiation pre-treatment of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ardica, S.; Calderaro, E.; Cappadona, C.

    1984-01-01

    The effect of γ-ray pre-irradiation of cotton cellulose on glucose production on enzymatic hydrolysis by cellulase has been investigated. Pure cotton has been irradiated in air, in water and in acetate buffer solution over the dose range 10 3 to 10 6 Gy. Pre-irradiation in water or in acetate buffer solution is more effective than in air. The results show that the glucose yield is not always an increasing function of dose, and that for some dose levels, the glucose yields from the irradiated samples are lower than those from non-irradiated samples. (author)

  17. Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment.

    Science.gov (United States)

    Rodrigues, Tigressa Helena Soares; Rocha, Maria Valderez Ponte; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B

    2011-07-01

    In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L(-1) of NaOH (372 ± 12 and 355 ± 37 mg g(glucan)(-1) ) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15-30 min) and microwave power (600-900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU g (CAB-M) (-1) ) increased glucose concentration to 15 g L(-1). The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L(-1) and 1.41 g L(-1) h(-1), respectively.

  18. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    Science.gov (United States)

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  19. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Feng-Qin; Xie, Hui; Chen, Wei; Wang, En-Tao; Du, Feng-Guang; Song, An-Dong

    2013-09-01

    Aiming at increasing the efficiency of transferring corn stover into sugars, a biological pretreatment was developed and investigated in this study. The protocol was characterized by the pretreatment with crude ligninolytic enzymes from Phanerochete chrysosporium and Coridus versicolor to break the lignin structure in corn stover, followed by a washing procedure to eliminate the inhibition of ligninolytic enzyme on cellulase. By a 2 d-pretreatment, sugar yield from corn stover hydrolysis could be increased by 50.2% (up to 323 mg/g) compared with that of the control. X-ray diffractometry and FT-IR analysis revealed that biological pretreatment could partially remove the lignin of corn stover, and consequently enhance the enzymatic hydrolysis efficiency of cellulose and hemeicellulose. In addition, the amount of microbial inhibitors, such as acetic acid and furfural, were much lower in biological pretreatment than that in acid pretreatment. This study provided a promising pretreatment method for biotransformation of corn stovers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin.

    Science.gov (United States)

    Lin, Lili; Yan, Rong; Liu, Yongqiang; Jiang, Wenju

    2010-11-01

    The artificial biomass based on three biomass components (cellulose, hemicellulose and lignin) were developed on the basis of a simplex-lattice approach. Together with a natural biomass sample, they were employed in enzymatic hydrolysis researches. Different enzyme combines of two commercial enzymes (ACCELLERASE 1500 and OPTIMASH BG) showed a potential to hydrolyze hemicellulose completely. Negligible interactions among the three components were observed, and the used enzyme ACCELLERASE 1500 was proven to be weak lignin-binding. On this basis, a multiple linear-regression equation was established for predicting the reducing sugar yield based on the component proportions in a biomass. The hemicellulose and cellulose in a biomass sample were found to have different contributions in staged hydrolysis at different time periods. Furthermore, the hydrolysis of rice straw was conducted to validate the computation approach through considerations of alkaline solution pretreatment and combined enzymes function, so as to understand better the nature of biomass hydrolysis, from the aspect of three biomass components.

  1. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

    Science.gov (United States)

    Teng, Ying; Luo, Yang; Ma, Wenting; Zhu, Lingjia; Ren, Wenjie; Luo, Yongming; Christie, Peter; Li, Zhengao

    2015-01-01

    This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L-1). All inoculation agents investigated enhanced plant shoot biomass by 6–53% of fresh weight and 16–61% of dry weight and Cd uptake by the shoots by 10–53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility. PMID:26113858

  2. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.).

    Science.gov (United States)

    Laohakunjit, Natta; Selamassakul, Orrapun; Kerdchoechuen, Orapin

    2014-09-01

    An enzymatic bromelain seaweed protein hydrolysate (eb-SWPH) was characterised as the precursor for thermally processed seafood flavour. Seaweed (Gracilaria fisheri) protein after agar extraction was hydrolysed using bromelain (enzyme activity=119,325 U/g) at 0-20% (w/w) for 0.5-24 h. Optimal hydrolysis conditions were determined using response surface methodology. The proposed model took into account the interaction effect of the enzyme concentration and hydrolysis time on the physicochemical properties and volatile components of eb-SWPH. The optimal hydrolysis conditions for the production of eb-SWPH were 10% bromelain for 3h, which resulted in a 38.15% yield and a 62.91% degree of hydrolysis value. Three free amino acids, arginine, lysine, and leucine, were abundant in the best hydrolysate. Ten volatile flavours of the best eb-SWPH were identified using gas chromatography/mass spectrometry. The predominant odourants were hexanal, hexanoic acid, nonanoic acid, and dihydroactinidiolide. The thermally processed seafood flavour produced from eb-SWPH exhibited a roasted seafood-like flavouring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production

    OpenAIRE

    Conesa Domínguez, Claudia; Seguí Gil, Lucía; Laguarda-Miro, Nicolas; Fito Maupoey, Pedro

    2016-01-01

    [EN] The pineapple industry generates significant amounts of residues which are classified as lignocellulosic residual biomass. In the present paper, microwaves are studied as a pretreatment to improve pineapple waste saccharification. Different microwave (MW) powers (10.625, 8.5, 6.375, 4.25 and 2.125 W/g) and exposure times (1-20 min) were applied to the solid part of the waste before enzymatic hydrolysis. Infrared thermography was used to assess temperature evolution and structural modific...

  4. Production and characterization of cowpea protein hydrolysate with optimum nitrogen solubility by enzymatic hydrolysis using pepsin.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René

    2017-06-01

    Cowpea is a source of low-cost and good nutritional quality protein for utilization in food formulations in replacement of animal proteins. Therefore it is necessary that cowpea protein exhibits good functionality, particularly protein solubility which affects the other functional properties. The objective of this study was to produce cowpea protein hydrolysate exhibiting optimum solubility by the adequate combination of hydrolysis parameters, namely time, solid/liquid ratio (SLR) and enzyme/substrate ratio (ESR), and to determine its functional properties and molecular characteristics. A Box-Behnken experimental design was used for the experiments, and a second-order polynomial to model the effects of hydrolysis time, SLR and ESR on the degree of hydrolysis and nitrogen solubility index. The optimum hydrolysis conditions of time 208.61 min, SLR 1/15 (w/w) and ESR 2.25% (w/w) yielded a nitrogen solubility of 75.71%. Protein breakdown and the peptide profile following enzymatic hydrolysis were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. Cowpea protein hydrolysate showed higher oil absorption capacity, emulsifying activity and foaming ability compared with the concentrate. The solubility of cowpea protein hydrolysate was adequately optimized by response surface methodology, and the hydrolysate showed adequate functionality for use in food. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  6. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Science.gov (United States)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  8. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide.

    Science.gov (United States)

    da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte

    2015-03-01

    The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Alteration of biomass composition in response to changing substrate particle size and the consequences for enzymatic hydrolysis of corn bran

    DEFF Research Database (Denmark)

    Agger, Jane; Meyer, Anne S.

    2012-01-01

    Corn bran is a by-product from corn starch processing. This work examined the effects of changing substrate particle size on enzymatic hydrolysis of both raw and pretreated destarched corn bran. The biomass composition of the corn bran varied between particle size fractions: The largest particles...

  10. Enzymatic hydrolysis of various pretreated lignocellulosic substrates and the fermentation of the liberated sugars to ethanol and butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Saddler, J.N.; Mes-Hartree, M.; Yu, E.K.C.; Brownell, H.H.

    1983-01-01

    Aspen wood and wheat straw were pretreated by exposure to steam at elevated temperatures. Chemical analysis of the substrates revealed that steam explosion differentially decomposed the pentosan component while leaving the glucan portion relatively unchanged. The pretreated residues could be used as substrates for growth of Trichoderma reesei C30 and T. harzianum E58. The cellulase activities detected were in some cases three times as high as those found when Solka Floc was used as the substrate. Culture filtrates of T. harzianum E58 could efficiently hydrolyze the hemicellulose-rich water-soluble fractions. This material was fermented by Klebsiella pneumoniae with 0.4-0.5 g of 2,3-butanediol produced per gram of sugar utilized. Once the steam-exploded residues had been water and alkali extracted, the enzymatically hydrolyzed substrates were readily fermented by Saccharomyces cerevisiae or Zymononas mobilis with values as high as 2% (w/v) ethanol obtained from 5% steam-exploded wood fractions. 30 references, 2 figures, 8 tables.

  11. Comparison of the role that entropy has played in processes of non-enzymatic and enzymatic catalysis

    International Nuclear Information System (INIS)

    Dixon Pineda, Manuel Tomas

    2012-01-01

    The function that entropy has played is compared in processes of non-enzymatic and enzymatic catalysis. The processes followed are showed: the kinetics of the acid hydrolysis of 3-pentyl acetate and cyclopentyl acetate catalyzed by hydrochloric acid and enzymatic hydrolysis of ethyl acetate and γ-butyrolactone catalyzed by pig liver esterase. The activation parameters of Eyring were determined for each process and interpreted the contribution of the entropy of activation for catalysis in this type of model reactions. (author) [es

  12. 77 FR 35331 - Trichoderma reesei; Proposed Significant New Use Rule

    Science.gov (United States)

    2012-06-13

    ... Trichoderma reesei; Proposed Significant New Use Rule AGENCY: Environmental Protection Agency (EPA). ACTION... Control Act (TSCA) for the genetically modified microorganism identified generically as Trichoderma reesei...: Trichoderma reesei (MCAN J-10-2) (generic). Chemical Abstracts Service (CAS) Registry Number: Not available...

  13. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Science.gov (United States)

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  14. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  15. Enzymatic Hydrolysis of Mannan from Konjac (Amorphophallus sp. Using Mannanase from Streptomyces lipmanii to Produce Manno-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Ashadi Sasongko

    2015-09-01

    Full Text Available Mannan is an abundant polysaccharide that can be found in konjac (Amorphophallus sp.. Mannan can be enzymatically hydrolyzed using mannanase to produce manno-oligosaccharides which can be used as a prebiotic. The aims of this research are to determine the production time of mannanase from Streptomyces lipmanii, perform enzyme characterization, optimize the hydrolysis time, and characterize the hydrolysis product. A qualitative assay using the indicator Congo red showed that S. lipmanii generated a clear zone, indicating that S. lipmanii produced mannanase in konjac medium and possessed mannanolytic activity. Enzyme activity was determined through reducing sugar measurement using the dinitrosalycylic acid method, and optimum enzyme production was achieved at the second day of culture. Characterization of the enzyme showed that hydrolysis was optimum at pH 7 and at a temperature of 50 oC. The reducing sugar content was increased by an increasing the hydrolysis time, and reached an optimum time at 2 h. The degree of polymerization value of three was achieved after 2 h hydrolysis of mannan from konjac, indicating the formation of oligosaccharides. Analysis by thin layer chromatography using butanol, acetic acid, and water in a ratio of 2:1:1 as eluent showed the presence of compounds with a retention time between those of mannose and mannotetrose. Confirmation was also performed by HPLC, based on the retention time

  16. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Science.gov (United States)

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from

  18. Fat content affects bioaccessibility and efficiency of enzymatic hydrolysis of lutein esters added to milk and yogurt

    OpenAIRE

    Xavier, Ana Augusta Odorissi; Mercadante, Adriana Zerlotti; Garrido-Fernández, Juan; Pérez-Gálvez, Antonio

    2014-01-01

    © 2014 Elsevier Ltd. Addition of lutein to dairy products is an alternative that widens the range of foods which could be lutein sources. However, bioaccessibility is an essential aspect to be considered during the development of products with added bioactive substances. We evaluated the in vitro bioaccessibility of lutein esters added to milk and yogurt with different fat contents, and determined the efficiency of enzymatic hydrolysis of the esters during digestion. Bioaccessibility of lutei...

  19. Effect of metal ions on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp. 99-125.

    Science.gov (United States)

    Lu, Jike; Wang, Pei; Ke, Zhaodi; Liu, Xin; Kang, Qiaozhen; Hao, Limin

    2018-07-15

    In order to study the effect of metal ions on the enzymatic hydrolysis of hemp seed oil by Candida sp. 99-125, the spectroscopy, stability and hydrolytic activity of the biocatalyst were investigated in presence of Ca 2+ , Mg 2+ , Fe 2+ , Fe 3+ , Cu 2+ , Sn 2+ , Pb 2+ , Zn 2+ and Ba 2+ metal ions, respectively. The UV spectroscopy showed that all the metal ions enhanced the absorbance but the decrease of fluorescence intensity was observed. All the metal ions could improve the lipase thermal stability except Cu 2+ and Ba 2+ . Hydrolysis of hemp seed oil proved that Ca 2+ , Fe 3+ , Pb 2+ and Ba 2+ could significantly improve the hydrolytic rate, and metal ions could influence lipase selectivity. The study revealed that metal ions could improve lipase stability, hydrolysis activity in the hydrolytic process of hemp seed oil by Candida sp. 99-125. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    Science.gov (United States)

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1979-01-01

    The effect of γ-pre-irradiation of cellulose in cellulose containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation. (author)

  2. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M; Kaetsu, I [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1979-03-01

    The effect of ..gamma..-pre-irradiation of cellulose in cellulose containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation.

  3. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    Energy Technology Data Exchange (ETDEWEB)

    Kamakura, M; Kaetsu, I

    1979-03-01

    The effect of gamma-pre-irradiation of cellulose in cellulose-containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation.

  4. Optimizing the Isolation of Microfibrillated Bamboo in High Pressure Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    N. A. Sri Aprilia

    2015-07-01

    Full Text Available Bleached bamboo fiber was treated with a high pressure enzymatic hydrolysis (HPEH process in order to produce microfibrillated bamboo fiber (MBF. Mixture design of experiments was utilized to determine the optimal constituents of fiber, enzymes, and water for the HPEH process on the isolation yield of the MBF. Results showed the optimal combination for the maximal yield isolation of the MBF was 1 g fiber, 1 g enzyme, and 1 L water at 90 MPa and 70 °C. The influence of the reaction time of the HPEH process (6 to 48 h was also evaluated in this study. Morphological and thermal property analyses of untreated and treated bamboo fibers revealed that the HPEH process was effective for removing non-cellulosic components from the fibers. Thus, the HPEH process is an effective method for the isolation of the MBF, with the benefits of elevated crystallinity and thermal stability.

  5. The role of subsite +2 of the Trichoderma reesei beta-mannanase TrMan5A in hydrolysis and transglycosylation

    DEFF Research Database (Denmark)

    Rosengren, Anna; Hägglund, Per; Anderson, Lars Steen

    2012-01-01

    The N-terminal catalytic module of beta-mannanase TrMan5A from the filamentous fungus Trichoderma reesei is classified into family 5 of glycoside hydrolases. It is further classified in clan A with a (beta/alpha)(8) barrel configuration and has two catalytic glutamates (E169 and E276). It has at ...

  6. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enzymatic hydrolysis of oil palm empty fruits bunch fiber using Celluclast® and Accellerase® BG for sugar production

    Science.gov (United States)

    Salleh, Noor Shafryna; Murad, Abdul Munir Abdul

    2016-11-01

    In this work, the ability of commercial Trichoderma reesei cellulases preparation, Celluclast® or in combination with Accellerase®BG β-glucosidase to hydrolyse pretreated oil palm empty fruit bunch (OPEFB) was evaluated. Celluclast® alone hydrolyzed OPEFB to produce 2.41±0.44 mg glucose per gram OPEFB. However, the production of glucose was significantly improved with supplementation of Accellerase®BG (8.12±0.93 mg/g). This result suggested that the endoglucanases and exoglucanases in Celluclast® and β-glucosidase in Accellerase®BG able to work synergistically to increase the production of glucose from OPEFB. In addition, the production of xylose was also improved by 30% when the enzyme mixture was used. The result suggested that the mixture of Celluclast® with Accellerase®BG work synergistically to improve the production of sugars by removing the inhibition by cellobiose for complete cellulose hydrolysis. The production of glucose and xylose from OPEFB wastes showed the potential of this biomass as the source of renewable energy and fine chemicals production in Malaysia.

  8. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries.

    Science.gov (United States)

    Ellilä, Simo; Fonseca, Lucas; Uchima, Cristiane; Cota, Junio; Goldman, Gustavo Henrique; Saloheimo, Markku; Sacon, Vera; Siika-Aho, Matti

    2017-01-01

    During the past few years, the first industrial-scale cellulosic ethanol plants have been inaugurated. Although the performance of the commercial cellulase enzymes used in this process has greatly improved over the past decade, cellulases still represent a very significant operational cost. Depending on the region, transport of cellulases from a central production facility to a biorefinery may significantly add to enzyme cost. The aim of the present study was to develop a simple, cost-efficient cellulase production process that could be employed locally at a Brazilian sugarcane biorefinery. Our work focused on two main topics: growth medium formulation and strain improvement. We evaluated several Brazilian low-cost industrial residues for their potential in cellulase production. Among the solid residues evaluated, soybean hulls were found to display clearly the most desirable characteristics. We engineered a Trichoderma reesei strain to secrete cellulase in the presence of repressing sugars, enabling the use of sugarcane molasses as an additional carbon source. In addition, we added a heterologous β-glucosidase to improve the performance of the produced enzymes in hydrolysis. Finally, the addition of an invertase gene from Aspegillus niger into our strain allowed it to consume sucrose from sugarcane molasses directly. Preliminary cost analysis showed that the overall process can provide for very low-cost enzyme with good hydrolysis performance on industrially pre-treated sugarcane straw. In this study, we showed that with relatively few genetic modifications and the right growth medium it is possible to produce considerable amounts of well-performing cellulase at very low cost in Brazil using T. reesei . With further enhancements and optimization, such a system could provide a viable alternative to delivered commercial cellulases.

  9. Kinetics of the hydrolysis of polysaccharide galacturonic acid and neutral sugars chains from flaxseed mucilage

    Directory of Open Access Journals (Sweden)

    Happi Emaga, T.

    2012-01-01

    Full Text Available Different hydrolysis procedures of flaxseed polysaccharides (chemical and enzymatic were carried out with H2SO4, HCl and TFA at different acid concentrations (0.2, 1 and 2 M and temperatures (80 and 100°C. Enzymatic and combined chemical and enzymatic hydrolyses of polysaccharide from flaxseed mucilage were also studied. Acid hydrolysis conditions (2 M H2SO4, 4 h, 100°C are required to quantify total monosaccharide content of flaxseed mucilage. The enzymatic pathway (Pectinex™ Ultra SP limits sugar destruction during hydrolysis, but it is also insufficient for complete depolymerization. The combination of the two treatments, i.e. moderate chemical hydrolysis (0.2 M H2SO4, 80°C, 48 h combined with enzymatic hydrolysis is not more effective compared to chemical hydrolysis in drastic conditions (2 M H2SO4 at 100°C. The strong interaction between the neutral and acid fractions of flaxseed mucilage may hinder total release of sugar residues. Physical treatment prior to the hydrolysis could be necessary to achieve complete depolymerisation of flaxseed mucilage.

  10. Combining autohydrolysis and ionic liquid microwave treatment to enhance enzymatic hydrolysis of Eucalyptus globulus wood.

    Science.gov (United States)

    Rigual, Victoria; Santos, Tamara M; Domínguez, Juan Carlos; Alonso, M Virginia; Oliet, Mercedes; Rodriguez, Francisco

    2018-03-01

    The combination of autohydrolysis and ionic liquid microwave treatments of eucalyptus wood have been studied to facilitate sugar production in a subsequent enzymatic hydrolysis step. Three autohydrolysis conditions (150 °C, 175 °C and 200 °C) in combination with two ionic liquid temperatures (80 °C and 120 °C) were compared in terms of chemical composition, enzymatic digestibility and sugar production. Morphology was measured (using SEM) and the biomass surface was visualized with confocal fluorescence microscopy. The synergistic cooperation of both treatments was demonstrated, enhancing cellulose accessibility. At intermediate autohydrolysis conditions (175 °C) and low ionic liquid temperature (80 °C), a glucan digestibility of 84.4% was obtained. Using SEM micrographs, fractal dimension (as a measure of biomass complexity) and lacunarity (as a measure of homogeneity) were calculated before and after pretreatment. High fractals dimensions and low lacunarities correspond to morphologically complex and homogeneous samples, that are better digested by enzyme cocktails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improvement Enzymatic Hydrolysis of Wheat Straw for Bioethanol Production by Combined Treatment of Radiation and Acid

    International Nuclear Information System (INIS)

    Hong, Sung Hyun; Lee, Seung Sik; Bai, Hyoung Woo; Chung, Byung Yeoup

    2012-01-01

    The cost of ethanol production from starch and sucrose for use as a vehicle fuel is ultimately high. Consequently, it has been suggested that the large-scale use of ethanol as a fuel will require the utilization of cellulosic feedstock. Lignocellulosic biomass has the potential to serve as a low cost and renewable feedstock for bioconversion into fermentable sugars, which can be further utilized for biofuel production. It is estimated that there is over one billion tons of biomass available for conversion into biofuels on a renewable basis to displace a substantial portion of the fossil fuels currently consumed within the transportation sector. Among different pretreatment methods such as biological, physical, chemical, and physic-chemical pretreatments, chemical pretreatment using dilute acid as catalyst, which has been extensively evaluated for treating a variety of lignocellulosic feedstocks, is reported as one of the leading pretreatment technologies. Ionizing radiation can easily penetrate lignocellulosic structure and undoubtedly produce free radicals useful in modification of lignin structure as well as breakdown cellulose crystal regions. Phenoxy radicals appeared to be important radical intermediates that ultimately transformed into o-quinonoid structures in lignin. Therefore, ionizing radiation such as gamma ray and electron beam can be a great alternative. In this study, the effect of ionizing irradiation of wheat straw prior to dilute sulfuric acid treatment is investigated. The combined pretreatment for wheat straw was performed to evaluate the efficiency of enzymatic hydrolysis and compared with that of the effect of enzymatic hydrolysis by individual pretreatment

  12. Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment

    OpenAIRE

    Martín, Carlos; Wei, Maogui; Xiong, Shaojun; Jönsson, Leif J.

