WorldWideScience

Sample records for reesei cellobiohydrolases cel6a

  1. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution.

    Science.gov (United States)

    Varrot, A; Hastrup, S; Schülein, M; Davies, G J

    1999-01-15

    The three-dimensional structure of the catalytic core of the family 6 cellobiohydrolase II, Cel6A (CBH II), from Humicola insolens has been determined by X-ray crystallography at a resolution of 1.92 A. The structure was solved by molecular replacement using the homologous Trichoderma reesei CBH II as a search model. The H. insolens enzyme displays a high degree of structural similarity with its T. reesei equivalent. The structure features both O- (alpha-linked mannose) and N-linked glycosylation and a hexa-co-ordinate Mg2+ ion. The active-site residues are located within the enclosed tunnel that is typical for cellobiohydrolase enzymes and which may permit a processive hydrolysis of the cellulose substrate. The close structural similarity between the two enzymes implies that kinetics and chain-end specificity experiments performed on the H. insolens enzyme are likely to be applicable to the homologous T. reesei enzyme. These cast doubt on the description of cellobiohydrolases as exo-enzymes since they demonstrated that Cel6A (CBH II) shows no requirement for non-reducing chain-ends, as had been presumed. There is no crystallographic evidence in the present structure to support a mechanism involving loop opening, yet preliminary modelling experiments suggest that the active-site tunnel of Cel6A (CBH II) is too narrow to permit entry of a fluorescenyl-derivatized substrate, known to be a viable substrate for this enzyme.

  2. Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling.

    Science.gov (United States)

    Huang, Houhou; Han, Fei; Guan, Shanshan; Qian, Mengdan; Wan, Yongfeng; Shan, Yaming; Zhang, Hao; Wang, Song

    2018-03-24

    Glycoside hydrolase cellulase family 6 from Trichoderma reesei (TrCel6A) is an important cellobiohydrolase to hydrolyze cellooligosaccharide into cellobiose. The knowledge of enzymatic mechanisms is critical for improving the conversion efficiency of cellulose into ethanol or other chemicals. However, the process of product expulsion, a key component of enzymatic depolymerization, from TrCel6A has not yet been described in detail. Here, conventional molecular dynamics and steered molecular dynamics (SMD) were applied to study product expulsion from TrCel6A. Tyr103 may be a crucial residue in product expulsion given that it exhibits two different posthydrolytic conformations. In one conformation, Tyr103 rotates to open the -3 subsite. However, Tyr103 does not rotate in the other conformation. Three different routes for product expulsion were proposed on the basis of the two different conformations. The total energy barriers of the three routes were calculated through SMD simulations. The total energy barrier of product expulsion through Route 1, in which Tyr103 does not rotate, was 22.2 kcal·mol -1 . The total energy barriers of product expulsion through Routes 2 and 3, in which Tyr103 rotates to open the -3 subsite, were 10.3 and 14.4 kcal·mol -1 , respectively. Therefore, Routes 2 and 3 have lower energy barriers than Route 1, and Route 2 is the thermodynamically optimal route for product expulsion. Consequently, the rotation of Tyr103 may be crucial for product release from TrCel6A. Results of this work have potential applications in cellulase engineering.

  3. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose*

    Science.gov (United States)

    Nakamura, Akihiko; Tasaki, Tomoyuki; Ishiwata, Daiki; Yamamoto, Mayuko; Okuni, Yasuko; Visootsat, Akasit; Maximilien, Morice; Noji, Hiroyuki; Uchiyama, Taku; Samejima, Masahiro; Igarashi, Kiyohiko; Iino, Ryota

    2016-01-01

    Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα. The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30–40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose. PMID:27609516

  4. Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina

    DEFF Research Database (Denmark)

    Badino, Silke Flindt; Kari, Jeppe; Christensen, Stefan Jarl

    2017-01-01

    Cellulose degrading fungi such as Hypocrea jecorina secrete several cellulases including the two cellobiohydrolases (CBHs) Cel6A and Cel7A. The two CBHs differ in catalytic mechanism, attack different ends, belong to different families, but are both processive multi-domain enzymes that are essent...

  5. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A*

    OpenAIRE

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-01-01

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and ...

  6. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    Science.gov (United States)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-01

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor's mechanistic action has yet to be revealed. Here, we develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A's molecular motility mechanism.

  7. Xylan oligosaccharides and cellobiohydrolase I (TrCel7A interaction and effect on activity

    Directory of Open Access Journals (Sweden)

    Baumann Martin J

    2011-10-01

    Full Text Available Abstract Background The well-studied cellulase mixture secreted by Trichoderma reesei (anamorph to Hypocrea jecorina contains two cellobiohydolases (CBHs, cellobiohydrolase I (TrCel7A and cellobiohydrolase II (TrCeI6A, that are core enzymes for the solubilisation of cellulose. This has attracted significant research interest because of the role of the CBHs in the conversion of biomass to fermentable sugars. However, the CHBs are notoriously slow and susceptible to inhibition, which presents a challenge for the commercial utilisation of biomass. The xylans and xylan fragments that are also present in the biomass have been suggested repeatedly as one cause of the reduced activity of CHBs. Yet, the extent and mechanisms of this inhibition remain poorly elucidated. Therefore, we studied xylan oligosaccharides (XOSs of variable lengths with respect to their binding and inhibition of both TrCel7A and an enzyme variant without the cellulose-binding domain (CBM. Results We studied the binding of XOSs to TrCel7A by isothermal titration calorimetry. We found that XOSs bind to TrCel7A and that the affinity increases commensurate with XOS length. The CBM, on the other hand, did not affect the affinity significantly, which suggests that XOSs may bind to the active site. Activity assays of TrCel7A clearly demonstrated the negative effect of the presence of XOSs on the turnover number. Conclusions On the basis of these binding data and a comparison of XOS inhibition of the activity of the two enzyme variants towards, respectively, soluble and insoluble substrates, we propose a competitive mechanism for XOS inhibition of TrCel7A with phosphoric swollen cellulose as a substrate.

  8. Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII*

    Science.gov (United States)

    Shibafuji, Yusuke; Nakamura, Akihiko; Uchihashi, Takayuki; Sugimoto, Naohisa; Fukuda, Shingo; Watanabe, Hiroki; Samejima, Masahiro; Ando, Toshio; Noji, Hiroyuki; Koivula, Anu; Igarashi, Kiyohiko; Iino, Ryota

    2014-01-01

    Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes. PMID:24692563

  9. Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Kont, Riin; Kari, Jeppe; Borch, Kim

    2016-01-01

    systems. TrCel7A consists of catalytic domain (CD) and a smaller carbohydrate binding module (CBM) connected through the glycosylated linker peptide. A tunnel shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two...... to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient......Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme...

  10. Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum.

    Science.gov (United States)

    Borisova, Anna S; Eneyskaya, Elena V; Jana, Suvamay; Badino, Silke F; Kari, Jeppe; Amore, Antonella; Karlsson, Magnus; Hansson, Henrik; Sandgren, Mats; Himmel, Michael E; Westh, Peter; Payne, Christina M; Kulminskaya, Anna A; Ståhlberg, Jerry

    2018-01-01

    The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) Tre Cel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride ( Tat Cel7A) and Trichoderma harzianum ( Tha Cel7A) show high sequence identity with Tre Cel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. The Tat Cel7A, Tha Cel7A, and Tre Cel7A enzymes were characterized for comparison of function. The catalytic domain of Tat Cel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with Tat Cel7A than either Tha Cel7A or Tre Cel7A. In synergistic saccharification of pretreated corn stover, both Tat Cel7A and Tha Cel7A were more efficient than Tre Cel7A, although Tat Cel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from Tat Cel7A with the thermostability features of Tre Cel7A. Furthermore

  11. Intracellular β-Glucosidases CEL1a and CEL1b Are Essential for Cellulase Induction on Lactose in Trichoderma reesei

    Science.gov (United States)

    Xu, Jintao; Zhao, Guolei; Kou, Yanbo; Zhang, Weixin; Zhou, Qingxin; Chen, Guanjun

    2014-01-01

    Lactose (1,4-O-β-d-galacto-pyranosyl-d-glucose) induces cellulolytic enzymes in Trichoderma reesei and is in fact one of the most important soluble carbon sources used to produce cellulases on an industrial level. The mechanism underlying the induction is, however, not fully understood. In this study, we investigated the cellular functions of the intracellular β-glucosidases CEL1a and CEL1b in the induction of cellulase genes by lactose in T. reesei. We demonstrated that while CEL1a and CEL1b were functionally equivalent in mediating the induction, the simultaneous absence of these intracellular β-glucosidases abolished cbh1 gene expression on lactose. d-Galactose restored the efficient cellulase gene induction in the Δcel1a strain independently of its reductive metabolism, but not in the Δcel1a Δcel1b strain. A further comparison of the transcriptional responses of the Δcel1a Δcel1b strain complemented with wild-type CEL1a or a catalytically inactive CEL1a version and the Δcel1a strain constitutively expressing CEL1a or the Kluyveromyces lactis β-galactosidase LAC4 showed that both the CEL1a protein and its glycoside hydrolytic activity were indispensable for cellulase induction by lactose. We also present evidence that intracellular β-glucosidase-mediated lactose induction is further conveyed to XYR1 to ensure the efficiently induced expression of cellulase genes. PMID:24879125

  12. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    Science.gov (United States)

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2012-10-09

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A)) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  13. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    Science.gov (United States)

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2008-11-11

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  14. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

    Science.gov (United States)

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-12-09

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    Science.gov (United States)

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Implications of cellobiohydrolase glycosylation for use in biomass conversion

    Directory of Open Access Journals (Sweden)

    Decker Stephen R

    2008-05-01

    Full Text Available Abstract The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina, is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline and phosphoric acid swollen (amorphous cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.

  17. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina

    DEFF Research Database (Denmark)

    Badino, Silke Flindt; Christensen, Stefan Jarl; Kari, Jeppe

    2017-01-01

    Synergy between cellulolytic enzymes is essential in both natural and industrial breakdown of biomass. In addition to synergy between endo- and exo-lytic enzymes, a lesser known but equally conspicuous synergy occurs among exo-acting, processive cellobiohydrolases (CBHs) such as Cel7A and Cel6A...... from Hypocrea jecorina. We studied this system using microcrystalline cellulose as substrate and found a degree of synergy between 1.3 and 2.2 depending on the experimental conditions. Synergy between enzyme variants without the carbohydrate binding module (CBM) and its linker was strongly reduced...... compared to the wild types. One plausible interpretation of this is that exo-exo synergy depends on the targeting role of the CBM. Many earlier works have proposed that exo-exo synergy was caused by an auxiliary endo-lytic activity of Cel6A. However, biochemical data from different assays suggested...

  18. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  19. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    Directory of Open Access Journals (Sweden)

    Dennis J. Díaz-Rincón

    2017-01-01

    Full Text Available Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1 were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.

  20. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    Science.gov (United States)

    Díaz-Rincón, Dennis J.; Duque, Ivonne; Osorio, Erika; Rodríguez-López, Alexander; Espejo-Mojica, Angela; Parra-Giraldo, Claudia M.

    2017-01-01

    Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile. PMID:28951785

  1. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose

    DEFF Research Database (Denmark)

    Olsen, Johan P.; Alasepp, Kadri; Kari, Jeppe

    2016-01-01

    The cellobiohydrolase cellulase Cel7A is extensively utilized in industrial treatment of lignocellulosic biomass under conditions of high product concentrations, and better understanding of inhibition mechanisms appears central in attempts to improve the efficiency of this process. We have...... the lines of conventional enzyme kinetic theory. We found that the product cellobiose lowered the maximal rate without affecting the Michaelis constant, and this kinetic pattern could be rationalized by two fundamentally distinct molecular mechanisms. One was simple reversibility, that is, an increasing...

  2. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution.

    Science.gov (United States)

    Goedegebuur, Frits; Dankmeyer, Lydia; Gualfetti, Peter; Karkehabadi, Saeid; Hansson, Henrik; Jana, Suvamay; Huynh, Vicky; Kelemen, Bradley R; Kruithof, Paulien; Larenas, Edmund A; Teunissen, Pauline J M; Ståhlberg, Jerry; Payne, Christina M; Mitchinson, Colin; Sandgren, Mats

    2017-10-20

    Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in T m and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.

    Science.gov (United States)

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-09-01

    The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low β-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial application. Thus, there are ongoing interests in research to develop methods to overcome this insufficiency. Moreover, although β-glucosidases have been demonstrated to influence cellulase production and participate in the regulation of cellulase production, the underlying mechanism remains unclear. The T. reesei recombinant strain TRB1 was constructed from T. reesei RUT-C30 by the T-DNA-based mutagenesis. Compared to RUT-C30, TRB1 displays a significant enhancement of extracellular β-glucosidase (BGL1) activity with 17-fold increase, a moderate increase of both the endoglucanase (EG) activity and the exoglucanase (CBH) activity, a minor improvement of the total filter paper activity, and a faster cellulase induction. This superiority of TRB1 over RUT-C30 is independent on carbon sources and improves the saccharification ability of TRB1 cellulase on pretreated corn stover. Furthermore, TRB1 shows better resistance to carbon catabolite repression than RUT-C30. Secretome characterization of TRB1 shows that the amount of CBH, EG and BGL in the supernatant of T. reesei TRB1 was indeed increased along with the enhanced activities of these three enzymes. Surprisingly, qRT-PCR and gene cloning showed that in TRB1 β-glucosidase cel3D was mutated through the random insertion by AMT and was not expressed. The T. reesei recombinant strain TRB1 constructed in this study is more desirable for industrial application than the parental strain RUT-C30, showing extracellular β-glucosidase hyper

  4. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Wichmann, Jesper

    2017-01-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of ...

  5. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes.

    Science.gov (United States)

    Badino, Silke F; Christensen, Stefan J; Kari, Jeppe; Windahl, Michael S; Hvidt, Søren; Borch, Kim; Westh, Peter

    2017-08-01

    Synergy between cellulolytic enzymes is essential in both natural and industrial breakdown of biomass. In addition to synergy between endo- and exo-lytic enzymes, a lesser known but equally conspicuous synergy occurs among exo-acting, processive cellobiohydrolases (CBHs) such as Cel7A and Cel6A from Hypocrea jecorina. We studied this system using microcrystalline cellulose as substrate and found a degree of synergy between 1.3 and 2.2 depending on the experimental conditions. Synergy between enzyme variants without the carbohydrate binding module (CBM) and its linker was strongly reduced compared to the wild types. One plausible interpretation of this is that exo-exo synergy depends on the targeting role of the CBM. Many earlier works have proposed that exo-exo synergy was caused by an auxiliary endo-lytic activity of Cel6A. However, biochemical data from different assays suggested that the endo-lytic activity of both Cel6A and Cel7A were 10 3 -10 4 times lower than the common endoglucanase, Cel7B, from the same organism. Moreover, the endo-lytic activity of Cel7A was 2-3-fold higher than for Cel6A, and we suggest that endo-like activity of Cel6A cannot be the main cause for the observed synergy. Rather, we suggest the exo-exo synergy found here depends on different specificities of the enzymes possibly governed by their CBMs. Biotechnol. Bioeng. 2017;114: 1639-1647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Thermoactivation of a cellobiohydrolase

    DEFF Research Database (Denmark)

    Westh, Peter; Borch, Kim; Sørensen, Trine Holst

    2018-01-01

    We have measured activity and substrate affinity of the thermostable cellobiohydrolase, Cel7A, from Rasamsonia emersonii over a broad range of temperatures. For the wild type enzyme, which does not have a Carbohydrate Binding Module (CBM), higher temperature only led to moderately increased activ...

  7. Crystal structures of wild-type Trichoderma reesei Cel7A catalytic domain in open and closed states

    Energy Technology Data Exchange (ETDEWEB)

    Bodenheimer, Annette M. [Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh NC USA; Neutron Sciences Directorate, Oak Ridge National Laboratory, TN USA; Meilleur, Flora [Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh NC USA; Neutron Sciences Directorate, Oak Ridge National Laboratory, TN USA

    2016-11-07

    Trichoderma reesei Cel7A efficiently hydrolyses cellulose. We report here the crystallographic structures of the wild-type TrCel7A catalytic domain (CD) in an open state and, for the first time, in a closed state. Molecular dynamics (MD) simulations indicate that the loops along the CD tunnel move in concerted motions. Together, the crystallographic and MD data suggest that the CD cycles between the tense and relaxed forms that are characteristic of work producing enzymes. Analysis of the interactions formed by R251 provides a structural rationale for the concurrent decrease in product inhibition and catalytic efficiency measured for product-binding site mutants.

  8. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense

    NARCIS (Netherlands)

    Gusakov, A.V.; Sinitsyn, A.P.; Salanovich, T.N.; Bukhtojarov, F.E.; Markov, A.V.; Ustinov, B.B.; Zeijl, C.V.; Punt, P.; Burlingame, R.

    2005-01-01

    Two forms of cellobiohydrolase I (CBH I, Cel7A) were purified from the culture ultrafiltrate of a mutant strain of the fungus Chrysosporium lucknowense, an industrial producer of cellulases and hemicellulases. The enzymes had different molecular masses (52 and 65 kDa, SDS-PAGE data) but the same pI

  9. Variants of cellobiohydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  10. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse.

    Science.gov (United States)

    Herrera-Herrera, Jesús Antonio; Pérez-Avalos, Odilia; Salgado, Luis M; Ponce-Noyola, Teresa

    2009-10-01

    Cellulomonas flavigena produces a battery of cellulase components that act concertedly to degrade cellulose. The addition of cAMP to repressed C. flavigena cultures released catabolic repression, while addition of cAMP to induced C. flavigena cultures led to a cellobiohydrolase hyperproduction. Exogenous cAMP showed positive regulation on cellobiohydrolase production in C. flavigena grown on sugar cane bagasse. A C. flavigena cellobiohydrolase gene was cloned (named celA), which coded for a 71- kDa enzyme. Upstream, a repressor celR1, identified as a 38 kDa protein, was monitored by use of polyclonal antibodies.

  12. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance.

    Science.gov (United States)

    Kern, Marcelo; McGeehan, John E; Streeter, Simon D; Martin, Richard N A; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P; Payne, Christina M; Himmel, Michael E; Schnorr, Kirk; Beckham, Gregg T; Cragg, Simon M; Bruce, Neil C; McQueen-Mason, Simon J

    2013-06-18

    Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.

  13. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility.

    Science.gov (United States)

    Jeoh, Tina; Ishizawa, Claudia I; Davis, Mark F; Himmel, Michael E; Adney, William S; Johnson, David K

    2007-09-01

    Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme digestion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a purified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important component of cellulase preparations. The results showed cellulose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreatment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessibility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.

  14. Cloning and sequencing of a cellobiohydrolase gene from Trichoderma harzianum FP108

    Science.gov (United States)

    Patrick Guilfoile; Ron Burns; Zu-Yi Gu; Matt Amundson; Fu-Hsian Chang

    1999-01-01

    A cbbl cellobiohydrolase gene was cloned and sequenced from the fungus Trichoderrna harzianum FP108. The cloning was performed by PCR amplification of T. harzianum genomic DNA, using PCR primers whose sequence was based on the cbbl gene from Tricboderma reesei. The 3' end of the gene was isolated by inverse...

  15. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Guilin, Ren; Tatsumi, Hirosuke

    2012-01-01

    An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi-crystalline and amorphous......, can be monitored directly and in real-time by an enzyme-modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross-linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current...... of the reduced mediator, hydroquinone, produced by the CDH-catalyzed reaction with cellobiose, was recorded under constant-potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH-biosensors showed high sensitivity (87.7 µA mM−1 cm−2), low detection limit (25 nM), and fast response time (t95% ∼ 3 s...

  16. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    cellobiose and glucose. The reported KI for glucose on the T. reesei cellulases and -glucosidase varies from 0.04 to 5 g/L. The type of inhibition is debated, and probably varies for different -glucosidases, but with a required goal of sufficient glucose concentration to support ethanol concentrations....... This is because the currently used Trichoderma reesei derived cellulases, i.e. exoglucanases (mainly the cellobiohydrolases Cel7A and Cel6A), endo-1,4--glucanases, and now boosted with -glucosidase and other enzymes, now considered the “industry standard” enzymes, are significantly inhibited by the products...... of minimum ∼5–6% v/v, the glucose product concentrations exceed the critical limit for product inhibition. Hence, regardless of the recent progress in enzyme development for cellulose hydrolysis, the glucose product inhibition remains an issue, which is exacerbated as the reaction progresses, especially...

  17. Kinetics of Cellobiohydrolase (Cel7A) Variants with Lowered Substrate Affinity

    DEFF Research Database (Denmark)

    Kari, Jeppe; Olsen, Johan Pelck; Borch, Kim

    2014-01-01

    Cellobiohydrolases are exo-active glycosyl hydrolases that processively convert cellulose to soluble sugars, typically cellobiose. They effectively break down crystalline cellulose and make up a major component in industrial enzyme mixtures used for deconstruction of lignocellulosic biomass. Iden...

  18. Simulation analysis of the cellulase Cel7A carbohydrate binding module on the surface of the cellulose Iβ

    Energy Technology Data Exchange (ETDEWEB)

    Alekozai, Emal M. [Univ. of Heidelberg (Germany); Univ. of Tennessee, Knoxville, TN (United States); GhattyVenkataKrishna, Pavan K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uberbacher, Edward C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crowley, Michael F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Jeremy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2013-08-22

    The Family 7 cellobiohydrolase (Cel7A) from Trichoderma reesei consists of a carbohydrate-binding module (CBM) joined by a linker to a catalytic domain. Cellulose hydrolysis is limited by the accessibility of Cel7A to crystalline substrates, which is perceived to be primarily mediated by the CBM. The binding of CBM to the cellulose I fiber is characterized by combined Brownian dynamics (BD) and molecular dynamics (MD) simulations. Our results confirm that CBM prefers to dock to the hydrophobic than to the hydrophilic fiber faces. Both electrostatic (ES) and van der Waals (VDW) interactions are required for achieving the observed binding preference. The VDW interactions play a more important role in stabilizing the CBM-fiber binding, whereas the ES interactions contribute through the formation of a number of hydrogen bonds between the CBM and the fiber. At long distances, an ES steering effect is also observed that tends to align the CBM in an antiparallel manner relative to the fiber axis. Moreover, the MD results reveal hindered diffusion of the CBM on all fiber surfaces. The binding of the CBM to the hydrophobic surfaces is found to involve partial dewetting at the CBM-fiber interface coupled with local structural arrangements of the protein. The present simulation results complement and rationalize a large body of previous work and provide detailed insights into the mechanism of the CBM-cellulose fiber interactions.

  19. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose

    DEFF Research Database (Denmark)

    Murphy, Leigh; Cruys-Bagger, Nicolaj; Baumann, Martin J.

    2012-01-01

    by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B...

  20. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    Science.gov (United States)

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.

  1. Loop variants of the thermophile Rasamsonia emersonii Cel7A with improved activity against cellulose

    DEFF Research Database (Denmark)

    Sørensen, Trine Holst; Skovbo Windahl, Michael; McBrayer, Brett

    2017-01-01

    Cel7A cellobiohydrolases perform processive hydrolysis on one strand of cellulose, which is threaded through the enzyme's substrate binding tunnel. The tunnel structure results from a groove in the catalytic domain, which is covered by a number of loops. These loops have been identified as potent......Cel7A cellobiohydrolases perform processive hydrolysis on one strand of cellulose, which is threaded through the enzyme's substrate binding tunnel. The tunnel structure results from a groove in the catalytic domain, which is covered by a number of loops. These loops have been identified...... as potential targets for engineering of this industrially important enzyme family, but only few systematic studies on this have been made. Here we show that two asparagine residues (N194 and N197) positioned in the loop covering the glucopyranose subsite −4 (recently denoted B2 loop) of the thermostable Cel7A...... with alanine leads to faster enzyme-substrate dissociation. Conversely, these residues appeared to have little or no effect on the rate of association. We suggest that the controlled adjustment of the enzyme-substrate dissociation prompts faster cellulolytic enzymes....