    2017-01-01

    Chemical characterization of cassava stems from different origin revealed that glucans accounted for 54-63% of the dry weight, whereas 35-67% of these glucans consisted of starch. The cassava stems were subjected to a saccharification study including starch hydrolysis, pretreatment with either sulfuric acid or 1-ethyl-3-methylimidazolium acetate ([Emim]OAc), and enzymatic hydrolysis of cellulose. Starch hydrolysis prior to pretreatment decreased sugar degradation, improved enzymatic convertib...

  13. Enzymatic hydrolysis on protein and β-glucan content of Sang-yodrice bran hydrolysatesand their anti-inflammatory activityonRAW 264.7 cells

    Directory of Open Access Journals (Sweden)

    Natcha Phantuwong

    2017-12-01

    Full Text Available Background: Research focusing on the improvement of the utilization of rice bran is increasing due to its nutritional properties. Several biological activities of rice bran hydrolysates and its constituents have been reported. Sang-yod rice, a local rice variety in Southern of Thailand, is a pigmented rice. Furthermore, its bran has high nutritive value and health beneficial components. Accordingly, there is growing interest in transforming this by-product into a functional food ingredient. Objective: To investigate the effect of enzymatic hydrolysis processes on the digestion of protein and β-glucan and evaluate anti-proinflammatory properties of selected hydrolysates on RAW 264.7 macrophage cells. Method: Sang-yod rice bran hydrolysates were obtained using a single or co-enzymatic hydrolysis process and sequential hydrolysis process using amyloglucosidase and protease G6. Effects of enzyme concentration (3-5% v/w and hydrolysis duration (30, 60, and 120 min on soluble protein and β-glucan contents of obtained rice bran hydrolysates were evaluated. The selected rice bran hydrolysates were evaluated for their cell viability and inhibition against NO and pro-inflammatory cytokines generation on RAW 264.7 mouse macrophage cell lines. Results: Protein content (0.59-3.37 % of the rice bran hydrolysates (RBHs was increased by increasing of enzyme concentration (3-5% v/w and hydrolysis time (60-120 min. However, the β-glucan content (0.88-4.63% of RBHs decreased with the increase of those parameters. The RBHs derived by the sequential process using 5% v/w enzyme concentration and 60 min hydrolysis time gave high protein (3.23% and high β-glucan (4.02% contents. The hydrolysates with high amount of protein and/or β-glucan contents demonstrated no cytotoxicity against RAW 264.7 cells at concentration range of 100-2,000 μg/ml. Additionally, they demonstrated NO inhibition and pro-inflammatory inhibition ranges of 49.09-71.63% and 9

  14. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    Science.gov (United States)

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  15. Two-Step Hot-Compressed Water Treatment of Douglas Fir for Efficient Total Sugar Recovery by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Hiroyuki Inoue

    2016-04-01

    Full Text Available The non-catalytic hydrothermal pretreatment of softwood is generally less effective for subsequent enzymatic hydrolysis. In this study, the efficacy of hot-compressed water (HCW treatment of Douglas fir was investigated between 180 °C and 260 °C, allowing solubilization of the cellulose components. The enzymatic digestibility of cellulosic residues increased significantly under HCW conditions > 250 °C, and the enhanced glucan digestibility was closely related to the decomposition of the cellulose component. Combination of the first-stage HCW treatment (220 °C, 5 min to recover hemicellulosic sugars with the second-stage HCW treatment (260 °C, 5 min to improve cellulose digestibility gave a total sugar recovery of 56.2% based on the dried raw materials. This yield was 1.4 times higher than that from the one-step HCW-treated sample (260 °C, 5 min. Additionally, an enzymatic hydrolysate from the two-step HCW-treated sample exceeded 90% of the ethanol fermentation yield based on the total sugars present in the hydrolysates. These results suggest the potential of the two-step HCW treatment of softwood as a pretreatment technology for efficient total sugar recovery and ethanol production.

  16. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.

    Science.gov (United States)

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-09-01

    production, high cellulase production within a shorter time and a better resistance to carbon catabolite repression. Disruption of β-glucosidase cel3D in TRB1 was identified, which might contribute to the superiority of TRB1 over RUT-C30 and might play a role in the cellulase production. These results laid a foundation for future investigations to further improve cellulase enzymatic efficiency and reduce cost for T. reesei cellulase production.

  17. Assessment of cellulose purification methods from the residue of enzymatic hydrolysis of sugarcane bagasse for the production of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Camargo, Lais Angelice de; Farinas, Cristiane Sanchez; Marconcini, José Manoel; Mattoso, Luiz Henrique Capparelli; Pereira, Sandra Cerqueira

    2016-01-01

    Full text: Over the years, there is a growing trend in the reuse of residues from the agricultural industries due to social, environmental and economic demands. The production of Brazilian sugarcane in the 2014/15 season was more than 640 million tons, estimating that one third of this total is bagasse [1]. After enzymatic hydrolysis of bagasse in order to give the 2G ethanol, remains a solid fibrous residue which can be repurposed in other processes. This study evaluated four methods for the purification of the resulting solid fibrous residue from the enzymatic hydrolysis process of bagasse, with the intention of obtaining cellulose. Measurements of the crystallinity index (CI) of the cellulose contained in the samples were determined using X-ray Diffraction (XRD). The enzymatic hydrolysis of generates a fibrous solid residue with contents of lignin and cellulose. This residue was subjected to four purification methods: I) 100 mL of NaOH (5%, w/w) at 55 °C was added to 5 g of residue and 43 mL of H 2 O 2 (35%, v/v) under stirring for 1.5 hours; II) the same procedure was repeated on the resulting material from I; III) 105 mL of solution 10:1 (ν/ν) of CH 3 COOH and HNO 3 at 60 °C was added to 5 g of residue under stirring for 30 minutes; IV) reaction with a solution composed of 1 ml of CH 3 COOH and 2.5 g of NaClO 2 at 70 °C under stirring for 1 hour and after that time, the procedure was repeated twice and then the solution was kept under stirring for further 3 hours. The crystallinity indexes found for the purification procedures were: I) 81.7%; II) 83.2%; III) 52.1% e IV) 77.2%. The best result was found for the material subjected to the method II. This process (II) generated a material composed of high content of crystalline cellulose. References: [1] CONAB (National Supply Company), 2015. (author)

  18. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates.

    Science.gov (United States)

    Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua

    2018-04-15

    Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (hydrostatic pressure combined with Corolase PP treatments could be used as a potential technology to produce bioactive peptides from soy protein isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Heat integration of an ethanol polygeneration plant based on lignocellulose: Comparing weak acid hydrolysis and enzymatic hydrolysis; Energiintegrerat etanolkombinat baserat paa lignocellulosa - Jaemfoerelse mellan svagsyrahydrolys och enzymhydrolys

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Marcus; Nordman, Roger; Taherzadeh, Mohammad

    2011-07-01

    Plants for bioethanol production have been planned in several cities in Sweden, including Boraas. This report provides answers to general questions regarding how such a facility's energy demand is affected by the external integration with a heat and power plant and the internal energy integration between process units. Heat integration of a bioethanol plant means that energy is reused as much as is technically possible; this sets a practical minimum level for the energy demand of the plant. In the study, ethanol production from cellulose has been simulated using Aspen Plus. Weak acid hydrolysis and enzymatic hydrolysis have been simulated, each with 50,000 and 100,000 tonnes of ethanol per year, resulting in four simulation cases. In all cases, heat integration is evaluated using pinch analysis. The steam in the ethanol plant has been covered by steam from a heat and power plant similar to that found today in Boraas. It is important to note that the energy quotas reported here includes energy use for upgrading the residual products. This leads to lower energy quotas than would be the case if the upgrading of residuals were allocated outside of the ethanol production. The conclusions from the project are: - The steam demand of the ethanol plant leads to a reduction in both the electricity and heat production of the heat and power plant. For the weak acid hydrolysis, the electricity loss is relatively high, 26-98%, which will affect the revenue significantly. The loss of electricity production is lower for the enzymatic process: 11-47%. - The difference in decreased electricity between the theoretical case of heating the raw material and the two alternative heating cases is about a factor of two, so the design of the heating of raw material is extremely important. - The reduced heat output of the power plant can, in most cases, be balanced by the surplus heat from the ethanol plant, but to completely balance the shortage, heat over 100 deg C must be used

  20. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    Science.gov (United States)

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Alternatives for clarifying glucose syrup obtained by enzymatic hydrolysis of starch

    Directory of Open Access Journals (Sweden)

    Gloria Teresa Cruz Guerrero

    2004-05-01

    Full Text Available The present paper studies some routes for separating and purifying glucose syrup obtained by enzymatic hydrolysis of potato starch. The clarifying process is done in three stages. The first one (solids remotion is done by applying conventional solid-liquid separation techniiques such as sedimentation, centrifugation and filtration, as well as studying the effect of using flocculant and coagulant agents, prior to the already mentioned operations. Purification is done by adding decolouring agents, followed by ultrafiltration of the syrup. The last step (concentration is done by vacuum evaporation. The results showed that separation, centrifuging and sedimation reached 50% yield whilst filtration and ultrafiltration achieved 78% and 98% respectively. It was found that adsorbent agents such as activated carbon and diatomaceous earth were effective in removing colour during the purification stage. The most suitable alternative for separation can be suggested from the foregoing, allowing a syrup to be obtained having similar characteristics and propierties to the commercial product. The most appropriate technological module for carrying out the operation is also represented.

  2. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol

    International Nuclear Information System (INIS)

    Caspeta, Luis; Caro-Bermúdez, Mario A.; Ponce-Noyola, Teresa; Martinez, Alfredo

    2014-01-01

    Highlights: • Conversion of agave bagasse to fuel ethanol. • Ethanosolv-pretreatment variables were statistically adjusted. • 91% of total sugars found in agave bagasse were recovered. • 225 g/L glucose from 30%-consistency hydrolysis using mini-reactors with peg-mixers. • 0.25 g of ethanol per g of dry agave bagasse was obtained. - Abstract: Agave bagasse is the lignocellulosic residue accumulated during the production of alcoholic beverages in Mexico and is a potential feedstock for the production of biofuels. A factorial design was used to investigate the effect of temperature, residence time and concentrations of acid and ethanol on ethanosolv pretreatment and enzymatic hydrolysis of agave bagasse. This method and the use of a stirred in-house-made mini-reactor increased the digestibility of agave bagasse from 30% observed with the dilute-acid method to 98%; also allowed reducing the quantity of enzymes used to hydrolyze samples with solid loadings of 30% w/w and glucose concentrations up to 225 g/L were obtained in the enzymatic hydrolysates. Overall this process allows the recovery of 91% of the total fermentable sugars contained in the agave bagasse (0.51 g/g) and 69% of total lignin as co-product (0.11 g/g). The maximum ethanol yield under optimal conditions using an industrial yeast strain for the fermentation was 0.25 g/g of dry agave bagasse, which is 86% of the maximum theoretical (0.29 g/g). The effect of the glucose concentration and solid loading on the conversion of cellulose to glucose is discussed, in addition to prospective production of about 50 million liters of fuel ethanol using agave bagasse residues from the tequila industry as a potential solution to the disposal problems

  3. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Science.gov (United States)

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  4. An Integrated Process of Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass with Immobilised Cellulase

    Directory of Open Access Journals (Sweden)

    Mihaela Ungurean

    2014-08-01

    Full Text Available An integrated process of lignocellulosic biomass conversion was set up involving pretreatment by an ionic liquid (IL and hydrolysis of cellulose using cellulase immobilised by the sol-gel method, with recovery and reuse of both the IL and biocatalyst. As all investigated ILs, regardless of the nature of the anion and the cation, led to the loss of at least 50% of the hydrolytic activity of cellulase, the preferred solution involved reprecipitation of cellulose and lignin after the pretreatment, instead of performing the enzymatic hydrolysis in the same reaction system. The cellulose recovered after pretreatment with 1-ethyl-3-methylimidazolium acetate ([Emim][Ac] and dimethylsulfoxide (DMSO (1:1 ratio, v/v was hydrolysed with almost double yield after 8 h of reaction time with the immobilised cellulase, compared to the reference microcrystalline cellulose. The dissolution capacity of the pretreatment mixture was maintained at satisfactory level during five reuse cycles. The immobilised cellulase was recycled in nine reaction cycles, preserving about 30% of the initial activity.

  5. Enzymatic hydrolysis of rice straw and glucose fermentation using a Vertical Ball Mill Bioreactor (VBMB): Impact of operational conditions

    DEFF Research Database (Denmark)

    Castro, Rafael C.A.; Mussatto, Solange I.; Roberto, Inês C.

    ). This bioreactor was equipped with adjustable flat round plate impellers, allowing its operation with glass spheres as shear agent. For enzymatic hydrolysis, the spheres were the only variable with significant impact on the results, being achieved 87% cellulose conversion after 24 h when using the highest level...... saccharification and fermentation, in batch or fed-batch configurations, and with possibilities of operating at high solids content. Acknowledgments: FAPESP (2013/13953-6 and 2015/24813-6) and CNPq....

  6. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose

    International Nuclear Information System (INIS)

    Gabhane, Jagdish; William, S.P.M. Prince; Vaidya, Atul N.; Das, Sera; Wate, Satish R.

    2015-01-01

    Highlights: • SAAP is an efficient and economic means of pretreatment. • SAAP was found to be efficient in lignin and hemicellulose removal. • SAAP enhanced the enzymatic hydrolysis. • FTIR, XRD and SEM provided vivid understanding about the mode of action of SAAP. • Mass balance closer of 98% for pretreated GB confirmed the reliability of SAAP. - Abstract: A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment

  8. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages; Efecto del pretratamiento con explosion por vapor en la hidrolisis enzimatica de madera de eucalipto y bagazo de sorgo

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M J; Martinez, J M; Manero, J; Saez, F; Martin, C

    1991-07-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs.

  9. Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.

    Science.gov (United States)

    Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer

    2017-07-01

    Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Effect of hydrolysis enzymatic process of corn using protease crude (Rhizopus oligosporus-C1) to produce corn hydrolisate rich folic acid

    Science.gov (United States)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-11-01

    Corn hydrolyzate (Zea mays L) as a functional food fortificant derived from natural folic acid has been evaluated through a hydrolysis process using protease enzyme Rhizopus oligosporus strain C1. Enzymatic hydrolysis was carried out on two types of corn; yellow and white pearl variety corn, at concentration of protease enzyme (rough) 0.025; 0.125; and 0.225% (v/w of soluble nixtamal corn protein) with a hydrolysis time of 24 h at 30 °C, and pH 5.0. The results showed that the concentration of protease enzymes can increase the folic acid to the optimum condition, from the beginning to the end of the process time. Folic acid optimization of hydrolysis results in each corn was at the concentration of protease enzyme 0.225% (v/w of soluble nixtamal corn protein) in white corn and yellow corn at 24 hours hydrolysis, with folic acid composition, 283.56 µg/mL and 412.52 µg/mL, 1.07 and 1.04 mg/mL of soluble proteins, proteolytic activity 2.09 and 2.06 U/mL, total solids of 21.74 and 17.85%, total sugars of 0.56 and 2.22 mg/mL, and reducing sugar 91.72 and 48.47 mg/mL. In this condition, the increase of optimum folic acid for white corn was 33.57% and for yellow corn was 71.60% after hydrolysis.

  11. Kinetic Modelling and Experimental Studies for the Effects of Fe2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2018-01-01

    Full Text Available High-temperature (150–170 °C pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorily modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 °C/30 min with 0.75 mM Fe2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 °C with 0.75 mM Fe2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II increased the glucose production to 56.3% from 46.3% in the control (iron-free acid. The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C

  12. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    Science.gov (United States)

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  13. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion.

    Science.gov (United States)

    Scholl, Angélica Luisi; Menegol, Daiane; Pitarelo, Ana Paula; Fontana, Roselei Claudete; Zandoná Filho, Arion; Ramos, Luiz Pereira; Dillon, Aldo José Pinheiro; Camassola, Marli

    2015-09-01

    In this work, steam explosion was used a pretreatment method to improve the conversion of elephant grass (Pennisetum purpureum) to cellulosic ethanol. This way, enzymatic hydrolysis of vaccum-drained and water-washed steam-treated substrates was carried out with Penicillium echinulatum enzymes while Saccharomyces cerevisiae CAT-1 was used for fermentation. After 48 h of hydrolysis, the highest yield of reducing sugars was obtained from vaccum-drained steam-treated substrates that were produced after 10 min at 200 °C (863.42 ± 62.52 mg/g). However, the highest glucose yield was derived from water-washed steam-treated substrates that were produced after 10 min at 190 °C (248.34 ± 6.27 mg/g) and 200 °C (246.00 ± 9.60 mg/g). Nevertheless, the highest ethanol production was obtained from water-washed steam-treated substrates that were produced after 6 min at 200 °C. These data revealed that water washing is a critical step for ethanol production from steam-treated elephant grass and that pretreatment generates a great deal of water soluble inhibitory compounds for hydrolysis and fermentation, which were partly characterized as part of this study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird's nest hydrolysate

    Science.gov (United States)

    Khushairay, Etty Syarmila Ibrahim; Ayub, Mohd Khan; Babji, Abdul Salam

    2014-09-01

    Edible bird nest (EBN) is a dried glutinous secretion from the salivary glands of several different swiftlet species. It is widely consumed as a health food due to its high beneficial effects to human health and has been considered to be one of the most precious food items by the Chinese for thousands of years. The aim of this study was to evaluate the effect of enzymatic hydrolysis on protein solubility (μg/g), the degree of hydrolysis (DH%), and peptide content (μg/g) of edible bird's nest hydrolysate. Initial protein solubility of boiled EBN was 25.5mg/g EBN. Treating the solubilized EBN with pancreatin 4NF for 1.0 - 1.5hours increased EBN protein solubility to 163.9mg/g and produced hydrolysate with DH% of 86.5% and 109.5mg/g peptide. EBN hydrolyzed with alcalase for 1.5 hours produced hydrolysate with protein solubility of 86.7mg/g, 82.7 DH% and had 104.1mg/g peptide content.

  15. Ammonia Fiber Expansion Pretreatment and Enzymatic Hydrolysis on Two Different Growth Stages of Reed Canarygrass

    Science.gov (United States)

    Bradshaw, Tamika C.; Alizadeh, Hasan; Teymouri, Farzaneh; Balan, Venkatesh; Dale, Bruce E.

    Plant materials from the vegetative growth stage of reed canarygrass and the seed stage of reed canarygrass are pretreated by ammonia fiber expansion (AFEX) and enzymatically hydrolyzed using 15 filter paper units (FPU) cellulase/g glucan to evaluate glucose and xylose yields. Percent conversions of glucose and xylose, effects of temperature and ammonia loading, and hydrolysis profiles are analyzed to determine the most effective AFEX treatment condition for each of the selected materials. The controls used in this study were untreated samples of each biomass material. All pretreatment conditions tested enhanced enzyme digestibility and improved sugar conversions for reed canarygrass compared with their untreated counterparts. Based on 168 h hydrolysis results using 15 FPU Spezyme CP cellulase/g glucan the most effective AFEX treatment conditions were determined as: vegetative growth stage of reed canarygrass—100°C, 60% moisture content, 1.2∶1 kg ammonia/kg of dry matter (86% glucose and 78% xylose) and seed stage of reed canarygrass—100°C, 60% moisture content, 0.8∶1 kg ammonia/kg of dry matter (89% glucose and 81% xylose). Supplementation by commercial Multifect 720 xylanase along with cellulase further increased both glucose and xylose yields by 10-12% at the most effective AFEX conditions.

  16. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis.