  2. CBH1 homologs and varian CBH1 cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  3. Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo‐oligosaccharides

    DEFF Research Database (Denmark)

    Momeni, Majid Haddad; Ubhayasekera, Wimal; Sandgren, Mats

    2015-01-01

    of such enzymes is susceptible to inhibition by compounds liberated by physico‐chemical pre‐treatment if the biomass is kept unwashed. Xylan and xylo‐oligosaccharides (XOS) have been proposed to play a key role in inhibition of cellobiohydrolases of glycoside hydrolase family 7. To elucidate the mechanism behind...

  4. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw

    Directory of Open Access Journals (Sweden)

    Billard Hélène

    2012-02-01

    Full Text Available Abstract Background An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Methods Six enzymes, CBH1 (Cel7a, CBH2 (Cel6a, EG1 (Cel7b, EG2 (Cel5a, as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. Results The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25% which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. Conclusions The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.

  5. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities.

    Science.gov (United States)

    Xue, Xianli; Wu, Yilan; Qin, Xing; Ma, Rui; Luo, Huiying; Su, Xiaoyun; Yao, Bin

    2016-07-11

    The filamentous fungus Trichoderma reesei has the capacity to secret large amounts of cellulase and is widely used in a variety of industries. However, the T. reesei cellulase is weak in β-glucosidase activity, which results in accumulation of cellobiose inhibiting the endo- and exo-cellulases. By expressing an exogenous β-glucosidase gene, the recombinant T. reesei cellulase is expected to degrade cellulose into glucose more efficiently. The thermophilic β-glucosidase NfBgl3A from Neosartorya fischeri is chosen for overexpression in T. reesei due to its robust activity. In vitro, the Pichia pastoris-expressed NfBgl3A aided the T. reesei cellulase in releasing much more glucose with significantly lower amounts of cellobiose from crystalline cellulose. The NfBgl3A gene was hence fused to the cbh1 structural gene and assembled between the strong cbh1 promoter and cbh1 terminator to obtain pRS-NfBgl3A by using the DNA assembler method. pRS-NfBgl3A was transformed into the T. reesei uridine auxotroph strain TU-6. Six positive transformants showed β-glucosidase activities of 2.3-69.7 U/mL (up to 175-fold higher than that of wild-type). The largely different β-glucosidase activities in the transformants may be ascribed to the gene copy numbers of NfBgl3A or its integration loci. The T. reesei-expressed NfBgl3A showed highly similar biochemical properties to that expressed in P. pastoris. As expected, overexpression of NfBgl3A enhanced the overall cellulase activity of T. reesei. The CBHI activity in all transformants increased, possibly due to the extra copies of cbh1 gene introduced, while the endoglucanase activity in three transformants also largely increased, which was not observed in any other studies overexpressing a β-glucosidase. NfBgl3A had significant transglycosylation activity, generating sophorose, a potent cellulase inducer, and other oligosaccharides from glucose and cellobiose. We report herein the successful overexpression of a thermophilic N

  6. A ?-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production

    OpenAIRE

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-01-01

    Background The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low ?-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial ...

  7. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei.

    Science.gov (United States)

    Cao, Yanli; Zheng, Fanglin; Wang, Lei; Zhao, Guolei; Chen, Guanjun; Zhang, Weixin; Liu, Weifeng

    2017-07-01

    Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei. © 2017 John Wiley & Sons Ltd.

  8. Temperature effects on kinetic parameters and substrate affinity of Cel7A cellobiohydrolases

    DEFF Research Database (Denmark)

    Sørensen, Trine Holst; Cruys-Bagger, Nicolaj; Windahl, Michael Skovbo

    2015-01-01

    Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased...... for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases....

  9. Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran.

    Science.gov (United States)

    Long, Liangkun; Zhao, Haoyuan; Ding, Dafan; Xu, Meijuan; Ding, Shaojun

    2018-05-01

    Feruloyl esterase (FAE)-encoding genes AnfaeA and AnfaeB were isolated from Aspergillus niger 0913. For overexpression of the two genes in Trichoderma reesei, constitutive and inductive expression plasmids were constructed based on parental plasmid pAg1-H3. The constructed plasmids contained AnfaeA or AnfaeB gene under the control of glyceraldehyde-3-phosphate dehydrogenase A gene (gpdA) promoter (from A. nidulans) or cellobiohydrolases I (cbh I) gene promoter (from T. reesei), and cbh I terminator from T. reesei. The target plasmids were transferred into T. reesei D-86271 (Rut-C30) by Agrobacterium tumefaciens-mediated transformation (ATMT), respectively. A high level of feruloyl esterase was produced by the recombinant fungal strains under solid-state fermentation, and the cbh I promoter was more efficient than the gpdA promoter in the expression of AnfaeA. The optimum temperatures and pH values were 50 °C and 5.0 for AnFAEA, and 35 °C and 6.0 for AnFAEB. The maximum production levels were 20.69 U/gsd for AnFAEA and 15.08 U/gsd for AnFAEB. The recombinant fungal enzyme systems could release 62.9% (for AnFAEA) and 52.2% (for AnFAEB) of total ferulic acids from de-starched wheat bran, which was higher than the 46.3% releasing efficiency of A. niger 0913. The supplement of xylanase from T. longibrachiatum in the enzymatic hydrolysis led to a small increment of the ferulic acids release.

  10. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...... to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems....

  11. Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum

    DEFF Research Database (Denmark)

    Borisova, Anna S.; Eneyskaya, Elena V.; Jana, Suvamay

    2018-01-01

    analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. We...... that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering...

  12. Expression, Characterization and Synergistic Interactions of Myxobacter Sp. AL-1 Cel9 and Cel48 Glycosyl Hydrolases

    Directory of Open Access Journals (Sweden)

    Mario Pedraza-Reyes

    2008-02-01

    Full Text Available The soil microorganism Myxobacter Sp. AL-1 regulates in a differential manner the production of five extracellular cellulases during its life cycle. The nucleotide sequence of a cel9-cel48 cluster from the genome of this microorganism was recently obtained. Cel48 was expressed in Escherichia coli to generate a His6-Cel48 protein and the biochemical properties of the pure protein were determined. Cel48 was more efficient in degrading acid-swollen avicel (ASC than carboxymethylcellulose (CMC. On the other hand, cel9 was expressed in Bacillus subtilis from an IPTG-inducible promoter. Zymogram analysis showed that after IPTG-induction, Cel9 existed in both the cell fraction and the culture medium of B. subtilis and the secreted protein was purified to homogeneity by FPLC-ionic exchange chromatography. The exocellobiohydrolase Cel48 showed a synergism of 1.68 times with the endocellulase Cel9 during ASC degradation using an 8.1- fold excess of Cel48 over Cel9. Western blot analysis revealed that both proteins were synthesized and secreted to the culture medium of Myxobacter Sp. AL-1. These results show that the cel9-cel48 cluster encodes functional endo- and exo-acting cellulases that allows Myobacter Sp. AL-1 to hydrolyse cellulose.

  13. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.

    Science.gov (United States)

    Fitzpatrick, J; Kricka, W; James, T C; Bond, U

    2014-07-01

    To compare the production of recombinant cellulase enzymes in two Saccharomyces species so as to ascertain the most suitable heterologous host for the degradation of cellulose-based biomass and its conversion into bioethanol. cDNA copies of genes representing the three major classes of cellulases (Endoglucanases, Cellobiohydrolases and β-glucosidases) from Trichoderma reesei were expressed in Saccharomyces pastorianus and Saccharomyces cerevisiae. The recombinant enzymes were secreted by the yeast hosts into the medium and were shown to act in synergy to hydrolyse cellulose. The conditions required to achieve maximum release of glucose from cellulose by the recombinant enzymes were defined and the activity of the recombinant enzymes was compared to a commercial cocktail of T. reesei cellulases. We demonstrate that significantly higher levels of cellulase activity were achieved by expression of the genes in S. pastorianus compared to S. cerevisiae. Hydrolysis of cellulose by the combined activity of the recombinant enzymes was significantly better at 50°C than at 30°C, the temperature used for mesophilic yeast fermentations, reflecting the known temperature profiles of the native enzymes. The results demonstrate that host choice is important for the heterologous production of cellulases. On the basis of the low activity of the T. reesei recombinant enzymes at fermentation temperatures, we propose a two-step process for the hydrolysis of cellulose and its fermentation into alcohol using cellulases produced in situ. © 2014 The Society for Applied Microbiology.

  14. How Molecular Evolution Technologies can Provide Bespoke Industrial Enzymes: Application to Biofuels Comment les technologies d’évolution moléculaire peuvent fournir des enzymes industrielles sur mesure : application aux biocarburants

    Directory of Open Access Journals (Sweden)

    Fourage L.

    2013-08-01

    Full Text Available Enzymatic hydrolysis of lignocellulose is one of the major bottlenecks in the development of biological conversion of lignocellulosic biomass to biofuels. One of the most efficient organisms for the production of cellulolytic enzymes is the fungus Trichoderma reesei, mainly thanks to its high secretion capacity. The conversion of cellulose to glucose involves three types of cellulases working in synergy: endoglucanases (EC 3.2.1.4 randomly cleave 13-1,4 glycosidic linkages of cellulose, cellobiohydrolases (EC 3.2.1.91 attack cellulose chain ends to produce cellobiose dimers which are converted into glucose by the 13-glucosidases (EC 3.2.1 21. Unexpectedly, the amount of l3-glucosidase (BGLI from T. reesei hyperproducing strains represents a very low percentage of the total secreted proteins. A suboptimal content of this enzyme limits the performance of commercial cellulase preparations as cellobiose represents the main inhibitor of the cellulolysis reaction by cellobiohydrolases. This bottleneck can be alleviated either by overexpressing the f3-glucosidase in T. reesei or optimized its specific activity. After giving a brief overview of the main available technologies, this example will be used to illustrate the potential of directed evolution technologies to devolop enzymes tailored to fit industrial needs. We describe the L-ShuffiingTM strategy implemented with three parental genes originating from microbial biodiversity leading to identification of an efficient 13-glucosidase showing a 242 fold increase in specific activity for the pNPGIc substrate compared to WT (Wild Type Cel3a beta-glucosidase of T. reesei. After expression of the best improved 13-glucosidase in T. reesei and secretion of a new enzymatic cocktail, improvement of the glucosidase activity allows a 4-fold decrease of cellulase loading for the saccharification of an industrial pretreated biomass compared to the parental cocktail. L’hydrolyse enzymatique de la lignocellulose

  15. Cellobiohydrolase I enzymes

    Science.gov (United States)

    Adney, William S; Himmel, Michael E; Decker, Stephen R; Knoshaug, Eric P; Nimlos, Mark R; Crowley, Michael F; Jeoh, Tina

    2014-01-28

    Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The mutations in the catalytic domain reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. The addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide increases O-linked glycosylation of the isolated polypeptide. Further provided are compositions comprising such polypeptides and nucleic acids encoding such polypeptides. Still further provided are methods for making such polypeptides.

  16. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  17. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    Science.gov (United States)

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  18. Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains.

    Science.gov (United States)

    Ramoni, Jonas; Marchetti-Deschmann, Martina; Seidl-Seiboth, Verena; Seiboth, Bernhard

    2017-05-01

    Trichoderma reesei is a paradigm for the regulation and industrial production of plant cell wall-degrading enzymes. Among these, five xylanases, including the glycoside hydrolase (GH) family 11 XYN1 and XYN2, the GH10 XYN3, and the GH30 XYN4 and XYN6, were described. By genome mining and transcriptome analysis, a further putative xylanase, encoded by xyn5, was identified. Analysis of xyn5 from the genome-sequenced reference strain T. reesei QM6a shows that it encodes a non-functional, truncated form of XYN5. However, non-truncated orthologues are present in other genome sequenced Trichoderma spp., and sequencing of xyn5 in other T. reesei wild-type isolates shows that they harbor a putative functional xyn5 allele. In silico analysis and 3D modeling revealed that the encoded XYN5 has significant structural similarities to xylanases of the GH11 family, including a GH-typical substrate binding groove and a carboxylate pair in the active site. The xyn5 of wild-type strain TUCIM1282 was recombinantly expressed in a T. reesei strain with a (hemi)cellulase-free background and the corresponding protein purified to apparent homogeneity. The pH and temperature optima and the kinetic parameters of the purified XYN5 were pH 4, 50 °C, and V max  = 2646 nkat/mg with a K m of 9.68 mg/ml. This functional xyn5 allele was used to replace the mutated version which led to an overall increase of the xylanolytic activity. These findings are of particular importance as GH11 xylanases are of high biotechnological relevance, and T. reesei is one of the main industrial producers of such lignocellulose-degrading enzymes.

  19. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.

    Directory of Open Access Journals (Sweden)

    Gustavo Pagotto Borin

    Full Text Available Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses, must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant.Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  20. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    Science.gov (United States)

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  1. An autoantibody against Nε-(carboxyethyl)lysine (CEL): Possible involvement in the removal of CEL-modified proteins by macrophages

    International Nuclear Information System (INIS)

    Mera, Katsumi; Nagai, Ryoji; Takeo, Kazuhiro; Izumi, Miyoko; Maruyama, Toru; Otagiri, Masaki

    2011-01-01

    Highlights: → A higher amount of autoantibody against CEL than that of other AGEs was observed in human plasma. → The purified human anti-CEL autoantibody specifically reacted with CEL. → Anti-CEL antibody accelerated the uptake of 125 I-CEL-HSA by macrophage in vitro. → Endocytic uptake of 125 I-CEL-HSA by mice liver was accelerated in the presence of anti-CEL antibody. -- Abstract: Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against N ε -(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when 125 I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of 125 I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.

  2. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  3. An autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL): Possible involvement in the removal of CEL-modified proteins by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Katsumi [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Nagai, Ryoji, E-mail: nagai-883@umin.ac.jp [Department of Food and Nutrition, Laboratory of Nutritional Science and Biochemistry, Japan Women' s University, Tokyo (Japan); Takeo, Kazuhiro; Izumi, Miyoko [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Maruyama, Toru [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto (Japan); Otagiri, Masaki [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto (Japan)

    2011-04-08

    Highlights: {yields} A higher amount of autoantibody against CEL than that of other AGEs was observed in human plasma. {yields} The purified human anti-CEL autoantibody specifically reacted with CEL. {yields} Anti-CEL antibody accelerated the uptake of {sup 125}I-CEL-HSA by macrophage in vitro. {yields} Endocytic uptake of {sup 125}I-CEL-HSA by mice liver was accelerated in the presence of anti-CEL antibody. -- Abstract: Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when {sup 125}I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of {sup 125}I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.

  4. Overexpression of D-Xylose Reductase (xyl1 Gene and Antisense Inhibition of D-Xylulokinase (xyiH Gene Increase Xylitol Production in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hong

    2014-01-01

    Full Text Available T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH, which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable. The copy number of the xylose reductase gene (xyl1 in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol.

  5. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    Science.gov (United States)

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  6. Dehydrogenase GRD1 Represents a Novel Component of the Cellulase Regulon in Trichoderma reesei (Hypocrea jecorina) ▿ † §

    Science.gov (United States)

    Schuster, André; Kubicek, Christian P.; Schmoll, Monika

    2011-01-01

    Trichoderma reesei (Hypocrea jecorina) is nowadays the most important industrial producer of cellulase and hemicellulase enzymes, which are used for pretreatment of cellulosic biomass for biofuel production. In this study, we introduce a novel component, GRD1 (glucose-ribitol dehydrogenase 1), which shows enzymatic activity on cellobiose and positively influences cellulase gene transcription, expression, and extracellular endo-1,4-β-d-glucanase activity. grd1 is differentially transcribed upon growth on cellulose and the induction of cellulase gene expression by sophorose. The transcription of grd1 is coregulated with that of cel7a (cbh1) under inducing conditions. GRD1 is further involved in carbon source utilization on several carbon sources, such as those involved in lactose and d-galactose catabolism, in several cases in a light-dependent manner. We conclude that GRD1 represents a novel enhancer of cellulase gene expression, which by coregulation with the major cellulase may act via optimization of inducing mechanisms. PMID:21602376

  7. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.; Chauvigne-Hines, Lacie M.; Zink, Erika M.; Purvine, Samuel O.; Smith, Richard D.; Callister, Stephen J.; Magnuson, Jon M.; Wright, Aaron T.

    2013-12-01

    Development of alternative, non-petroleum based sources of bioenergy that can be applied in the short-term find great promise in the use of highly abundant and renewable lignocellulosic plant biomass.1 This material obtained from different feedstocks, such as forest litter or agricultural residues, can yield liquid fuels and other chemical products through biorefinery processes.2 Biofuels are obtained from lignocellulosic materials by chemical pretreatment of the biomass, followed by enzymatic decomposition of cellulosic and hemicellulosic compounds into soluble sugars that are converted to desired chemical products via microbial metabolism and fermentation.3, 4 To release soluble sugars from polymeric cellulose multiple enzymes are required, including endoglucanase, exoglucanase, and β-glucosidase.5, 6 However, the enzymatic hydrolysis of cellulose into soluble sugars remains a significant limiting factor to the efficient and economically viable utilization of lignocellulosic biomass for transport fuels.7, 8 The primary industrial source of cellulose and hemicellulases is the mesophilic soft-rot fungus Trichoderma reesei,9 having widespread applications in food, feed, textile, pulp, and paper industries.10 The genome encodes 200 glycoside hydrolases, including 10 cellulolytic and 16 hemicellulolytic enzymes.11 The hypercellulolytic catabolite derepressed strain RUT-C30 was obtained through a three-step UV and chemical mutagenesis of the original T. reesei strain QM6a,12, 13 in which strains M7 and NG14 were intermediate, having higher cellulolytic activity than the parent strain but less activity and higher catabolite repression than RUT-C30.14 Numerous methods have been employed to optimize the secreted enzyme cocktail of T. reesei including cultivation conditions, operational parameters, and mutagenesis.3 However, creating an optimal and economical enzyme mixture for production-scale biofuels synthesis may take thousands of experiments to identify.

  8. Engineering of family-5 glycoside hydrolase (Cel5A from an uncultured bacterium for efficient hydrolysis of cellulosic substrates.

    Directory of Open Access Journals (Sweden)

    Amar A Telke

    Full Text Available Cel5A, an endoglucanase, was derived from the metagenomic library of vermicompost. The deduced amino acid sequence of Cel5A shows high sequence homology with family-5 glycoside hydrolases, which contain a single catalytic domain but no distinct cellulose-binding domain. Random mutagenesis and cellulose-binding module (CBM fusion approaches were successfully applied to obtain properties required for cellulose hydrolysis. After two rounds of error-prone PCR and screening of 3,000 mutants, amino acid substitutions were identified at various positions in thermotolerant mutants. The most heat-tolerant mutant, Cel5A_2R2, showed a 7-fold increase in thermostability. To enhance the affinity and hydrolytic activity of Cel5A on cellulose substrates, the family-6 CBM from Saccharophagus degradans was fused to the C-terminus of the Cel5A_2R2 mutant using overlap PCR. The Cel5A_2R2-CBM6 fusion protein showed 7-fold higher activity than the native Cel5A on Avicel and filter paper. Cellobiose was a major product obtained from the hydrolysis of cellulosic substrates by the fusion enzyme, which was identified by using thin layer chromatography analysis.

  9. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ahlgren Simon

    2011-09-01

    Full Text Available Abstract Background The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP. Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases. Results We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™ to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase. Conclusions Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.

  10. 77 FR 35331 - Trichoderma reesei; Proposed Significant New Use Rule

    Science.gov (United States)

    2012-06-13

    ... Trichoderma reesei; Proposed Significant New Use Rule AGENCY: Environmental Protection Agency (EPA). ACTION... Control Act (TSCA) for the genetically modified microorganism identified generically as Trichoderma reesei...: Trichoderma reesei (MCAN J-10-2) (generic). Chemical Abstracts Service (CAS) Registry Number: Not available...

  11. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose.

    Directory of Open Access Journals (Sweden)

    Zhuolin Yi

    Full Text Available During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A, which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9 module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c and TM2 (GH48 with three CBM3 modules synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other

  12. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose.

    Science.gov (United States)

    Yi, Zhuolin; Su, Xiaoyun; Revindran, Vanessa; Mackie, Roderick I; Cann, Isaac

    2013-01-01

    During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases

  13. On-site cellulase production and efficient saccharification of corn stover employing cbh2 overexpressing Trichoderma reesei with novel induction system.

    Science.gov (United States)

    Li, Yonghao; Zhang, Xiaoyue; Xiong, Liang; Mehmood, Muhammad Aamer; Zhao, Xinqing; Bai, Fengwu

    2017-08-01

    Although on-site cellulase production offers cost-effective saccharification of lignocellulosic biomass, low enzyme titer is still a barrier for achieving robustness. In the present study, a strain of T. reesei was developed for enhanced production of cellulase via overexpression of Cellobiohydrolase II. Furthermore, optimum enzyme production was achieved using a novel inducer mixture containing synthesized glucose-sophorose (MGD) and alkali pre-treated corn stover (APCS). Within 60h, a remarkably higher cellulase productivity and activity were achieved in the fed-batch fermentation using the optimized ratio of MGD and APCS in the inducer mixture, compared to those reported using cellulosic biomass as the sole inducer. After the enzyme production, APCS was added directly into the fermentation broth at 20% solid loading, which produced 122.5g/L glucose and 40.21g/L xylose, leading to the highest yield reported so far. The improved enzyme titers during on-site cellulase production would benefit cost-competitive saccharification of lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cellobiohydrolase I gene and improved variants

    Science.gov (United States)

    Adney, William S [Golden, CO; Decker, Stephen R [Berthoud, CO; Mc Carter, Suzanne [San Carlos, CA; Baker, John O [Golden, CO; Nieves, Raphael [Lakewood, CO; Himmel, Michael E [Littleton, CO; Vinzant, Todd B [Golden, CO

    2008-05-20

    The disclosure provides a method for preparing an active exoglucanase in a heterologous host of eukaryotic origin. The method includes mutagenesis to reduce glycosylation of the exoglucanase when expressed in a heterologous host. It is further disclosed a method to produce variant cellobiohydrolase that is stable at high temperature through mutagenesis.

  15. Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-Binding Module on Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, M. R.; Beckham, G. T.; Matthews, J. F.; Bu, L.; Himmel, M. E.; Crowley, M. F.

    2012-06-08

    Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 {mu}s of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.

  16. A novel platform for heterologous gene expression in Trichoderma reesei (Teleomorph Hypocrea jecorina)

    DEFF Research Database (Denmark)

    Jørgensen, Mikael Skaanning; Skovlund, Dominique Aubert; Johannesen, Pia Francke

    2014-01-01

    ABSTRACT: BACKGROUND: The industrially applied filamentous fungus Trichoderma reesei has received substantial interest due to its highly efficient synthesis apparatus of cellulytic enzymes. However, the production of heterologous enzymes in T. reesei still remains low mainly due to lack of tools...

  17. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Zhang, Zhenghong; Wichmann, Jesper; Meyer, Anne S

    2017-09-08

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes was evaluated in combination with endoglucanase and beta-glucosidase. Two enzymes (TrCel61A and Aspte6) showed the ability to release more than 36% of the pretreated soy spent flake glucose - a greater than 75% increase over the same treatment without LPMO addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Methods for using polypeptides having cellobiohydrolase activity

    Science.gov (United States)

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei.

    Science.gov (United States)

    Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun

    2017-12-20

    Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.