    Science.gov (United States)

    de Oliveira, Dayse A S B; Minozzo, Marcelo G; Licodiedoff, Silvana; Waszczynskyj, Nina

    2016-09-15

    In this study, the effects of chemical refining and deodorization on fatty acid profiles and physicochemical and sensory characteristics of the tuna by-product oil obtained by enzymatic hydrolysis were evaluated. Enzymatic extraction was conducted for 120 min at 60 °C and pH 6.5 using Alcalase at an enzyme-substrate ratio of 1:200 w/w. The chemical refining of crude oil consisted of degumming, neutralization, washing, drying, bleaching, and deodorization; deodorization was conducted at different temperatures and processing times. Although chemical refining was successful, temperature and chemical reagents favored the removal of polyunsaturated fatty acids (PUFA) from the oil. Aroma attributes of fishy odor, frying odor, and rancid odor predominantly contributed to the sensory evaluation of the product. Deodorization conditions of 160 °C for 1h and 200 °C for 1h were recommended for the tuna by-product oil, which is rich in PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Statistically designed enzymatic hydrolysis of an icariin/β-cyclodextrin inclusion complex optimized for production of icaritin

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2012-02-01

    Full Text Available This study focuses on the preparation and enzymic hydrolysis of an icariin/β-cyclodextrin inclusion complex to efficiently generate icaritin. The physical characteristics of the inclusion complex were evaluated by differential scanning calorimetry (DSC. Enzymatic hydrolysis was optimized for the conversion of icariin/β-cyclodextrin complex to icaritin by Box–Behnken statistical design. The inclusion complex formulation increased the solubility of icariin approximately 17-fold, from 29.2 to 513.5 μg/mL at 60 °C. The optimum conditions were predicted by Box–Behnken statistical design as follows: 60 °C, pH 7.0, the ratio of enzyme/substrate (1:1.1 and reaction time 7 h. Under the optimal conditions the conversion of icariin was 97.91% and the reaction time was decreased by 68% compared with that without β-CD inclusion. Product analysis by melting point, ESI-MS, UV, IR, 1H NMR and 13C NMR confirmed the authenticity of icaritin with a purity of 99.3% and a yield of 473 mg of icaritin from 1.1 g icariin.

  18. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules. - Highlights: • Pretreatment of wheat straw by gamma radiation and NaOH was investigated. • Irradiation pretreatment can significantly decrease NaOH consumption. • Reducing sugar yield reached 72.67% at 100 kGy and 2% NaOH treatment for 1 h.

  20. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis.

    Science.gov (United States)

    Zhang, Xiudong; Bai, Yuanyuan; Cao, Xuefei; Sun, Runcang

    2017-08-01

    Herein, an efficient biphasic pretreatment process was developed to improve the production of furfural (FF) and glucose from Eucalyptus. The influence of formic acid and NaCl on FF production from xylose in water and various biphasic systems was investigated. Results showed that the addition of formic acid and NaCl significantly promoted the FF yield, and the biphasic system of MIBK (methyl isobutyl ketone)/water exhibited the best performance for FF production. Then the Eucalyptus was pretreated in the MIBK/water system, and a maximum FF yield of 82.0% was achieved at 180°C for 60min. Surface of the pretreated Eucalyptus became relatively rough and loose, and its crystallinity index increased obviously due to the removal of hemicelluloses and lignin. The pretreated Eucalyptus samples showed much higher enzymatic hydrolysis rates (26.2-70.7%) than the raw Eucalyptus (14.5%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Kinetic study of sphingomyelin hydrolysis for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2008-01-01

    in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system...

  2. Using temperature-responsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling.

    Science.gov (United States)

    Cai, Cheng; Pang, Yuxia; Zhan, Xuejuan; Zeng, Meijun; Lou, Hongming; Qian, Yong; Yang, Dongjie; Qiu, Xueqing

    2017-11-01

    Some zwitterionic surfactants exhibit upper critical solution temperature (UCST) in aqueous solutions. For the zwitterionic surfactant solution mixed with cellulase, when its temperature is below UCST, the cellulase can be recovered by coprecipitation with zwitterionic surfactant. In this work, 3-(Hexadecyldimethylammonio) propanesulfonate (SB3-16) was selected to enhance the enzymatic hydrolysis of lignocelluloses and recover the cellulase. After adding 2mmol/L of SB3-16, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) and by sulfite (Eu-SPORL) increased from 27.9% and 35.1% to 72.6% and 89.7%, respectively. The results showed that SB3-16 could reduce the non-productive adsorption of cellulase on hydrophobic interface, while it did not significantly inhibit the activity of cellulase. For the solution contained 1wt% SB3-16 and 200mg protein/L CTec2 cellulase, 55.2% of protein could be recovered by cooling. The filter paper activity of the recovered cellulase was 1.93FPU/mg protein, which was 95.8% of its initial activity. Copyright © 2017. Published by Elsevier Ltd.

  3. Enzymatic conversion of lignocellulose into fermentable sugars

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kristensen, Jan Bach; Felby, Claus

    2007-01-01

    and hemicelluloses but these are not readily accessible to enzymatic hydrolysis and require a pretreatment, which causes an extensive modification of the lignocellulosic structure. A number of pretreatment technologies are under development and being tested in pilot scale. Hydrolysis of lignocellulose carbohydrates...

  4. Hydrolysis of lactose with -D-galactosidase

    Directory of Open Access Journals (Sweden)

    Vesna Stehlik-Tomas

    2001-06-01

    Full Text Available The conditions of lactose hydrolysis with enzyme preparation of D-galactosidase were investigated. The aim of this work was to considered the use of whey in fermentative processes with yeast Saccharomyces cerevisiae. Enzymatic hydrolysis was conducted at different temperatures, with different lactose concentrations in medium and different concentrations of added enzyme. The results show that optimal temperature for hydrolysis was 40°C. The optimal amount of enzyme preparation was 2 gL-1 in lactose medium with 5-10 % lactose.

  5. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility.

    Science.gov (United States)

    Varga, Eniko; Schmidt, Anette S; Réczey, Kati; Thomsen, Anne Belinda

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195 degrees C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50 degrees C using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40 degrees C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.

  6. Synthesis and spectral characterization of 2,2-diphenylethyl glucosinolate and HPLC-based reaction progress curve data for the enzymatic hydrolysis of glucosinolates by Sinapis alba myrosinase

    Directory of Open Access Journals (Sweden)

    Chase A. Klingaman

    2017-02-01

    Full Text Available The data presented in this article are related to the research article, “HPLC-based enzyme kinetics assay for glucosinolate hydrolysis facilitate analysis of systems with both multiple reaction products and thermal enzyme denaturation” (C.K. Klingaman, M.J. Wagner, J.R. Brown, J.B. Klecker, E.H. Pauley, C.J. Noldner, J.R. Mays, [1]. This data article describes (1 the synthesis and spectral characterization data of a non-natural glucosinolate analogue, 2,2-diphenylethyl glucosinolate, (2 HPLC standardization data for glucosinolate, isothiocyanate, nitrile, and amine analytes, (3 reaction progress curve data for enzymatic hydrolysis reactions with variable substrate concentration, enzyme concentration, buffer pH, and temperature, and (4 normalized initial velocities of hydrolysis/formation for analytes. These data provide a comprehensive description of the enzyme-catalyzed hydrolysis of 2,2-diphenylethyl glucosinolate (5 and glucotropaeolin (6 under widely varied conditions.

  7. High-loading-substrate enzymatic hydrolysis of palm plantation waste followed by unsterilized-mixed-culture fermentation for bio-ethanol production

    Science.gov (United States)

    Bardant, Teuku Beuna; Winarni, Ina; Sukmana, Hadid

    2017-01-01

    It was desired to obtain a general formula for producing bio-ethanol from any part of lignocelluloses wastes that came from palm oil industries due to its abundance. Optimum condition that obtained by using RSM for conducting high-loading-substrate enzymatic hydrolysis of palm oil empty fruit bunch was applied to palm oil trunks and then followed by unsterilized fermentation for producing bio-ethanol. From several optimized conditions investigated, the resulted ethanol concentration could reach 7.92 %v by using 36.5 %w of palm oil trunks but the results were averagely 2.46 %v lower than palm oil empty fruit bunch. The results was statistically compared and showed best correlative coefficient at 0.808 (in scale 0-1) which support the conclusion that the optimum condition for empty fruit bunch and trunks are similar. Utilization of mixed-culture yeast was investigated to produce ethanol from unsterilized hydrolysis product but the improvement wasn't significant compares to single culture yeast.

  8. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  9. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    Science.gov (United States)

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  10. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2012-08-01

    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  11. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    Directory of Open Access Journals (Sweden)

    Hamzeh Hoseinpour

    2010-11-01

    Full Text Available Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v acid concentration and 5-15% (w/v solids concentration for 0-40 minutes. Under the optimum conditions, obtained at 130°C, 1% acid, and 7.5% solids loading for 30 min, the starch was almost completely converted to glucose. However, the acid treatment was not successful for efficient hydrolysis of pure cellulose. A mixture of pine softwood and potato as representatives of lignocellulosic and starch components, respectively, were treated at the optimum conditions for acid hydrolysis of starch. The dilute-acid treatment resulted in 1.2, 60.5, and 23.6% hydrolysis of glucan, xylan, and mannan of pine wood and 67% of potato starch to fermentable sugars. After the acid treatment, the solid residue of the mixture was subjected to enzymatic hydrolysis. The enzymatic hydrolysis under the optimum conditions resulted in conversion of 76% of the glucan in the treated softwood. Therefore, using acid treatment of the mixture is a promising process for pretreatment of wood in addition to the hydrolysis of starch.

  12. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  13. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Science.gov (United States)

    2012-01-01

    Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates. PMID:22433563

  14. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose; Pre-tratamento do bagaco de cana utilizando o processo de oxidacao avancada por feixe de eletrons para hidrolise enzimatica da celulose

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Almeida

    2013-07-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  15. Effect of gamma ray radiation pretreatment on enzymatic hydrolysis of wheat straw to produce sugar

    International Nuclear Information System (INIS)

    Yang Chunping; Shen Zhiqiang; Yu Guoce; Wang Jianlong

    2009-01-01

    The effect and aftereffect of radiation pretreatment of wheat straw with gamma ray were studied. It is shown that irradiation can cause significant breakdown of the structure of wheat straw. The mass loss of wheat straw increases and the size distribution after crushing moves to fine particles at elevated irradiation doses. A synergistic effect between irradiation and crushing was observed, with a glucose yield of 10.2% at a dose of 500 kGy with powder of 0.109 mm. The aftereffect of irradiation has important impact on enzymatic hydrolysis of wheat straw. The aftereffect of 400 kGy irradiation accounts for 20.1% of the initial effect for glucose production, and the aftereffects of 50, 100, 200 and 300 kGy account for 12.9%, 14.9%, 8.9% and 9.1%, respectively, for reducing sugar production. (authors)

  16. Optimization of Enzymatic Hydrolysis of Waste Bread before Fermentation

    OpenAIRE

    Hudečková, Helena; Šupinová, Petra; Ing. Mgr. Libor Babák, Ph.D., MBA

    2017-01-01

    Finding of optimal hydrolysis conditions is important for increasing the yield of saccharides. The higher yield of saccharides is usable for increase of the following fermentation effectivity. In this study optimal conditions (pH and temperature) for amylolytic enzymes were searched. As raw material was used waste bread. Two analytical methods for analysis were used. Efficiency and process of hydrolysis was analysed spectrophotometrically by Somogyi-Nelson method. Final yields of glucose were...

  17. Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmidevi, Rajendran; Muthukumar, Karuppan [Department of Chemical Engineering, Alagappa College of Technology Campus, Anna University Chennai, Chennai 600 025 (India)

    2010-04-15

    Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8-2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H{sub 2}/mol sugar and specific hydrogen production rate of 225 mmol of H{sub 2}/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production. (author)

  18. A coupled CFD and two-phase substrate kinetic model for enzymatic hydrolysis of lignocellulose

    Science.gov (United States)

    Danes, Nicholas; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael

    2017-11-01

    Cost-effective production of fuels from lignocellulosic biomass is an important subject of research in order to meet the world's current and future energy demands. Enzymatic hydrolysis is one of the several steps in the biochemical conversion of biomass into fuels. This process involves the interplay of non-Newtonian fluid dynamics that happen over tens of seconds coupled with chemical reactions that happen over several hours. In this work, we present a coupled CFD-reaction model for conversion of cellulose to sugars in a benchtop mixer reactor. A subcycling approach is used to circumvent the large time scale disparity between fluid dynamics and reactions. We will present a validation study of our simulations with experiments for well-mixed and stratified reactor scenarios along with predictions for conversion rates and product concentrations at varying impeller speeds and in scaled-up reactors. This work is funded by the Bioenergy Technology Office of DOE and the NSF's Enriched Doctoral Training program (DMS-1551229).

  19. Biotransformation of Geniposide into Genipin by Immobilized Trichoderma reesei and Conformational Study of Genipin

    Directory of Open Access Journals (Sweden)

    Yishun Yang

    2018-01-01

    Full Text Available Trichoderma reesei QM9414, Trichoderma viride 3.316, Aspergillus niger M85, and Aspergillus niger M92 were screened for hydrolyzing geniposide into genipin. T. reesei was selected according to the β-glucosidase activity of the fermentation broths using geniposide as a substrate. T. reesei was immobilized by embedding method using sodium alginate as the carrier. Geniposide was hydrolyzed by immobilized T. reesei at 28°C (200 rpm for 34 h, and the yield of genipin was 89%. The product was purified and identified by UV, IR, EIMS, and 1H-NMR. Since there were two sets of signals in 1H-NMR spectra, a series of experiments were performed and verified that the existence of two conformations was the main reason. Generally, biotransformation of geniposide into genipin by immobilized T. reesei provides a promising solution to the genipin production.

  20. ENZYMATIC HYDROLYSIS LIGNIN DERIVED FROM CORN STOVER AS AN INTRINSTIC BINDER FOR BIO-COMPOSITES MANUFACTURE: EFFECT OF FIBER MOISTURE CONTENT AND PRESSING TEMPERATURE ON BOARDS’ PROPERTIES

    Directory of Open Access Journals (Sweden)

    Guanben Du

    2011-02-01

    Full Text Available Binderless fiberboards from enzymatic hydrolysis lignin (EHL and cotton stalk fibers were prepared under various manufacturing conditions, and their physico-mechanical properties were evaluated. Full factorial experimental design was used to assess the effect of fiber moisture content and pressing temperature on boards’ properties. In addition, differential scanning calorimetry (DSC was used to obtain the glass transition temperature (Tg of EHL. We found that both fiber moisture content and pressing temperature had significant effects on binderless fiberboards’ properties. High fiber moisture content and pressing temperature are suggested to contribute to the self-bonding improvement among fibers with lignin-rich surface mainly by thermal softening enzymatic hydrolysis lignin. In this experiment, the optimized pressing temperature applied in binderless fiberboard production should be as high as 190°C in accordance with the EHL Tg value of 189.4°C, and the fiber moisture content should be limited to less than 20% with a higher board density of 950 kg/m3 to avoid the delamination of boards during hot pressing.

  1. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Kang Kang

    Full Text Available microRNAs (miRNAs are non-coding small RNAs (sRNAs capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN and non-induction (CON were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.

  2. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk.

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Ranggina, Dian; Nurtono, Tantular; Widjaja, Arief

    2018-02-01

    The objective of this work is to develop an integrated green process of subcritical water (SCW), enzymatic hydrolysis and fermentation of coconut husk (CCH) to biohydrogen. The maximum sugar yield was obtained at mild severity factor. This was confirmed by the degradation of hemicellulose, cellulose and lignin. The tendency of the changing of sugar yield as a result of increasing severity factor was opposite to the tendency of pH change. It was found that CO 2 gave a different tendency of severity factor compared to N 2 as the pressurizing gas. The result of SEM analysis confirmed the structural changes during SCW pretreatment. This study integrated three steps all of which are green processes which ensured an environmentally friendly process to produce a clean biohydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept.

    Science.gov (United States)

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang

    2013-05-01

    The present work investigated the effects of hydrothermal treatment (HTT) of Tamarix ramosissima by determination of sugar and inhibitor formation in the liquid fraction, and chemical and morphological changes of the pretreated solid material coupled with an evaluation of enzymatic hydrolysis. HTT was carried out in a batch reactor system at a maximal temperature (TMAX 180-240 °C) and evaluated for severities logRo ranging from 2.40 to 4.17. The liquid fractions were analyzed by HPLC, GPC, and GC-MS. The morphology and composition of the solid residues were characterized using an array of techniques, such as SEM, XRD, BET surface area, and CP/MAS (13)C NMR. Using a variety of tools, we have developed a better understanding of how HTT process affects biomass structure and cellulose properties that impact on its digestibility. These results provided new insights into the factors limiting enzymatic digestibility and mechanism of biomass deconstruction during hydrothermal process. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Starch hydrolysis under low water conditions: a conceptual process design

    NARCIS (Netherlands)

    Veen, van der M.E.; Veelaert, S.; Goot, van der A.J.; Boom, R.M.

    2006-01-01

    A process concept is presented for the hydrolysis of starch to glucose in highly concentrated systems. Depending on the moisture content, the process consists of two or three stages. The two-stage process comprises combined thermal and enzymatic liquefaction, followed by enzymatic saccharification.

  5. Application of extended Kalman filter to identification of enzymatic deactivation.

    Science.gov (United States)

    Caminal, G; Lafuente, J; López-Santín, J; Poch, M; Solà, C

    1987-02-01

    A recursive estimation scheme, the Extended Kalman Filter (EKF) technique, was applied to study enzymatic deactivation in the enzymatic hydrolysis of pretreated cellulose using a model previously developed by the authors. When no deactivation model was assumed, the results showed no variation with time for all the model parameters except for the maximum rate of cellobiose-to-glucose conversion (r'(m)).The r'(m) variation occurred in two zones with a grace period. A new model of enzymatic hydrolysis of pretreated cellulose deactivation was proposed and validated showing better behavior than the old deactivation model. This approach allows one to study enzyme deactivation without additional experiments and within operational conditions.

  6. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    Directory of Open Access Journals (Sweden)

    Wang ZJ

    2013-01-01

    Full Text Available Abstract Background Nonspecific (nonproductive binding (adsorption of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL is a relatively new process, but demonstrated robust performance for sugar and biofuel production from woody biomass especially softwoods in terms of yields and energy efficiencies. This study demonstrated the role of lignin sulfonation in enhancing enzymatic saccharification of lignocelluloses – lignosulfonate from SPORL can improve enzymatic hydrolysis of lignocelluloses, contrary to the conventional belief that lignin inhibits enzymatic hydrolysis due to nonspecific binding of cellulase. Results The study found that lignosulfonate from SPORL pretreatment and from a commercial source inhibits enzymatic hydrolysis of pure cellulosic substrates at low concentrations due to nonspecific binding of cellulase. Surprisingly, the reduction in enzymatic saccharification efficiency of a lignocellulosic substrate was fully recovered as the concentrations of these two lignosulfonates increased. We hypothesize that lignosulfonate serves as a surfactant to enhance enzymatic hydrolysis at higher concentrations and that this enhancement offsets its inhibitive effect from nonspecific binding of cellulase, when lignosulfonate is applied to lignocellulosic solid substrates. Lignosulfonate can block nonspecific binding of cellulase by bound lignin on the solid substrates, in the same manner as a nonionic surfactant, to significantly enhance enzymatic saccharification. This enhancement is linearly proportional to the amount of lignosulfonate applied which is very important to practical applications. For a SPORL-pretreated lodgepole pine solid, 90% cellulose saccharification was achieved at cellulase loading of 13 FPU/g glucan with the application of its

  7. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation.

    Science.gov (United States)

    Soudham, Venkata Prabhakar; Brandberg, Tomas; Mikkola, Jyri-Pekka; Larsson, Christer

    2014-08-01

    The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    Science.gov (United States)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-01

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor's mechanistic action has yet to be revealed. Here, we develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A's molecular motility mechanism.

  9. Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Barakat, Abdellatif; Chuetor, Santi; Monlau, Florian; Solhy, Abderrahim; Rouau, Xavier

    2014-01-01

    Highlights: • Innovative dry NaOH chemo-mechanical pretreatment was developed. • Dry (TS dry ) and dilute (TS dilute ) NaOH chemo-mechanical pretreatment were compared. • TS dilute consumed higher amounts of water and energy compared to TS dry . • Energy efficiency obtained for TS dilute was 0.417 kg glucose kW h −1 and 0.888 for TS dry . - Abstract: In this study, we developed an eco-friendly dry alkaline chemomechanical pretreatment of wheat straw without production of waste and liquid fractions with objective to save energy input, to decrease the environmental impact and to increase enzymatic hydrolysis. Wheat straw was pretreated with NH 3 , NaOH-H 2 O 2 , NH 3 -H 2 O 2 and NaOH at high materials concentration (5 kg/L) equivalent to biomass/liquid ratio of 1/5 (dry chemomechanical) and at low materials concentration (0.2 kg/L) equivalent to biomass/liquid ratio of 5/1 (dilute chemomechanical). Untreated and chemical treated wheat straw samples were subjected to grinding and milling following by enzymatic hydrolysis with commercial cellulases. NaOH and NaOH-H 2 O 2 dry chemomechanical pretreatments were found to be more effective in decreasing the particle size and energy consumption and increasing the surface area. However, alkaline dilute-chemomechanical treatments consumed higher amounts of water (5 L water/1 kg biomass) and energy compared to dry-chemomechanical treatments. In point of fact, the lowest energy efficiency obtained was 0.417 kg glucose kW h −1 for dilute-chemomechanical treatments compared to 0.888 kg glucose kW h −1 glucose kW h −1 for dry-chemomechanical treatments. Alkaline dry-chemomechanical pretreatments approach appears more attractive and efficient in terms of glucose, energy efficiency and environmental impact, compared to conventional alkaline chemomechanical pretreatments

  10. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse

    International Nuclear Information System (INIS)

    Duarte, C.L.; Ribeiro, M.A.; Oikawa, H.; Mori, M.N.; Napolitano, C.M.; Galvão, C.A.