  20. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Science.gov (United States)

    2011-01-01

    Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species. PMID:22070776

  1. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Directory of Open Access Journals (Sweden)

    Denton Jai A

    2011-11-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.

  2. Optimization of ruminococcus albus endoglucanase cel5-cbm6 production in plants by incorporating an elp tag and targeting to different subcellular compartments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, E.O.; Menassa, R. [Western Ontario Univ., London, ON (Canada). Dept. of Biology; Agriculture and Agri-Food Canada, London, ON (Canada); Kolotilin, I. [Agriculture and Agri-Food Canada, London, ON (Canada)

    2009-07-01

    The production of biomass-based biofuel such as ethanol depends on the deconstruction of a cellulosic matrix and requires a variety of enzymes that hydrolyze glycosidic bonds to release fermentable sugars. Endoglucanases are one of most important groups of natural cellulosic hydrolytic enzymes that act on cellulose. In order to decrease ethanol production costs, the cost of producing cellulases must also be reduced. Genetically engineered transgenic plants are among the most economical systems for large scale production of recombinant proteins because of the large amount of enzymes that can be produced with minimal input. Cellulases present different levels of expression in different subcellular compartments. Cel5-CBM6 is a fused protein containing an endocellulase from Ruminococus albus (Cel5) and a cellulose binding domain (CBD) of Clostridium stercorarium. It accumulates in both the chloroplast and cytoplasm, but severe growth defects occur when expressed in the cytoplasm. Therefore, other subcellular compartments such as endoplasmic reticulum (ER) and vacuole must be evaluated and compared to determine the best co partment for production and activity of cellulases. Since elastin-like polypeptide (ELP) has also been shown to increase recombinant protein accumulation in plants, this study evaluated the effects of incorporating an ELP tag and a retrieval signal peptide on the expression levels of Cel5-CBM6.

  3. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  4. Overexpression, purification and crystallization of the two C-terminal domains of the bifunctional cellulase ctCel9D-Cel44A from Clostridium thermocellum

    International Nuclear Information System (INIS)

    Najmudin, Shabir; Guerreiro, Catarina I. P. D.; Ferreira, Luís M. A.; Romão, Maria J. C.; Fontes, Carlos M. G. A.; Prates, José A. M.

    2005-01-01

    The two C-terminal domains of the cellulase ctCel9D-Cel44A from C. thermocellum cellulosome have been crystallized in tetragonal space group P4 3 2 1 2 and X-ray diffraction data have been collected to 2.1 and 2.8 Å from native and seleno-l-methionine-derivative crystals, respectively. Clostridium thermocellum produces a highly organized multi-enzyme complex of cellulases and hemicellulases for the hydrolysis of plant cell-wall polysaccharides, which is termed the cellulosome. The bifunctional multi-modular cellulase ctCel9D-Cel44A is one of the largest components of the C. thermocellum cellulosome. The enzyme contains two internal catalytic domains belonging to glycoside hydrolase families 9 and 44. The C-terminus of this cellulase, comprising a polycystic kidney-disease module (PKD) and a carbohydrate-binding module (CBM44), has been crystallized. The crystals belong to the tetragonal space group P4 3 2 1 2, containing a single molecule in the asymmetric unit. Native and seleno-l-methionine-derivative crystals diffracted to 2.1 and 2.8 Å, respectively

  5. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Science.gov (United States)

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Badino, Silke Flindt; Tokin, Radina Naytchova

    2014-01-01

    A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface......-biosensor was shown to be anomer unspecific and it can therefore be used in kinetic studies over broad time-scales of both retaining- and inverting cellulases (in addition to enzyme cocktails). The biosensor was used for real-time measurements of the activity of the inverting cellobiohydrolase Cel6A from Hypocrea...... equation for processive cellulases, and it was found that the turnover for HjCel6A at saturating substrate concentration (i.e. maximal apparent specific activity) was similar (0.39–0.40 s−1) for the two substrates. Conversely, the substrate load at half-saturation was much lower for BMCC compared to Avicel...

  7. Biotransformation of Geniposide into Genipin by Immobilized Trichoderma reesei and Conformational Study of Genipin

    Directory of Open Access Journals (Sweden)

    Yishun Yang

    2018-01-01

    Full Text Available Trichoderma reesei QM9414, Trichoderma viride 3.316, Aspergillus niger M85, and Aspergillus niger M92 were screened for hydrolyzing geniposide into genipin. T. reesei was selected according to the β-glucosidase activity of the fermentation broths using geniposide as a substrate. T. reesei was immobilized by embedding method using sodium alginate as the carrier. Geniposide was hydrolyzed by immobilized T. reesei at 28°C (200 rpm for 34 h, and the yield of genipin was 89%. The product was purified and identified by UV, IR, EIMS, and 1H-NMR. Since there were two sets of signals in 1H-NMR spectra, a series of experiments were performed and verified that the existence of two conformations was the main reason. Generally, biotransformation of geniposide into genipin by immobilized T. reesei provides a promising solution to the genipin production.

  8. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  9. Molecular Dynamics and Metadynamics Simulations of the Cellulase Cel48F

    Directory of Open Access Journals (Sweden)

    Osmair Vital de Oliveira

    2014-01-01

    Full Text Available Molecular dynamics (MD and metadynamics techniques were used to study the cellulase Cel48F-sugar. Cellulase is enzyme that breaks cellulose fibers into small sugar units and is potentially useful in second generation alcohol production. In MD simulations, the overall structure of equilibrated Cel48F did not significantly change along the trajectory, retaining root mean square deviation below 0.15 nm. A set of 15 residues interacting with the sugar chains via hydrogen bonding throughout the simulation was observed. The free energy of dissociation (ΔGdiss. of the chains in the catalytic tunnel of Cel48F was determined by metadynamics. The ΔGdiss. values of the chains entering and leaving the wild-type Cel48F cavity were 13.9 and 62.1 kcal/mol, respectively. We also mutated the E542 and Q543 to alanine residue and obtained ΔGdiss. of 41.8 and 45.9 kcal/mol, respectively. These mutations were found to facilitate smooth dissociation of the sugar chain across the Cel48F tunnel. At the entry of the Cel48F tunnel, three residues were mutated to alanine: T110, T213, and L274. Contrary to the T110A-Cel48F, the mutants T213-Cel48F and L274-Cel48F prevented the sugar chain from passing across the leaving site. The present results can be a guideline in mutagenesis studies to improve processing by Cel48F.

  10. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  11. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Kang Kang

    Full Text Available microRNAs (miRNAs are non-coding small RNAs (sRNAs capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN and non-induction (CON were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.

  12. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  13. Overexpression, purification and crystallization of the two C-terminal domains of the bifunctional cellulase ctCel9D-Cel44A from Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Najmudin, Shabir [REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica (Portugal); Guerreiro, Catarina I. P. D.; Ferreira, Luís M. A. [CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa (Portugal); Romão, Maria J. C. [REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica (Portugal); Fontes, Carlos M. G. A.; Prates, José A. M., E-mail: japrates@fmv.utl.pt [CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa (Portugal); REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica (Portugal)

    2005-12-01

    The two C-terminal domains of the cellulase ctCel9D-Cel44A from C. thermocellum cellulosome have been crystallized in tetragonal space group P4{sub 3}2{sub 1}2 and X-ray diffraction data have been collected to 2.1 and 2.8 Å from native and seleno-l-methionine-derivative crystals, respectively. Clostridium thermocellum produces a highly organized multi-enzyme complex of cellulases and hemicellulases for the hydrolysis of plant cell-wall polysaccharides, which is termed the cellulosome. The bifunctional multi-modular cellulase ctCel9D-Cel44A is one of the largest components of the C. thermocellum cellulosome. The enzyme contains two internal catalytic domains belonging to glycoside hydrolase families 9 and 44. The C-terminus of this cellulase, comprising a polycystic kidney-disease module (PKD) and a carbohydrate-binding module (CBM44), has been crystallized. The crystals belong to the tetragonal space group P4{sub 3}2{sub 1}2, containing a single molecule in the asymmetric unit. Native and seleno-l-methionine-derivative crystals diffracted to 2.1 and 2.8 Å, respectively.

  14. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei

    Science.gov (United States)

    Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme. PMID:26656155

  15. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Shu-Yang Wang

    Full Text Available The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger or mutagenesis via mixed Trichoderma viride (T. viride culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA, endoglucanase (EG and β-glucosidase (BGL activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  16. Functional diversity for biomass deconstruction in family 5 subfamily 5 (GH5_5) of fungal endo-β1,4-glucanases.

    Science.gov (United States)

    Li, Bingyao; Walton, Jonathan D

    2017-05-01

    Endo-β1,4-glucanases in glycosyl hydrolase family 5 (GH5) are ubiquitous enzymes in the multicellular fungi and are common components of enzyme cocktails for biomass conversion. We recently showed that an endo-glucanase of subfamily 5 of GH5 (GH5_5) from Sporotrichum thermophile (StCel5A) was more effective at releasing glucose from pretreated corn stover, when part of an eight-component synthetic enzyme mixture, compared to its closely related counterpart from Trichoderma reesei, TrCel5A. StCel5A and TrCel5A belong to different clades of GH5_5 (GH5_5_1 and GH5_5_2, respectively). To test whether the superior activity of StCel5A was a general property of all enzymes in the GH5_5_2 clade, StCel5A, TrCel5A, and two additional members of each subfamily were expressed in a common host that had been engineered to suppress its native cellulases (T. reesei Δxyr1) and compared against each other alone on pure substrates, in synthetic mixtures on pure substrates, and against each other in synthetic mixtures on real biomass. The results indicated that superiority is a unique property of StCel5A and not of GH5_5_2 generally. The six Cel5A enzymes had significant differences in relative activities on different substrates, in specific activities, and in sensitivities to mannan inhibition. Importantly, the behavior of the six endo-glucanases on pure cellulose substrates did not predict their behavior in combination with other cellulolytic enzymes on a real lignocellulosic biomass substrate.

  17. Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose

    DEFF Research Database (Denmark)

    Selig, Michael J.; Thygesen, Lisbeth G.; Felby, Claus

    2015-01-01

    The presence of xylan is a detriment to the enzymatic saccharification of cellulose in lignocelluloses. The inhibition of the processive cellobiohydrolase Cel7A by soluble wheat arabinoxylan is shown here to increase by 50 % following enzymatic treatment with a commercially-purified α-l-arabinofu......The presence of xylan is a detriment to the enzymatic saccharification of cellulose in lignocelluloses. The inhibition of the processive cellobiohydrolase Cel7A by soluble wheat arabinoxylan is shown here to increase by 50 % following enzymatic treatment with a commercially-purified α......-l-arabinofuranosidase. The enhanced inhibitory effect was shown by T2 relaxation time measurements via low field NMR to coincide with an increasing degree of constraint put on the water in xylan solutions. Furthermore, quartz crystal micro-balance with dissipation experiments showed that α-l-arabinofuranosidase treatment...

  18. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.

    Science.gov (United States)

    Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian

    2017-06-01

    In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials

    Directory of Open Access Journals (Sweden)

    Murakami Katsuji

    2009-10-01

    Full Text Available Abstract Background Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi. Results We compared A. cellulolyticus and T. reesei cellulase activity against the three lignocellulosic materials: eucalyptus, Douglas fir and rice straw. Saccharification analysis using the supernatant from each culture demonstrated that the enzyme mixture derived from A. cellulolyticus exhibited 2-fold and 16-fold increases in Filter Paper enzyme and β-glucosidase specific activities, respectively, compared with that derived from T. reesei. In addition, culture supernatant from A. cellulolyticus produced glucose more rapidly from the lignocellulosic materials. Meanwhile, culture supernatant derived from T. reesei exhibited a 2-fold higher xylan-hydrolyzing activity and produced more xylose from eucalyptus (72% yield and rice straw (43% yield. Although the commercial enzymes Acremonium cellulase (derived from A. cellulolyticus, Meiji Seika Co. demonstrated a slightly lower cellulase specific activity than Accellerase 1000 (derived from T. reesei, Genencor, the glucose yield (over 65% from lignocellulosic materials by Acremonium cellulase was higher than that of Accellerase 1000 (less than 60%. In addition, the mannan-hydrolyzing activity of Acremonium cellulase was 16-fold higher than that of Accellerase 1000, and the conversion of mannan to mannobiose and mannose by Acremonium cellulase was more efficient. Conclusion We investigated the hydrolysis of lignocellulosic materials by cellulase derived from two types of filamentous fungi. We

  20. A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion.

    Science.gov (United States)

    Nakazawa, Hikaru; Kawai, Tetsushi; Ida, Noriko; Shida, Yosuke; Shioya, Kouki; Kobayashi, Yoshinori; Okada, Hirofumi; Tani, Shuji; Sumitani, Jun-Ichi; Kawaguchi, Takashi; Morikawa, Yasushi; Ogasawara, Wataru

    2016-01-01

    The ability of the Trichoderma reesei X3AB1strain enzyme preparations to convert cellulosic biomass into fermentable sugars is enhanced by the replacement of xyn3 by Aspergillus aculeatus β-glucosidase 1 gene (aabg1), as shown in our previous study. However, subsequent experiments using T. reesei extracts supplemented with the glycoside hydrolase (GH) family 10 xylanase III (XYN III) and GH Family 11 XYN II showed increased conversion of alkaline treated cellulosic biomass, which is rich in xylan, underscoring the importance of XYN III. To attain optimal saccharifying potential in T. reesei, we constructed two new strains, C1AB1 and E1AB1, in which aabg1 was expressed heterologously by means of the cbh1 or egl1 promoters, respectively, so that the endogenous XYN III synthesis remained intact. Due to the presence of wild-type xyn3 in T. reesei E1AB1, enzymes prepared from this strain were 20-30% more effective in the saccharification of alkaline-pretreated rice straw than enzyme extracts from X3AB1, and also outperformed recent commercial cellulase preparations. Our results demonstrate the importance of XYN III in the conversion of alkaline-pretreated cellulosic biomass by T. reesei. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Crystallization and preliminary diffraction studies of CBM3b of cellobiohydrolase 9A from Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Jindou, Sadanari [Department of Molecular Microbiology and Biotechnology, Tel Aviv University 69978 (Israel); Petkun, Svetlana [Department of Molecular Microbiology and Biotechnology, Tel Aviv University 69978 (Israel); The Daniella Rich Institute for Structural Biology, Tel Aviv University 69978 (Israel); Shimon, Linda [Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100 (Israel); Bayer, Edward A. [Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100 (Israel); Lamed, Raphael; Frolow, Felix, E-mail: mbfrolow@post.tau.ac.il [Department of Molecular Microbiology and Biotechnology, Tel Aviv University 69978 (Israel); The Daniella Rich Institute for Structural Biology, Tel Aviv University 69978 (Israel)

    2007-12-01

    The cloning, expression, purification and crystallization of the CBM3b module of cellobiohydrolase 9A from C. thermocellum is described. The crystals diffract to 2.68 Å. Family 3 carbohydrate-binding modules (CBM3s) are associated with the scaffoldin subunit of the multi-enzyme cellulosome complex and with the family 9 glycoside hydrolases, which are multimodular enzymes that act on plant cell-wall polysaccharides, notably cellulose. Here, the crystallization of CBM3b from cellobiohydrolase 9A is reported. The crystals are tetragonal and belong to space group P4{sub 1} or P4{sub 3}. X-ray diffraction data for CBM3b have been collected to 2.68 Å resolution on beamline ID14-4 at the ESRF.

  2. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei and a new sympatric agamospecies related to it.

    Directory of Open Access Journals (Sweden)

    Irina S Druzhinina

    Full Text Available BACKGROUND: Trichoderma reesei, a mitosporic green mould, was recognized during the WW II based on a single isolate from the Solomon Islands and since then used in industry for production of cellulases. It is believed to be an anamorph (asexual stage of the common pantropical ascomycete Hypocrea jecorina. METHODOLOGY/PRINCIPAL FINDINGS: We combined molecular evolutionary analysis and multiple methods of phenotype profiling in order to reveal the genetic relationship of T. reesei to H. jecorina. The resulting data show that the isolates which were previously identified as H. jecorina by means of morphophysiology and ITS1 and 2 (rRNA gene cluster barcode in fact comprise several species: i H. jecorina/T. reesei sensu stricto which contains most of the teleomorphs (sexual stages found on dead wood and the wild-type strain of T. reesei QM 6a; ii T. parareesei nom. prov., which contains all strains isolated as anamorphs from soil; iii and two other hypothetical new species for which only one or two isolates are available. In silico tests for recombination and in vitro mating experiments revealed a history of sexual reproduction for H. jecorina and confirmed clonality for T. parareesei nom. prov. Isolates of both species were consistently found worldwide in pantropical climatic zone. Ecophysiological comparison of H. jecorina and T. parareesei nom. prov. revealed striking differences in carbon source utilization, conidiation intensity, photosensitivity and mycoparasitism, thus suggesting adaptation to different ecological niches with the high opportunistic potential for T. parareesei nom. prov. CONCLUSIONS: Our data prove that T. reesei belongs to a holomorph H. jecorina and displays a history of worldwide gene flow. We also show that its nearest genetic neighbour--T. parareesei nom. prov., is a cryptic phylogenetic agamospecies which inhabits the same biogeographic zone. These two species thus provide a so far rare example of sympatric speciation

  3. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.

    Science.gov (United States)

    Zhang, Xiaoyue; Li, Yonghao; Zhao, Xinqing; Bai, Fengwu

    2017-01-01

    The high cost of cellulase production presents biggest challenge in biomass deconstruction. Cellulase production by Trichoderma reesei using low cost carbon source is of great interest. In this study, an artificial transcription activator containing the Cre1 binding domain linked to the Xyr1 effector and binding domains was designed and constitutively overexpressed in T. reesei RUT C30. The recombinant strain T. reesei zxy-2 displayed constitutive cellulase production using glucose as a sole carbon source, and the production titer was 12.75-fold of that observed with T. reesei RUT C30 in shake flask culture. Moreover, FPase and xylanase titers of 2.63 and 108.72IU/mL, respectively, were achieved using glucose as sole carbon source within 48h in a 7-L fermenter by batch fermentation using T. reesei zxy-2. The crude enzyme obtained was used to hydrolyze alkali pretreated corn stover, and a high glucose yield of 99.18% was achieved. Copyright © 2016. Published by Elsevier Ltd.

  4. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  5. Peran Trichoderma reesei E. G Simmons pada Pengendalian Damping-Off Semai Cendana (Santalum Album Linn.

    Directory of Open Access Journals (Sweden)

    S. M. Widyastuti

    2006-12-01

    Full Text Available The sandalwood seedling has been planted in the nursery of Balitbang Kehutanan NTT to experience the destruction is about 20%, seedling is attacked by  damping-off. Biological control has been developed as alternate method against soil born diseases to eliminate  damage  on the environment. One of  the biological  agents  having high  antagonistic potential against soil born pathogen is Trichoderma spp. The direction of experiment  to search the cause of lodoh on the sandalwood  seedling and the application influences T. reesei on the control lodoh in the sandalwood seedling. Methods  of  the experiment was (1 isolation the sandalwood seedling of  painful and soil example  from NTT, (2 Postulat Koch test on the sandalwood seedling, (3 antagonistic test of T.  reesei  in vitro and (4 effectiveness  test of T. reesei against developing patogen in vivo. The result indicated that lodoh on the sandalwood seedling caused by Fusarium sp. T. reesei in vitro inhibited Fusarium sp. at average of 100% accordingly. The application of T. reesei as biological control agent against Fusarium sp. showed high  effectivity. The attact percentage of lodoh on sandalwood seedlings showed that the lowest one was growth on compost formulated with T. reesei (5%, whereas seedlings growth on compost without T. reesei,  unsteril  sands and soil samples  from NTT were 30%, 35% and 65%.

  6. Xylan oligosaccharides and cellobiohydrolase I (TrCeI7A) interaction and effect on activity

    DEFF Research Database (Denmark)

    Baumann, Martin Johannes; Borch, Kim; Westh, Peter

    2011-01-01

    and an enzyme variant without the cellulose-binding domain (CBM). Results We studied the binding of XOSs to TrCel7A by isothermal titration calorimetry. We found that XOSs bind to TrCel7A and that the affinity increases commensurate with XOS length. The CBM, on the other hand, did not affect the affinity...

  7. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

    Science.gov (United States)

    Teng, Ying; Luo, Yang; Ma, Wenting; Zhu, Lingjia; Ren, Wenjie; Luo, Yongming; Christie, Peter; Li, Zhengao

    2015-01-01

    This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L-1). All inoculation agents investigated enhanced plant shoot biomass by 6–53% of fresh weight and 16–61% of dry weight and Cd uptake by the shoots by 10–53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility. PMID:26113858

  8. Systems Analysis of Lactose Metabolism in Trichoderma reesei Identifies a Lactose Permease That Is Essential for Cellulase Induction

    Science.gov (United States)

    Ivanova, Christa; Bååth, Jenny A.; Seiboth, Bernhard; Kubicek, Christian P.

    2013-01-01

    Trichoderma reesei colonizes predecayed wood in nature and metabolizes cellulose and hemicellulose from the plant biomass. The respective enzymes are industrially produced for application in the biofuel and biorefinery industry. However, these enzymes are also induced in the presence of lactose (1,4-0-ß-d-galactopyranosyl-d-glucose), a waste product from cheese manufacture or whey processing industries. In fact, lactose is the only soluble carbon source that induces these enzymes in T. reesei on an industrial level but the reason for this unique phenomenon is not understood. To answer this question, we used systems analysis of the T. reesei transcriptome during utilization of lactose. We found that the respective CAZome encoded all glycosyl hydrolases necessary for cellulose degradation and particularly for the attack of monocotyledon xyloglucan, from which ß-galactosides could be released that may act as the inducers of T. reesei’s cellulases and hemicellulases. In addition, lactose also induces a high number of putative transporters of the major facilitator superfamily. Deletion of fourteen of them identified one gene that is essential for lactose utilization and lactose uptake, and for cellulase induction by lactose (but not sophorose) in pregrown mycelia of T. reesei. These data shed new light on the mechanism by which T. reesei metabolizes lactose and offers strategies for its improvement. They also illuminate the key role of ß-D-galactosides in habitat specificity of this fungus. PMID:23690947

  9. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes

    DEFF Research Database (Denmark)

    Torsvik, Janniche; Johansson, Stefan; Johansen, Anders

    2009-01-01

    of the VNTR, and determined the VNTR-length of each allele. When blindly testing 56 members of the two families with known single-base deletions in the CEL VNTR, the method correctly assessed the mutation carriers. Screening of 241 probands from suspected maturity-onset diabetes of the young (MODY) families...... negative for mutations in known MODY genes (95 individuals from Denmark and 146 individuals from UK) revealed no deletions in the proximal repeats of the CEL VNTR. However, we found one Danish patient with a short, novel CEL allele containing only three VNTR repeats (normal range 7-23 in healthy controls......). This allele co-segregated with diabetes or impaired glucose tolerance in the patient's family as six of seven mutation carriers were affected. We also identified individuals who had three copies of a complete CEL VNTR. In conclusion, the CEL gene is highly polymorphic, but mutations in CEL are likely...

  10. An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Baumann, Martin Johannes; Borch, Kim

    2010-01-01

    amplification method has been developed to measure even slow hydrolytically active enzymes such as cellobiohydrolases. This method is explained in detail for the amplification of the heat signal by more than 130 times by using glucose oxidase and catalase. The kinetics of this complex coupled reaction system...

  11. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, M.P.; Vaheri, M.E.O.; Kaupinen, V.S.

    1979-01-01

    Production and release of cellulolytic enzymes by T. reesei QM 9414 were studied under induced and non-induced conditions and glycerol, respectively, as the only C source. There was a base level of cell debris-bound hydrolytic activity against filter paper and p-nitrophenyl glycoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper- and CMC-hydrolyzing enzymes, which were actively released even in the early stages of cultivation. Beta-Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.

  12. Biochemical genetics of the circadian rhythm in Neurospora crassa: studies on the cel strain

    International Nuclear Information System (INIS)

    Lakin-Thomas, P.L.

    1985-01-01

    In Neurospora crassa, the cel mutation lengthens the period of the circadian rhythm when the medium is supplemented with linoleic acid (18:2). Double mutant strains were constructed between cel and the clock mutants prd-1 and four alleles at the frq locus. It was found that: (1) the effect of 18:2 on cel was blocked by prd-1, i.e., prd-1 is epistatic to cel. (2) cel and frq interact such that the percent increase in the period produced by 18:2 was inversely proportional to the period of the frq parent. (3) Data from the literature on period effects in double mutant strains support a multiplicative rather than an additive model. A biochemical interpretation of these interactions is discussed, based on the control of flux through metabolic pathways. Because the cel strain is known to be deficient in the pantothenate derivative normally attached to the fatty acid synthetase (FAS) complex, the possibility that cel may affect other pantothenate-modified proteins was investigated. It was found that in the cel + strain, five proteins of molecular weights (M/sub r/) 9000, 19,000, 22,000, 140,000, and 200,000 were labelled with [ 14 C]pantothenate. In the cel strain, only the 200 k (FAS) label was reduced in amount. Therefore, there is no evidence that cel affects circadian rhythmicity through any deficiency other than FAS. A biochemical model for circadian rhythmicity in Neurospora is presented. Oscillations in cytoplasmic and mitochondrial Ca 2+ are proposed; clock mutations are postulated to affect Ca 2+ transporters and the mitochondrial membrane; and phase-shifting effects are accounted for by changes in Ca 2+ or ATP levels

  13. Doença celíaca é super-representada em pacientes com constipação

    Directory of Open Access Journals (Sweden)

    Rolf A. A. Pelleboer

    2012-04-01

    Full Text Available OBJETIVO: Tem sido sugerido que pacientes com constipação sejam triados para doença celíaca. Da mesma forma, recomenda-se a investigação desses pacientes para hipotiroidismo e hipercalcemia. Contudo, nenhuma evidência para essas recomendações está disponível até o momento. Assim, propusemos-nos determinar a prevalência de doença celíaca, hipotiroidismo e hipercalcemia em crianças com constipação. MÉTODOS: Estudo de coorte prospectivo com 370 pacientes consecutivos que preencheram os critérios de Roma III para constipação. Esses pacientes foram encaminhados por um clínico geral a um pediatra devido ao fracasso no tratamento com laxantes. RESULTADOS: A biópsia comprovou doença celíaca em sete desses pacientes. Isso é significativamente mais alto (p < 0,001 do que a prevalência de 1:198 de doença celíaca nos Países Baixos. Dois pacientes tinham tiroidite autoimune. Nenhum paciente tinha hipercalcemia. CONCLUSÕES: Conclui-se que a doença celíaca é significativamente super-representada em pacientes com constipação encaminhados por um clínico geral a um pediatra devido ao fracasso no tratamento com laxantes. Todos esses pacientes devem, portanto, ser triados para doença celíaca.

  14. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    Science.gov (United States)

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  15. Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A.

    Science.gov (United States)

    Zhao, Jie; Zeng, Shengquan; Xia, Ying; Xia, Liming

    2018-04-01

    The laccase gene from Pycnoporus sanguineus was cloned and inserted between the strong Pcbh1 promoter and the Tcbh1 terminator from Trichoderma reesei to form the recombinant plasmid pCH-lac. Using Agrobacterium-mediated technique, the pCH-lac was integrated into the chromosomes of T. reesei. Twenty positive transformants were obtained by employing hygromycin B as a selective agent. PCR was used to confirm that the laccase gene was integrated into the chromosomal DNA of T. reesei. Laccase production by recombinant transformants was performed in shaking flasks, and the activity of laccase reached 8.8 IU/mL after 96-h fermentation under a batch process, and 17.7 IU/mL after 144-h fermentation using a fed-batch process. SDS-PAGE analysis of the fermentation broth showed that the molecular mass of the protein was about 68 kDa, almost the same as that of the laccase produced by P. sanguineus, which indicated that laccase was successfully expressed in T. reesei and secreted out of the cells. The laccase produced by the recombinant T. reesei showed good thermal stability, and could degrade the toxic phenolic material bisphenol A efficiently, after 1-h reaction with 0.06 IU/mL laccase and 0.5 mmol/L ABTS as the mediator at 60 °C and pH 4.5, the degradation rate reached 95%, which demonstrated that it had great potential value in treating the household garbage and wastewater containing the bisphenol A. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    International Nuclear Information System (INIS)

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-01-01

    Highlights: ► The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. ► The fusion enzyme was stable at 80 °C for 120-min. ► The fusion enzyme was responsible for cellulose-binding capacity. ► The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS–PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  17. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com [Department of Biological Science, Faculty of Science, Ubon-Ratchathani University, Warinchumrab, Ubon-Ratchathani 34190 (Thailand); Ikeda, Hiroko; Iefuji, Haruyuki [Application Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  18. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Genetic engineering of Trichoderma reesei cellulases and their production.

    Science.gov (United States)

    Druzhinina, Irina S; Kubicek, Christian P

    2017-11-01

    Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production

    NARCIS (Netherlands)

    Nguyen, E.V.; Imanishi, S.Y.; Haapaniemi, P.; Yadav, A.; Saloheimo, M.; Corthals, G.L.; Pakula, T.M.

    2016-01-01

    The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation

  1. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes.

    Science.gov (United States)

    Torsvik, Janniche; Johansson, Stefan; Johansen, Anders; Ek, Jakob; Minton, Jayne; Raeder, Helge; Ellard, Sian; Hattersley, Andrew; Pedersen, Oluf; Hansen, Torben; Molven, Anders; Njølstad, Pål R

    2010-01-01

    We have previously shown that heterozygous single-base deletions in the carboxyl-ester lipase (CEL) gene cause exocrine and endocrine pancreatic dysfunction in two multigenerational families. These deletions were found in the first and fourth repeats of a variable number of tandem repeats (VNTR), which has proven challenging to sequence due to high GC-content and considerable length variation. We have therefore developed a screening method consisting of a multiplex PCR followed by fragment analysis. The method detected putative disease-causing insertions and deletions in the proximal repeats of the VNTR, and determined the VNTR-length of each allele. When blindly testing 56 members of the two families with known single-base deletions in the CEL VNTR, the method correctly assessed the mutation carriers. Screening of 241 probands from suspected maturity-onset diabetes of the young (MODY) families negative for mutations in known MODY genes (95 individuals from Denmark and 146 individuals from UK) revealed no deletions in the proximal repeats of the CEL VNTR. However, we found one Danish patient with a short, novel CEL allele containing only three VNTR repeats (normal range 7-23 in healthy controls). This allele co-segregated with diabetes or impaired glucose tolerance in the patient's family as six of seven mutation carriers were affected. We also identified individuals who had three copies of a complete CEL VNTR. In conclusion, the CEL gene is highly polymorphic, but mutations in CEL are likely to be a rare cause of monogenic diabetes.

  2. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    Science.gov (United States)

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

    Science.gov (United States)

    Wang, Mingyu; Zhao, Qiushuang; Yang, Jinghua; Jiang, Baojie; Wang, Fangzhong; Liu, Kuimei; Fang, Xu

    2013-01-01

    The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei

  4. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  5. Immobilization of Trichoderma reesei by radiation polymerization

    International Nuclear Information System (INIS)

    Zhou Ruimin; Ma Zueteh; Kaetus, Isao; Kumakura, Minoro

    1993-01-01

    Immobilization of Trichoderma reesei was carried out by radiation polymerization. It was found that the activity of fixed cells increased with increasing surface area of the carrier and was affected by the concentration of monomer tetraethylenglycol dimethacrylate and the shape of the substrate composition and structure of cotton textile fabrics. (author)

  6. Response to Comment on "Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA".

    Science.gov (United States)

    Brunecky, Roman; Alahuhta, Markus; Xu, Qi; Donohoe, Bryon S; Crowley, Michael F; Kataeva, Irina A; Yang, Sung-Jae; Resch, Michael G; Adams, Michael W W; Lunin, Vladimir V; Himmel, Michael E; Bomble, Yannick J

    2014-05-09

    Gusakov critiques our methodology for comparing the cellulolytic activity of the bacterial cellulase CelA with the fungal cellulase Cel7A. We address his concerns by clarifying some misconceptions, carefully referencing the literature, and justifying our approach to point out that the results from our study still stand.

  7. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    Science.gov (United States)

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  8. Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis.

    Science.gov (United States)

    Zhang, Qing; Zhang, Xiaomei; Wang, Peipei; Li, Dandan; Chen, Guanjun; Gao, Peiji; Wang, Lushan

    2015-03-01

    Fluorescence-assisted carbohydrate electrophoresis (FACE) is a sensitive and simple method for the separation of oligosaccharides. It relies on labeling the reducing ends of oligosaccharides with a fluorophore, followed by PAGE. Concentration changes of oligosaccharides following hydrolysis of a carbohydrate polymer could be quantitatively measured continuously over time using the FACE method. Based on the quantitative analysis, we suggested that FACE was a relatively high-throughput, repeatable, and suitable method for the analysis of the action modes of cellulases. On account of the time courses of their hydrolytic profiles, the apparent processivity was used to show the different action modes of cellulases. Cellulases could be easily differentiated as exoglucanases, β-glucosidases, or endoglucanases. Moreover, endoglucanases from the same glycoside hydrolases family had a variety of apparent processivity, indicating the different modes of action. Endoglucanases with the same binding capacities and hydrolytic activities had similar oligosaccharide profiles, which aided in their classification. The hydrolytic profile of Trichoderma reesei Cel12A, an endoglucanases from T. reesei, contained glucose, cellobiose, and cellotriose, which revealed that it may have a new glucosidase activity, corresponding to that of EC 3.2.1.74. A hydrolysate study of a T. reesei Cel12A-N20A mutant demonstrated that the FACE method was sufficiently sensitive to detect the influence of a single-site mutation on enzymatic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei.

    Science.gov (United States)

    Wu, Yilan; Sun, Xianhua; Xue, Xianli; Luo, Huiying; Yao, Bin; Xie, Xiangming; Su, Xiaoyun

    2017-11-01

    Vast interest exists in developing T. reesei for production of heterologous proteins. Although rich genomic and transcriptomic information has been uncovered for the T. reesei secretion pathway, little is known about whether engineering its key components could enhance expression of a heterologous gene. In this study, snc1, a v-SNARE gene, was first selected for overexpression in T. reesei. In engineered T. reesei with additional copies of snc1, the Aspergillus niger glucose oxidase (AnGOD) was produced to a significantly higher level (2.2-fold of the parental strain). hac1 and bip1, two more component genes in the secretion pathway, were further tested for overexpression and found to be also beneficial for AnGOD secretion. The overexpression of one component gene more or less affected the expression of the other two genes, suggesting a complex regulating mechanism. Our study demonstrates the potential of engineering the secretion pathway for enhancing heterologous gene production in T. reesei. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect of physical treatment on Trichoderma reesei cells

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    The effect of physical treatment such as freezing and gamma-ray irradiation on Trichoderma reesei cells was studied. The decrease phenomena of cellulase production, which was observed in the culture of the cells using wheat bran extract, was improved by physical treatment. (author)

  11. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    Science.gov (United States)

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions.

  12. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei.

    Science.gov (United States)

    Chen, Fei; Chen, Xiu-Zhen; Su, Xiao-Yun; Qin, Li-Na; Huang, Zhen-Bang; Tao, Yong; Dong, Zhi-Yang

    2015-10-01

    Eukaryotic mitogen-activated protein kinases (MAPKs) play crucial roles in transducing environmental and developmental signals inside the cell and regulating gene expression, however, the roles of MAPKs remain largely unknown in Trichoderma reesei. T. reesei ime2 (TrIme2) encodes an Ime2-like MAPK in T. reesei. The deletion of the TrIme2 gene led to 90% increase in cellulase activity against filter paper during earlier period time of cellulase induction as well as the extracellular protein production. Compared to the parent strain, the transcriptional levels of the three major cellulase genes cbh1,cbh2, egl1 were increased by about 9 times, 4 times, 2 times, respectively, at 8 h after cellulase induction in the ΔTrIme2 mutant. In addition, the disruption of TrIme2 caused over 50% reduction of the transcript levels of cellulase transcriptional regulators cre1 and xyr1. TrIme2 functions in regulation of the expression of cellulase gene in T.reesei, and is a good candidate for genetically engineering of T. reesei for higher cellulase production.

  13. Immobilization of Trichoderma reesei cells by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization 2-hydroxyethyl acrylate monomer at low temperature. Cellulase production resulting from the growth of the cells in the porous polymer matrix of immobilized cell composites was confirmed by measuring the cellulase activity and pH during the culture. (orig.)

  14. Interrelationships of VEL1 and ENV1 in light response and development in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Hoda Bazafkan

    Full Text Available Sexual development is regulated by a complex regulatory mechanism in fungi. For Trichoderma reesei, the light response pathway was shown to impact sexual development, particularly through the photoreceptor ENVOY. Moreover, T. reesei communicates chemically with a potential mating partner in its vicinity, a response which is mediated by the velvet family protein VEL1 and its impact on secondary metabolism. We therefore studied the regulatory interactions of ENV1 and VEL1 with a focus on sexual development. Although individual mutants in both genes are female sterile under standard crossing conditions (light-dark cycles, an altered light regime enabled sexual development, which we found to be due to conditional female sterility of Δenv1, but not Δvel1. Phenotypes of growth and asexual sporulation as well as regulation of the peptide pheromone precursors of double mutants suggested that ENV1 and VEL1 balance positive and negative regulators of these functions. Additionally, VEL1 contributed to the strong deregulation of the pheromone system observed in env1 mutants. Female sterility of Δvel1 was rescued by deletion of env1 in darkness in MAT1-1, indicating a block of sexual development by ENV1 in darkness that is balanced by VEL1 in the wild-type. We conclude that ENV1 and VEL1 exert complementing functions in development of T. reesei. Our results further showed that the different developmental phenotypes of vel1/veA mutants in T. reesei and Aspergillus nidulans are not due to the presence or function of ENV1 in the VELVET regulatory pathway in T. reesei.

  15. The VELVET A Orthologue VEL1 of Trichoderma reesei Regulates Fungal Development and Is Essential for Cellulase Gene Expression

    Science.gov (United States)

    Atanasova, Lea; Fekete, Erzsébet; Paholcsek, Melinda; Sándor, Erzsébet; Aquino, Benigno; Druzhinina, Irina S.; Karaffa, Levente; Kubicek, Christian P.

    2014-01-01

    Trichoderma reesei is the industrial producer of cellulases and hemicellulases for biorefinery processes. Their expression is obligatorily dependent on the function of the protein methyltransferase LAE1. The Aspergillus nidulans orthologue of LAE1 - LaeA - is part of the VELVET protein complex consisting of LaeA, VeA and VelB that regulates secondary metabolism and sexual as well as asexual reproduction. Here we have therefore investigated the function of VEL1, the T. reesei orthologue of A. nidulans VeA. Deletion of the T. reesei vel1 locus causes a complete and light-independent loss of conidiation, and impairs formation of perithecia. Deletion of vel1 also alters hyphal morphology towards hyperbranching and formation of thicker filaments, and with consequently reduced growth rates. Growth on lactose as a sole carbon source, however, is even more strongly reduced and growth on cellulose as a sole carbon source eliminated. Consistent with these findings, deletion of vel1 completely impaired the expression of cellulases, xylanases and the cellulase regulator XYR1 on lactose as a cellulase inducing carbon source, but also in resting mycelia with sophorose as inducer. Our data show that in T. reesei VEL1 controls sexual and asexual development, and this effect is independent of light. VEL1 is also essential for cellulase gene expression, which is consistent with the assumption that their regulation by LAE1 occurs by the VELVET complex. PMID:25386652

  16. Omics Analyses of Trichoderma reesei CBS999.97 and QM6a Indicate the Relevance of Female Fertility to Carbohydrate-Active Enzyme and Transporter Levels.

    Science.gov (United States)

    Tisch, Doris; Pomraning, Kyle R; Collett, James R; Freitag, Michael; Baker, Scott E; Chen, Chia-Ling; Hsu, Paul Wei-Che; Chuang, Yu Chien; Schuster, Andre; Dattenböck, Christoph; Stappler, Eva; Sulyok, Michael; Böhmdorfer, Stefan; Oberlerchner, Josua; Wang, Ting-Fang; Schmoll, Monika

    2017-11-15

    The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis. IMPORTANCE Trichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and

  17. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification

    Directory of Open Access Journals (Sweden)

    Tamar Hashimshony

    2012-09-01

    Full Text Available High-throughput sequencing has allowed for unprecedented detail in gene expression analyses, yet its efficient application to single cells is challenged by the small starting amounts of RNA. We have developed CEL-Seq, a method for overcoming this limitation by barcoding and pooling samples before linearly amplifying mRNA with the use of one round of in vitro transcription. We show that CEL-Seq gives more reproducible, linear, and sensitive results than a PCR-based amplification method. We demonstrate the power of this method by studying early C. elegans embryonic development at single-cell resolution. Differential distribution of transcripts between sister cells is seen as early as the two-cell stage embryo, and zygotic expression in the somatic cell lineages is enriched for transcription factors. The robust transcriptome quantifications enabled by CEL-Seq will be useful for transcriptomic analyses of complex tissues containing populations of diverse cell types.

  18. Space mutagenic effect of Trichoderma reesei

    International Nuclear Information System (INIS)

    Tian Xingshan; Zhou Fengzheng; Huang Xiaoguang; Kuang Zheshi; Pan Mushui; Li Guoli; Guo Yong

    2005-01-01

    The slant mycelia cultured with or without mutagenic agent diethyl sulfate (DS) and spores of Trichoderma reesei were loaded in the 18th returning satellite. Systematical screening showed that the life cycle and morphology of some strains had changed after space flight. After selection and domestication, 3 mutant strains with high cellulose enzyme activity were isolated. The cellulose enzyme productivities of the mutants were significantly increased more than 50%, and the mutant were generically stable. (authors)

  19. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48.

    Science.gov (United States)

    Huang, Jun; Chen, Dong; Wei, Yutuo; Wang, Qingyan; Li, Zhenchong; Chen, Ying; Huang, Ribo

    2014-01-01

    Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing.

  20. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods

    Directory of Open Access Journals (Sweden)

    Camila Florencio

    2016-09-01

    Full Text Available The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc., glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in “Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis” C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016 [1]. Keywords: Tricoderma reesei, Aspergillus Niger, Enzyme Production, Secretome

  1. VIDEO ANIMASI 3D PENGENALAN RUMAH ADAT DAN ALAT MUSIK KEPRI DENGAN MENGUNAKAN TEKNIK RENDER CEL-SHADING

    Directory of Open Access Journals (Sweden)

    Jianfranco Irfian Asnawi

    2016-11-01

    Full Text Available Animasi ini berjudul "video animasi 3D rumah adat dan alat musik Kepulauan Riau dengan menggunakan teknik render cel-shading" merupakan video yang bertujuan memperkenalkan alat-alat musik yang berasal dari kepulauan riau, Animasi ini akan diterapkan dengan menggunakan teknik render cel-shading. Cel-shading adalah teknik render yang menampilkan grafik 3D yang menyerupai gambar tangan, seperti gambar komik dan kartun. Teknik ini juga sudah di terapkan dalam game 3D yang ternyata menarik banyak perhatian peminat. Teknik ini akan di terapkan kedalam animasi 3D "video animasi rumah adat dan alat musik kepulauan riau dengan menggunakan teknik render cel-shading" Animasi di rancang menggunakan skenario dan storyboard kemudian di implementasikan dalam software 3D MAYA AUTODESK dengan menggunakan teknik render cel-shading. Setelah diterapkan maka di dapatkan definisi keberhasilan dari teknik render cel shading di bandingkan dengan teknik render global illumination seperti dari kecepatan dalam merender dan tingkat kecerahan warna pada video. Kata kunci: animasi, game 3D, cel-shading.

  2. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion

    Directory of Open Access Journals (Sweden)

    Fernando Segato

    2016-07-01

    Full Text Available Current cellulosic biomass hydrolysis is based on the one-time use of cellulases. Cellulases immobilized on magnetic nanocarriers offer the advantages of magnetic separation and repeated use for continuous hydrolysis. Most immobilization methods focus on only one type of cellulase. Here, we report co-immobilization of two types of cellulases, β-glucosidase A (BglA and cellobiohydrolase D (CelD, on sub-20 nm superparamagnetic nanoparticles. The nanoparticles demonstrated 100% immobilization efficiency for both BglA and CelD. The total enzyme activities of immobilized BglA and CelD were up to 67.1% and 41.5% of that of the free cellulases, respectively. The immobilized BglA and CelD each retained about 85% and 43% of the initial immobilized enzyme activities after being recycled 3 and 10 times, respectively. The effects of pH and temperature on the immobilized cellulases were also investigated. Co-immobilization of BglA and CelD on MNPs is a promising strategy to promote synergistic action of cellulases while lowering enzyme consumption.

  3. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Zhang, Zhenghong

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty......-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used...... as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes...

  4. The intracellular galactoglycome in Trichoderma reesei during growth on lactose

    NARCIS (Netherlands)

    Karaffa, L.; Coulier, L.; Fekete, E.; Overkamp, K.M.; Druzhinina, I.S.; Mikus, M.; Seiboth, B.; Novák, L.; Punt, P.J.; Kubicek, C.P.

    2013-01-01

    Lactose (1,4-0-β-d-galactopyranosyl-d-glucose) is used as a soluble carbon source for the production of cellulases and hemicellulases for - among other purposes - use in biofuel and biorefinery industries. The mechanism how lactose induces cellulase formation in T. reesei is enigmatic, however.

  5. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Treebupachatsakul, Treesukon; Shioya, Koki; Nakazawa, Hikaru; Kawaguchi, Takashi; Morikawa, Yasushi; Shida, Yosuke; Ogasawara, Wataru; Okada, Hirofumi

    2015-12-01

    The capacity of Trichoderma reesei cellulase to degrade lignocellulosic biomass has been enhanced by the construction of a recombinant T. reesei strain expressing Aspergillus aculeatus β-glucosidase I. We have confirmed highly efficient ethanol production from converge-milled Japanese cedar by recombinant T. reesei expressing A. aculeatus β-glucosidase I (JN11). We investigated the ethanol productivity of JN11 and compared it with the cocktail enzyme T. reesei PC-3-7 with reinforced cellobiase activity by the commercial Novozyme 188. Results showed that the ethanol production efficiency under enzymatic hydrolysis of JN11 was comparable to the cocktail enzyme both on simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF) processes. Moreover, the cocktail enzyme required more protein loading for attaining similar levels of ethanol conversion as JN11. We propose that JN11 is an intrinsically economical enzyme that can eliminate the supplementation of BGL for PC-3-7, thereby reducing the cost of industrial ethanol production from lignocellulosic biomass. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Use of mep HyperCel for polishing of human serum albumin.