    2012-01-01

    The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH. - Highlights: ► We study the enzymatic hydrolysis of cellulose and hemicellulose in sugarcane bagasse. ► We study the combination of three pretreatments: electron beam processing, EBP followed by hydrothermal and by diluted acid treatment. ► The electron beam processing increased the enzymatic hydrolysis from 8% to 15% with 20 kGy. ► The enzymes used were commercial preparations, as Celluclast 1.5 L and β-glycosidase. ► The EBP with 50 kGy increased on 20% the yield of EH of cellulose after TH and 30% after AH.

  11. Lipase pre-hydrolysis enhance anaerobic biodigestion of soap stock from an oil refining industry.

    Science.gov (United States)

    Cherif, Slim; Aloui, Fathi; Carrière, Frédéric; Sayadi, Sami

    2014-01-01

    A novel alcalophilic Staphylococcus haemolyticus strain with the lipolytic activity was used to perform enzymatic hydrolysis pretreatment of soap stock: a lipid rich solid waste from an oil refining industry. The culture liquid of the selected bacteria and an enzymatic preparation obtained by precipitation with ammonium sulphate from a filtrate of the same culture liquid were used for enzymatic pretreatment. The hydrolysis was carried with different incubation concentrations (10, 20 and 30%) of soap stock and the pretreatment efficiency was verified by running comparative biodegradability tests (crude and treated lipid waste). All pretreated assays showed higher reaction rate compared to crude lipid waste, which was confirmed by the increased levels of biogas production. The pretreatment of solutions containing 10% emulsified soap stock was optimized for 24 h hydrolysis time, enabling high-biogaz formation (800 ml). The use of enzymatic pre-treatment seemed to be a very promising alternative for treating soap stock having high fat contents.

  12. Monitoring of soluble starch hydrolysis induced by α-amylase from Aspergillus oryzae using ultrasonic spectroscopy

    Science.gov (United States)

    Sierra, Carlos; Resa, Pablo; Buckin, Vitaly; Elvira, Luis

    2012-05-01

    The online monitoring of enzymatic starch hydrolysis is an important issue for several industrial sectors, mainly in the alimentary industry. Ultrasonic non-invasive methods based on the detection of wave velocity and amplitude changes can be used to study this enzymatic reaction. These wave propagating changes are result of physicalchemical modifications produced in the media by the starch hydrolysis. In this work the starch hydrolysis induced by the enzyme α-amylase from Aspergillus oryzae is studied. This biochemical reaction has been monitored using a high-resolution ultrasonic spectroscopy (HR-US) which is non-invasive and nondestructive. The measured time profiles o of ultrasonic velocity are explained in terms of the starch hydrolysis and the subsequent production of oligosaccharides as a consequence of the enzymatic action. The obtained results have been compared to a conventional off-line technique used in biochemistry, the iodine-starch reaction, a spectrophotometric method to quantify the amount of starch remaining in the medium. The combination of these two types of measurement provides more complete information about the biochemical processes occurred during hydrolysis.

  13. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  14. A novel platform for heterologous gene expression in Trichoderma reesei (Teleomorph Hypocrea jecorina)

    DEFF Research Database (Denmark)

    Jørgensen, Mikael Skaanning; Skovlund, Dominique Aubert; Johannesen, Pia Francke

    2014-01-01

    ABSTRACT: BACKGROUND: The industrially applied filamentous fungus Trichoderma reesei has received substantial interest due to its highly efficient synthesis apparatus of cellulytic enzymes. However, the production of heterologous enzymes in T. reesei still remains low mainly due to lack of tools...

  15. Peran Trichoderma reesei E. G Simmons pada Pengendalian Damping-Off Semai Cendana (Santalum Album Linn.

    Directory of Open Access Journals (Sweden)

    S. M. Widyastuti

    2006-12-01

    Full Text Available The sandalwood seedling has been planted in the nursery of Balitbang Kehutanan NTT to experience the destruction is about 20%, seedling is attacked by  damping-off. Biological control has been developed as alternate method against soil born diseases to eliminate  damage  on the environment. One of  the biological  agents  having high  antagonistic potential against soil born pathogen is Trichoderma spp. The direction of experiment  to search the cause of lodoh on the sandalwood  seedling and the application influences T. reesei on the control lodoh in the sandalwood seedling. Methods  of  the experiment was (1 isolation the sandalwood seedling of  painful and soil example  from NTT, (2 Postulat Koch test on the sandalwood seedling, (3 antagonistic test of T.  reesei  in vitro and (4 effectiveness  test of T. reesei against developing patogen in vivo. The result indicated that lodoh on the sandalwood seedling caused by Fusarium sp. T. reesei in vitro inhibited Fusarium sp. at average of 100% accordingly. The application of T. reesei as biological control agent against Fusarium sp. showed high  effectivity. The attact percentage of lodoh on sandalwood seedlings showed that the lowest one was growth on compost formulated with T. reesei (5%, whereas seedlings growth on compost without T. reesei,  unsteril  sands and soil samples  from NTT were 30%, 35% and 65%.

  16. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  17. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.

    Science.gov (United States)

    Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian

    2017-06-01

    In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.

    Science.gov (United States)

    He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai

    2010-04-01

    An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.

  19. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O' Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  20. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile.

    Science.gov (United States)

    Trivedi, Nitin; Gupta, Vishal; Reddy, C R K; Jha, Bhavanath

    2013-12-01

    The green seaweed Ulva which proliferates fast and occurs abundantly worldwide was used as a feedstock for production of ethanol following enzymatic hydrolysis. Among the different cellulases investigated for efficient saccharification, cellulase 22119 showed the highest conversion efficiency of biomass into reducing sugars than Viscozyme L, Cellulase 22086 and 22128. Pre-heat treatment of biomass in aqueous medium at 120°C for 1h followed by incubation in 2% (v/v) enzyme for 36 h at 45°C gave a maximum yield of sugar 206.82±14.96 mg/g. The fermentation of hydrolysate gave ethanol yield of 0.45 g/g reducing sugar accounting for 88.2% conversion efficiency. These values are substantially higher than those of reported so far for both agarophytes and carrageenophytes. It was also confirmed that enzyme can be used twice without compromising on the saccharification efficiency. The findings of this study reveal that Ulva can be a potential feedstock for bioethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2012-09-01

    Depolymerization of guar gum using enzymatic hydrolysis was performed to obtain depolymerized guar gum having functional application as soluble dietary fiber. Enzymatic hydrolysis of guar gum significantly affected the physicochemical and rheological characteristics of guar gum. The depolymerized guar gum showed a significant increase in crystallinity index from 3.86% to 13.2% and flow behavior index from 0.31 to 1.7 as compared to native guar gum. Remarkable decrease in intrinsic viscosity and consistency index was also observed from 9 to 0.28 and 4.04 to 0.07, respectively. Results revealed that enzymatic hydrolysis of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency which could make it useful for incorporation in food products as dietary fiber without affecting the rheology, consistency and texture of the products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Baks, Tim; Bruins, Marieke E; Matser, Ariette M; Janssen, Anja E M; Boom, Remko M

    2008-01-23

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.

  3. Research and determination of process parameters of milk lactose hydrolysis

    OpenAIRE

    Калинина, Елена Дмитриевна; Коваленко, Александр Владимирович

    2014-01-01

    The researches of enzymatic milk lactose hydrolysis by using the β - galactosidase enzyme are given in the paper. For carrying out a lactose hydrolysis, two β-galactosidase enzyme preparations GODO-YNL2 and Neolactase are offered. For setting lactose hydrolysis parameters, the influence of a pH medium, temperature, enzyme preparation doses, the duration of hydrolyzing the milk lactose affected by the β- galactosidase enzyme preparations, was studied. In terms of effectiveness, adaptability an...

  4. Evaluation of jumbo squid (Dosidicus gigas byproduct hydrolysates obtained by acid-enzymatic hydrolysis and by autohydrolysis in practical diets for Pacific white shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Mayra Lizett González-Félix

    2014-09-01

    Full Text Available The marine bioprocessing industry offers great potential to utilize byproducts for fish meal replacement in aquafeeds. Jumbo squid is an important fishery commodity in Mexico, but only the mantle is marketed. Head, fins, guts and tentacles are discarded in spite of being protein-rich byproducts. This study evaluated the use of two jumbo squid byproduct hydrolysates obtained by acid-enzymatic hydrolysis (AEH and by autohydrolysis (AH as ingredients in practical diets for shrimp. The hydrolysates were included at levels of 2.5 and 5.0% of the diet dry weight in four practical diets, including a control diet without hydrolysate. Shrimp growth and survival were not significantly affected by the dietary treatments. Postharvest quality of abdominal muscle was evaluated in terms of proximate composition and sensory evaluation. Significantly higher crude protein was observed in the muscle of shrimp fed the highest hydrolysate levels, AH 5% (204.8 g kg- 1 or AEH 5% (201.3 g kg- 1. Sensory analysis of cooked muscle showed significant differences for all variables evaluated: color, odor, flavor, and firmness. It was concluded that Jumbo squid byproducts can be successfully processed by autohydrolysis or acid-enzymatic hydrolysis, and that up to 5.0% of the hydrolysates can be incorporated into shrimp diets without affecting growth or survival.

  5. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production.

    Science.gov (United States)

    Lau, Ming J; Lau, Ming W; Gunawan, Christa; Dale, Bruce E

    2010-11-01

    Empty palm fruit bunch fiber (EPFBF), a readily available cellulosic biomass from palm processing facilities, is investigated as a potential carbohydrate source for cellulosic ethanol production. This feedstock was pretreated using ammonia fiber expansion (AFEX) and enzymatically hydrolyzed. The best tested AFEX conditions were at 135 °C, 45 min retention time, water to dry biomass loading of 1:1 (weight ratio), and ammonia to dry biomass loading of 1:1 (weight ratio). The particle size of the pretreated biomass was reduced post-AFEX. The optimized enzyme formulation consists of Accellerase (84 μL/g biomass), Multifect Xylanase (31 μL/g biomass), and Multifect Pectinase (24 μL/g biomass). This mixture achieved close to 90% of the total maximum yield within 72 h of enzymatic hydrolysis. Fermentation on the water extract of this biomass affirms that nutrients solely from the pretreated EPFBF can support yeast growth for complete glucose fermentation. These results suggest that AFEX-treated EPFBF can be used for cellulosic biofuels production because biomass recalcitrance has been overcome without reducing the fermentability of the pretreated materials.

  6. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis...

  7. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?

    Directory of Open Access Journals (Sweden)

    Saddler Jack N

    2011-10-01

    Full Text Available Abstract Background We and other workers have shown that accessory enzymes, such as β-glucosidase, xylanase, and cellulase cofactors, such as GH61, can considerably enhance the hydrolysis effectiveness of cellulase cocktails when added to pretreated lignocellulosic substrates. It is generally acknowledged that, among the several factors that hamper our current ability to attain efficient lignocellulosic biomass conversion yields at low enzyme loadings, a major problem lies in our incomplete understanding of the cooperative action of the different enzymes acting on pretreated lignocellulosic substrates. Results The reported work assessed the interaction between cellulase and xylanase enzymes and their potential to improve the hydrolysis efficiency of various pretreated lignocellulosic substrates when added at low protein loadings. When xylanases were added to the minimum amount of cellulase enzymes required to achieve 70% cellulose hydrolysis of steam pretreated corn stover (SPCS, or used to partially replace the equivalent cellulase dose, both approaches resulted in enhanced enzymatic hydrolysis. However, the xylanase supplementation approach increased the total protein loading required to achieve significant improvements in hydrolysis (an additive effect, whereas the partial replacement of cellulases with xylanase resulted in similar improvements in hydrolysis without increasing enzyme loading (a synergistic effect. The enhancement resulting from xylanase-aided synergism was higher when enzymes were added simultaneously at the beginning of hydrolysis. This co-hydrolysis of the xylan also influenced the gross fiber characteristics (for example, fiber swelling resulting in increased accessibility of the cellulose to the cellulase enzymes. These apparent increases in accessibility enhanced the steam pretreated corn stover digestibility, resulting in three times faster cellulose and xylan hydrolysis, a seven-fold decrease in cellulase loading and

  8. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.

    2003-01-01

    was about 85%. Decreasing the hydrolysis temperature to 40degreesC increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting......) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195degreesC, 15 min, 12 bar O-2, 2 g/L of Na2CO) increased the enzymatic conversion of corn stover four times, compared...... to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50degreesC using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose...

  9. Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation.

    Science.gov (United States)

    Laothanachareon, Thanaporn; Bunterngsook, Benjarat; Suwannarangsee, Surisa; Eurwilaichitr, Lily; Champreda, Verawat

    2015-12-01

    Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Zhang, Ruihong [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Pan, Zhongli [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA 94710 (United States); Wang, Donghai [Biological and Agricultural Engineering Department, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-15

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol production because they don't take a large number of arable lands. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions and the best saline crop for further enzymatic hydrolysis research. The optimum dilute acid pretreatment conditions included T = 165 C, t = 8 min, and sulfuric acid concentration 1.4% (w/w). Creeping Wild Ryegrass was decided to be the best saline crop. Solid loading, cellulase and {beta}-glucosidase concentrations had significant effects on the enzymatic hydrolysis of dilute acid pretreated Creeping Wild Ryegrass. Glucose concentration increased by 36 mg/mL and enzymatic digestibility decreased by 20% when the solid loading increased from 4 to 12%. With 8% solid loading, enzymatic digestibility increased by over 30% with the increase of cellulase concentration from 5 to 15 FPU/g-cellulose. Under given cellulase concentration of 15 FPU/g-cellulose, 60% increase of enzymatic digestibility of pretreated Creeping Wild Ryegrass was obtained with the increase of {beta}-glucosidase concentration up to 15 CBU/g-cellulose. With a high solid loading of 10%, fed-batch operation generated 12% and 18% higher enzymatic digestibility and glucose concentration, respectively, than batch process. (author)

  11. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.

    Science.gov (United States)

    Zhang, Xiaoyue; Li, Yonghao; Zhao, Xinqing; Bai, Fengwu

    2017-01-01

    The high cost of cellulase production presents biggest challenge in biomass deconstruction. Cellulase production by Trichoderma reesei using low cost carbon source is of great interest. In this study, an artificial transcription activator containing the Cre1 binding domain linked to the Xyr1 effector and binding domains was designed and constitutively overexpressed in T. reesei RUT C30. The recombinant strain T. reesei zxy-2 displayed constitutive cellulase production using glucose as a sole carbon source, and the production titer was 12.75-fold of that observed with T. reesei RUT C30 in shake flask culture. Moreover, FPase and xylanase titers of 2.63 and 108.72IU/mL, respectively, were achieved using glucose as sole carbon source within 48h in a 7-L fermenter by batch fermentation using T. reesei zxy-2. The crude enzyme obtained was used to hydrolyze alkali pretreated corn stover, and a high glucose yield of 99.18% was achieved. Copyright © 2016. Published by Elsevier Ltd.

  12. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2009-07-01

    Full Text Available Abstract Background Improvement of the process of cellulase production and development of more efficient lignocellulose-degrading enzymes are necessary in order to reduce the cost of enzymes required in the biomass-to-bioethanol process. Results Lignocellulolytic enzyme complexes were produced by the mutant Trichoderma atroviride TUB F-1663 on three different steam-pretreated lignocellulosic substrates, namely spruce, wheat straw and sugarcane bagasse. Filter paper activities of the enzymes produced on the three materials were very similar, while β-glucosidase and hemicellulase activities were more dependent on the nature of the substrate. Hydrolysis of the enzyme preparations investigated produced similar glucose yields. However, the enzymes produced in-house proved to degrade the xylan and the xylose oligomers less efficiently than a commercial mixture of cellulase and β-glucosidase. Furthermore, accumulation of xylose oligomers was observed when the TUB F-1663 supernatants were applied to xylan-containing substrates, probably due to the low β-xylosidase activity of the enzymes. The efficiency of the enzymes produced in-house was enhanced by supplementation with extra commercial β-glucosidase and β-xylosidase. When the hydrolytic capacities of various mixtures of a commercial cellulase and a T. atroviride supernatant produced in the lab were investigated at the same enzyme loading, the glucose yield appeared to be correlated with the β-glucosidase activity, while the xylose yield seemed to be correlated with the β-xylosidase level in the mixtures. Conclusion Enzyme supernatants produced by the mutant T. atroviride TUB F-1663 on various pretreated lignocellulosic substrates have good filter paper activity values combined with high levels of β-glucosidase activities, leading to cellulose conversion in the enzymatic hydrolysis that is as efficient as with a commercial cellulase mixture. On the other hand, in order to achieve good xylan

  13. Optimization of Enzymatic Hydrolysis of Waste Bread before Fermentation

    Directory of Open Access Journals (Sweden)

    Helena Hudečková

    2017-01-01

    Full Text Available Finding of optimal hydrolysis conditions is important for increasing the yield of saccharides. The higher yield of saccharides is usable for increase of the following fermentation effectivity. In this study optimal conditions (pH and temperature for amylolytic enzymes were searched. As raw material was used waste bread. Two analytical methods for analysis were used. Efficiency and process of hydrolysis was analysed spectrophotometrically by Somogyi-Nelson method. Final yields of glucose were analysed by HPLC. As raw material was used waste bread from local cafe. Waste bread was pretreated by grinding into small particles. Hydrolysis was performed in 100 mL of 15 % (w/v waste bread particles in the form of water suspension. Waste bread was hydrolysed by two commercial enzymes. For the liquefaction was used α‑amylase (BAN 240 L. The saccharification was performed by glucoamylase (AMG 300 L. Optimal conditions for α‑amylase (pH 6; 80 °C were found. The yield of total sugars was 67.08 g∙L-1 (calculated to maltose. As optimal conditions for glucoamylase (pH 4.2; 60 °C were found. Amount of glucose was 70.28 g∙L1. The time of waste bread liquefaction was 180 minutes. The time of saccharification was 90 minutes. The results were presented at the conference CECE Junior 2014.

  14. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  15. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    Science.gov (United States)

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pretreated of banana pseudo-stem as raw material for enzymatic hydrolysis and bioethanol production

    Directory of Open Access Journals (Sweden)

    Kusmiyati

    2018-01-01

    Full Text Available Development of alternative energy is needed to solve the energy problem, including bioethanol. Banana pseudo-stem is a lignocellulose material that can used to produce bioethanol. Banana pseudo-stem has 28.83% cellulose and 19.39% lignin. The amount of lignin will reduce by pretreatment process. Variations of pretreatment methods by autoclaving of banana-pseudo stem in a steam, 0.5N, 1N, 1.5N, 2N NaOH solutions for 90 minutes were employed. Then the preteated samples were further enzymatic hydrolysed for 24, 48, 72 hours. The fermentation method of simultaneous saccharification and fermentation (SSF was applied using cellulase enzyme and yeast of Saccharomyces cerevisiae for 120 hours. The variation of the pretreatment process by increasing of NaOH concentration solutions led to decreased the lignin content while increased in cellulose content. The lowest lignin content was 11.44% and the highest cellulose was 51.66%. The highest sugar content was 29.8 g/L (at pretreatment 2N NaOH solution, 72 hours hydrolysis. The highest bioethanol amount (4.32 g/L was produced from pretreated banana stem using 2N NaOH solution.

  17. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis.

    Science.gov (United States)

    Wang, Hui; Mochidzuki, Kazuhiro; Kobayashi, Shinichi; Hiraide, Hatsue; Wang, Xiaofen; Cui, Zongjun

    2013-06-01

    Bovine serum albumin (BSA) was added to filter paper during the hydrolysis of cellulase. Adding BSA before the addition of the cellulase enhances enzyme activity in the solution, thereby increasing the conversion rate of cellulose. After 48 h of BSA treatment, the BSA adsorption quantities are 3.3, 4.6, 7.8, 17.2, and 28.3 mg/g substrate, each with different initial BSA concentration treatments at 50 °C; in addition, more cellulase was adsorbed onto the filter paper at 50 °C compared with 35 °C. After 48 h of hydrolysis, the free-enzyme activity could not be measured without the BSA treatment, whereas the remaining activity of the filter paper activity was approximately 41 % when treated with 1.0 mg/mL BSA. Even after 96 h of hydrolysis, 25 % still remained. Meanwhile, after 48 h of incubation without substrate, the remaining enzyme activities were increased 20.7 % (from 43.7 to 52.7 %) and 94.8 % (from 23.3 to 45.5 %) at 35 and 50 °C, respectively. Moreover, the effect of the BSA was more obvious at 35 °C compared with 50 °C. When using 15 filter paper cellulase units per gram substrate cellulase loading at 50 °C, the cellulose conversion was increased from 75 % (without BSA treatment) to ≥90 % when using BSA dosages between 0.1 and 1.5 mg/mL. Overall, these results suggest that there are promising strategies for BSA treatment in the reduction of enzyme requirements during the hydrolysis of cellulose.