    Science.gov (United States)

    McCann, Karl B; Vucica, Yvonne; Wu, John; Bertolini, Joseph

    2014-10-15

    The manufacture of human serum albumin by chromatographic procedures involves gel filtration chromatography as a final polishing step. Despite this step being essential to remove high molecular weight impurity proteins and thus ensure a stable and safe final product, it is relatively inefficient. This paper explores the use of hydrophobic charge induction chromatographic media, MEP HyperCel as an alternative to Sephacryl S200HR gel filtration for the polishing of human serum albumin derived by ion exchange chromatographic purification of Cohn Supernatant I. The use of MEP HyperCel results in a product with a higher purity than achieved with gel filtration and in a less time consuming manner and with potential resource savings. MEP HyperCel appears to have great potential for incorporation into downstream processes in the plasma fractionation industry as an efficient means of achieving polishing of intermediates or capture of proteins of interest. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Obtención de Variantes Hiperactivas e Inactivas de la Endocelulasa Cel9 de Myxobacter Sp. Al-1 Obtención de Variantes Hiperactivas e Inactivas de la Endocelulasa Cel9 de Myxobacter Sp. Al-1

    Directory of Open Access Journals (Sweden)

    Mario Pedraza-Reyes

    2012-02-01

    Full Text Available Debido a su aplicación industrial, existe un gran interés en la producción de celulasas con propiedades bioquímicas novedosas. Por ello, en el presente trabajo se utilizó una estrategia basada en un método de mutagénesis aleatoria in vivo para la obtención de variantes de la endocelulasa Cel9 del microorganismo gram-negativo Myxobacter Sp. AL-1. Siguiendo este enfoque, se obtuvieron cepas transformantes de Escherichia coli capaces de secretar variantes de la proteína Cel9 cuyas actividades específicas fueron incrementadas hasta 7.5 veces con respecto a la actividad mostrada por la enzima nativa. Del mismo modo, se generaron cepas de E. coli productoras de variantes de la proteína Cel9 con baja o nula actividad enzimática. Experimentos de subclonación y fraccionamiento celular revelaron que las mutaciones asociadas con los fenotipos de las variantes de la enzima Cel9 ocurrieron en la secuencia del gen cel9. Así mismo, se demostró que los fenotipos de las cepas mutantes carentes de actividad enzimática no dependen de su incapacidad para secretar las proteínas mutantes. Además de su potencial aplicación biotecnológica, los resultados obtenidos en este trabajo permiten avanzar en el entendimiento de la relación estructura-función de la celulasa Cel9 de Myxobacter Sp. AL-1.Due to its biotechnological impact, there is currently a growing interest in the production of cellulases with novel biochemical properties. Here, multiple generations of random mutagenesis in vivo and screening were employed to generate variants of the modular cellulase Cel9 from Myxobacter Sp. AL-1. Following this approach, Cel9 variants which showed increases upto 7.5 fold of cellulase activity were obtained. In addition, Cel9 mutants which completely lost the ability to degrade cellulose were also obtained. Results revealed that mutations associated with the phenotype of the Cel9 variants occurred on the mutant gene sequence and that themutants with null

  8. Cellulase-poor xylanases produced by Trichoderma reesei RUT C-30 on hemicellulose substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gamerith, G.; Groicher, R. (Lenzing AG (Austria). Dept. of Research and Development); Zeilinger, S.; Herzog, P.; Kubicek, C.P. (Technische Univ., Vienna (Austria). Abt. fuer Mikrobielle Biochemie)

    1992-12-01

    Hemicellulose components from industrial viscose fibre production are characterized by a lower cellulose content than commerical xylan and the pressence of a carboxylic acid fraction originating from the alkaline degradation of carbohydrates during the process. This substrate, after neutralization, can be used by Trichoderma reesei RUT C-30 for the production of cellulase-poor xylanases, useful for the pulp and paper industry. The yields of xylanase ranged up to almost 400 units/ml, with a ratio of carboxymethylcellulase/xylanase of less than 0.015. This crude xylanase enzyme mixture was shown to be superior to that obtained on beech-wood xylan when used for bleaching and, particularly, upgrading of hard-wood chemical pulp by selective removal of the xylan components. Biochemical studies indicate that the low cellulase production by T. reesei grown on these waste hemicelluloses is the result of a combination of at least three factors: (a) The comparatively low content of cellulose in these hemicellulosic wastes, (b) the inhibitory action of the carboxylic acid fraction present in the hemicellulosic wastes on growth and sporulation of T. reesei, and (c) the use of a mycelial inoculum that is unable to initiate the atack on the cellulose components within the carbon source. (orig.).

  9. Copy number variants and VNTR length polymorphisms of the carboxyl-ester lipase (CEL) gene as risk factors in pancreatic cancer.

    Science.gov (United States)

    Dalva, Monica; El Jellas, Khadija; Steine, Solrun J; Johansson, Bente B; Ringdal, Monika; Torsvik, Janniche; Immervoll, Heike; Hoem, Dag; Laemmerhirt, Felix; Simon, Peter; Lerch, Markus M; Johansson, Stefan; Njølstad, Pål R; Weiss, Frank U; Fjeld, Karianne; Molven, Anders

    We have recently described copy number variants (CNVs) of the human carboxyl-ester lipase (CEL) gene, including a recombined deletion allele (CEL-HYB) that is a genetic risk factor for chronic pancreatitis. Associations with pancreatic disease have also been reported for the variable number of tandem repeat (VNTR) region located in CEL exon 11. Here, we examined if CEL CNVs and VNTR length polymorphisms affect the risk for developing pancreatic cancer. CEL CNVs and VNTR were genotyped in a German family with non-alcoholic chronic pancreatitis and pancreatic cancer, in 265 German and 197 Norwegian patients diagnosed with pancreatic adenocarcinoma, and in 882 controls. CNV screening was performed using PCR assays followed by agarose gel electrophoresis whereas VNTR lengths were determined by DNA fragment analysis. The investigated family was CEL-HYB-positive. However, an association of CEL-HYB or a duplication CEL allele with pancreatic cancer was not seen in our two patient cohorts. The frequency of the 23-repeat VNTR allele was borderline significant in Norwegian cases compared to controls (1.2% vs. 0.3%; P = 0.05). For all other VNTR lengths, no statistically significant difference in frequency was observed. Moreover, no association with pancreatic cancer was detected when CEL VNTR lengths were pooled into groups of short, normal or long alleles. We could not demonstrate an association between CEL CNVs and pancreatic cancer. An association is also unlikely for CEL VNTR lengths, although analyses in larger materials are necessary to completely exclude an effect of rare VNTR alleles. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  10. Site-Directed Mutagenesis of a Hyperthermophilic Endoglucanase Cel12B from Thermotoga maritima Based on Rational Design.

    Directory of Open Access Journals (Sweden)

    Jinfeng Zhang

    Full Text Available To meet the demand for the application of high activity and thermostable cellulases in the production of new-generation bioethanol from nongrain-cellulose sources, a hyperthermostable β-1,4-endoglucase Cel12B from Thermotoga maritima was selected for further modification by gene site-directed mutagenesis method in the present study, based on homology modeling and rational design. As a result, two recombinant enzymes showed significant improvement in enzyme activity by 77% and 87%, respectively, higher than the parental enzyme TmCel12B. Furthermore, the two mutants could retain 80% and 90.5% of their initial activity after incubation at 80°C for 8 h, while only 45% for 5 h to TmCel12B. The Km and Vmax of the two recombinant enzymes were 1.97±0.05 mM, 4.23±0.15 μmol·mg(-1·min(-1 of TmCel12B-E225H-K207G-D37V, and 2.97±0.12 mM, 3.15±0.21 μmol·mg(-1·min(-1 of TmCel12B-E225H-K207G, respectively, when using CMC-Na as the substrate. The roles of the mutation sites were also analyzed and evaluated in terms of electron density, hydrophobicity of the modeled protein structures. The recombinant enzymes may be used in the hydrolysis of cellulose at higher temperature in the future. It was concluded that the gene mutagenesis approach of a certain active residues may effectively improve the performance of cellulases for the industrial applications and contribute to the study the thermostable mechanism of thermophilic enzymes.

  11. La Enfermedad Celíaca

    OpenAIRE

    Cueto Rua, Eduardo Ángel; Nanfito, Gabriela; Guzmán, Luciana

    2006-01-01

    La Enfermedad Celíaca (EC) es la intolerancia alimentaria de orden genético más frecuente de la especie humana. En nuestro Servicio de Gastroenterología hemos diagnosticado más de 1900 casos en los últimos 34 años, y 92 y 73 nuevos casos en los años 2004 y 2005, respectivamente. La EC es el resultado de la interacción entre factores genéticos (constante absoluta) expresados en la mucosa intestinal y la respuesta i...

  12. Successful Treatment For Chronic Eosinophilic Leukemia (CEL With Imatinib Mesylate

    Directory of Open Access Journals (Sweden)

    Rayane da Silva Souza

    2017-12-01

    Full Text Available We report a case of a patient with Chronic Eosinophilic Leukemia (CEL with mutation in alfa PDGFR gene exhibiting a satisfactory response to treatment with imatinib mesylate. A 25-year-old man presented in a hematology service with a persistent cough and hemogram alterations. His blood count showed a hemoglobin level of 12.5 g/dL and a white blood cell count of 94,030/mm3, eosinophils were 68% of all cells. Bone marrow aspiration and biopsy showed hypercellularity with marked eosinophilia (77% and erythroid differentiation series was hypocellular with normoblast maturation. The immunohistochemically of the bone biopsy was positive for myeloperoxidase and negative for CD34/CD99, consistent with CEL. Fluorescence in situ hybridization (FISH for the beta-fraction of platelet-derived growth factor (PDGFRβ and Philadelphia chromosome (Ph 1 were negative and the alfa PDGFR (Platelet-Derived Growth Factor was positive and showed heterozygosis in c.2531T>C on 18 Exon and homozygous in C.2562+1G>A at the region of the splicing site at the 18 intron. Treatment was initiated and maintained by administering 400mg/day imatinib mesylate. Laboratory findings returned to normal ranges, with clinical improvement and a hematological response observed after the second month of therapy. Currently, the patient’s blood count shows the white blood cell count (5,400 total leukocytes, eosinophils (8.6/mm3, hemoglobin (15.5 g/dl, hematocrit (45.4% and platelets (298,000/mm3 within normal ranges. The mutation search was negative in in peripheral blood one year after the initial treatment. Our work corroborates other studies on the efficacy of imatinib mesylate in the treatment of patients with CSF PDGFR alpha positive. We emphasize the importance of molecular studies, considering its relevance for the correct staging of the disease. Since CEL is a rare disease, it is important to define its etiology and anticipate its treatment, thus minimizing the damage induced by

  13. Practical screening of purified cellobiohydrolases and endoglucanases with α-cellulose and specification of hydrodynamics

    Directory of Open Access Journals (Sweden)

    Jäger Gernot

    2010-08-01

    Full Text Available Abstract Background It is important to generate biofuels and society must be weaned from its dependency on fossil fuels. In order to produce biofuels, lignocellulose is pretreated and the resulting cellulose is hydrolyzed by cellulases such as cellobiohydrolases (CBH and endoglucanases (EG. Until now, the biofuel industry has usually applied impractical celluloses to screen for cellulases capable of degrading naturally occurring, insoluble cellulose. This study investigates how these cellulases adsorb and hydrolyze insoluble α-cellulose − considered to be a more practical substrate which mimics the alkaline-pretreated biomass used in biorefineries. Moreover, this study investigates how hydrodynamics affects cellulase adsorption and activity onto α-cellulose. Results First, the cellulases CBH I, CBH II, EG I and EG II were purified from Trichoderma reesei and CBH I and EG I were utilized in order to study and model the adsorption isotherms (Langmuir and kinetics (pseudo-first-order. Second, the adsorption kinetics and cellulase activities were studied under different hydrodynamic conditions, including liquid mixing and particle suspension. Third, in order to compare α-cellulose with three typically used celluloses, the exact cellulase activities towards all four substrates were measured. It was found that, using α-cellulose, the adsorption models fitted to the experimental data and yielded parameters comparable to those for filter paper. Moreover, it was determined that higher shaking frequencies clearly improved the adsorption of cellulases onto α-cellulose and thus bolstered their activity. Complete suspension of α-cellulose particles was the optimal operating condition in order to ensure efficient cellulase adsorption and activity. Finally, all four purified cellulases displayed comparable activities only on insoluble α-cellulose. Conclusions α-Cellulose is an excellent substrate to screen for CBHs and EGs. This current investigation

  14. The role of pheromone receptors for communication and mating in Hypocrea jecorina (Trichoderma reesei)

    Science.gov (United States)

    Seibel, Christian; Tisch, Doris; Kubicek, Christian P.; Schmoll, Monika

    2012-01-01

    Discovery of sexual development in the ascomycete Trichoderma reesei (Hypocrea jecorina) as well as detection of a novel class of peptide pheromone precursors in this fungus indicates promising insights into its physiology and lifestyle. Here we investigated the role of the two pheromone receptors HPR1 and HPR2 in the H. jecorina pheromone-system. We found that these pheromone receptors show an unexpectedly high genetic variability among H. jecorina strains. HPR1 and HPR2 confer female fertility in their cognate mating types (MAT1-1 or MAT1-2, respectively) and mediate induction of fruiting body development. One compatible pheromone precursor–pheromone receptor pair (hpr1–hpp1 or hpr2–ppg1) in mating partners was sufficient for sexual development. Additionally, pheromone receptors were essential for ascospore development, hence indicating their involvement in post-fertilisation events. Neither pheromone precursor genes nor pheromone receptor genes of H. jecorina were transcribed in a strictly mating type dependent manner, but showed enhanced expression levels in the cognate mating type. In the presence of a mating partner under conditions favoring sexual development, transcript levels of pheromone precursors were significantly increased, while those of pheromone receptor genes do not show this trend. In the female sterile T. reesei strain QM6a, transcriptional responses of pheromone precursor and pheromone receptor genes to a mating partner were clearly altered compared to the female fertile wild-type strain CBS999.97. Consequently, a delayed and inappropriate response to the mating partner may be one aspect causing female sterility in QM6a. PMID:22884620

  15. Purification and Characterization of β-1,3-Glucanase from the Antagonistic Fungus Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    SRI WAHYUNI BUDIARTI

    2009-09-01

    Full Text Available Trichoderma enzymes that inhibit fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal root rot pathogen Ganoderma philippii. This experiment was aimed to purify and characterize the β-1,3-glucanase of T. reesei. Extracellular β-1,3-glucanase was produced by growing mycoparasite T. reesei isolate T13 in colloidal chitin and sucrose as carbon sources. The enzyme was then purified to its homogeneity by precipitation with ammonium sulfate, followed by gel filtration chromatography and chromatofocusing. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE 12% was used to confirm the purity of enzyme at each stage of preparation and to characterize purified protein. The results showed that T. reesei produced at least three extracellular β-1,3-glucanases. Estimation of molecular weight based on SDS-PAGE 12% have three isoform of β-1,3-glucanase were 90 kDa for β-1,3-glucanase-I, 75 kDa for β-1,3-glucanase-II, and 64 kDa for β-1,3-glucanase-III. Their optimum pH and temperature were 5 and 50 oC, respectively.

  16. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, Jim

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  17. Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrate

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, J

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  18. PERFORMANCE OF LIQUI-CEL EXTRA-FLOW MEMBRANE CONTRACTOR IN A PURE WATER AND IN A 0.2% SODIUM CHLORIDE SOLUTION (SNO-STR-2001-11).

    Energy Technology Data Exchange (ETDEWEB)

    YEH,M.; BOGER,J.; HAHN,R.L.

    2001-11-05

    After completion of SNO's first phase measurement of the neutrino charge current, two tons of salt were added into the SNO heavy water to increase the sensitivity of the neutral current measurement (Phase II). Liqui-Cel Extra-Flow Membrane Contactors (simply called Liqui-Cel) are used in the SNO heavy-water circulating system to remove the dissolved gases, such as oxygen, nitrogen, radon, and water vapor from the liquid water. One possible scenario with phase II operation is that the salt may leak through the Liqui-Cel Membrane and come in contact with the vacuum pumps and other metal components of the Heavy-Water Vapor Recovery System. In this scenario, corrosion will damage these components, especially the vacuum pump (Pfeiffer UniDry Pump with cast iron interior), and increase the operational difficulties. A series of tests for the behavior of the Liqui-Cel System in pure water and in salt systems was conducted at the Brookhaven National Laboratory in order to measure the transfer of (a) water vapor and (b) salt, if there is any, through the membrane. Initially a 10-inch by 28-inch Liqui-Cel unit, identical to those used in the SNO heavy-water circulating system, was obtained from SNO site. However, extensive analysis showed that the membrane in this unit was defective: a replacement membrane would cost several thousand dollars. Instead, a smaller, 2.5-inch x 8-inch Liqui-Cel, obtained from Dr. Richard Helmers of the University of British Columbia, was used in this experiment. A comparison of the present experiment with the SNO heavy-water system is done with theoretical calculations. The results are discussed in the following sections.

  19. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw

    Directory of Open Access Journals (Sweden)

    Dashtban Mehdi

    2012-05-01

    Full Text Available Abstract Background Trichoderma reesei is a widely used industrial strain for cellulase production, but its low yield of β-glucosidase has prevented its industrial value. In the hydrolysis process of cellulolytic residues by T. reesei, a disaccharide known as cellobiose is produced and accumulates, which inhibits further cellulases production. This problem can be solved by adding β-glucosidase, which hydrolyzes cellobiose to glucose for fermentation. It is, therefore, of high vvalue to construct T. reesei strains which can produce sufficient β-glucosidase and other hydrolytic enzymes, especially when those enzymes are capable of tolerating extreme conditions such as high temperature and acidic or alkali pH. Results We successfully engineered a thermostable β-glucosidase gene from the fungus Periconia sp. into the genome of T. reesei QM9414 strain. The engineered T. reesei strain showed about 10.5-fold (23.9 IU/mg higher β-glucosidase activity compared to the parent strain (2.2 IU/mg after 24 h of incubation. The transformants also showed very high total cellulase activity (about 39.0 FPU/mg at 24 h of incubation whereas the parent strain almost did not show any total cellulase activity at 24 h of incubation. The recombinant β-glucosidase showed to be thermotolerant and remains fully active after two-hour incubation at temperatures as high as 60°C. Additionally, it showed to be active at a wide pH range and maintains about 88% of its maximal activity after four-hour incubation at 25°C in a pH range from 3.0 to 9.0. Enzymatic hydrolysis assay using untreated, NaOH, or Organosolv pretreated barley straw as well as microcrystalline cellulose showed that the transformed T. reesei strains released more reducing sugars compared to the parental strain. Conclusions The recombinant T. reesei overexpressing Periconia sp. β-glucosidase in this study showed higher β-glucosidase and total cellulase activities within a shorter incubation

  20. Two Major Facilitator Superfamily Sugar Transporters from Trichoderma reesei and Their Roles in Induction of Cellulase Biosynthesis*

    Science.gov (United States)

    Zhang, Weixin; Kou, Yanbo; Xu, Jintao; Cao, Yanli; Zhao, Guolei; Shao, Jing; Wang, Hai; Wang, Zhixing; Bao, Xiaoming; Chen, Guanjun; Liu, Weifeng

    2013-01-01

    Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the Δstp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement. PMID:24085297

  1. Effects of gamma-ray irradiation on cellulase secretion of Trichoderma reesei

    International Nuclear Information System (INIS)

    Tamada, M.; Kasai, N.; Kaetsu, I.

    1987-01-01

    Trichoderma reesei was irradiated with gamma rays to investigate the effects of different dosages on cellulase production. Doses above 0.7 kGy induced cell lysis. Cell growth began to be obstructed at 2.0 kGy. As a result, the cells irradiated at 2.0 kGy secreted 1.8 times as much cellulase as the untreated cells

  2. VIDEO ANIMASI 3D PENGENALAN RUMAH ADAT DAN ALAT MUSIK KEPRI DENGAN MENGUNAKAN TEKNIK RENDER CEL-SHADING

    OpenAIRE

    Jianfranco Irfian Asnawi; Afdhol Dzikri

    2016-01-01

    Animasi ini berjudul "video animasi 3D rumah adat dan alat musik Kepulauan Riau dengan menggunakan teknik render cel-shading" merupakan video yang bertujuan memperkenalkan alat-alat musik yang berasal dari kepulauan riau, Animasi ini akan diterapkan dengan menggunakan teknik render cel-shading. Cel-shading adalah teknik render yang menampilkan grafik 3D yang menyerupai gambar tangan, seperti gambar komik dan kartun. Teknik ini juga sudah di terapkan dalam game 3D yang ternyata menarik banyak ...

  3. A novel pH-stable, endoglucanase (JqCel5A isolated from a salt-lake microorganism, Jonesia quinghaiensis

    Directory of Open Access Journals (Sweden)

    Ling Lin

    2016-11-01

    Conclusions: It was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.

  4. Aspectos psicosociales de la enfermedad celíaca en España: una vida libre de gluten

    Directory of Open Access Journals (Sweden)

    Julián Rodríguez ALMAGRO

    Full Text Available RESUMEN Objetivo: La celiaquía como enfermedad crónica tiene una alta prevalencia en nuestra sociedad. El artículo analiza los aspectos psicosociales de la enfermedad celíaca en los diferentes entornos, valorando el impacto de la implantación de una dieta estricta libre de gluten. Métodos: Estudio cualitativo entre los meses de Enero del 2013 a Abril del 2013 en el cual, a través de la teoría fundamentada y el análisis de contenido, se ha profundizado en el análisis de las entrevistas semiestructuradas a personas con enfermedad celíaca en España. Se realizaron llamamientos a traves de las redes sociales y grupos de celíacos hasta llegar a la saturación teórica, que determinó el tamaño final de la muestra de 24 personas. Resultados: Educación Sanitaria, Aislamiento social, soledad y desconocimiento social emergieron como categorías centrales en la experiencia de adopción de la dieta libre de gluten a partir del diagnóstico de celiaquía. Conclusión: Los profesionales deben promover y apoyar estrategias de apoyo social basadas en una comprensión íntegra de las experiencias de desarraigo y marginación que los pacientes celíacos experimentan en sus relaciones sociales a través de la comida. Se requiere un aumento de la educación sanitaria para entender e integrar el impacto psicosocial del diagnóstico de celiaquía y la dieta libre de gluten.

  5. PEA PEEL WASTE: A LIGNOCELLULOSIC WASTE AND ITS UTILITY IN CELLULASE PRODUCTION BY Trichoderma reesei UNDER SOLID STATE CULTIVATION

    Directory of Open Access Journals (Sweden)

    Nitin Verma

    2011-03-01

    Full Text Available A wide variety of waste bioresources are available on our planet for conversion into bioproducts. In the biological systems, microorganisms are used to utilize waste as an energy source for the synthesis of valuable products such as biomass proteins and enzymes. The large quantities of byproducts generated during the processing of plant food involve an economic and environmental problem due to their high volumes and elimination costs. After isolation of the main constituent, there are abundant remains which represent an inexpensive material that has been undervalued until now. Pea peel waste is one of the undervalued, unused sources of energy that can serve as a potential source for cellulase production. Batch experiments have been performed, using pea peel waste as a carbon source for cellulase production under solid state cultivation by Trichoderma reesei. It was observed that 30 oC temperature and pH 5.0 are the most favorable conditions for cellulase production by T. reesei. FPase activity significantly increases by incorporation of whey as well as wheat starch hydrolysate in the basal salt media used in the production study. The present study describes the utility of pea peel waste, whey as well as wheat starch hydrolysate in cellulase production by T. reesei. The utilization of economically cheap, pea peel waste for cellulase production could be a novel, cost effective, and valuable approach in cellulase production as well as in solid waste management.

  6. Safety evaluation of β-glucanase derived from Trichoderma reesei: Summary of toxicological data

    NARCIS (Netherlands)

    Coenen, T.M.M.; Schoenmakers, A.C.M.; Verhagen, H.

    1995-01-01

    Barlican, a β-glucanase enzyme obtained from Trichoderma reesei, was produced by a fermentation process and subjected to a series of toxicological tests to document its safety for use as a feed additive. The enzyme product was examined for general oral toxicity, inhalation toxicity, irritation to

  7. The efficacy of a new 6-phytase obtained from Buttiauxella spp. expressed in Trichoderma reesei on digestibility of amino acids, energy, and nutrients in pigs fed a diet based on corn, soybean meal, wheat middlings, and corn distillers' dried grains with solubles.

    Science.gov (United States)

    Adedokun, S A; Owusu-Asiedu, A; Ragland, D; Plumstead, P; Adeola, O

    2015-01-01

    Sixteen cannulated pigs were used to evaluate the effect of a new 6-phytase derived from Buttiauxella spp. and expressed in Trichoderma reesei on apparent ileal digestibility (AID) of AA and apparent total tract digestibility (ATTD) of DM, N, Ca, P, Na, Mg, K, Cl, and energy. Pigs were fed 4 diets for 2 periods in a crossover design. Within each period, there were 4 blocks of 4 pigs per block with each diet represented within each block. The average initial BW in periods 1 and 2 were 22 and 30 kg, respectively. Each period lasted 9 d with fecal collection on d 5 and 6 and a 12-h ileal digesta collection on d 7, 8, and 9. Pigs received a daily feed allowance of approximately 4.5% of their BW. The experimental diets were based on corn, soybean meal, wheat middlings, and corn distillers dried grain with solubles. Phytase was added at 0; 500; 1,000; or 2,000 phytase units/kg of diet to a basal diet that contained 205, 15, 5.4, and 10 g of CP, Lys, total P (1.6 g of nonphytate P), and Ca/kg diet, respectively. The addition of phytase improved (P phytase supplementation linearly and quadratically increased (P Phytase supplementation of the basal diet improved (P Phytase supplementation increased (P phytase supplementation of the basal diet increased (P phytase supplementation to the basal diet showed a tendency (P phytase supplementation. Increasing the level of phytase supplementation resulted in linear increases (P phytase expressed in Trichoderma reesei enhanced ileal digestibility of N and several AA in growing pigs in a dose-dependent manner.

  8. Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity

    Science.gov (United States)

    A novel xylanase from Trichoderma reesei Rut C30, named XYN IV, was purified from the cellulolytic system of the fungus. The enzyme was discovered on its ability to attack aldotetraohexenuronic acid (HexA-2Xyl-4Xyl-4Xyl, HexA3Xyl3), releasing the reducing-end xylose residue. XYN IV exhibited catalyt...

  9. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Tisch Doris

    2011-12-01

    Full Text Available Abstract Background In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. Results As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency. Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. Conclusions The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light

  10. Characterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement.

    Science.gov (United States)

    Qian, Yuanchao; Zhong, Lixia; Hou, Yunhua; Qu, Yinbo; Zhong, Yaohua

    2016-01-01

    The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG) activity but lower β-glucosidase (BGL) activity than those of the others. A uracil auxotroph strain, SP4, was constructed by pyr4 deletion in SN1 to improve transformation efficiency. The BGL1-encoding gene bgl1 under the control of a modified cbh1 promoter was overexpressed in SP4. A transformant, SPB2, with four additional copies of bgl1 exhibited a 17.1-fold increase in BGL activity and a 30.0% increase in filter paper activity. Saccharification of corncob residues with crude enzyme showed that the glucose yield of SPB2 is 65.0% higher than that of SP4. These results reveal the feasibility of strain improvement through the development of an efficient genetic transformation platform to construct a balanced cellulase system for biomass conversion.

  11. Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement

    Directory of Open Access Journals (Sweden)

    Qian Yuanchao

    2016-08-01

    Full Text Available The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG activity but lower β-glucosidase (BGL activity than those of QM9414 and RUT-C30. A uracil auxotroph strain, SP4, was constructed by pyr4 deletion in SN1 to improve transformation efficiency. The BGL1-encoding gene bgl1 under the control of a modified cbh1 promoter was overexpressed in SP4. A transformant, SPB2, with four additional copies of bgl1 exhibited a 17.1-fold increase in BGL activity and a 30% increase in filter paper activity. Saccharification of corncob residues with crude enzyme showed that the glucose yield of SPB2 is 65% higher than that of SP4. These results reveal the feasibility of strain improvement through the development of an efficient genetic transformation platform to construct a balanced cellulase system for biomass conversion.

  12. I.C.F. program at Cel-V

    International Nuclear Information System (INIS)

    Andre, M.; Coutant, J.; Dautray, R.; Decoster, A.; Decroisette, M.; Duborgel, B.; Ouvry, J.; Ovadia, J.; Watteau, J.P.

    1990-01-01

    The principal objective of the CEL-V laser program is to realize high performances ablative implosions. The indirect drive approach has been chosen to reach the high degree of uniformity required. In relation to this objective, the radiation transfer and the development of hydrodynamics instabilities are widely studied. Besides, efforts have been developed in the field of diagnostics, and of laser technology with optical smoothing and high damage level coatings studies

  13. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Importancia de los aspectos psicosociales en la enfermedad celíaca

    Directory of Open Access Journals (Sweden)

    Trini Fragoso Arbelo

    2002-06-01

    Full Text Available Se revisan los conceptos clínicos actuales sobre la enfermedad celíaca. Se definen con precisión los términos enfermedad celíaca activa, silente, latente y potencial. Se enfatiza en los aspectos psicosociales que influyen en su tratamiento y se trazan pautas generales acerca del manejo integral de los pacientes afectados, dada la importancia de la dieta sin gluten de por vida como único tratamiento.The current clinical concepts of celiac disease are reviewed. The terms active, silent, latent and potential related to celiac disease are accurately defined. Emphasis is made on the psychosocial aspects influencing its treatment and general guidelines are drawn on the comprehensive management of the patients suffering from this disease, given the importance of diet without gluten as the only lifelong treatment.

  15. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.

    Science.gov (United States)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M; Evans, Anton F; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I; Cann, Isaac

    2016-10-17

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  16. The role of subsite +2 of the Trichoderma reesei beta-mannanase TrMan5A in hydrolysis and transglycosylation

    DEFF Research Database (Denmark)

    Rosengren, Anna; Hägglund, Per; Anderson, Lars Steen

    2012-01-01

    The N-terminal catalytic module of beta-mannanase TrMan5A from the filamentous fungus Trichoderma reesei is classified into family 5 of glycoside hydrolases. It is further classified in clan A with a (beta/alpha)(8) barrel configuration and has two catalytic glutamates (E169 and E276). It has at ...

  17. Improved Activity of a Thermophilic Cellulase, Cel5A, from Thermotoga maritima on Ionic Liquid Pretreated Switchgrass

    Science.gov (United States)

    Chen, Zhiwei; Pereira, Jose H.; Liu, Hanbin; Tran, Huu M.; Hsu, Nathan S. Y.; Dibble, Dean; Singh, Seema; Adams, Paul D.; Sapra, Rajat; Hadi, Masood Z.; Simmons, Blake A.; Sale, Kenneth L.

    2013-01-01

    Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25–42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding. PMID:24244549

  18. Improved activity of a thermophilic cellulase, Cel5A, from Thermotoga maritima on ionic liquid pretreated switchgrass.

    Directory of Open Access Journals (Sweden)

    Zhiwei Chen

    Full Text Available Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc] pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25-42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding.

  19. Comparison between the cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30

    Energy Technology Data Exchange (ETDEWEB)

    Saddler, J.N.; Hogan, C.M.; Louis-Seize, G.

    1985-06-01

    Nearly all of the filter paper, endoglucanase and ..beta..-glucosidase activities of T. harzianum E58 were located extracellularly, with low amounts of these activities detected in the cell extracts and relatively little associated with the cell wall. Most of the filter paper and endoglucanase activities of T. reesei C30 were detected extracellularly. The half lives of the different cellulase activities were assayed at various temperatures over a period of time. When the pH of the filtrate was adjusted to 4.8, the cellulase activities were considerably enhanced, with the average half-life at 50/sup 0/C extended to 25 hrs. When various lignocellulosic substrates were hydrolyzed by T. harzianum E58 cellulases approximately 90% of the reducing sugars were present as glucose while 50 - 60% of the reducing sugars were detected as glucose when T. reesei C30 cellulases were used.

  20. Engineering ionic liquid-tolerant cellulases for biofuels production.

    Science.gov (United States)

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30

    Science.gov (United States)

    2011-01-01

    Background Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI) produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. Results We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. Conclusions The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in Rut-C30 increased cellulase

  2. CEL-1 Lighting Computer Program - Programmer’s Guide.

    Science.gov (United States)

    1983-01-01

    COMPLETING FORM I REPORT NumeR .2 GOUT ACCESSION NO. 1. RECIPIENT’S CATALOG NUMBER CR 83.009� 4TITLE (Id Subt.II.) F HIf REOTAPIDCVRD CEL-1 Light...contribution due to the "bright spots" gene - rated in OVLY20 may be considered the "first bounce" effect. The ceiling contribution computed here in

  3. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis

    Science.gov (United States)

    dos Santos Castro, Lilian; de Paula, Renato G.; Antoniêto, Amanda C. C.; Persinoti, Gabriela F.; Silva-Rocha, Rafael; Silva, Roberto N.

    2016-01-01

    We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields. PMID:26909077

  4. Descrição da artéria celíaca em pombos domésticos (Columba livia

    Directory of Open Access Journals (Sweden)

    Marcelo Ismar Santana

    2012-03-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2012v25n2p125 O presente estudo objetivou definir a origem e a distribuição da artéria celíaca e de seus ramos colaterais em 15 aves da espécie Columba livia, cedidas pelo Centro de Controle de Zoonoses de Brasília. Com a finalidade de marcar o sistema arterial dos espécimes, o tronco braquiocefálico esquerdo foi canulado e injetado com solução aquosa de látex corado. Posteriormente, procedeu-se a fixação das aves com solução aquosa de formol 10% e a dissecação com instrumentos adequados, obtendo-se os resultados a seguir. A artéria celíaca originou-se da face ventral da aorta descendente. O primeiro ramo colateral surgiu da própria artéria celíaca, constituindo a artéria esofágica. Posteriormente, artéria celíaca se bifurcou em dois ramos, denominados ramo esquerdo da artéria celíaca e ramo direito da artéria celíaca. O ramo esquerdo emitiu a artéria proventricular ventral, seguida das artérias esplênicas, da artéria proventricular dorsal e da artéria hepática esquerda. Por fim, o ramo esquerdo se bifurcou, originando as artérias gástricas ventral e esquerda. O ramo direito emitiu a artéria hepática direita, seguida da artéria ileal e da artéria gástrica direita. Por fim, o ramo direito prosseguiu como artéria pancreaticoduodenal. Os achados deste trabalho apresentaram grande similaridade com as linhagens de aves da espécie Gallus gallus, exceto pela ausência da artéria ileocecal, de ramos císticos e da artéria gástrica dorsal.

  5. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger

    NARCIS (Netherlands)

    Jiang, Yanping; Duarte, Alexandra Vivas; van Den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P.; Zhou, Zhihua; Benoit, Isabelle

    2015-01-01

    Objectives: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. Results: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-d-glucosidase

  6. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger

    NARCIS (Netherlands)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    OBJECTIVES: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. RESULTS: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase

  7. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger.

    Science.gov (United States)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    2016-01-01

    To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase activities of the best mutant were increased from 1.8 IU/ml, 0.1 IU/ml and 0.05 IU/ml to 4.8 IU/ml, 0.4 IU/ml and 0.3 IU/ml, respectively. The sugar yield of wheat straw saccharification by combining enzymes from this mutant and the Aspergillus niger genetically modified strain ΔcreA/xlnR c/araR c was improved up to 7.5 mg/ml, a 229 % increase compared to the combination of wild type strains. Mixing enzymes from T. reesei and A. niger combined with the genetic modification of transcription factors is a promising strategy to increase saccharification efficiency.

  8. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei

    OpenAIRE

    Wang, Min; Lu, Xuefeng

    2016-01-01

    Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in biomass to biofuels process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellob...

  9. Celiac disease onset after pegylated interferon and ribavirin treatment of chronic hepatitis C Doença celíaca após tratamento de hepatite C crônica com interferon peguilado e ribavirina

    Directory of Open Access Journals (Sweden)

    Elson V. Martins Jr.

    2004-06-01

    Full Text Available AIM: Report of a case of a woman patient who developed celiac disease after pegylated interferon alpha-2a and ribavirin use for chronic hepatitis C. PATIENT AND METHOD: A 34-year-old woman with chronic hepatitis C, genotype 3, receiving pegylated interferon alpha-2a and ribavirin for 6 months, developed progressive malaise and anemia 6 months after the end of treatment. RESULT: Additional investigation revealed duodenal villous atrophy and positivity for anti-endomysium and anti-gliadin antibodies. Celiac disease diagnosis was performed and symptoms and laboratory abnormalities improved after gluten-free diet. CONCLUSION: Celiac disease must be ruled out in patients with malabsorption complaints in or after interferon (or pegylated interferon therapy. Screening for celiac disease with detection of anti-endomysium antibodies would be done in susceptible patients.OBJETIVO: Relatar caso de doença celíaca ocorrendo após uso de interferon peguilado e ribavirina em paciente com hepatite C crônica. PACIENTE E MÉTODO: Mulher de 34 anos com hepatite C crônica, genótipo 3, tratada com interferon peguilado alfa-2a e ribavirina durante 6 meses, desenvolveu quadro de astenia e anemia após 6 meses do término do tratamento. RESULTADO: Investigação complementar revelou atrofia vilositária à biopsia duodenal e detecção de anticorpos anti-endomísio e anti-gliadina, realizando-se diagnóstico de doença celíaca. Dieta isenta de glúten foi instituída, observando-se boa resposta clínica e laboratorial. CONCLUSÃO: Doença celíaca deve ser afastada em pacientes com quadro de má absorção durante ou após uso de interferon (ou interferon peguilado. Rastreamento de doença celíaca através da realização de anticorpo anti-endomísio pode ser considerado em populações susceptíveis.

  10. Cel vinyls: materials and methods.

    Science.gov (United States)

    Harrison, S J

    1983-12-01

    Many commercial uses of media are applicable to medical/scientific media production and illustration, not the least of which are techniques pioneered in the commercial cartooning field. Whether or not the illustrative effort culminates in a "cartoon," the production techniques of the cartooning industry cannot be overlooked by the illustrator faced with providing projection graphics, whether animated or still, for slides, motion pictures, television or even print media. When Walt Disney introduced Mickey Mouse as "Steamboat Willie" in 1928, his technology opened the door for exploration of cartooning media by all artists. Only in comparatively recent years have these tools been used by the scientific illustrator. In this article cel vinyl acrylics or cartoon colors will be discussed: the rationale for the use of this medium, materials and methods, and considerations related to the photography of this art form.

  11. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  13. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries.

    Science.gov (United States)

    Ellilä, Simo; Fonseca, Lucas; Uchima, Cristiane; Cota, Junio; Goldman, Gustavo Henrique; Saloheimo, Markku; Sacon, Vera; Siika-Aho, Matti

    2017-01-01

    During the past few years, the first industrial-scale cellulosic ethanol plants have been inaugurated. Although the performance of the commercial cellulase enzymes used in this process has greatly improved over the past decade, cellulases still represent a very significant operational cost. Depending on the region, transport of cellulases from a central production facility to a biorefinery may significantly add to enzyme cost. The aim of the present study was to develop a simple, cost-efficient cellulase production process that could be employed locally at a Brazilian sugarcane biorefinery. Our work focused on two main topics: growth medium formulation and strain improvement. We evaluated several Brazilian low-cost industrial residues for their potential in cellulase production. Among the solid residues evaluated, soybean hulls were found to display clearly the most desirable characteristics. We engineered a Trichoderma reesei strain to secrete cellulase in the presence of repressing sugars, enabling the use of sugarcane molasses as an additional carbon source. In addition, we added a heterologous β-glucosidase to improve the performance of the produced enzymes in hydrolysis. Finally, the addition of an invertase gene from Aspegillus niger into our strain allowed it to consume sucrose from sugarcane molasses directly. Preliminary cost analysis showed that the overall process can provide for very low-cost enzyme with good hydrolysis performance on industrially pre-treated sugarcane straw. In this study, we showed that with relatively few genetic modifications and the right growth medium it is possible to produce considerable amounts of well-performing cellulase at very low cost in Brazil using T. reesei . With further enhancements and optimization, such a system could provide a viable alternative to delivered commercial cellulases.

  14. Optimization of Glucose Production of Cocopeat Using Whole Cell Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Zaki Muhammad

    2018-01-01

    Full Text Available The high content of cellulose in cocopeat makes this material convertible into glucose. The converting process of cellulose into glucose can be done by hydrolysis. In this research, the coocopeat hydrolyzed enzymatically using cellulose ezyme from Trichoderma reesei. The purpose of this study was to obtain optimum conditions of glucose yield and to know the effect of concentration of NaOH, molasses mass, and the effect of hydrolisis time on glucose yield produced. The variabel used was hydrolisis time (0; 124; and 240 hour, NaOH concenteration (1%; 2%; and 3%, and molasses mass (40; 50; and 60 gr/l. The result showed the higest glucose level obtained at 2% NaOH concenteration, molasses mass 60 gram, and hydrolysis time 240 hours, while the predicted resulted of the optimum conditions of glucose level produced using the software Design Expert 6.08 is 776.771 mg/l at NaOH concenteration 1,35%, molasses mass 59.96 mg/l and hydrolisis time 215.62 hours.

  15. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)

    NARCIS (Netherlands)

    Stricker, A.R.; Mach, R.L.; Graaff, de L.H.

    2008-01-01

    The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A.

  16. Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30?

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Hobley, Timothy John

    2013-01-01

    The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition...... of individual organic nitrogen sources (soy peptone, glutamate, glycine and alanine) within a basal medium containing Avicel (i.e. micro crystalline cellulose) and ammonium sulphate. It was found that in the shake flask experiments, the highest cellulase activities (~0.1 ± 0.02 FPU ml−1) were obtained...... with media containing soy peptone (3–6 g l−1) and glutamate (3.6 g l−1). However, these improvements in the cellulase titers in the presence of the organic nitrogen sources appeared to be related to smaller changes in the pH of the medium. This was confirmed using stirred tank bioreactors with pH control...

  17. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei

    NARCIS (Netherlands)

    Benocci, Tiziano; Aguilar-Pontes, Maria Victoria; Kun, Roland Sándor; Seiboth, Bernhard; de Vries, Ronald P; Daly, Paul

    2017-01-01

    Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T.

  18. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.

    Science.gov (United States)

    Costa, M G S; Silva, Y F; Batista, P R

    2018-03-14

    Microbial cellulosic degradation by cellulases has become a complementary approach for biofuel production. However, its efficiency is hindered by the recalcitrance of cellulose fibres. In this context, computational protein design methods may offer an efficient way to obtain variants with improved enzymatic activity. Cel9A-68 is a cellulase from Thermobifida fusca that is still active at high temperatures. In a previous work, we described a collective bending motion, which governs the overall cellulase dynamics. This movement promotes the approximation of its CBM and CD structural domains (that are connected by a flexible linker). We have identified two residues (G460 and P461) located at the linker that act as a hinge point. Herein, we applied a new level of protein design, focusing on the modulation of this collective motion to obtain cellulase variants with enhanced functional dynamics. We probed whether specific linker mutations would affect Cel9A-68 dynamics through computational simulations. We assumed that P461G and G460+ (with an extra glycine) constructs would present enhanced interdomain motions, while the G460P mutant would be rigid. From our results, the P461G mutation resulted in a broader exploration of the conformational space, as confirmed by clustering and free energy analyses. The WT enzyme was the most rigid system. However, G460P and P460+ explored distinct conformational states described by opposite directions of low-frequency normal modes; they sampled preferentially closed and open conformations, respectively. Overall, we highlight two significant findings: (i) all mutants explored larger conformational spaces than the WT; (ii) the selection of distinct conformational populations was intimately associated with the mutation considered. Thus, the engineering of Cel9A-68 motions through linker mutations may constitute an efficient way to improve cellulase activity, facilitating the disruption of cellulose fibres.

  19. Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose

    DEFF Research Database (Denmark)

    Hsieh, Chia-wen C.; Cannella, David; Jørgensen, Henning

    2015-01-01

    Background: Non-ionic surfactants such as polyethylene glycol (PEG) can increase the glucose yield obtained from enzymatic saccharification of lignocellulosic substrates. Various explanations behind this effect include the ability of PEG to increase the stability of the cellulases, decrease non......-productive cellulase adsorption to the substrate, and increase the desorption of enzymes from the substrate. Here, using lignin-free model substrates, we propose that PEG also alters the solvent properties, for example, water, leading the cellulases to increase hydrolysis yields.Results: The effect of PEG differs...... for the individual cellulases. During hydrolysis of Avicel and PASC with a processive monocomponent exo-cellulase cellobiohydrolase (CBH) I, the presence of PEG leads to an increase in the final glucose concentration, while PEG caused no change in glucose production with a non-processive endoglucanase (EG). Also...

  20. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei.

    Science.gov (United States)

    Liu, Kuimei; Dong, Yanmei; Wang, Fangzhong; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2016-01-01

    Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.

  1. Improvement of Cellulase Production and its Characteristics by Inducing Mutation on Trichoderma reesei 2414 under Solid State Fermentation on Rice By-products

    Directory of Open Access Journals (Sweden)

    Nazanin Darabzadeh

    2018-01-01

    Full Text Available  Background and Objective: Solid State Fermentation is an economic technology to produce value-added products. Also, the use of agricultural by-products, as a waste management strategy, has recently been considered. On the other hand, the new mutants are interesting for the production of enzymes. The aim of this study was to investigate the effect of mutation on the improvement of cellulase quality. Therefore, rice by-products were used under solid state fermentation for production of cellulase. Moreover, the characteristics of the new cellulose produced from the new mutated strain was studied.Material and Methods: Cellulase was produced under solid state fermentation process. Spore suspensions of Trichoderma reesei were subjected to Co60 γ irradiation and mutated. The activities of cellulases (from parent and mutants were compared. The effects of temperature and pH on cellulase activity and the stability of cellulase in optimum condition were investigated.Results and Conclusion: Cellulase was successfully produced under solid state fermentation on the mixture of rice by-products as substrate. The results showed that mutation had a significant effect on cellulase activity and Characteristics. Trichoderma reesei B (a mutated strain had about 30% filter Paperase and 23% Carboxymethyl Cellulase higher than its parent. Cellulase activity of Trichoderma reesei B was 47% higher than its parent at the optimum temperature (50°C. In other temperatures, the activity of cellulase extracted from Trichoderma reesei B was significantly higher than that of the others; for example, at 60°C, the enzyme activity was 120% higher than its parent. It is notable that an 84% increase in the enzyme activity was observed at the optimum pH (4.5 after mutation and cellulase activity increased from 0.72 U g-1 dry solid to 1.31 U g-1 dry solid.Conflict of interest: The authors declare no conflict of interest.