  18. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  19. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars

    Directory of Open Access Journals (Sweden)

    Dawit Beyene

    2017-10-01

    Full Text Available Cellulose nanocrystals (CNCs can be extracted from cellulosic materials through the degradation of non-crystalline cellulose domains in the feedstock via acid hydrolysis. However, the sugars released from the hydrolysis process cannot be easily recovered from the acid waste stream. In this study, cellulases were used to preferentially degrade non-crystalline domains with the objectives of recovering sugars and generating a feedstock with concentrated CNC precursors for a more efficient acid hydrolysis process. Filter paper and wood pulp substrates were enzyme-treated for 2–10 h to recover 20–40 wt % glucose. Substantial xylose yield (6–12 wt % was generated from wood pulp. CNC yields from acid hydrolysis of cellulases-treated filter paper, and wood pulp improved by 8–18% and 58–86%, respectively, when compared with the original substrate. It was thought that CNC precursors accumulated in the cellulases-treated feedstock due to enzymatic digestion of the more accessible non-crystalline celluloses. Therefore, acid hydrolysis from enzyme-treated feedstock will require proportionally less water and reagents resulting in increased efficiency and productivity in downstream processes. This study demonstrates that an enzymatically-mediated process allows recovery of fermentable sugars and improves acid hydrolysis efficiency for CNC production.

  20. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt.

    Science.gov (United States)

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin

    2015-02-01

    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  2. Electron beam application as pre treatment of sugar cane bagasse to enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Cardoso, Vanessa Miguel

    2008-01-01

    Due to increasing worldwide shortage of food and energy sources, sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, much of which is in a crystalline structure, 40% hemicelluloses, an amorphous polymer usually composed of xylose, arabinose, galactose, glucose, and mannose and 20% lignin, which cannot be easily separated into readily usable components due to their recalcitrant nature. Pure cellulose is readily depolymerised by radiation, but in biomass the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study was the evaluation of the electron beam irradiation efficiency as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 10 0 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose in. (author)

  3. Double enzymatic hydrolysis preparation of heme from goose blood and microencapsulation to promote its stability and absorption.

    Science.gov (United States)

    Wang, Baowei; Cheng, Fansheng; Gao, Shun; Ge, Wenhua; Zhang, Mingai

    2017-02-15

    Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. This deficiency could be solved by preparing stable, edible, and absorbable iron food ingredients using environmentally friendly methods. This study investigated enzymatic hydrolysis and microencapsulation process of goose blood. The physicochemical properties, stabilities of the microencapsulated goose blood hydrolysate (MGBH) and a supplement for rats with IDA were also evaluated. The results showed that the synergetic hydrolytic action of neutrase and alkaline protease significantly increased the heme-releasing efficiency. The heme was then microencapsulated using sodium caseinate, maltodextrin and carboxymethyl cellulose (CMC) as the edible wall material, and the encapsulation efficiency of the product reached 98.64%. Meanwhile, favorable thermal, storage and light stabilities were observed for the microencapsulation. It was found that MGBH can significantly improve the body weight and hematological parameters of IDA Wistar rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Towards an optimal process for gelatinisation and hydrolysis of highly concentrated starch-water mixtures with alpha-amylase from B. licheniformis

    NARCIS (Netherlands)

    Baks, T.; Kappen, F.H.J.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    The enzymatic hydrolysis of starch is usually carried out with 30¿35 w/w% starch in water. Higher substrate concentrations (50¿70 w/w%) were reached by using a twin-screw extruder for gelatinisation and for mixing enzyme with gelatinised starch prior to enzymatic hydrolysis in a batch reactor. The

  5. Enzymatic hydrolysis of multi-use forage energy crops, year 2 report: Studies on the improvement of reaction conditions, differences between forages. SRC technical report No. 141, and SRC publication No. C-711-6-B-83

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, L.J.; Coxworth, E.C.

    1983-12-31

    The main objective of the work described in this report is to optimize the conversion of forages and crop residues to simple sugars, and to determine the quantity of protein that can be readily recovered after enzymatic hydrolysis of those materials. The simple sugars would be used as substrates for fermentation to fuels and chemicals, and the protein is a potentially valuable byproduct for use as fertilizer or feed. The plant materials studied were kochia, Jerusalem artichoke, pea stem and chaff, oilseed radish, alfalfa, and slender wheat grass. The enzymes used in the hydrolysis were Onozuka R-10, Celluclast 200L Type N, and cellobiase 250L. Results reported include comparisons of enzymatic reactivity of the materials studied, the quantity of protein remaining after treatment, and the dry matter solubility of the materials achieved using the different enzymes.

  6. Hidrólise enzimática de casca de arroz utilizando-se celulases: efeito de tratamentos químicos e fotoquímicos Enzymatic hydrolysis of rice hull using cellulases: effect of chemical and photochemical treatments

    Directory of Open Access Journals (Sweden)

    Juan Reyes

    1998-04-01

    Full Text Available In the present work we reported the study of rice hull enzymatic hydrolysis using a commercial cellulase preparation. The results showed that previous treatment with light and sodium chlorite inhibits the enzymatic process (31.4 and 11.8%, respectively while hydrogen peroxide and ozone favoured the enzymatic production of reducing sugars (5.9 and 54.9%, respectively. Studies performed by quimiluminescence showed that the chlorite treatment produced the most significant change in the structure of rice hull. Nevertheless, this treatment did not favour the subsequent enzymatic process. Photomicrographs obtained from rice hull hydrolysates showed that pre-treatment changed mainly the inner epidermis and parenchyma cell and that they did not change cellular organization of the hull.

  7. Hydrolysis of lactose: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Gekas, V; Lopez-Leiva, M

    1985-02-01

    Lactose is the sugar found in milk and whey. Its hydrolysis to glucose and galactose in milk would solve the problem of milk-intolerant people and in whey it would avoid environmental pollution and offer an interesting possibility of by-product utilization. The prepared sweet syrup has many potential applications in the food industry. Hydrolysis of lactose can be carried out by heating at low pH (acid hydrolysis) or by enzymatic catalysis with the enzyme (lactase or ..beta..-D-galactosidase) either free in solution or immobilized by one of the several enzyme immobilization methods which are abundant in the literature. Selection of the proper method depends on many factors: the nature of substrate, use of the final product, need for sanitary conditions, and, of course, capital and processing costs. 157 references.

  8. Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production

    NARCIS (Netherlands)

    Nguyen, E.V.; Imanishi, S.Y.; Haapaniemi, P.; Yadav, A.; Saloheimo, M.; Corthals, G.L.; Pakula, T.M.

    2016-01-01

    The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation

  9. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, M.P.; Vaheri, M.E.O.; Kaupinen, V.S.

    1979-01-01

    Production and release of cellulolytic enzymes by T. reesei QM 9414 were studied under induced and non-induced conditions and glycerol, respectively, as the only C source. There was a base level of cell debris-bound hydrolytic activity against filter paper and p-nitrophenyl glycoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper- and CMC-hydrolyzing enzymes, which were actively released even in the early stages of cultivation. Beta-Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.

  10. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    Science.gov (United States)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  11. Immobilization of Trichoderma reesei by radiation polymerization

    International Nuclear Information System (INIS)

    Zhou Ruimin; Ma Zueteh; Kaetus, Isao; Kumakura, Minoro

    1993-01-01

    Immobilization of Trichoderma reesei was carried out by radiation polymerization. It was found that the activity of fixed cells increased with increasing surface area of the carrier and was affected by the concentration of monomer tetraethylenglycol dimethacrylate and the shape of the substrate composition and structure of cotton textile fabrics. (author)

  12. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-...

  13. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Deactivation of Cellulase at the Air-Liquid Interface Is the Main Cause of Incomplete Cellulose Conversion at Low Enzyme Loadings.

    Science.gov (United States)

    Bhagia, Samarthya; Dhir, Rachna; Kumar, Rajeev; Wyman, Charles E

    2018-01-22

    Amphiphilic additives such as bovine serum albumin (BSA) and Tween have been used to improve cellulose hydrolysis by cellulases. However, there has been a lack of clarity to explain their mechanism of action in enzymatic hydrolysis of pure or low-lignin cellulosic substrates. In this work, a commercial Trichoderma reesei enzyme preparation and the amphiphilic additives BSA and Tween 20 were applied for hydrolysis of pure Avicel cellulose. The results showed that these additives only had large effects on cellulose conversion at low enzyme to substrate ratios when the reaction flasks were shaken. Furthermore, changes in the air-liquid interfacial area profoundly affected cellulose conversion, but surfactants reduced or prevented cellulase deactivation at the air-liquid interface. Not shaking the flasks or adding low amounts of surfactant resulted in near theoretical cellulose conversion at low enzyme loadings given enough reaction time. At low enzyme loadings, hydrolysis of cellulose in lignocellulosic biomass with low lignin content suffered from enhanced enzyme deactivation at the air-liquid interface.

  15. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time.

    Science.gov (United States)

    Zhang, Hongdan; Zhang, Shuaishuai; Yuan, Hongyou; Lyu, Gaojin; Xie, Jun

    2018-02-01

    An organosolv pretreatment system consisting of 60% ethanol and 0.025 mol·L -1 FeCl 3 under various temperatures was developed in this study. During the pretreatment, the highest xylose yield was 11.4 g/100 g raw material, representing 49.8% of xylose in sugarcane bagasse. Structural features of raw material and pretreated substrates were characterized to better understand how hemicellulose removal and delignification affected subsequent enzymatic hydrolysis. The 160 °C pretreated solid presented a remarkable glucose yield of 93.8% for 72 h. Furthermore, the influence of different additives on the enzymatic hydrolysis of pretreated solid was investigated. The results indicated that the addition of Tween 80 shortened hydrolysis time to 6 h and allowed a 50% reduction of enzyme loading to achieve the same level of glucose yield. This work suggested that FeCl 3 -catalyzed organosolv pretreatment could improve the enzymatic hydrolysis significantly and reduce the hydrolysis time and enzyme dosage with the addition of Tween 80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enzymatic production of polysaccharides from gum tragacanth

    DEFF Research Database (Denmark)

    2014-01-01

    Plant polysaccharides, relating to the field of natural probiotic components, can comprise structures similar to human milk oligosaccharides. A method for enzymatic hydrolysis of gum tragacanth from the bush-like legumes of the genus Astragalus, using a combination of pectin hydrolases...

  17. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-11-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg-1 and 2318 to 8395 mg kg-1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.

  18. Effect of physical treatment on Trichoderma reesei cells

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    The effect of physical treatment such as freezing and gamma-ray irradiation on Trichoderma reesei cells was studied. The decrease phenomena of cellulase production, which was observed in the culture of the cells using wheat bran extract, was improved by physical treatment. (author)

  19. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch

    International Nuclear Information System (INIS)

    Wang Zuohua; Xiang Bo; Cheng Rumei; Li Yijiu

    2010-01-01

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g -1 , respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g -1 ) > AO10 (0.592 mmol g -1 ) > AR18 (0.411 mmol g -1 ) > AG25 (0.047 mmol g -1 ). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  20. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  1. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    Bae, Hyeun Jong; Wi, Seung Gon; Lee, Yoon Gyo; Kim, Ho Myung; Kim, Su Bae

    2011-10-01

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. The 2nd year Research scope includes: 1) Optimization of pre-treatment conditions for enzymatic hydrolysis of lignocellulosic biomass and 2) Demonstration of enzymatic hydrolysis by recombinant enzymes. To optimize the pretreatment, we applied two processes: a wet process (wet milling + popping), and dry process (popping + dry milling). Out of these, the wet process presented the best glucose yield with a 93.1% conversion, while the dry process yielded 69.6%, and the unpretreated process yielded <20%. The recombinant cellulolytic enzymes showed very high specific activity, about 80-1000 times on CMC and 13-70 times on filter paper at pH 3.5 and 55 .deg. C

  2. COMPARED ANALYSIS OF CATALASE AND PEROXIDASE ACTIVITY IN CELLULOLYTIC FUNGUS TRICHODERMA REESEI GROWN ON MEDIUM WITH DIFFERENT CONCENTRATIONS OF GRINDED WHEAT AND BARLEY STRAWS

    Directory of Open Access Journals (Sweden)

    Mihaela Cristica

    2010-09-01

    Full Text Available The purpose of this study was to assess the evolution of catalase and peroxidase activity in Trichoderma reesei grown on medium containing grinded wheat and barley straws. Carbon source of cultivation medium - glucose was replaced by various concentrations of grinded wheat and barley straws, finally resulting three experimental variants as follows: V1 = 20 g/l, V2 = 30 g/l, V3 = 40 g/l. ĂŽn addition to these variants a control sample was added in which composition remainded unchanged. The catalase activity was determined by spectrophotometric Sinha method (Artenie et al., 2008 while peroxidase activity was assesed using the o-dianisidine method (Cojocaru, 2009. Enzymatic determinations were carried out at 7 and 14 days from inoculation, in both fungus mycelium and culture liquid. The enzymatic assay showed significant differences between determinations intervals and work variants. Enzyme activity is influenced by the age of fungus and by the different nature of the substrate used.

  3. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.

    Science.gov (United States)

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Santana, Eliane Silva; Zanini, Guilherme Keppe; Dos Santos, Renato Augusto Corrêa; de Oliveira Pontes, Angélica; de Souza, Aline Tieppo; Dal'Mas, Roberta Maria Menegaldo Tavares Soares; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2017-06-30

    Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass

  4. Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

    Science.gov (United States)

    Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu

    2013-01-01

    Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...

  5. Nanosilver: A Catalyst in Enzymatic Hydrolysis of Starch

    Directory of Open Access Journals (Sweden)

    Falkowska Marta

    2014-09-01

    Full Text Available Silver nanoparticles are widely used, because of their antimicrobial properties. In this paper, the rate of starch digestion in the presence of nanocatalyst was compared with the rate of reaction without nanosilver. The rate of enzymatic degradation of starch was found to be increased in the presence of silver nanoparticles. It is considered that α-amylase was immobilized onto the surface of nanoparticles.

  6. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    Science.gov (United States)

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Immobilization of Trichoderma reesei cells by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization 2-hydroxyethyl acrylate monomer at low temperature. Cellulase production resulting from the growth of the cells in the porous polymer matrix of immobilized cell composites was confirmed by measuring the cellulase activity and pH during the culture. (orig.)

  8. Enzymatic hydrolysis of corn bran arabinoxylan

    DEFF Research Database (Denmark)

    Agger, Jane

    as a model substrate because it represents a readily available agroindustrial side product with upgrading potentials. Corn bran originates from the wet-milling process in corn starch processing, is the outmost layers of the corn kernel and is particularly rich in pentose monosaccharides comprising the major...... in a complex and ridig cell wall structure. This thesis contains a thorough examination of the monosaccharide and structural composition of corn bran, which is used to assess and apply the relevant mono component enzyme preparations. In this way, the aim is to obtain the most effective minimal enzymatic......, especially with respect to xylose and glucose release, but vast amounts of the valuable monosaccharides are lost during this pretreatment and this is especially evident for arabinose. From a scientific point of view acid catalysed pretreatment renders the substrate in a state of disruption where assessment...

  9. Application of multi-enzymatic hydrolysis for improving the efficiency of the biogas production in solid waste fermentation process in Ostróda WWTP

    Science.gov (United States)

    Lipiński, Kamil; Umiejewska, Katarzyna

    2017-11-01

    Biomass fermentation is one of the important sources of renewable energy in EU. Application of multi-enzymatic hydrolysis process enables a significant increase in efficiency of biogas production. The main goal of the paper is to present the results of the pilot scale research performed in WWTP in óstroda. The fixed combination of three enzymes was continiously introduced: amylase, lipase and protease. Research aimed at verifying the impact of enzyme dose on sludge digestion process and on the amount of biogas produced. Statistical analysis of the research results allows to determine the influence of dosing the enzymes in mesophilic digestion on the biogas production.

  10. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    Science.gov (United States)

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  11. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  12. Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose

    Science.gov (United States)

    Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu

    2014-01-01

    The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...

  13. Rapid and sensitive enzymatic-radiochemical assay for the determination of triglycerides

    International Nuclear Information System (INIS)

    Khoo, J.C.; Miller, E.; Goldberg, D.I.

    1987-01-01

    An enzymatic-radiochemical method suitable for the determination of triglyceride levels of cells in culture is described. The method is based on the enzymatic hydrolysis of triglycerides to free fatty acids which then complex with 63 Ni. The method is rapid, accurate, and inexpensive. The procedure extends the sensitivity of triglyceride measurement to as low as 0.25 nanomoles

  14. Enhancement of enzymatic hydrolysis of corn stover by γ-irradiation and combined solvent delignification/acid prehydrolysis

    International Nuclear Information System (INIS)

    Nghiem, N.P.; Gonzales-Valdes, A.; Moo-Young, M.; Robinson, C.W.

    1984-01-01

    Two pretreatment schemes were studied for their effect on the enhancement of soluble sugar production from corn stover by enzymatic hydrolysis. In the first scheme, prior to enzymic hydrolysis corn stover which was ground to pass a 1 mm screen was immersed in NaOH solution and exposed to gamma irradiation. The NaOH levels and radiation dosages were varied from 0 to 0.51 gNaOH/g corn stover and from 50 to 150 Mr, respectively. The combined residue and solubles were then hydrolyzed with a commercial cellulase (Onozuka) in 0.05 M citrate buffer at pH 4.6 and 39 0 C for 48 hours. The highest sugar yield of 96% based on the total carbohydrate content of the original sample was obtained at 100 Mr and 0.06 gNaOH/g corn stover. In the second scheme, corn stover which was ground to pass a 0.35 mm screen was delignified with ethanol-water-NaOH. The ethanol-water mixture used contained 3 parts (by volume) of 95% ethanol and 4 g NaOH/L; substrate concentration was 5% (w/v). The delignification was carried out at 140 0 C for 1 hour. At these conditions, 65% of the lignin was removed while 90% of the carbohydrates remained insoluble. The delignified corn stover with an without treatment using 2% wt.% H 2 SO 4 at 95 0 C and 1 hour was then enzymically hydrolyzed with Novo Cellulclast at pH 4.8 and 50 0 C for up to 48 hours. Factors that affect the overall sugar production are presented and discussed. In addition, the overall sugar yields for the two schemes are compared with other pretreatment schemes reported. (orig.)

  15. The human digestive tract has proteases capable of gluten hydrolysis

    Directory of Open Access Journals (Sweden)

    Sergio Gutiérrez

    2017-07-01

    Conclusion: The digestive tracts of patients with CD and healthy subjects have enzymatic machinery needed for gluten degradation. Patients with CD showed more gluten hydrolysis than did healthy individuals, although, in both cases, a fraction of 33-mer peptide remained intact. Gliadin peptides derived from gastrointestinal digestion, especially the 33-mer, can potentially be used by commensal microbiota from both CD-positive and CD-negative individuals, and differences in bacterial hydrolysis can modify its immunogenic capacity.

  16. Enhanced cellulase hydrolysis of eucalyptus waste fibers from pulp mill by Tween80-assisted ferric chloride pretreatment.

    Science.gov (United States)

    Chen, Liheng; Fu, Shiyu

    2013-04-03

    Pretreatment combining FeCl3 and Tween80 was performed for cellulose-to-ethanol conversion of eucalyptus alkaline peroxide mechanical pulping waste fibers (EAWFs). The FeCl3 pretreatment alone showed a good effect on the enzymatic hydrolysis of EAWFs, but inhibited enzyme activity to some extent. A surfactant, Tween80, added during FeCl3 pretreatment was shown to significantly enhance enzyme reaction by eluting enzymatic inhibitors such as iron(III) that are present at the surface of the pretreated biomass. Treatment temperature, liquid-solid ratio, treatment time, FeCl3 concentration, and Tween80 dosage for pretreatment were optimized as follows: 180 °C, 8:1, 30 min, 0.15 mol/L, and 1% (w/v). Pretreated EAWFs under such optimal conditions provided enzymatic glucose (based on 100 g of oven-dried feedstock) and substrate enzymatic digestibility of EAWFs of 34.8 g and 91.3% after 72 h of enzymatic hydrolysis, respectively, with an initial cellulase loading of 20 FPU/g substrate.

  17. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  18. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Science.gov (United States)

    2011-01-01

    Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species. PMID:22070776

  19. A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion.

    Science.gov (United States)

    Nakazawa, Hikaru; Kawai, Tetsushi; Ida, Noriko; Shida, Yosuke; Shioya, Kouki; Kobayashi, Yoshinori; Okada, Hirofumi; Tani, Shuji; Sumitani, Jun-Ichi; Kawaguchi, Takashi; Morikawa, Yasushi; Ogasawara, Wataru

    2016-01-01

    The ability of the Trichoderma reesei X3AB1strain enzyme preparations to convert cellulosic biomass into fermentable sugars is enhanced by the replacement of xyn3 by Aspergillus aculeatus β-glucosidase 1 gene (aabg1), as shown in our previous study. However, subsequent experiments using T. reesei extracts supplemented with the glycoside hydrolase (GH) family 10 xylanase III (XYN III) and GH Family 11 XYN II showed increased conversion of alkaline treated cellulosic biomass, which is rich in xylan, underscoring the importance of XYN III. To attain optimal saccharifying potential in T. reesei, we constructed two new strains, C1AB1 and E1AB1, in which aabg1 was expressed heterologously by means of the cbh1 or egl1 promoters, respectively, so that the endogenous XYN III synthesis remained intact. Due to the presence of wild-type xyn3 in T. reesei E1AB1, enzymes prepared from this strain were 20-30% more effective in the saccharification of alkaline-pretreated rice straw than enzyme extracts from X3AB1, and also outperformed recent commercial cellulase preparations. Our results demonstrate the importance of XYN III in the conversion of alkaline-pretreated cellulosic biomass by T. reesei. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Directory of Open Access Journals (Sweden)

    Denton Jai A

    2011-11-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.

  1. Effect of Hydrolysis Products of Different Proteins of Wheat on Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Hasan Hasanov

    2011-05-01

    Full Text Available This paper presents a study of the effect of products of enzymatic hydrolysis of various proteins of wheat with a neutral proteinase (neutrase “Novozymes”, Denmark on the activity of peroxidase from horseradish. It is shown that the hydrolysis products of albumin activate peroxidase activity, the constant of activation being 2.3 micromoles. At the same time with increasing the depth of hydrolysis of albumin the activating effect of peptides disappears. Peptides derived from the salt-soluble, alcohol-soluble alkali-soluble proteins had no effect on the activity of peroxidase.

  2. Total control of chromium in tanneries - thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings.

    Science.gov (United States)

    Kocurek, P; Kolomazník, K; Bařinová, M; Hendrych, J

    2017-04-01

    This paper deals with the problem of chromium recovery from chrome-tanned waste and thus with reducing the environmental impact of the leather industry. Chrome-tanned waste was transformed by alkaline enzymatic hydrolysis promoted by magnesium oxide into practically chromium-free, commercially applicable collagen hydrolysate and filtration cake containing a high portion of chromium. The crude and magnesium-deprived chromium cakes were subjected to a process of thermal decomposition at 650°C under oxygen-free conditions to reduce the amount of this waste and to study the effect of magnesium removal on the resulting products. Oxygen-free conditions were applied in order to prevent the oxidation of trivalent chromium into the hazardous hexavalent form. Thermal decomposition products from both crude and magnesium-deprived chrome cakes were characterized by high chromium content over 50%, which occurred as eskolaite (Cr 2 O 3 ) and magnesiochromite (MgCr 2 O 4 ) crystal phases, respectively. Thermal decomposition decreased the amount of chrome cake dry feed by 90%. Based on the performed experiments, a scheme for the total control of chromium in the leather industry was designed.

  3. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei.

    Science.gov (United States)

    Chen, Fei; Chen, Xiu-Zhen; Su, Xiao-Yun; Qin, Li-Na; Huang, Zhen-Bang; Tao, Yong; Dong, Zhi-Yang

    2015-10-01

    Eukaryotic mitogen-activated protein kinases (MAPKs) play crucial roles in transducing environmental and developmental signals inside the cell and regulating gene expression, however, the roles of MAPKs remain largely unknown in Trichoderma reesei. T. reesei ime2 (TrIme2) encodes an Ime2-like MAPK in T. reesei. The deletion of the TrIme2 gene led to 90% increase in cellulase activity against filter paper during earlier period time of cellulase induction as well as the extracellular protein production. Compared to the parent strain, the transcriptional levels of the three major cellulase genes cbh1,cbh2, egl1 were increased by about 9 times, 4 times, 2 times, respectively, at 8 h after cellulase induction in the ΔTrIme2 mutant. In addition, the disruption of TrIme2 caused over 50% reduction of the transcript levels of cellulase transcriptional regulators cre1 and xyr1. TrIme2 functions in regulation of the expression of cellulase gene in T.reesei, and is a good candidate for genetically engineering of T. reesei for higher cellulase production.

  4. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei.

    Science.gov (United States)

    Wu, Yilan; Sun, Xianhua; Xue, Xianli; Luo, Huiying; Yao, Bin; Xie, Xiangming; Su, Xiaoyun

    2017-11-01

    Vast interest exists in developing T. reesei for production of heterologous proteins. Although rich genomic and transcriptomic information has been uncovered for the T. reesei secretion pathway, little is known about whether engineering its key components could enhance expression of a heterologous gene. In this study, snc1, a v-SNARE gene, was first selected for overexpression in T. reesei. In engineered T. reesei with additional copies of snc1, the Aspergillus niger glucose oxidase (AnGOD) was produced to a significantly higher level (2.2-fold of the parental strain). hac1 and bip1, two more component genes in the secretion pathway, were further tested for overexpression and found to be also beneficial for AnGOD secretion. The overexpression of one component gene more or less affected the expression of the other two genes, suggesting a complex regulating mechanism. Our study demonstrates the potential of engineering the secretion pathway for enhancing heterologous gene production in T. reesei. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris oleoabundans

    Science.gov (United States)

    Wang, Dongqin; Li, Yanqun; Hu, Xueqiong; Su, Weimin; Zhong, Min

    2015-01-01

    Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process. PMID:25853267

  6. Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris oleoabundans

    Directory of Open Access Journals (Sweden)

    Dongqin Wang

    2015-04-01

    Full Text Available Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process.

  7. Overexpression of D-Xylose Reductase (xyl1 Gene and Antisense Inhibition of D-Xylulokinase (xyiH Gene Increase Xylitol Production in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hong

    2014-01-01

    Full Text Available T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH, which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable. The copy number of the xylose reductase gene (xyl1 in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol.

  8. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    Science.gov (United States)

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  9. Introducing enzyme selectivity as a quantitative parameter to describe the effects of substrate concentration on protein hydrolysis

    NARCIS (Netherlands)

    Butré, C.I.

    2014-01-01

    To understand the differences in peptide composition that result from variations in the conditions of enzymatic hydrolysis of proteins (e.g. substrate concentration) the mechanism of hydrolysis needs to be understood in detail. Therefore, methods and tools were developed to characterize and

  10. A novel optimization approach to estimating kinetic parameters of the enzymatic hydrolysis of corn stover

    Directory of Open Access Journals (Sweden)

    Fenglei Qi

    2016-01-01

    Full Text Available Enzymatic hydrolysis is an integral step in the conversion of lignocellulosic biomass to ethanol. The conversion of cellulose to fermentable sugars in the presence of inhibitors is a complex kinetic problem. In this study, we describe a novel approach to estimating the kinetic parameters underlying this process. This study employs experimental data measuring substrate and enzyme loadings, sugar and acid inhibitions for the production of glucose. Multiple objectives to minimize the difference between model predictions and experimental observations are developed and optimized by adopting multi-objective particle swarm optimization method. Model reliability is assessed by exploring likelihood profile in each parameter space. Compared to previous studies, this approach improved the prediction of sugar yields by reducing the mean squared errors by 34% for glucose and 2.7% for cellobiose, suggesting improved agreement between model predictions and the experimental data. Furthermore, kinetic parameters such as K2IG2, K1IG, K2IG, K1IA, and K3IA are identified as contributors to the model non-identifiability and wide parameter confidence intervals. Model reliability analysis indicates possible ways to reduce model non-identifiability and tighten parameter confidence intervals. These results could help improve the design of lignocellulosic biorefineries by providing higher fidelity predictions of fermentable sugars under inhibitory conditions.

  11. Vanadium(IV)-stimulated hydrolysis of 2,3-diphosphoglycerate.

    Science.gov (United States)

    Stankiewicz, P J

    1989-05-01

    Vanadium(IV) stimulates the hydrolysis of 2,3-diphosphoglycerate at 23 degrees C. The pH optimum is 5.0. Reactions were analyzed by enzymatic and phosphate release assays. The products of 2,3-diphosphoglycerate hydrolysis are inorganic phosphate and 3-phosphoglycerate. The reaction is inhibited by high concentrations of 2,3-diphosphoglycerate and an equation has been formulated that describes the kinetic constants for this reaction at pH 7. The possible relevance of the reaction to the therapeutic lowering by vanadium(IV) of red cell 2,3-diphosphoglycerate in sickle-cell disease is discussed.

  12. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon

    2014-01-01

    . Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  13. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic

  14. On the conflicting findings of Role of Cellulose-Crystallinity in Enzume Hydrolysis of Biomass

    Science.gov (United States)

    Umesh Agarwal; Sally Ralph

    2014-01-01

    In the field of conversion of biomass to ethanol, an important area of research is the enzymatic hydrolysis of cellulose. Once cellulose is converted to glucose, it can be easily fermented to ethanol. As the cellulosic ethanol technology stands now, costly pretreatments and high dosages of cellulases are needed to achieve complete hydrolysis of the cellulose fraction...

  15. Space mutagenic effect of Trichoderma reesei

    International Nuclear Information System (INIS)

    Tian Xingshan; Zhou Fengzheng; Huang Xiaoguang; Kuang Zheshi; Pan Mushui; Li Guoli; Guo Yong

    2005-01-01

    The slant mycelia cultured with or without mutagenic agent diethyl sulfate (DS) and spores of Trichoderma reesei were loaded in the 18th returning satellite. Systematical screening showed that the life cycle and morphology of some strains had changed after space flight. After selection and domestication, 3 mutant strains with high cellulose enzyme activity were isolated. The cellulose enzyme productivities of the mutants were significantly increased more than 50%, and the mutant were generically stable. (authors)

  16. Enhanced hydrolysis of cellulose hydrogels by morphological modification.

    Science.gov (United States)

    Alfassi, Gilad; Rein, Dmitry M; Cohen, Yachin

    2017-11-01

    Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis. The hydrogel density was shown to be directly proportional to the cellulose concentration in the initial solution, thus affecting its hydrolysis rate. Using high-resolution scanning electron microscopy, we show that the hydrogel particles in aqueous suspension exhibit a dense external surface layer and a more porous internal network. Elimination of the external surface layer accelerated the hydrolysis rate by up to sixfold and rendered the process nearly independent of cellulose concentration. These findings may be of practical relevance to saccharification processing costs, by reducing required solvent quantities and enzyme load.

  17. High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments

    Science.gov (United States)

    Uju, Wijayanta, Agung Tri; Goto, Masahiro; Kamiya, Noriho

    2018-02-01

    Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, which without pretreated by PAA. Furthermore, SWBC hydrolyzed by both ILs in the presence low concentration of HCl produced cellulose conversion 70-98% at 60-90 min of hydrolysis time. High cellulose conversion of SWBC on the both hydrolysis was caused by SWBC had the low lignin (4%). Moreover, IL treatments caused lowering of cellulose hydrogen bonds or even changed the cellulose characteristics from cellulose I to cellulose II which easily to be hydrolyzed. In the case of [Bmpy][Cl], this IL may reduce the degree polymerization of celluloses.

  18. Modelling of the enzymatic kinetically controlled synthesis of cephalexin

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Fretz, C.B.; Bruin, de V.H.; Berendsen, W.; Moody, H.M.; Roos, E.C.; Roon, van J.L.; Kroon, P.J.; Strubel, M.; Janssen, A.E.M.; Tramper, J.

    2002-01-01

    In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis

  19. Effect of steam treatment on the hydrolysis of aspen by commerical enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D G; Mathews, J F

    1979-06-01

    Steam treatment renders aspen wood more susceptible to hydrolysis by commerical enzyme preparations such as the Onozuka variety. The main products of enzymatic hydrolysis are glucose, xylose, and xylobiose. Cellobiose may have been another product but it could not be measured due to interference by lactose, a sugar found in the enzyme. The hemicellulose fraction of the wood is relatively more rapidly hydrolyzed by the enzymes than the cellulose fraction.

  20. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine.

    Science.gov (United States)

    Li, Xinping; Luo, Xiaolin; Li, Kecheng; Zhu, J Y; Fougere, J Dennis; Clarke, Kimberley

    2012-11-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL pretreatment resulted in fiber separation, where SPORL high pH (4.2) pretreatment exhibited better fiber separation than SPORL low pH (1.9) pretreatment. Dilute acid pretreatment produced very poor fiber separation, consisting mostly of fiber bundles. The removal of almost all hemicelluloses in the dilute acid pretreated substrate did not overcome recalcitrance to achieve a high cellulose conversion when lignin removal was limited. SPORL high pH pretreatment removed more lignin but less hemicellulose, while SPORL low pH pretreatment removed about the same amount of lignin and hemicelluloses in lodgepole pine substrates when compared with dilute acid pretreatment. Substrates pretreated with either SPORL process had a much higher cellulose conversion than those produced with dilute acid pretreatment. Lignin removal in addition to removal of hemicellulose in SPORL pretreatment plays an important role in improving the cellulose hydrolysis of the substrate.

  1. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical synthesis of ceramide is a costly process, and developments of alternative cost......-efficient, high yield production methods are of great interest. In the present study, the potential of producing ceramide through the enzymatic hydrolysis of sphingomyelin have been studied. sphingomyelin is a ubiquitous membrane-lipid and rich in dairy products or by-products. It has been verified...... that sphingomyelin modification gives a feasible approach to the potential production of ceramide. The reaction system has been improved through system evaluation and the optimization of several important factors, and phospholipase C from Clostridium perfringens shows higher activity towards the hydrolysis reaction...

  2. Interrelationships of VEL1 and ENV1 in light response and development in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Hoda Bazafkan

    Full Text Available Sexual development is regulated by a complex regulatory mechanism in fungi. For Trichoderma reesei, the light response pathway was shown to impact sexual development, particularly through the photoreceptor ENVOY. Moreover, T. reesei communicates chemically with a potential mating partner in its vicinity, a response which is mediated by the velvet family protein VEL1 and its impact on secondary metabolism. We therefore studied the regulatory interactions of ENV1 and VEL1 with a focus on sexual development. Although individual mutants in both genes are female sterile under standard crossing conditions (light-dark cycles, an altered light regime enabled sexual development, which we found to be due to conditional female sterility of Δenv1, but not Δvel1. Phenotypes of growth and asexual sporulation as well as regulation of the peptide pheromone precursors of double mutants suggested that ENV1 and VEL1 balance positive and negative regulators of these functions. Additionally, VEL1 contributed to the strong deregulation of the pheromone system observed in env1 mutants. Female sterility of Δvel1 was rescued by deletion of env1 in darkness in MAT1-1, indicating a block of sexual development by ENV1 in darkness that is balanced by VEL1 in the wild-type. We conclude that ENV1 and VEL1 exert complementing functions in development of T. reesei. Our results further showed that the different developmental phenotypes of vel1/veA mutants in T. reesei and Aspergillus nidulans are not due to the presence or function of ENV1 in the VELVET regulatory pathway in T. reesei.

  3. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Gao Ziqing

    2012-05-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover. Results The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover. Conclusion G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method.

  4. Removal of chromophore in enzymatic hydrolysis by acid precipitation to improve the quality of xylo-oligosaccharides from corn stalk.

    Science.gov (United States)

    Wang, Yue-Hai; Zhang, Jie; Qu, Yong-Shui; Li, Hong-Qiang

    2018-02-01

    As the most representative functional sugar, the application areas and market demands of xylo-oligosaccharides (XOS) have been expanding year by year. Owing to the complex structure of corn stalk (CS), XOS obtained from CS are accompanied by problems such as low purity and high color value, which degrade the product. To improve the quality of XOS from CS, the enzymatic hydrolysis was precipitated by acid; then, the ethanol elution concentration was systematically investigated after optimizing the adsorption conditions. The results showed that the purity of XOS was increased to 87.28% from 67.31%, and the color value was decreased to 1050 from 4682 when the acid precipitation pH was 2. On the basis of acid precipitation, if the corresponding optimal conditions of XOS adsorption and elution were used, the highest purity of XOS was 97.87% obtained, with the lowest color value, 780, which reached the standard of the commercial XOS. Copyright © 2017. Published by Elsevier Ltd.

  5. Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass

    Directory of Open Access Journals (Sweden)

    Nur Fatin Athirah Ahmad Rizal

    2018-04-01

    Full Text Available The combination of superheated steam (SHS with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB and oil palm mesocarp fiber (OPMF were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.

  6. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li,

    2012-06-01

    Full Text Available Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the treated substrate. The cellulose conversion to glucose yield reached 77.1 to 83.4% after enzymatic hydrolysis of the solids fraction for 48 h at an enzyme loading of 15 FPU cellulase/g cellulose and 30 IU β-glucosidase/g cellulose. The enzymatic hydrolysis rate was significantly accelerated as the ethanol organosolv pretreatment time increased, reaching the highest enzymatic glucose yield of 83.4% after 48 h at 50 °C. The concentrations of fermentation inhibitors such as HMF (5-hydroxy-2-methyl furfural and furfural were 0.96 g/L and 4.38 g/L in the spent liquor after the ethanol organosolv pretreatment, which were slightly lower than the concentrations quantified during H2SO4-water treatment. Spent liquor was diluted with water, and more than 87.2% of lignin in raw bamboo was recovered as ethanol organosolv lignin through the filtration process.

  7. Enzymatic modification of natural and synthetic polymers using lipases and proteases

    Science.gov (United States)

    Chakraborty, Soma

    Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and

  8. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    Science.gov (United States)

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis.

    Science.gov (United States)

    Gan, Yu-Yan; Zhou, Si-Li; Dai, Xiao; Wu, Han; Xiong, Zi-Yao; Qin, Yuan-Hang; Ma, Jiayu; Yang, Li; Wu, Zai-Kun; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2018-06-15

    Fenton-based processes with four different iron salts in two different dosing modes were used to pretreat rice straw (RS) samples to increase their enzymatic digestibility. The composition analysis shows that the RS sample pretreated by the dosing mode of iron salt adding into H 2 O 2 has a much lower hemicellulose content than that pretreated by the dosing mode of H 2 O 2 adding into iron salt, and the RS sample pretreated by the chloride salt-based Fenton process has a much lower lignin content and a slightly lower hemicellulose content than that pretreated by the sulphate salt-based Fenton process. The higher concentration of reducing sugar observed on the RS sample with lower lignin and hemicellulose contents justifies that the Fenton-based process could enhance the enzymic hydrolysis of RS by removing hemicellulose and lignin and increasing its accessibility to cellulase. FeCl 3 ·6H 2 O adding into H 2 O 2 is the most efficient Fenton-based process for RS pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods

    Directory of Open Access Journals (Sweden)

    Camila Florencio

    2016-09-01

    Full Text Available The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc., glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in “Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis” C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016 [1]. Keywords: Tricoderma reesei, Aspergillus Niger, Enzyme Production, Secretome

  11. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    Science.gov (United States)

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. Copyright © 2016. Published by Elsevier Ltd.

  12. Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods

    Directory of Open Access Journals (Sweden)

    Sumeng Wang

    2016-01-01

    Full Text Available The present study is about the use of peanut hull for isoprene production. In this study, two pretreatment methods, hydrogen peroxide-acetic acid (HPAC and popping, were employed prior to enzymatic hydrolysis, which could destroy the lignocellulosic structure and accordingly improve the efficiency of enzymatic hydrolysis. It is proven that the isoprene production on enzymatic hydrolysate with HPAC pretreatment is about 1.9-fold higher than that of popping pretreatment. Moreover, through High Performance Liquid Chromatography (HPLC analysis, the amount and category of inhibitors such as formic acid, acetic acid, and HMF were assayed and were varied in different enzymatic hydrolysates, which may be the reason leading to a decrease in isoprene production during fermentation. To further increase the isoprene yield, the enzymatic hydrolysate of HPAC was detoxified by activated carbon. As a result, using the detoxified enzymatic hydrolysate as the carbon source, the engineered strain YJM21 could accumulate 297.5 mg/L isoprene, which accounted for about 90% of isoprene production by YJM21 fermented on pure glucose (338.6 mg/L. This work is thought to be the first attempt on isoprene production by E. coli using peanut hull as the feedstock. More importantly, it also shows the prospect of peanut hull to be considered as an alternative feedstock for bio-based chemicals or biofuels production due to its easy access and high polysaccharide content.

  13. Hydrolysis of maize starch using amylolytic enzymes extracted from ...

    African Journals Online (AJOL)

    Amylases, a-amylase (EC 3.2.1.1, α-1, 4-glucan-4-glucanohydrolase) and glucoamylase (EC 3.2.1.3, α-1, 4; α-1, 6-glucan glucohydrolase; amyloglucosidase), extracted and partially purified from sorghum malt were used to hydrolyze maize starch. The process and products of the enzymatic hydrolysis were also compared ...

  14. Biosynthesis of the enzymes of the cellulase system by T. Reesei QM 9414 in the presence of sophorose

    Science.gov (United States)

    Gritzali, M.

    1982-12-01

    As conventional, nonrenewable energy sources are rapidly depleted and it was necessary to search for alternative sources of energy. It was increasingly apparent that biomass and waste are alternatives well worth exploring. The sources of biomass and wastes that considered for conversion to useful products are quite diverse, but the most abundant constituent of almost every type is cellulose. Cellulose is cleanly converted to soluble fermentable sugars enzymatically, and cellulose enzymes were isolated from a number of microbial sources. It is generally agreed that the most effective system of enzymes for the conversion of cellulose to glucose is produced by species of the imperfect fungus Trichoderma. The mutant organism Trichoderma reesei QM 9414 is among the best producers of high levels of enzymes; these are extracellular and have carbonhydrate covalently bound to the peptide. Trichoderma produces three types of enzymes which, in a sequential and cooperative manner, convert cellulose to soluble oligosaccharides and glucose.

  15. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    OpenAIRE

    Hamzeh Hoseinpour; Keikhosro Karimi; Hamid Zilouei; Mohammad J. Taherzadeh

    2010-01-01

    Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v) acid concentration and 5-15% (w/v) solids concentration for 0-40 minutes. Under the ...