  2. Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, QiuZhuo [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); Cai, WeiMin [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China)

    2008-12-15

    To minimize the cost of cellulase production, both pretreatment of the rice straw and on-site enzyme production were realized. Rice straw was first pretreated by 2% NaOH, which could increase cellulose by 54.83%, and decreased hemicellulose by 61.07% and lignin by 36.24%, respectively. Detected by SEM, significant morphological changes were observed in the tissue. Through orthogonal experiments, temperature 35 C, initial pH value 4.5 and the rotation speed of shaking bed 180 rpm were determined to be the optimal conditions for hydrolysis of rice straw by Trichoderma reesei ZM4-F3. After hydrolysis for 96 h, the production of FPA and reducing sugars could achieve 2.231 g l{sup -1} and 12.92 U ml{sup -1}, respectively. Moreover, T. reesei ZM4-F3 can decompose 68.21% of pretreated rice straw after 120 h of hydrolysis. By GC analysis, it showed that glucose is the main component of the enzymatic hydrolysates, which made GC seem to be more effective than the DNS method for analysis of the enzymatic hydrolysates as it can detect the concentration of each kind of monosaccharide more accurately. (author)

  3. Application of Statistical Design for the Production of Cellulase by Trichoderma reesei Using Mango Peel

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2012-01-01

    Full Text Available Optimization of the culture medium for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using mango peel as substrate was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on cellulase production is achieved using Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and CoCl2·6H2O were selected based on their positive influence on cellulase production. The composition of the selected components was optimized using Response Surface Methodology (RSM. The optimum conditions are as follows: Avicel: 25.30 g/L, Soybean cake flour: 23.53 g/L, KH2PO4: 4.90 g/L, and CoCl2·6H2O: 0.95 g/L. These conditions are validated experimentally which revealed an enhanced Cellulase activity of 7.8 IU/mL.

  4. Multivariable parameter optimization for the endoglucanase production by Trichoderma reesei Rut C30 from Ocimum gratissimum seed

    Directory of Open Access Journals (Sweden)

    Mithu Das

    2008-02-01

    Full Text Available The aim of this study was to evaluate the interaction effects of the physico-chemical parameters on the endoglucanase (CMCase production by Trichoderma reesei Rut C30 on a cellulosic agro-residue by the solid-state fermentation (SSF and to determine their optimum values by the EVOP factorial design technique. The best combination of physical parameters for the maximum production of the endoglucanase (CMCase was 28ºC temperature, 79% relative humidity and 4.8 pH of the medium. The best combination of the chemical parameters was (mg/L nicotinic acid 15, naphthalene acetic acid 7, ferric chloride 5 and Tween-80 6. With the application of this technique, the yield of the CMCase increased by ~ 2.3 fold.

  5. CelOWS: an ontology based framework for the provision of semantic web services related to biological models.

    Science.gov (United States)

    Matos, Ely Edison; Campos, Fernanda; Braga, Regina; Palazzi, Daniele

    2010-02-01

    The amount of information generated by biological research has lead to an intensive use of models. Mathematical and computational modeling needs accurate description to share, reuse and simulate models as formulated by original authors. In this paper, we introduce the Cell Component Ontology (CelO), expressed in OWL-DL. This ontology captures both the structure of a cell model and the properties of functional components. We use this ontology in a Web project (CelOWS) to describe, query and compose CellML models, using semantic web services. It aims to improve reuse and composition of existent components and allow semantic validation of new models.

  6. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    Science.gov (United States)

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  7. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    Science.gov (United States)

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  8. Prospektywny cel badania sprawozdania finansowego

    Directory of Open Access Journals (Sweden)

    Bronisław Micherda

    2010-05-01

    Full Text Available Problem wiarygodności sprawozdania finansowego oraz ocen i opinii z nim związa-nych odnosi się do trzech dziedzin: rachunkowości, analizy finansowej oraz badania sprawozdania finansowego. Szczególne znaczenie ma właściwe określenie celu ba-dania sprawozdania finansowego i jego uwarunkowania. Aktualnie biegły rewident powinien dokonać oceny nie tylko rozliczenia jednostki z otoczeniem, ale również po-dejmowanych przez nią decyzji, co przejawia się w możliwości kontynuacji działalności jednostki. Nakreślony cel badania sprawozdania finansowego stawia wyższe wymogi kom-petencyjne biegłym rewidentom. Szczególne znaczenie ma konieczność uświadomienia i szerszego wykorzystania analizy finansowej i planowania finansowego. Postulat modyfikacji regulacji prawnych celu badania sprawozdania finansowego zbiega się w czasie z ogłoszeniem Międzynarodowych Standardów Edukacyjnych IFAC, akcentu-jących kompetencje i etykę zawodowych księgowych.

  9. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  10. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.

    OpenAIRE

    Sternberg, D; Mandels, G R

    1980-01-01

    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  11. Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Christensen, T.M.I.E.; Hansen, K.P.

    2003-01-01

    The growth and enzyme production by Trichoderma reesei Rut C-30 using different lignocellulosic materials as carbon source were investigated. Cellulose, sugar beet pulp and alkaline extracted sugar beet pulp (resulting in partial removal of hemicellulose, lignin and pectin) or mixtures thereof were...

  12. Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei

    Science.gov (United States)

    2010-08-01

    or the early liver-stages of the mammalian life cycle . One of these antigens is the cell-traversal protein for ookinetes and sporozoites (CelTOS...Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with... Plasmodium berghei Elke S. Bergmann-Leitner1*, Ryan M. Mease1, Patricia De La Vega1, Tatyana Savranskaya2, Mark Polhemus1, Christian Ockenhouse1, Evelina

  13. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture.

    Science.gov (United States)

    Li, Yonghao; Liu, Chenguang; Bai, Fengwu; Zhao, Xinqing

    2016-09-01

    Cellulase is a prerequisite for the bioconversion of lignocellulosic biomass, but its high cost presents the biggest challenge. In this article, low-cost mixture was produced from glucose through the transglycosylation reaction catalyzed by β-glucosidase for cellulase overproduction by Trichodema reesei RUT C30. As a result, cellulase titer of 90.3FPU/mL, which was more than 10 folds of that achieved with lactose as inducer, was achieved at 144h. Meanwhile, cellulase productivity was drastically increased to 627.1FPU/L/h, at least 3-5 folds higher than previously reported by the fungal species. The crude enzyme was further tested by hydrolyzing NaOH-pretreated corn stover with 15% solid loading, and 96.6g/L glucose was released with 92.6% sugar yield at 96h and 44.8g/L ethanol was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. La enfermedad celíaca se podría detectar con una determinación de anticuerpos antitransglutaminasa en la saliva

    OpenAIRE

    Cuestas Montañés, Eduardo José; Ortega Páez, Eduardo

    2011-01-01

    Este estudio avanza en la posibilidad de realizar una prueba de cribado simple e inocua para detectar la enfermedad celíaca a edades tempranas, lo que puede contribuir a disminuir la morbimortalidad asociada a la enfermedad.

  16. Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL.

    Directory of Open Access Journals (Sweden)

    Bin Li

    Full Text Available The Fip1-like1 (FIP1L1-platelet-derived growth factor receptor alpha fusion gene (F/P arising in the pluripotent hematopoietic stem cell (HSC,causes 14% to 60% of patients with hypereosinophilia syndrome (HES. These patients, classified as having F/P (+ chronic eosinophilic leukemia (CEL, present with clonal eosinophilia and display a more aggressive disease phenotype than patients with F/P (- HES patients. The mechanisms underlying predominant eosinophil lineage targeting and the cytotoxicity of eosinophils in this leukemia remain unclear. Given that the Janus tyrosine kinase (JAK/signal transducers and activators of transcription (Stat signaling pathway is key to cytokine receptor-mediated eosinophil development and activated Stat3 and Stat5 regulate the expression of genes involved in F/P malignant transformation, we investigated whether and how JAK proteins were involved in the pathogenesis of F/P-induced CEL. F/P activation of JAK2, Stat3 and Stat5, were confirmed in all the 11 F/P (+ CEL patients examined. In vitro inhibition of JAK2 in EOL-1, primary F/P(+ CEL cells (PC and T674I F/P Imatinib resistant cells(IR by either JAK2-specific short interfering RNA (siRNA or the tryphostin derivative AG490(AG490, significantly reduced cellular proliferation and induced cellular apoptosis. The F/P can enhance the IL-5-induced JAK2 activation, and further results indicated that JAK2 inhibition blocked IL-5-induced cellular migration and activation of the EOL-1 and PC cells in vitro. F/P-stimulation of the JAK2 suppressed cells led to a significantly reduction in Stat3 activation, but relatively normal induction of Stat5 activation. Interestingly, JAK2 inhibition also reduced PI3K, Akt and NF-κB activity in a dose-dependent manner, and suppressed expression levels of c-Myc and Survivin. These results strongly suggest that JAK2 is activated by F/P and is required for F/P stimulation of cellular proliferation and infiltration, possibly through

  17. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture.

    Science.gov (United States)

    Bando, Hiroki; Hisada, Hiromoto; Ishida, Hiroki; Hata, Yoji; Katakura, Yoshio; Kondo, Akihiko

    2011-11-01

    A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.

  18. Pesquisa de gliadina em medicamentos: informação relevante para a orientação de pacientes com doença celíaca

    Directory of Open Access Journals (Sweden)

    SDEPANIAN Vera Lucia

    2001-01-01

    Full Text Available Racional - Alguns medicamentos podem conter gliadina, portanto, sua utilização poderá ser prejudicial aos pacientes com doença celíaca. Objetivo - Detectar a presença de gliadina em medicamentos comumente comercializados no Brasil. Métodos - Foram analisados 78 medicamentos sorteados a partir de uma lista de 180 produtos comumente comercializados. Os medicamentos analisados foram: analgésicos (n = 9, anti-helmínticos (n = 3, antiácidos (n = 8, antibióticos (n = 13, anticolesterolêmicos (n = 1, anticonvulsivantes (n = 2, antidepressivos (n = 2, antidiabéticos (n = 1, antieméticos (n = 3, anti-hipertensivos (n = 3, anti-histamínicos (n = 3, antiinflamatórios (n = 7, antitérmicos (n = 2, broncodilatadores (n = 1, descongestionantes (n = 4, laxantes (n = 1, contraceptivos orais (n = 5 e vitaminas (n = 10. As amostras foram analisadas pela técnica de ELISA utilizando anticorpo monoclonal ômega-gliadina, considerada de eleição segundo o Codex Alimentarius Commission WHO/FAO. Todas as amostras foram analisadas em duplicata. O nível de detecção do teste é de 4 mg de gliadina/100 g de produto. Resultados - Dentre os 78 medicamentos analisados, em apenas 1 (1,3% foi detectada a presença de gliadina (5,5 mg/100 g. O componente ativo do medicamento é ranitidina. De acordo com o Codex Alimentarius Commission WHO/FAO, o limite máximo diário permitido ao consumo pelos indivíduos com doença celíaca é igual a 10 mg de gliadina. Considerando a quantidade de gliadina num único comprimido de ranitidina, a quantidade ingerida seria bem menor do que a máxima permitida ao consumo pelo paciente com doença celíaca. Conclusões - Neste estudo não foi identificada gliadina em medicamentos em quantidade que constitua risco para pacientes com doença celíaca.

  19. Doença celíaca associada à tireoidite de Hashimoto e síndrome de Noonan

    OpenAIRE

    Perez,Mariana Ortega; Ciambelli,Giuliano Serafino; Nigri,Alcinda Aranha; Vieira,Marta Wey; Costa,Clóvis Duarte

    2010-01-01

    OBJETIVO: Relatar o caso clínico de uma criança portadora de doença celíaca, tireoidite de Hashimoto e síndrome de Noonan. DESCRIÇÃO DE CASO: Menina de dez anos e seis meses, branca, apresentando história de diarreia líquida há cinco meses e "aumento da barriga". Ao exame, mostrava peso de 20.580g (p

  20. Heterologous expression, purification, crystallization and preliminary X-ray analysis of Trichoderma reesei xylanase II and four variants

    International Nuclear Information System (INIS)

    Wan, Qun; Kovalevsky, Andrey; Zhang, Qiu; Hamilton-Brehm, Scott; Upton, Rosalynd; Weiss, Kevin L.; Mustyakimov, Marat; Graham, David; Coates, Leighton; Langan, Paul

    2013-01-01

    The wild-type protein and four active-site mutants of xylanase II from Trichoderma reesei that catalyzes the hydrolysis of glycosidic bonds in xylan have successfully been crystallized. The crystallization of several structures including ligand-free and protein ligand complexes containing the substrate (xylohexaose) or product (xylotriose) are detailed. Xylanase II from Trichoderma reesei catalyzes the hydrolysis of glycosidic bonds in xylan. Crystallographic studies of this commercially important enzyme have been initiated to investigate its reaction mechanism, substrate binding and dependence on basic pH conditions. The wild-type protein was heterologously expressed in an Escherichia coli host using the defined medium and four active-site amino acids were replaced to abolish its activity (E177Q and E86Q) or to change its pH optimum (N44D and N44H). Cation-exchange and size-exclusion chromatography were used to obtain >90% protein purity. The ligand-free proteins and variant complexes containing substrate (xylohexaose) or product (xylotriose) were crystallized in several different space groups and diffracted to high resolutions (from 1.07 to 1.55 Å)

  1. Effects of Lytic Polysaccharide Monooxygenase Oxidation on Cellulose Structure and Binding of Oxidized Cellulose Oligomers to Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Josh V.; Crowley, Michael F.; Beckham, Gregg T.; Payne, Christina M.

    2015-05-21

    with different affinities relative to cellobiose itself, which potentially affects hydrolytic turnover through product inhibition. To examine the effect of oxidation on cello-oligomer binding, we use thermodynamic integration to compute the relative change in binding free energy between the hydrolyzed and oxidized products in the active site of Family 7 and Family 6 processive glycoside hydrolases, Trichoderma reesei Cel7A and Cel6A, which are key industrial cellulases and commonly used model systems for fungal cellulases. Our results suggest that the equilibrium between the two reducing end oxidized products, favoring the linear aldonic acid, may increase product inhibition, which would in turn reduce processive substrate turnover. In the case of LMPO action at the nonreducing end, oxidation appears to lower affinity with the nonreducing end specific cellulase, reducing product inhibition and potentially promoting processive cellulose turnover. Overall, this suggests that oxidation of recalcitrant polysaccharides by LPMOs accelerates degradation not only by increasing the concentration of chain termini but also by reducing decrystallization work, and that product inhibition may be somewhat reduced as a result.

  2. Dose-dependency of radiation on enzyme production in Trichoderma reesei

    International Nuclear Information System (INIS)

    Kumakura, Minoru

    1993-01-01

    Effect of irradiation dose on the production of cellulase and amylase related enzymes in Trichoderma reesei was studied in which post-irradiation time response pattern was measured. The damage of the cells irradiated with certain irradiation doses (1.40±0.20x10 5 , 2.20±0.10x10 5 , 3.00±0.50x10 5 and 3.50±0.20x10 5 rad) was rapidly recovered. The increased enzyme production in the culture of the irradiated cells resulted from the recovery of radiation damage after irradiation. The function of cell growth was not affected by irradiation below dose of 5x10 5 rad, though the function of enzyme synthesis was drastically affected. (orig.)

  3. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches.

    Science.gov (United States)

    Woon, James Sy-Keen; Mackeen, Mukram M; Illias, Rosli M; Mahadi, Nor M; Broughton, William J; Murad, Abdul Munir Abdul; Abu Bakar, Farah Diba

    2017-01-01

    Aspergillus niger , along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger . In this study, the gene encoding a cellobiohydrolase B ( cbh B) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic ® CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment. Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N -glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC), p -nitrophenyl-cellobioside ( p NPC) and p -nitrophenyl-cellobiotrioside ( p NPG3) but was not active towards crystalline substrates like Avicel ® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and

  4. Length of Variable Numbers of Tandem Repeats in the Carboxyl Ester Lipase (CEL) Gene May Confer Susceptibility to Alcoholic Liver Cirrhosis but Not Alcoholic Chronic Pancreatitis.

    Science.gov (United States)

    Fjeld, Karianne; Beer, Sebastian; Johnstone, Marianne; Zimmer, Constantin; Mössner, Joachim; Ruffert, Claudia; Krehan, Mario; Zapf, Christian; Njølstad, Pål Rasmus; Johansson, Stefan; Bugert, Peter; Miyajima, Fabio; Liloglou, Triantafillos; Brown, Laura J; Winn, Simon A; Davies, Kelly; Latawiec, Diane; Gunson, Bridget K; Criddle, David N; Pirmohamed, Munir; Grützmann, Robert; Michl, Patrick; Greenhalf, William; Molven, Anders; Sutton, Robert; Rosendahl, Jonas

    2016-01-01

    Carboxyl-ester lipase (CEL) contributes to fatty acid ethyl ester metabolism, which is implicated in alcoholic pancreatitis. The CEL gene harbours a variable number of tandem repeats (VNTR) region in exon 11. Variation in this VNTR has been linked to monogenic pancreatic disease, while conflicting results were reported for chronic pancreatitis (CP). Here, we aimed to investigate a potential association of CEL VNTR lengths with alcoholic CP. Overall, 395 alcoholic CP patients, 218 patients with alcoholic liver cirrhosis (ALC) serving as controls with a comparable amount of alcohol consumed, and 327 healthy controls from Germany and the United Kingdom (UK) were analysed by determination of fragment lengths by capillary electrophoresis. Allele frequencies and genotypes of different VNTR categories were compared between the groups. Twelve repeats were overrepresented in UK ACP patients (P = 0.04) compared to controls, whereas twelve repeats were enriched in German ALC compared to alcoholic CP patients (P = 0.03). Frequencies of CEL VNTR lengths of 14 and 15 repeats differed between German ALC patients and healthy controls (P = 0.03 and 0.008, respectively). However, in the genotype and pooled analysis of VNTR lengths no statistical significant association was depicted. Additionally, the 16-16 genotype as well as 16 repeats were more frequent in UK ALC than in alcoholic CP patients (P = 0.034 and 0.02, respectively). In all other calculations, including pooled German and UK data, allele frequencies and genotype distributions did not differ significantly between patients and controls or between alcoholic CP and ALC. We did not obtain evidence that CEL VNTR lengths are associated with alcoholic CP. However, our results suggest that CEL VNTR lengths might associate with ALC, a finding that needs to be clarified in larger cohorts.

  5. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  6. Screening for celiac disease among patients with Turner syndrome in Brasília, DF, midwest region of Brazil Triagem para doença celíaca em pacientes com síndrome de Turner em Brasília, DF, região centro-oeste do Brasil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Sorci Dias

    2010-09-01

    Full Text Available CONTEXT: Several studies have demonstrated a higher prevalence of celiac disease (CD among females with Turner syndrome when compared to the general population. Nevertheless, there is no record in literature concerning this investigation among Brazilian patients. OBJECTIVE: To assess the prevalence of CD among a group of Brazilian patients with Turner syndrome. METHODS: Fifty-six females with Turner syndrome and on gluten-containing diet were screened for CD utilizing immunoglobulin A antiendomysium (IgA-EMA and immunoglobulin A anti-tissue transglutaminase (IgA-tTG antibody assays. Additionally, they were genotyped for CD human leukocyte antigen (CD-HLA predisposing alleles. Patients showing positivity in serological testing were offered to perform small intestine biopsy for histological confirmation. RESULTS: Mean age at diagnosis of Turner syndrome was 5.5 ± 4.4 years; mean age at screening for CD was 17.0 ± 9.3 years (from 10 months of age to 52 years. Two girls were positive for IgA-EMA and IgA-tTG, presented predisposing HLA-DQ2 alleles and both had the diagnosis of CD confirmed by jejunal biopsy. CONCLUSION: The 3.6% prevalence of biopsy-proven CD among this group of females with Turner syndrome is 10 times higher than the one among females from the general population of the same geographical area. This result provides additional support to an association between these two disorders and restates that girls and women with Turner syndrome represent a high risk population for developing CD.CONTEXTO: Alguns estudos têm demonstrado maior prevalência de doença celíaca entre mulheres com síndrome de Turner, quando comparadas com a população geral. Entretanto, não há registro na literatura desta investigação em pacientes brasileiras. OBJETIVO: Avaliar a prevalência de doença celíaca entre um grupo de pacientes brasileiras com síndrome de Turner. MÉTODOS: Cinquenta e seis pacientes com síndrome de Turner recebendo dieta contendo

  7. La anemia ferropénica como presentación de enfermedad celíaca subclínica en una población argentina

    OpenAIRE

    J.S. Lasa; P. Olivera; L. Soifer; R. Moore

    2017-01-01

    Introducción: Existe una extensa heterogeneidad en los reportes de la prevalencia de enfermedad celíaca en el contexto de la anemia ferropénica. Objetivo: Determinar la prevalencia de enfermedad celíaca en pacientes con anemia ferropénica. Materiales y métodos: Pacientes adultos con anemia ferropénica fueron reclutados para realizarse una endoscopia digestiva alta con biopsia duodenal. Se reclutaron asimismo voluntarios sanos de la comunidad como controles. Resultados: Se reclutó a 1...

  8. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  9. The productive cellulase binding capacity of cellulosic substrates.

    Science.gov (United States)

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Enzyme production in immobilized Trichoderma reesei cells with hydrophobic polymers prepared by radiation polymerization method

    International Nuclear Information System (INIS)

    Luzhao Xin; Kumakura, Minoru; Kaetsu, Isao

    1993-01-01

    Trichoderma reesei cells were immobilized on paper covered with hydrophobic monomer, trimethylpropane triacrylate by radiation polymerization. The effect of immobilization condition on enzyme productivity was studied by measuring filter paper and cellobiose activity. The cells were adhered and grew on the surface of the carrier with the polymer giving high enzyme productivity in the immobilized cells in comparison with the free cells. Optimum concentration and volume of the coating monomer for the preparation of the immobilized cells were obtained. (author)

  11. Aspectos genéticos e imunopatogênicos da doença celíaca: visão atual Genetics and immunopathogenics aspects of the celiac disease: a recent vision

    Directory of Open Access Journals (Sweden)

    Shirley Ramos da Rosa Utiyama

    2004-06-01

    Full Text Available RACIONAL: A doença celíaca ou enteropatia por sensibilidade ao glúten, é uma forte condição hereditária. Embora a associação genética da doença celíaca com os haplótipos HLA-DQ2 e DQ8 seja conhecida há muito tempo, outros genes HLA e não-HLA também são importantes no desenvolvimento da afecção. A doença celíaca resulta de um efeito combinado de produtos de diferentes genes funcionantes normalmente. A lesão intestinal é imunologicamente mediada e múltiplos mecanismos efetores são responsáveis pela sua expressão. A interação entre fatores genéticos, imunológicos e ambientais explicam o amplo espectro de alterações clínicas, histológicas e sorológicas observadas nos diferentes estágios de desenvolvimento da doença, ressaltando a natureza poligênica da mesma. CONCLUSÃO: Os avanços recentes na compreensão da imunopatogenia, genética e diagnóstico da doença celíaca têm permitido que rígidos conceitos e critérios pré-estabelecidos sejam revistos e adequados às novas evidências, visando melhor diagnóstico e orientação para pacientes celíacos e familiares.BACKGROUND: Celiac disease, or gluten-sensitive enteropathy, is a strongly inherited condition. Although the genetic association of CD with the DQ2 and DQ8 HLA haplotypes has been known for long, others HLA and non-HLA genes are also important in the development of the disease. Celiac disease results of the combined effect of different normally functioning genes' products. The tissue damage in celiac disease is immunologically mediated and several effector mechanisms are responsible for the disease expression. The interplay between genetic, immunological and environmental factors explains the large spectrum of clinical, histological and serological alterations observed in the different stages of the disease development, pointing out to the polygenic nature of celiac disease. CONCLUSION: The recent advances in the understanding of the

  12. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches

    Directory of Open Access Journals (Sweden)

    James Sy-Keen Woon

    2017-10-01

    Full Text Available Background Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger. Methods In this study, the gene encoding a cellobiohydrolase B (cbhB from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic® CTec2 and was used to hydrolyse oil palm empty fruit bunch (OPEFB, one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR to screen for any compositional changes upon enzymatic treatment. Results Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC, p-nitrophenyl-cellobioside (pNPC and p-nitrophenyl-cellobiotrioside (pNPG3 but was not active towards crystalline substrates like Avicel® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum

  13. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks.