  16. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    Science.gov (United States)

    2011-01-01

    Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX) and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy. PMID:21702938

  17. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Song, Wenlu; Ding, Lingkan; Xie, Binfei; Zhou, Junhu; Cen, Kefa

    2015-04-01

    Microwave-heated alkali pretreatment (MAP) was investigated to improve enzymatic digestibility and H2/CH4 production from water hyacinth. SEM revealed that MAP deconstructed the lignocellulose matrix and swelled the surfaces of water hyacinth. XRD indicated that MAP decreased the crystallinity index from 16.0 to 13.0 because of cellulose amorphisation. FTIR indicated that MAP effectively destroyed the lignin structure and disrupted the crystalline cellulose to reduce crystallinity. The reducing sugar yield of 0.296 g/gTVS was achieved at optimal hydrolysis conditions (microwave temperature = 190°C, time = 10 min, and cellulase dosage = 5 wt%). The sequentially fermentative hydrogen and methane yields from water hyacinth with MAP and enzymatic hydrolysis were increased to 63.9 and 172.5 mL/gTVS, respectively. The energy conversion efficiency (40.0%) in the two-stage hydrogen and methane cogeneration was lower than that (49.5%) in the one-stage methane production (237.4 mL/gTVS) from water hyacinth with MAP and enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Systems Analysis of Lactose Metabolism in Trichoderma reesei Identifies a Lactose Permease That Is Essential for Cellulase Induction

    Science.gov (United States)

    Ivanova, Christa; Bååth, Jenny A.; Seiboth, Bernhard; Kubicek, Christian P.

    2013-01-01

    Trichoderma reesei colonizes predecayed wood in nature and metabolizes cellulose and hemicellulose from the plant biomass. The respective enzymes are industrially produced for application in the biofuel and biorefinery industry. However, these enzymes are also induced in the presence of lactose (1,4-0-ß-d-galactopyranosyl-d-glucose), a waste product from cheese manufacture or whey processing industries. In fact, lactose is the only soluble carbon source that induces these enzymes in T. reesei on an industrial level but the reason for this unique phenomenon is not understood. To answer this question, we used systems analysis of the T. reesei transcriptome during utilization of lactose. We found that the respective CAZome encoded all glycosyl hydrolases necessary for cellulose degradation and particularly for the attack of monocotyledon xyloglucan, from which ß-galactosides could be released that may act as the inducers of T. reesei’s cellulases and hemicellulases. In addition, lactose also induces a high number of putative transporters of the major facilitator superfamily. Deletion of fourteen of them identified one gene that is essential for lactose utilization and lactose uptake, and for cellulase induction by lactose (but not sophorose) in pregrown mycelia of T. reesei. These data shed new light on the mechanism by which T. reesei metabolizes lactose and offers strategies for its improvement. They also illuminate the key role of ß-D-galactosides in habitat specificity of this fungus. PMID:23690947

  19. Effect of enzymatic hydrolysis of starch on pasting, rheological and viscoelastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying.

    Science.gov (United States)

    Kumar, P Arun; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Simha, H V Vikram; Nath, B Surendra

    2016-10-01

    The influence of enzymatic hydrolysis of starch on the pasting properties of barnyard millet was studied using a rheometer. The effects of blending hydrolyzed barnyard millet wort with milk at different ratios (0:1, 1:1, 1:1.5 and 1:2) on flow and viscoelastic behavior were investigated. From the pasting curves, it was evident that enzymatically-hydrolyzed starch did not exhibit typical pasting characteristics expected of normal starch. The Herschel-Bulkley model fitted well to the flow behaviour data, with coefficient of determination (R(2)) ranging from 0.942 to 0.988. All milk-wort blends demonstrated varying degree of shear thinning with flow behavior index (n) ranging from 0.252 to 0.647. Stress-strain data revealed that 1:1 blend of milk to wort had the highest storage modulus (7.09-20.06Pa) and an elastically-dominant behavior (phase angle <45°) over the tested frequency range. The crossover point of G' and G" shifted to higher frequencies with increasing wort content. From the flow and viscoelastic behavior, it was concluded that the 1:1 blend of milk to wort would have least phase separation and better flowability during spray drying. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The intracellular galactoglycome in Trichoderma reesei during growth on lactose

    NARCIS (Netherlands)

    Karaffa, L.; Coulier, L.; Fekete, E.; Overkamp, K.M.; Druzhinina, I.S.; Mikus, M.; Seiboth, B.; Novák, L.; Punt, P.J.; Kubicek, C.P.

    2013-01-01

    Lactose (1,4-0-β-d-galactopyranosyl-d-glucose) is used as a soluble carbon source for the production of cellulases and hemicellulases for - among other purposes - use in biofuel and biorefinery industries. The mechanism how lactose induces cellulase formation in T. reesei is enigmatic, however.

  1. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-12-03

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.

  2. Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic ...

    African Journals Online (AJOL)

    AJL

    2012-06-21

    Jun 21, 2012 ... enhancing enzymatic hydrolysis of corn stover with low cellulase loadings. Zhang Yan1, He Ming-Xiong2,3*, Wu Bo1, ... University, Chengdu 610064, China. 2Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu,. Chengdu 610041, China.

  3. Conversion of rice straw to sugars by dilute-acid hydrolysis

    International Nuclear Information System (INIS)

    Karimi, Keikhosro; Kheradmandinia, Shauker; Taherzadeh, Mohammad J.

    2006-01-01

    Hydrolysis of rice straw by dilute sulfuric acid at high temperature and pressure was investigated in one and two stages. The hydrolyses were carried out in a 10-l reactor, where the hydrolysis retention time (3-10 min), pressure (10-35 bar) and acid concentration (0-1%) were examined. Optimization of first stage hydrolysis is desirable to achieve the highest yield of the sugars from hemicellulose and also as a pretreatment for enzymatic hydrolysis. The results show the ability of first stage hydrolysis to depolymerize xylan to xylose with a maximum yield of 80.8% at hydrolysis pressure of 15 bar, 10 min retention time and 0.5% acid concentration. However, the yield of glucose from glucan was relatively low in first stage hydrolysis at a maximum of 25.8%. The solid residuals were subjected to further dilute-acid hydrolysis in this study. This second-stage hydrolysis without addition of the acid could not increase the yield of glucose from glucan beyond 26.6%. On the other hand, the best results of the hydrolysis were achieved, when 0.5% sulfuric acid was added prior to each stage in two-stage hydrolysis. The best results of the second stage of the hydrolysis were achieved at the hydrolysis pressure and the retention time of 30 bar and 3 min in the second stage hydrolysis, where a total of 78.9% of xylan and 46.6% of glucan were converted to xylose and glucose, respectively in the two stages. Formation of furfural and HMF were functions of the hydrolysis pressure, acid concentration, and retention time, whereas the concentration of acetic acid was almost constant at pressure of higher than 10 bar and a total retention time of 10 min

  4. An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain.

    Science.gov (United States)

    Wilding, Birgit; Veselá, Alicja B; Perry, Justin J B; Black, Gary W; Zhang, Meng; Martínková, Ludmila; Klempier, Norbert

    2015-07-28

    Paclitaxel (taxol) is an antimicrotubule agent widely used in the treatment of cancer. Taxol is prepared in a semisynthetic route by coupling the N-benzoyl-(2R,3S)-3-phenylisoserine sidechain to the baccatin III core structure. Precursors of the taxol sidechain have previously been prepared in chemoenzymatic approaches using acylases, lipases, and reductases, mostly featuring the enantioselective, enzymatic step early in the reaction pathway. Here, nitrile hydrolysing enzymes, namely nitrile hydratases and nitrilases, are investigated for the enzymatic hydrolysis of two different sidechain precursors. Both sidechain precursors, an openchain α-hydroxy-β-amino nitrile and a cyanodihydrooxazole, are suitable for coupling to baccatin III directly after the enzymatic step. An extensive set of nitrilases and nitrile hydratases was screened towards their activity and selectivity in the hydrolysis of two taxol sidechain precursors and their epimers. A number of nitrilases and nitrile hydratases converted both sidechain precursors and their epimers.

  5. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation.

    Science.gov (United States)

    Subhedar, Preeti B; Ray, Pearl; Gogate, Parag R

    2018-01-01

    The present work deals with intensification of delignification and subsequent enzymatic hydrolysis of sustainable biomass such as groundnut shells, coconut coir and pistachio shells using ultrasound assisted approach so as to develop an economical approach for obtaining bioethanol. Process intensification, in the current context, is referred to as any improvements giving enhanced rates possibly with lower energy and chemical as well as enzyme requirement for delignification and hydrolysis respectively. Conventional processing for both delignification and enzymatic hydrolysis has also been investigated for establishing the degree of intensification. The obtained results for delignification of biomass established that for conventional alkaline treatment, the extent of delignification for the case of groundnut shells, coconut coir and pistachio shells were 41.8, 45.9 and 38% which increased to 71.1, 89.5 and 78.9% respectively giving almost 80-100% increase for the ultrasound assisted approach. Under optimized conditions, the conventional approach resulted in reducing sugar yields as 10.2, 12.1 and 8.1g/L for groundnut shells, coconut coir and pistachio shells respectively whereas for the case of ultrasound-assisted enzymatic hydrolysis, the obtained yields were 21.3, 23.9 and 18.4g/L in same order of biomass. The material samples were characterized by several characterization techniques for establishing the morphological changes obtained due to the use of ultrasound which were found to be favorable for enhanced delignification and hydrolysis for the ultrasound assisted approach. Overall, the results of this work establish the process intensification benefits due to the application of ultrasound for different sustainable biomass with mechanistic understanding based on the morphological analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Optimization of aqueous enzymatic extraction of oil from shrimp processing by-products using response surface methodology

    Directory of Open Access Journals (Sweden)

    Chen WENWEI

    2018-06-01

    Full Text Available Abstract The aqueous enzymatic extraction (AEE of oil from shrimp processing by-products was investigated. Four kinds of proteases, including alkaline protease, neutral protease, flavor protease and compound protease, were applied to hydrolysis shrimp processing by-products. The results showed that flavor protease was the best hydrolysis enzyme for shrimp processing by-products to obtain high oil recovery. The influences of four factors, including enzyme amount, liquid/solid ratio, hydrolysis time and hydrolysis temperature, on shrimp oil extraction yield were also studied. The flavor enzyme hydrolysis condition was optimized as following: enzyme amount of 2.0% (w/w, liquid/solid ratio of 9.0ml/g, hydrolysis time of 2.6 h and hydrolysis temperature of 50 °C. Under these optimum hydrolysis conditions, the experimental oil extraction yield was 88.9%.

  7. HIDROLISIS ENZIMATIK MINYAK IKAN UNTUK PRODUKSI ASAM LEMAK OMEGA-3 MENGGUNAKAN LIPASE DARI Aspergillus niger [Enzymatic Hydrolysis of Fish Oil for Production of Omega-3 Fatty Acids Using Lipase Derived from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sapta Raharja*

    2011-06-01

    Full Text Available Fish oil is the source of important fatty-acid, especially polyunsaturated fatty acid (PUFA omega-3, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. Lipase catalysis activity of Aspergillus niger is low when it is used in fish oil hydrolysis. The activity of the lipase can be increased by adding organic solvent such as hexane into the media. This research aimed to determine temperature, pH and amount of water which produce the highest degree of hydrolysis of fish oil in the presence of hexane. Correlation between the highest degree of hydrolysis and the amount of omega-3 fatty acid was also investigated. The variables used in this research were temperatures (25-65 oC, pH (5-9, and water addition (1-5 %v/v. The highest degree of enzymatic hydrolysis of fish oil in the media without hexane was 28.07 % that was reached at 45oC and pH 5. In the presence of hexane, the highest degree of hydrolysis was 75.12 % which was reached at 5% water addition, temperature 45oC, and pH 5. GC-MS analysis showed that omega-3 fatty acid content especially EPA and DHA increased along with increase in the degree of hydrolysis. Concentration of omega-3 fatty acid produced without hexane addition was 18.42 % with EPA amounted to 12,17% and DHA 0,86%. Meanwhile omega-3 fatty acid content in the presence of hexane reached 21.93 % with EPA amounted to 17.75 % and DHA 1.21 %.

  8. Cellulase-poor xylanases produced by Trichoderma reesei RUT C-30 on hemicellulose substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gamerith, G.; Groicher, R. (Lenzing AG (Austria). Dept. of Research and Development); Zeilinger, S.; Herzog, P.; Kubicek, C.P. (Technische Univ., Vienna (Austria). Abt. fuer Mikrobielle Biochemie)

    1992-12-01

    Hemicellulose components from industrial viscose fibre production are characterized by a lower cellulose content than commerical xylan and the pressence of a carboxylic acid fraction originating from the alkaline degradation of carbohydrates during the process. This substrate, after neutralization, can be used by Trichoderma reesei RUT C-30 for the production of cellulase-poor xylanases, useful for the pulp and paper industry. The yields of xylanase ranged up to almost 400 units/ml, with a ratio of carboxymethylcellulase/xylanase of less than 0.015. This crude xylanase enzyme mixture was shown to be superior to that obtained on beech-wood xylan when used for bleaching and, particularly, upgrading of hard-wood chemical pulp by selective removal of the xylan components. Biochemical studies indicate that the low cellulase production by T. reesei grown on these waste hemicelluloses is the result of a combination of at least three factors: (a) The comparatively low content of cellulose in these hemicellulosic wastes, (b) the inhibitory action of the carboxylic acid fraction present in the hemicellulosic wastes on growth and sporulation of T. reesei, and (c) the use of a mycelial inoculum that is unable to initiate the atack on the cellulose components within the carbon source. (orig.).

  9. Dehydrogenase GRD1 Represents a Novel Component of the Cellulase Regulon in Trichoderma reesei (Hypocrea jecorina) ▿ † §

    Science.gov (United States)

    Schuster, André; Kubicek, Christian P.; Schmoll, Monika

    2011-01-01

    Trichoderma reesei (Hypocrea jecorina) is nowadays the most important industrial producer of cellulase and hemicellulase enzymes, which are used for pretreatment of cellulosic biomass for biofuel production. In this study, we introduce a novel component, GRD1 (glucose-ribitol dehydrogenase 1), which shows enzymatic activity on cellobiose and positively influences cellulase gene transcription, expression, and extracellular endo-1,4-β-d-glucanase activity. grd1 is differentially transcribed upon growth on cellulose and the induction of cellulase gene expression by sophorose. The transcription of grd1 is coregulated with that of cel7a (cbh1) under inducing conditions. GRD1 is further involved in carbon source utilization on several carbon sources, such as those involved in lactose and d-galactose catabolism, in several cases in a light-dependent manner. We conclude that GRD1 represents a novel enhancer of cellulase gene expression, which by coregulation with the major cellulase may act via optimization of inducing mechanisms. PMID:21602376

  10. Effect of endogenous and exogenous enzymatic treatment of green vanilla beans on extraction of vanillin and main aromatic compounds.

    Science.gov (United States)

    Pardío, Violeta T; Flores, Argel; López, Karla M; Martínez, David I; Márquez, Ofelia; Waliszewski, Krzysztof N

    2018-06-01

    Endogenous and exogenous enzymatic hydrolysis carried out to obtain vanilla extracts with higher concentrations of vanillin using green vanilla beans. Sequences initiated with freezing of green vanilla beans at - 1 °C for 24 h, followed by endogenous hydrolysis under optimal β-glucosidase activity at 4.2 and 35 °C for 96 h, exogenous hydrolysis with Crystalzyme PML-MX at pH 5.0 and 40 °C for 72 h, and ethanol extraction at 40% (v v -1 ) for 30 days. In the proposed method, 200 g of fresh green vanilla beans with 84% moisture (32 g dry base) were used to obtain a liter of single fold vanilla extract. This method allowed the release of 82.57% of the theoretically available vanillin from its precursor glucovanillin with 5.78 g 100 g -1 green vanilla beans (dry base). Vanillic acid, p -hydroxybenzaldehyde and vanillyl alcohol were also released and found in commercial and enzymatic extracts. Glucovanillin was detected in commercial and traditional extracts but was absent in enzymatic extracts, indicating incomplete hydrolysis during the curing process. An in vitro assay was conducted to determine if the presence of peroxidase during hydrolysis might affect overall vanillin concentration. Results showed that POD can use vanillin as a substrate under conditions similar to those in which hydrolysis was conducted (pH 5.0 and 50 °C), possibly explaining why vanillin concentration was not complete at the end of the process.

  11. Determination of the influence of the pH of hydrolysis on enzyme selectivity of Bacillus licheniformis protease towards whey protein isolate

    NARCIS (Netherlands)

    Butre, C.I.; Sforza, S.; Wierenga, P.A.; Gruppen, H.

    2015-01-01

    Enzymatic protein hydrolysis is typically described by the degree of hydrolysis and by the enzyme specificity. While the specificity describes which cleavage sites can potentially be cleaved, it does not describe which are preferred. To identify the relative rate at which each individual cleavage

  12. Purification and Characterization of β-1,3-Glucanase from the Antagonistic Fungus Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    SRI WAHYUNI BUDIARTI

    2009-09-01

    Full Text Available Trichoderma enzymes that inhibit fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal root rot pathogen Ganoderma philippii. This experiment was aimed to purify and characterize the β-1,3-glucanase of T. reesei. Extracellular β-1,3-glucanase was produced by growing mycoparasite T. reesei isolate T13 in colloidal chitin and sucrose as carbon sources. The enzyme was then purified to its homogeneity by precipitation with ammonium sulfate, followed by gel filtration chromatography and chromatofocusing. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE 12% was used to confirm the purity of enzyme at each stage of preparation and to characterize purified protein. The results showed that T. reesei produced at least three extracellular β-1,3-glucanases. Estimation of molecular weight based on SDS-PAGE 12% have three isoform of β-1,3-glucanase were 90 kDa for β-1,3-glucanase-I, 75 kDa for β-1,3-glucanase-II, and 64 kDa for β-1,3-glucanase-III. Their optimum pH and temperature were 5 and 50 oC, respectively.

  13. Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification

    Science.gov (United States)

    Umesh P. Agarwal; J.Y. Zhu; Sally A. Ralph

    2013-01-01

    Hydrolysis experiments with commercial cellulases have been performed to understand the effects of cell wall crystallinity and lignin on the process. In the focus of the paper are loblolly pine wood samples, which were systematically delignified and partly ball-milled, and, for comparison, Whatman CC31 cellulose samples with different crystallinities. In pure cellulose...

  14. A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

    Science.gov (United States)

    Wang, Mingyu; Zhao, Qiushuang; Yang, Jinghua; Jiang, Baojie; Wang, Fangzhong; Liu, Kuimei; Fang, Xu

    2013-01-01

    The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei

  15. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  16. Optimization of the enzyme system for hydrolysis of pretreated lignocellulose substrates; Optimering av enzymsystemet foer hydrolys av foerbehandlade lignocellulosa substrat

    Energy Technology Data Exchange (ETDEWEB)

    Tjerneld, Folke [Lund univ., (Sweden). Dept. of Biochemistry

    2000-06-01

    This project aims to clarify the reasons for the slow and incomplete enzymatic hydrolysis of certain lignocellulose substrates, particularly softwood e.g. spruce. Based on this knowledge we will optimize the enzyme system so that the yield of fermentable sugars is increased as well as the rate of hydrolysis. We will also study methods for recycling of the enzymes in the process by adsorption on fresh substrate. Progress in these areas will lead to improved process economy in an ethanol process. We collaborate with Chemical Engineering on hydrolysis of pretreated lignocellulose substrates and with Analytical Chemistry and Applied Microbiology on analysis of potential inhibitors. Within this main research direction the work at Biochemistry during this project period (since 970701) has been focused on the following areas: (1) Studies of the role of substrate properties in the enzymatic hydrolysis to clarify the reasons for the decrease in the rate of hydrolysis; (2) enzyme adsorption on lignin; (3) studies of recently identified low molecular weight endo glucanases which may be used for more effective penetration of small pores in pretreated substrates (this part is financed by the Nordic Energy Research Program). Central results during the period: In order to study the role of substrate properties for hydrolysis we have initiated investigations on steam pretreated substrates with several techniques. Measurements of pore sizes have been done with probe molecules of known molecular weights. Results show that probe molecules with diameters larger than 50 Aangstroem can more easily penetrate pretreated willow compared with spruce, which can be a part of the explanation for the better hydrolysability of hardwood substrates compared with softwood. We have started studies with electron microscopy of pretreated substrates at different degrees of enzymatic hydrolysis. With scanning electron microscopy (SEM) we can see significant differences in substrate structure in

  17. Immobilization of phospholipase C for the production of ceramide from sphingomyelin hydrolysis

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2007-01-01

    The immobilization of Clostridium perfringens phospholipase C was studied for the first time and the catalytic properties of the immobilized enzyme were investigated for the hydrolysis of sphingomyelin to produce ceramide. Ceramide is of great commercial potentials in cosmetic and pharmaceutical...... industries such as in hair and skin care products, due to its major role in maintaining the water-retaining properties of the epidermis. The feasibility of enzymatic production of ceramide through hydrolysis of sphingomyelin has previously been proven. In order to improve the reusability of the enzyme...

  18. A ?-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production

    OpenAIRE

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-01-01

    Background The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low ?-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial ...

  19. Production of resistant starch by enzymatic debranching in legume flours.

    Science.gov (United States)

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    Directory of Open Access Journals (Sweden)

    Qing Qing

    2011-06-01

    Full Text Available Abstract Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy.

  1. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  2. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    Science.gov (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Optimization of enzymatic hydrolysis for ethanol production by simultaneous saccharification and fermentation of wastepaper.

    Science.gov (United States)

    Sangkharak, Kanokphorn

    2011-11-01

    The present study investigated the development of high sugar production by optimization of an enzymatic hydrolysis process using both conventional and statistical methods, as well as the production of ethanol by the selected wastepaper source. Among four sources of pretreated wastepaper including office paper, newspaper, handbills and cardboard, office paper gave the highest values of cellulose (87.12%) and holocelluloses (89.07%). The effects of the amount of wastepaper, the pretreatment method and the type of enzyme on reducing sugar production from office paper were studied using conventional methods. The highest reducing sugar production (1851.28 µg L(-1); 37.03% conversion of glucose) was obtained from the optimal condition containing 40 mg of office paper, pretreated with stream explosion and hydrolysed with the combination of cellulase from Aspergillus niger and Trichoderma viride at the fixed loading rate of 20 FPU g(-1) sample. The effects of interaction of wastepaper amount and enzyme concentration as well as incubation time were studied by a statistical method using central composite design. The optimal medium composition consisted of 43.97 µg L(-1), 28.14 FPU g(-1) sample and 53.73 h of wastepaper, enzyme concentration and incubation time, respectively, and gave the highest amount of sugar production (2184.22 µg L(-1)) and percentage conversion of glucose (43.68%). The ethanol production from pretreated office paper using Saccharomyces cerevisiae in a simultaneous saccharification and fermentation process was 21.02 g L(-1) after 36 h of cultivation, corresponding to an ethanol volumetric production rate of 0.58 g ethanol L(-1) h(-1).

  4. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  5. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  6. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    Science.gov (United States)

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  8. Enzymatic hydrolysis of wood. III. Pretreatment of woods with acidic methanol-water mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K; Usami, K

    1980-01-01

    Wood meal of Pinus densiflora (I) and Fagus crenata (II) was heated in aqueous methanol containing 0.1-0.6% HCl for 15-90 minutes at 120-170 degrees Centigrade to remove lignin and hydrolyse hemicelluloses. About 75% of the lignin could be removed from (I) and 90% from (II) under appropriate conditions. The cellulosic residues were hydrolysed with Trichoderma viride; it was necessary to remove more than 70% of the lignin from (I) and 80% from (II) for complete hydrolysis of the cellulose. Lignin was precipitated from the hydrolysis liquor by distilling off the methanol. The effects of composition of the MeOH-H/sub 2/O mixture, temperature, reaction time and HC1 concentration were studied.

  9. Vitamin B2 content determination in liver paste by using acid and acid-enzyme hydrolysis

    Directory of Open Access Journals (Sweden)

    Basić Zorica

    2007-01-01

    Full Text Available Background/Aim. Vitamin B2 is available in foodstuff in the form of coenzyme and in free form. For its content determination a few procedures should be performed (deliberation from a complex, extraction of free and deliberated form and detection, identification and quantification. There is a particular problem in determination of vitamin B2 in the meat products. For a determination of total vitamin B2 content in liver paste two preparation procedures are compared: acid and acid-enzymatic hydrolysis. The aim of this study thus, was to compare the effectiveness of these two different procedures for vitamin B2 content determination in liver paste. Methods. High pressure liquid chromatography (HPLC method with fluorescence detector, as specific and adequately sensitive for the foodstuff of a complex composition with a natural vitamin content, was used for determination of vitamin B2 in liver paste. Acid hydrolysis was performed with the application 0.1 M hydrochloric acid in a pressure cooker, and enzymatic hydrolysis was performed with the 10% takadiastase on 45 ºC within four hours. Ten samples of liver paste from the supply of the Serbian Army were examined. Separation was performed on the analytical column Nucleosil 50−5 C18 with mobile phase 450 ml CH3OH + 20 ml 5 mM CH3COONH4, and detection on the fluorescent detector with the variable wave length. Both methods were validated: examining a detection limit, quantification limit, specificity (because of a possible B2 vitamin interference with reagents, linearity of a peak area and standard concentration of B2 vitamin ratio in the range from 0.05 μg/ml to 2 μg/ml, precision for the 0.05 μg/ml concentration and recovery. Results. All the previously examined parameters validated both methods as specific, precise and reproductive, with a high recovery (98.5% for acid and 98.2% for acid - enzymatic hydrolysis, as well as linearity in a range that significantly superseded the expected content in

  10. Enzymatic extractability of soybean meal proteins and carbohydrates : heat and humidity effects

    NARCIS (Netherlands)

    Fischer, M.; Kofod, L.V.; Schols, H.A.; Piersma, S.R.; Gruppen, H.; Voragen, A.G.J.

    2001-01-01

    To study the incomplete enzymatic extractability of proteins and carbohydrates of thermally treated soybean meals, one unheated and three heat-treated soybean meals were produced. To obtain truly enzyme-resistant material, the meals were extracted by a repeated hydrolysis procedure using excessive

  11. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    Science.gov (United States)

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  12. Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification

    Directory of Open Access Journals (Sweden)

    Sheng Chen

    2017-01-01

    Full Text Available Ionic liquids (ILs as designer solvents have been applied in biomass pretreatment to increase cellulose accessibility and therefore improve the enzymatic hydrolysis. We investigated the characterization of the micromorphology and the topochemistry of poplar wood during 1-ethyl-3-methylimidazolium acetate pretreatment with mild conditions (90 °C for 20 and 40 min by multiple microscopic techniques (FE-SEM, CLSM, and CRM. Chemical composition analysis, XRD, cellulase adsorption isotherm, and enzymatic hydrolysis were also performed to monitor the variation of substrate properties. Our results indicated that the biomass conversion was greatly enhanced (from 20.57% to 73.64% due to the cell wall deconstruction and lignin dissolution (29.83% lignin was removed after incubation for 40 min, rather than the decrystallization or crystallinity transformation of substrates. The mild ILs pretreatment, with less energy input, can not only enhance enzymatic hydrolysis, but also provide a potential approach as the first step in improving the sequential pretreatment effectiveness in integrated methods. This study provides new insights on understanding the ILs pretreatment with low temperature and short duration, which is critical for developing individual and/or combined pretreatment technologies with reduced energy consumption.

  13. A mathematical model for the effects of volume fraction and fiber aspect ratio of biomass mixture during enzymatic hydrolysis

    Science.gov (United States)

    Jamil, Norazaliza Mohd; Wang, Qi

    2017-09-01

    Renewable energy or biofuel from lignocellulosic biomass is an alternative way to replace the depleting fossil fuels. The production cost can be reduced by increasing the concentration of biomass particles. However, lignocellulosic biomass is a suspension of natural fibres, and processing at high solid concentration is a challenging task. Thus, understanding the factors that affect the rheology of biomass suspension is crucial in order to maximize the production at a minimum cost. Our aim was to develop a mathematical model for enzymatic hydrolysis of cellulose by combining three scales: the macroscopic flow field, the mesoscopic particle orientation, and the microscopic reactive kinetics. The governing equations for the flow field, particle stress, kinetic equations, and particle orientation were coupled and were simultaneously solved using a finite element method based software, COMSOL. One of the main results was the changes in rheology of biomass suspension were not only due to the decrease in volume fraction of particles, but also due the types of fibres. The results from the simulation model agreed qualitatively with the experimental findings. This approach has enables us to obtain better predictive capabilities, hence increasing our understanding on the behaviour of biomass suspension.

  14. Enzymatic Degradation of Poly(ethylene 2,5-furanoate Powders and Amorphous Films

    Directory of Open Access Journals (Sweden)

    Simone Weinberger

    2017-10-01

    Full Text Available Poly(ethylene 2,5-furanoate (PEF is arousing great interest as a biobased alternative to plastics like poly(ethylene terephthalate (PET due to its wide range of potential applications, such as food and beverage packaging, clothing, and in the car industry. In the present study, the hydrolysis of PEF powders of different molecular masses (Mn = 55, Mw = 104 kg/mol and Mn = 18, Mw = 29 kg/mol and various particle sizes (180 < d and 180 < d < 425 µm using cutinase 1 from Thermobifida cellulosilytica (Thc_cut1 was studied. Thereby, the effects of molecular mass, particle size and crystallinity on enzymatic hydrolysis were investigated. The results show that particles with lower molecular mass are hydrolyzed faster than those with higher masses, and that the higher the molecular mass, the lower the influence of the particle size on the hydrolysis. Furthermore, cutinases from Humicola insolens (HiC and Thc_cut1 were compared with regard to their hydrolytic activity on amorphous PEF films (measured as release of 2,5-furandicarboxylic acid (FDCA and weight loss in different reaction media (1 M KPO pH 8, 0.1 M Tris-HCl pH 7 and at different temperatures (50 °C and 65 °C. A 100% hydrolysis of the PEF films was achieved after only 72 h of incubation with a HiC in 1 M KPO pH 8 at 65 °C. Moreover, the hydrolysis reaction was monitored by LC/TOF-MS analysis of the released reaction products and by Scanning Electron Microscopy (SEM examination of the polymer surfaces. Enzymatic hydrolysis of PEF with Thc_cut1 and HiC has potential for use in surface functionalization and recycling purposes.

  15. pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses

    Science.gov (United States)

    Hongming Lou; J.Y. Zhu; Tian Qing Lan; Huranran Lai; Xueqing Qiu

    2013-01-01

    We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5–6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL...

  16. FATTY ACID ETHYL ESTERS FROM MICROALGAE OF Scenedesmus ecornis BY ENZYMATIC AND ACID CATALYSIS

    Directory of Open Access Journals (Sweden)

    Gabryelle F. de Almeida

    Full Text Available Microalgae are an indispensable food source for the various growth stages of mollusks, crustaceans, and several fish species. Using a microalgae biomass present in the Amazonian ecosystem (Macapá-AP, we study extraction methods for fatty acid such as solvent extraction (magnetic stirring and/or Soxhlet and/or hydrolysis (acid and/or enzymatic catalysis followed by esterification and/or direct transesterification. Extraction of crude triacylglycerides by mechanical stirring at room temperature was more efficient than continuous reflux (Soxhlet. Subsequently, the lipid extract was subject to transesterification with ethanol and CAL-B as a biocatalyst, leading to production of fatty acid ethyl esters (FAEE. Additionally, FAEEs were prepared by hydrolysis of crude triacylglycerides followed by acid-mediated esterification or enzymatic catalysis (lipase. In this case, the type of catalyst did not significantly influence FAEE yields. In the lipid extract, we identified palmitic, linoleic, oleic, and stearic acids with palmitic acid being the most abundant. Our results suggest that enzymatic catalysis is a viable method for the extraction of lipids in the microalga, Scenedesmus ecornis.

  17. Lactose hydrolysis and milk powder production: technological aspects

    Directory of Open Access Journals (Sweden)

    Jansen Kelis Ferreira Torres

    2017-06-01

    Full Text Available The food industry has the challenge and the opportunity to develop new products with reduced or low lactose content in order to meet the needs of a growing mass of people with lactose intolerance. The manufacture of spray dried products with hydrolyzed lactose is extremely challenging. These products are highly hygroscopic, which influence the productivity and conservation of the powders, not to mention the undesirable and inevitable technological problem of constant clogging of drying chambers. The aim of this study was to evaluate the effect of different levels (0%, 25%, 50%, 75% and > 99% of enzymatic lactose hydrolysis on the production and storage of whole milk powder. The samples were processed in a pilot plant and characterized in relation to their composition analysis; to their degree of hydrolysis of lactose; and to their sorption isotherms. The results indicated the hydrolysis of lactose may affect the milk powder production due to a higher extent of powder adhesion within the spray dryer chambers and due to a higher tendency to absorb water during storage.

  18. Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste.

    Science.gov (United States)

    Puri, Munish; Kaur, Aneet; Schwarz, Wolfgang H; Singh, Satbir; Kennedy, J F

    2011-01-01

    Kinnow peel, a waste rich in glycosylated phenolic substances, is the principal by-product of the citrus fruit processing industry and its disposal is becoming a major problem. This peel is rich in naringin and may be used for rhamnose production by utilizing α-L-rhamnosidase (EC 3.2.1.40), an enzyme that catalyzes the cleavage of terminal rhamnosyl groups from naringin to yield prunin and rhamnose. In this work, infrared (IR) spectroscopy confirmed molecular characteristics of naringin extracted from kinnow peel waste. Further, recombinant α-L-rhamnosidase purified from Escherichia coli cells using immobilized metal-chelate affinity chromatography (IMAC) was used for naringin hydrolysis. The purified enzyme was inhibited by Hg2+ (1 mM), 4-hydroxymercuribenzoate (0.1 mM) and cyanamide (0.1 mM). The purified enzyme established hydrolysis of naringin extracted from kinnow peel and thus endorses its industrial applicability for producing rhamnose. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    Science.gov (United States)

    Aparicio, C.; Resa, P.; Sierra, C.; Elvira, L.

    2012-12-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  20. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    International Nuclear Information System (INIS)

    Aparicio, C; Resa, P; Sierra, C; Elvira, L

    2012-01-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  1. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    Science.gov (United States)

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  2. Hydrolysis of biomass material

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  3. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz

    2012-03-01

    The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  5. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    Science.gov (United States)

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  6. The Effect of Sugarcane Bagassès Size on the Properties of Pretreatment and Enzymatic Hydrolysis

    Science.gov (United States)

    Xu, Jun; Zhou, Guoqiang; Li, Jun

    2017-06-01

    The influence of milled bagasse particle size on their reducing sugar and lignin content during dilute acid hydrolysis followed by enzymolysis was investigated. The biomass crystal structures of hydrolyzed residues and enzymolyzed substrates were studied with X-ray diffractometry (XRD). The results showed that the conversion ratio of reducing sugar declined with decreasing milled bagasse particle size. The conversion ratio of reducing sugar after acid hydrolysis decreased from 31.3% to 28.9%. The smaller of the milled bagasse particle size was, the higher of the klason lignin content of hydrolyzed residuals was, which resulted in a decline in conversion ratio of reducing sugar during enzymolysis. In this study, the optimal size of milled bagasse particles was 10 to 20 meshes. The total reducing sugar conversion ratio was 61.5%, consisting of 31.3% in hydrolysis and 30.2% in enzymolysis. After hydrolysis, the specific surface area and pore size increased, and the fiber length was shortened. The inner microfiber bundles were exposed, which improved the accessibility of cellulase and the efficiency of enzymolysis.

  7. Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO

    DEFF Research Database (Denmark)

    Rodríguez-Zúñiga, Ursula Fabiola; Cannella, David; de Campos Giordano, Roberto

    2015-01-01

    of the cellulose oxidizing enzyme lytic polysaccharide monooxygenase (LPMO). The highest activity of LPMO was observed for the hydrothermally pretreated biomasses, which also contained the highest level of lignin. All hydrolysis were done at high dry matter levels, using a commercial enzyme preparation containing......Sugarcane bagasse, corn stover, and wheat straw are among the most available resources for production of cellulosic ethanol. For these biomasses we study the influence of pre-treatment methods on the chemical composition, as well as on the subsequent reactions of enzymatic hydrolysis and oxidation...

  8. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    Science.gov (United States)

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of gamma-ray irradiation on cellulase secretion of Trichoderma reesei

    International Nuclear Information System (INIS)

    Tamada, M.; Kasai, N.; Kaetsu, I.

    1987-01-01

    Trichoderma reesei was irradiated with gamma rays to investigate the effects of different dosages on cellulase production. Doses above 0.7 kGy induced cell lysis. Cell growth began to be obstructed at 2.0 kGy. As a result, the cells irradiated at 2.0 kGy secreted 1.8 times as much cellulase as the untreated cells

  10. Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A.

    Science.gov (United States)

    Zhao, Jie; Zeng, Shengquan; Xia, Ying; Xia, Liming

    2018-04-01

    The laccase gene from Pycnoporus sanguineus was cloned and inserted between the strong Pcbh1 promoter and the Tcbh1 terminator from Trichoderma reesei to form the recombinant plasmid pCH-lac. Using Agrobacterium-mediated technique, the pCH-lac was integrated into the chromosomes of T. reesei. Twenty positive transformants were obtained by employing hygromycin B as a selective agent. PCR was used to confirm that the laccase gene was integrated into the chromosomal DNA of T. reesei. Laccase production by recombinant transformants was performed in shaking flasks, and the activity of laccase reached 8.8 IU/mL after 96-h fermentation under a batch process, and 17.7 IU/mL after 144-h fermentation using a fed-batch process. SDS-PAGE analysis of the fermentation broth showed that the molecular mass of the protein was about 68 kDa, almost the same as that of the laccase produced by P. sanguineus, which indicated that laccase was successfully expressed in T. reesei and secreted out of the cells. The laccase produced by the recombinant T. reesei showed good thermal stability, and could degrade the toxic phenolic material bisphenol A efficiently, after 1-h reaction with 0.06 IU/mL laccase and 0.5 mmol/L ABTS as the mediator at 60 °C and pH 4.5, the degradation rate reached 95%, which demonstrated that it had great potential value in treating the household garbage and wastewater containing the bisphenol A. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  12. Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling.

    Science.gov (United States)

    Huang, Houhou; Han, Fei; Guan, Shanshan; Qian, Mengdan; Wan, Yongfeng; Shan, Yaming; Zhang, Hao; Wang, Song

    2018-03-24

    Glycoside hydrolase cellulase family 6 from Trichoderma reesei (TrCel6A) is an important cellobiohydrolase to hydrolyze cellooligosaccharide into cellobiose. The knowledge of enzymatic mechanisms is critical for improving the conversion efficiency of cellulose into ethanol or other chemicals. However, the process of product expulsion, a key component of enzymatic depolymerization, from TrCel6A has not yet been described in detail. Here, conventional molecular dynamics and steered molecular dynamics (SMD) were applied to study product expulsion from TrCel6A. Tyr103 may be a crucial residue in product expulsion given that it exhibits two different posthydrolytic conformations. In one conformation, Tyr103 rotates to open the -3 subsite. However, Tyr103 does not rotate in the other conformation. Three different routes for product expulsion were proposed on the basis of the two different conformations. The total energy barriers of the three routes were calculated through SMD simulations. The total energy barrier of product expulsion through Route 1, in which Tyr103 does not rotate, was 22.2 kcal·mol -1 . The total energy barriers of product expulsion through Routes 2 and 3, in which Tyr103 rotates to open the -3 subsite, were 10.3 and 14.4 kcal·mol -1 , respectively. Therefore, Routes 2 and 3 have lower energy barriers than Route 1, and Route 2 is the thermodynamically optimal route for product expulsion. Consequently, the rotation of Tyr103 may be crucial for product release from TrCel6A. Results of this work have potential applications in cellulase engineering.

  13. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose

    DEFF Research Database (Denmark)

    Rosgaard, L.; Pedersen, S.; Meyer, Anne Boye Strunge

    2006-01-01

    This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile...... Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a P-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic...... treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased...

  14. Lactose hydrolysis by free and fibre-entrapped β-galactosidase from Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Zhennai Yang

    1993-09-01

    Full Text Available To study lactose hydrolysis by β-galactosidase, this enzyme was produced from Streptococcus thermophilus strain 11F and partially purified by acetone and ammonium sulphate fractionation, and ion exchange chromatography on a Q Sepharose FF column. Lactose hydrolysis by the enzyme was affected by lactose concentrations, sugars and milk proteins. The maximum extent of lactose hydrolysis in buffer was obtained with a 15% lactose concentration. Addition of 2% of lactose, glucose, galactose or sucrose in milk inhibited the enzymatic hydrolysis. The enzyme was activated by bovine serum albumin and a combination of αs-casein and β-casein. Of the casein fractions, the principal fraction, αs-casein, was less effective than β-casein and κ-casein. The fibre entrapped enzyme had a temperature optimum of 57°C, and a pH optimum from 7.5 to at least 9.0 with O-nitrophenyl-β-D-galactopyranoside as substrate. By recycling with whey and skim milk through a jacketed glass column (1.6 cm x 30 cm loaded with fibre-entrapped enzyme at 55°C, a lactose hydrolysis of 49.5% and 47.9% was achieved in 11 h and 7 h respectively.

  15. Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII*

    Science.gov (United States)

    Shibafuji, Yusuke; Nakamura, Akihiko; Uchihashi, Takayuki; Sugimoto, Naohisa; Fukuda, Shingo; Watanabe, Hiroki; Samejima, Masahiro; Ando, Toshio; Noji, Hiroyuki; Koivula, Anu; Igarashi, Kiyohiko; Iino, Ryota

    2014-01-01

    Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes. PMID:24692563

  16. Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

    DEFF Research Database (Denmark)

    Leidy, Chad; Mouritsen, Ole G.; Jørgensen, Kent

    2004-01-01

    The sensitivity of phospholipase A2 (PLA2) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA2 is shown to have higher activity...... toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl- sn-glycero-3....... This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk...

  17. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei.

    Science.gov (United States)

    Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun

    2017-12-20

    Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.

  18. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Tisch Doris

    2011-12-01

    Full Text Available Abstract Background In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. Results As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency. Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. Conclusions The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light

  19. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    Directory of Open Access Journals (Sweden)

    Michele Dutra Rosolen

    2015-01-01

    Full Text Available This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C and Kluyveromyces lactis (at temperatures of 10 and 37°C β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C, at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.

  20. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.