    Science.gov (United States)

    Xiong, Lili; Kameshwar, Ayyappa Kumar Sista; Chen, Xi; Guo, Zhiyun; Mao, Canquan; Chen, Sanfeng; Qin, Wensheng

    2016-12-28

    ACEII transcription factor plays a significant role in regulating the expression of cellulase and hemicellulase encoding genes. Apart from ACEII, transcription factors such as XYR1, CRE1, HAP2/3/5 complex and ACEI function in a coordinated pattern for regulating the gene expression of cellulases and hemicellulases. Studies have demonstrated that ACEII gene deletion results in decreased total cellulase and xylanase activities with reduced transcript levels of lignocellulolytic enzymes. In this study, we have successfully transformed the ACEII transcription factor encoding gene in Trichoderma reesei to significantly improve its degrading abilities. Transformation experiments on parental strain T. reesei QM9414 has resulted in five genetically engineered strains T/Ace2-2, T/Ace2-5, T/Ace2-8, T/Ace5-4 and T/Ace10-1. Among which, T/Ace2-2 has exhibited significant increase in enzyme activity by twofolds, when compared to parental strain. The T/Ace2-2 was cultured on growth substrates containing 2% bark supplemented with (a) sugar free + MA medium (b) glucose + MA medium and (c) xylose + MA medium. The bark degradation efficiency of genetically modified T/Ace2-2 strain was assessed by analyzing the xylitol production yield using HPAEC. By 6th day, about 10.52 g/l of xylitol was produced through enzymatic conversion of bark (2% bark + MA + xylose) by the T/Ace2-2 strain and by 7th day the conversion rate was found to be 0.21 g/g. Obtained results confirmed that bark growth medium supplemented with D-xylose has profoundly increased the conversion rate of bark by T/Ace2-2 strain when compared to sugar free and glucose supplemented growth media. Results obtained from scanning electron microscopy has endorsed our current results. Bark samples inoculated with T/Ace2-2 strain has showed large number of degraded cells with clearly visible cavities and fractures, by exposing the microfibrillar interwoven complex. We propose a cost effective and ecofriendly method for

  14. Crianças e adolescentes que convivem com diabetes e doença celíaca

    OpenAIRE

    Brancaglioni, Bianca de Cássia Alvarez; Rodrigues, Grasiele Caroline; Damião, Elaine Buchhorn Cintra; Queiroz, Márcia Silva; Nery, Márcia

    2016-01-01

    RESUMO Objetivo Compreender a experiência de crianças e adolescentes que convivem com diabetes mellitus tipo 1 e doença celíaca. Método Estudo qualitativo, exploratório e descritivo. A coleta de dados ocorreu entre janeiro e setembro de 2012, com 3 crianças e 2 adolescentes, em um ambulatório de diabetes do Hospital das Clinicas da FMUSP ou na residência dos participantes na cidade de São Paulo, por meio de entrevistas semiestruturadas. Utilizou-se a Análise de Conteúdo como método de tra...

  15. Production and characterization of cellulolytic enzymes from Trichoderma reesei grown on various carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Warzywoda, Michel; Labre, Elisabeth; Pourquie, Jacques [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1992-01-01

    Ethanol production from lignocellulosics is considered, using a process in which biomass is first pretreated by steam explosion, yielding freely water-extractible pentoses and a cellulose-rich residue which can be further hydrolyzed by cellulases into glucose to be fermented into ethanol. Results that are reported show that both the pentose extracts and the glucose-rich hydrolyzates can be used as carbon sources for cellulase production by Trichoderma reesei. When compared with lactose as the main carbon source, pentose extracts support lower but satisfactory protein productions which are characterized by an increase in hemicellulolytic activities, which significantly improves the saccharifying potential of these enzyme preparations. (author).

  16. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites

    DEFF Research Database (Denmark)

    Liu, Ming; Ale, Marcel Tutor; Kołaczkowski, Bartłomiej

    2017-01-01

    Classical field retting and controlled fungal retting of hemp using Phlebia radiata Cel 26 (a mutant with low cellulose degrading ability) were compared with pure pectinase treatment with regard to mechanical properties of the produced fibre/epoxy composites. For field retting a classification...

  17. Adaptação nutricional diante da doença celíaca desencadeada pela intolerância ao glúten

    Directory of Open Access Journals (Sweden)

    Francileuda Batista de Almeida

    2016-01-01

    Full Text Available A intolerância ao glúten que desencadeia a doença celíaca DC tem analises e estudo a mais de dois séculos, glúten proteína presente nas farinhas, o doente celíaco tem como sintomas distúrbios gastrointestinais ente outros problemas de saúde decorrente de dietas a parti de alimentos que contem glúten. A partir de tais pressupostos, pretendeu-se com o trabalho de revisão, analisar a necessidade de adaptações nutricionais mediante a doença celíaca desencadeada pela intolerância ao glúten. Neste sentido, tem-se que os sintomas apesentam de formas típicas e atípicas. Fatores intrínsecos também contribuem para o problema tais com os imunológicos, genéticos e ambientais. Estudos comprovam que para melhor convivência com o problema o paciente celíaco deve obter todas as informações tanto do corpo clínico que lhe assiste quanto dos exames realizados como e o caso da biopsia do intestino. O tratamento se baseia em ingestão de dieta sem glúten, antes era difícil encontrar no mercado mais hoje já existem formulações sem glúten bolos goma xantana e biscoito de farrinha de palmeia real. Este trabalho descreve em formato de revisão bibliográfica este assunto.Nutritional adaptation faced with celiac disease triggered by intolerance to glutenAbstract: The intolerance to gluten that triggers the DC celiac disease has analysis and study more than two centuries, gluten protein found in flour, the patient celiac has the symptoms gastrointestinal being disorders other health problems due to diet the left of foods containing gluten. Based on these assumptions, it was intended with the revision work, examine the need for nutritional adaptations by celiac disease triggered by intolerance to gluten-. In this sense, it has to be apesentam symptoms of typical and atypical forms. Intrinsic factors also contribute to the problem with such immunological, genetic and environmental. Studies show that for better interaction with the patient

  18. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation....... To account for any effects of autoclavation, a comparison was made with unsterilized media containing antibiotics. It was found that unsterilized washed plasma-assisted pretreated wheat straw (which contained antibiotics) was best suited for the production of xylanases (110 IU ml(-1)) and cellulases (0...... other nonrefined feedstocks suggests that plasma pretreated wheat straw is a promising and suitable substrate for cellulase and hemicellulase production....

  19. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering.

    Science.gov (United States)

    Nakanishi, Akihito; Bae, Jungu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2012-10-23

    To permit direct cellulose degradation and ethanol fermentation, Saccharomyces cerevisiae BY4741 (Δsed1) codisplaying 3 cellulases (Trichoderma reesei endoglucanase II [EG], T. reesei cellobiohydrolase II [CBH], and Aspergillus aculeatus β-glucosidase I [BG]) was constructed by yeast cell-surface engineering. The EG used in this study consists of a family 1 carbohydrate-binding module (CBM) and a catalytic module. A comparison with family 1 CBMs revealed conserved amino acid residues and flexible amino acid residues. The flexible amino acid residues were at positions 18, 23, 26, and 27, through which the degrading activity for various cellulose structures in each biomass may have been optimized. To select the optimal combination of CBMs of EGs, a yeast mixture with comprehensively mutated CBM was constructed. The mixture consisted of yeasts codisplaying EG with mutated CBMs, in which 4 flexible residues were comprehensively mutated, CBH, and BG. The yeast mixture was inoculated in selection medium with newspaper as the sole carbon source. The surviving yeast consisted of RTSH yeast (the mutant sequence of CBM: N18R, S23T, S26S, and T27H) and wild-type yeast (CBM was the original) in a ratio of 1:46. The mixture (1 RTSH yeast and 46 wild-type yeasts) had a fermentation activity that was 1.5-fold higher than that of wild-type yeast alone in the early phase of saccharification and fermentation, which indicates that the yeast mixture with comprehensively mutated CBM could be used to select the optimal combination of CBMs suitable for the cellulose of each biomass.

  20. Biochemical conversions of lignocellulosic biomass for sustainable fuel-ethanol production in the upper Midwest

    Science.gov (United States)

    Brodeur-Campbell, Michael J.

    species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.

  1. Virus-like particle nanoreactors: programmed en capsulation of the thermostable CelB glycosidase inside the P22 capsid

    NARCIS (Netherlands)

    Patterson, D.P.; Schwarz, B.; El-Boubbou, K.; Oost, van der J.; Prevelige, P.E.; Douglas, T.

    2012-01-01

    Self-assembling biological systems hold great potential for the synthetic construction of new active soft nanomaterials. Here we demonstrate the hierarchical bottom-up assembly of bacteriophage P22 virus-like particles (VLPs) that encapsulate the thermostable CelB glycosidase creating catalytically

  2. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30.

    Science.gov (United States)

    Callow, Nicholas V; Ray, Christopher S; Kelbly, Matthew A; Ju, Lu-Kwang

    2016-01-01

    This work describes the use of nutrient limitations with Trichoderma reesei Rut C-30 to obtain a prolonged stationary phase cellulase production. This period of non-growth may allow for dependable cellulase production, extended fermentation periods, and the possibility to use pellet morphology for easy product separation. Phosphorus limitation was successful in halting growth and had a corresponding specific cellulase production of 5±2 FPU/g-h. Combined with the addition of Triton X-100 for fungal pellet formation and low shear conditions, a stationary phase cellulase production period in excess of 300 h was achieved, with a constant enzyme production rate of 7±1 FPU/g-h. While nitrogen limitation was also effective as a growth limiter, it, however, also prevented cellulase production. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Production of cellulase from immobilized Trichoderma reesei

    International Nuclear Information System (INIS)

    Kasai, Noboru; Tamada, Masao; Kumakura, Minoru

    1989-05-01

    This report completed the results that obtained on the study of the enzyme activity in the culture of immobilized Trichoderma reesei cells in flask scale (100ml) and bench scale (30l). In the flask scale culture, the batch and repeated batch culture were carried out, and in the bench scale culture, the batch, repeated batch and continuous culture were done by using a culture equipment that is an unit process of the bench scale test plant for saccharification of cellulosic wastes. The enzyme activity of the immobilized cells was higher than that of the intact cells in the flask scale culture and it was confirmed that the enzyme activity was not decreased on the repeated batch culture of six times even. In the bench scale culture, it was found that a optimum culture condition of the immobilized cells was not different from that of the free cells and the immobilized cells gave the enzyme solution with a high enzyme activity in the culture condition of 450rpm stirring speed and air supply of 0.1v/v/m above. The technique of the repeated batch and continuous culture for long times in bench scale without contamination was established. The enzyme activity of the immobilized cells in continuous culture became to be 85 % to that in batch culture and it was found that the enzyme solution with high enzyme activity was continuously obtained in the continuous culture for long times. (author)

  4. A Specific Mutation in the Promoter Region of the Silent cel Cluster Accounts for the Appearance of Lactose-Utilizing Lactococcus lactis MG1363

    Science.gov (United States)

    Solopova, Ana; Bachmann, Herwig; Teusink, Bas; Kok, Jan; Neves, Ana Rute

    2012-01-01

    The Lactococcus lactis laboratory strain MG1363 has been described to be unable to utilize lactose. However, in a rich medium supplemented with lactose as the sole carbon source, it starts to grow after prolonged incubation periods. Transcriptome analyses showed that L. lactis MG1363 Lac+ cells expressed celB, encoding a putative cellobiose-specific phosphotransferase system (PTS) IIC component, which is normally silent in MG1363 Lac− cells. Nucleotide sequence analysis of the cel cluster of a Lac+ isolate revealed a change from one of the guanines to adenine in the promoter region. We showed here that one particular mutation, taking place at increased frequency, accounts for the lactose-utilizing phenotype occurring in MG1363 cultures. The G-to-A transition creates a −10 element at an optimal distance from the −35 element. Thus, a fully active promoter is created, allowing transcription of the otherwise cryptic cluster. Nuclear magnetic resonance (NMR) spectroscopy results show that MG1363 Lac+ uses a novel pathway of lactose utilization. PMID:22660716

  5. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose

    OpenAIRE

    Bischof, Robert; Fourtis, Lukas; Limbeck, Andreas; Gamauf, Christian; Seiboth, Bernhard; Kubicek, Christian P

    2013-01-01

    Background Renewable lignocellulosic biomass is an advantageous resource for the production of second generation biofuels and other biorefinery products. In Middle Europe, wheat straw is one of the most abundant low-cost sources of lignocellulosic biomass. For its efficient use, an efficient mix of cellulases and hemicellulases is required. In this paper, we investigated how cellulase production by T. reesei on wheat straw compares to that on lactose, the only soluble and also cheap inducing ...

  6. Effect of multiple short highly energetic X-ray pulses on the synthesis of endoglucanase by a mutant strain of Trichoderma reesei-M7

    International Nuclear Information System (INIS)

    Gemishev, Orlin; Markova, Maya; Savov, Valentin; Zapryanov, Stanislav; Blagoev, Alexander

    2014-01-01

    Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma. Studies were carried out with the mutant strain Trichoderma reesei-M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Ka1 and Ka2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5-11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200-1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%-32%, despite the drop of the biomass amount, compared with the untreated material. Keywords: endoglucanase; X-ray pulses; thermoluminescent dosimeters (TLD); dense plasma focus (DPF); Trichoderma reesei

  7. Estudi de l'efecte de diferents pre-tractaments químics, mecànics i biotecnològics en l'oxidació de fibres cel·lulòsiques mitjançant ozó

    OpenAIRE

    Junyent Blanco, Ana

    2017-01-01

    El següent treball té com a principal objectiu oxidar les fibres cel·lulòsiques blanquejades d’eucaliptus mitjançant ozó per tal d'obtenir una cel·lulosa modificada. Primerament s’avaluen diferents dosis d’ozó així com l’efecte del rentat entre dosis per tal d’obtenir la màxima oxidació possible. Aquesta s’avalua tant a partir de la viscositat de la pasta i els talls que es produeixen a la cel·lulosa, l’envelliment, així com a partir de la mesura de grups aldehid i carboxil. Seguidament, s’es...

  8. Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A and Cel7B from H. jecorina

    DEFF Research Database (Denmark)

    Pellegrini, Vanessa de Oliveira Arnoldi; Lei, Nina; Kysaram, Madhuri

    2014-01-01

    Adsorption of cellulases on the cellulose surface is an integral part of the catalytic mechanism, and a detailed description of the adsorption process is therefore required for a fundamental understanding of this industrially important class of enzymes. However, the mode of adsorption has proven...

  9. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  10. Laser program development at CEL-V: overview of recent experimental results

    International Nuclear Information System (INIS)

    Buresi, E.; Coutant, J.; Dautray, R.

    1985-11-01

    A significant effort has been made recently at CEL-V to improve laser facilities. OCTAL, the eight beam, 2 kJ laser, has been equipped with phosphate glass and KDP frequency tripling systems. PHEBUS, a two beam 20 kJ neodymium glass laser based on NOVA technology was defined, built and will be tested in early 1986 in close collaboration with Lawrence Livermore National laboratory. In the field of diagnostics, the development of soft X-ray emission analysis has been emphasized. Most of recent experimental results have been obtained at short wave-length (0.35 μm). They deal with: effect of non-uniform illumination, 2D hydrodynamics with either plane or spherical targets, and study of thermal transport inhibition

  11. Comparative Studies of Oleaginous Fungal Strains (Mucor circinelloides and Trichoderma reesei) for Effective Wastewater Treatment and Bio-Oil Production

    OpenAIRE

    Bhanja, Anshuman; Minde, Gauri; Magdum, Sandip; Kalyanraman, V.

    2014-01-01

    Biological wastewater treatment typically requires the use of bacteria for degradation of carbonaceous and nitrogenous compounds present in wastewater. The high lipid containing biomass can be used to extract oil and the contents can be termed as bio-oil (or biodiesel or myco-diesel after transesterification). The separate experiments were conducted on actual wastewater samples with 5% v/v inoculum of Mucor circinelloides MTCC1297 and Trichoderma reesei NCIM992 strains. The observed reduction...

  12. Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction.

    Science.gov (United States)

    Ivanova, Christa; Ramoni, Jonas; Aouam, Thiziri; Frischmann, Alexa; Seiboth, Bernhard; Baker, Scott E; Le Crom, Stéphane; Lemoine, Sophie; Margeot, Antoine; Bidard, Frédérique

    2017-01-01

    The hydrolysis of biomass to simple sugars used for the production of biofuels in biorefineries requires the action of cellulolytic enzyme mixtures. During the last 50 years, the ascomycete Trichoderma reesei , the main source of industrial cellulase and hemicellulase cocktails, has been subjected to several rounds of classical mutagenesis with the aim to obtain higher production levels. During these random genetic events, strains unable to produce cellulases were generated. Here, whole genome sequencing and transcriptomic analyses of the cellulase-negative strain QM9978 were used for the identification of mutations underlying this cellulase-negative phenotype. Sequence comparison of the cellulase-negative strain QM9978 to the reference strain QM6a identified a total of 43 mutations, of which 33 were located either close to or in coding regions. From those, we identified 23 single-nucleotide variants, nine InDels, and one translocation. The translocation occurred between chromosomes V and VII, is located upstream of the putative transcription factor vib1 , and abolishes its expression in QM9978 as detected during the transcriptomic analyses. Ectopic expression of vib1 under the control of its native promoter as well as overexpression of vib1 under the control of a strong constitutive promoter restored cellulase expression in QM9978, thus confirming that the translocation event is the reason for the cellulase-negative phenotype. Gene deletion of vib1 in the moderate producer strain QM9414 and in the high producer strain Rut-C30 reduced cellulase expression in both cases. Overexpression of vib1 in QM9414 and Rut-C30 had no effect on cellulase production, most likely because vib1 is already expressed at an optimal level under normal conditions. We were able to establish a link between a chromosomal translocation in QM9978 and the cellulase-negative phenotype of the strain. We identified the transcription factor vib1 as a key regulator of cellulases in T. reesei whose

  13. Initial 2-year results of CardioCel® patch implantation in children.

    Science.gov (United States)

    Pavy, Carine; Michielon, Guido; Robertus, Jan Lukas; Lacour-Gayet, François; Ghez, Olivier

    2018-03-01

    We present the initial 2-year results of CardioCel® patch (Admedus Regen Pty Ltd, Perth, WA, Australia) implantation in paediatric patients with congenital heart diseases. This was a single-centre retrospective study with prospectively collected data of all patients aged 18 years and under operated for congenital heart disease. The patch was introduced in 2014, with clinical practice committee approval and a special consent in case of an Ozaki procedure. Standard follow-up was performed with systematic clinical exams and echocardiograms. In case of reoperation or graft failure, the patch was removed and sent for a histological examination. Between March 2014 and April 2016, 101 patients had surgical repair using a CardioCel patch. The mean age was 22 (±36.3) months, and the mean weight was 9.7 (±10.3) kg. No infections and no intraoperative implantation difficulties were associated with the patch. The median follow-up period was 212 (range 4-726) days. The overall 30-day postoperative mortality was 3.8% (n = 4), none of which were related to graft failure. Five children were reoperated because of graft failure, 4 of whom had the patch implanted for aortic and were aged less than 10 days. The indications for patch implantation in the aortic position were aortopulmonary window, truncus arteriosus, coarctation and aortic arch hypoplasia repair. The median time between the first and the second operation for graft failure was 245 (range 5-480) days. Our experience shows that the patch is well tolerated in the septal, valvar and pulmonary artery positions. However, we experienced graft failures in infants in the aortic position. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.

    Science.gov (United States)

    Lu, Xianqin; Wang, Can; Li, Xuezhi; Zhao, Jian

    2017-12-01

    Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Prevalencia de enfermedad celíaca en pacientes con hepatopatías crónicas

    OpenAIRE

    Crivelli, Adriana N.

    2016-01-01

    La enfermedad celíaca (EC) es definida como una enteropatía crónica del intestino delgado mediada por mecanismos inmunes, precipitada por la exposición al gluten y prolaminas relacionadas de la dieta, en individuos genéticamente predispuestos. Diversas enfermedades hepáticas pueden asociarse a la EC. El espectro del compromiso hepático en la EC es muy amplio e incluye, entre otros, enfermedad hepática criptogenética (desde leve a severa), hepatitis autoinmune, colangitis esclerosante primaria...

  16. Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Grous, W.; Converse, A.; Grethlein, H.; Lynd, L.

    1985-01-01

    The enzymatic hydrolysis of cellulose to glucose involves the formation of cellobiose as an intermediate. It has been found necessary to add cellobiase from Aspergillus niger (NOVO) to the cellobiase component of Trichoderma reesei mutant Rut C-30 (Natick) cellulase enzymes in order to obtain after 48 h complete conversion of the cellobiose formed in the enzymatic hydrolysis of biomass. This study of the cellobiase activity of these two enzyme sources was undertaken as a first step in the formation of a kinetic model for cellulose hydrolysis that can be used in process design. In order to cover the full range of cellobiose concentrations, it was necessary to develop separate kinetic parameters for high- and low-concentration ranges of cellobiose for the enzymes from each organism. Competitive glucose inhibition was observed with the enzymes from both organisms. Substrate inhibition was observed only with the A. niger enzymes.

  17. Doença celíaca e infertilidade feminina: associação freqüentemente negligenciada Celiac disease and female infertility: a frequently neglected association

    Directory of Open Access Journals (Sweden)

    Carmen Lívia da Silva Martins

    2006-10-01

    Full Text Available OBJETIVO: Verificar a existência de associação entre subfertilidade ou infertilidade e concomitante presença de doença celíaca nas mulheres atendidas em ambulatório de hospital geral especializado em reprodução humana. MÉTODOS: O delineamento do estudo foi do tipo caso-controle. Os casos foram constituídos por um grupo de 200 mulheres com queixa de dificuldade para engravidar, e um grupo controle formado por 400 mulheres atendidas no mesmo ambulatório com queixas variadas, mas sem problemas de fertilidade. Ambos os grupos de pacientes foram submetidos a pesquisa de anticorpos antiendomísio pelo método de imunofluorescência indireta. Nos casos positivos, o diagnóstico foi confirmado por biópsia duodenal endoscópica e exame histopatológico. RESULTADOS: Os testes antiendomísio no grupo com dificuldade para engravidar resultaram positivos em três pacientes (1,5%. O diagnóstico de doença celíaca foi confirmado por subseqüente exame histopatológico da mucosa duodenal. Todas as pacientes pertencentes ao grupo controle apresentaram testes sorológicos negativos. CONCLUSÕES: O fato de terem sido encontrados casos de doença celíaca somente entre mulheres com queixas de dificuldade para engravidar parece um dado relevante e sugestivo de ser a doença celíaca mais comum entre mulheres inférteis; porém, há necessidade de novos estudos com tamanho de amostra maior para confirmação definitiva dessa provável associação.PURPOSE: To verify the existence of association between sub-fertility or infertility and concurrent celiac disease in women attended at a reproductive disorders out-patient clinic of a general hospital. METHODS: This was a case-control study in which a group of 200 women with difficulty in conceiving was compared with a control group with 400 women who were treated at the same hospital for various reasons, but not for fertility problems. Both groups were submitted to the anti-endomysium antibody protocol

  18. An evaluation of Admedus' tissue engineering process-treated (ADAPT) bovine pericardium patch (CardioCel) for the repair of cardiac and vascular defects.

    Science.gov (United States)

    Strange, Geoff; Brizard, Christian; Karl, Tom R; Neethling, Leon

    2015-03-01

    Tissue engineers have been seeking the 'Holy Grail' solution to calcification and cytotoxicity of implanted tissue for decades. Tissues with all of the desired qualities for surgical repair of congenital heart disease (CHD) are lacking. An anti-calcification tissue engineering process (ADAPT TEP) has been developed and applied to bovine pericardium (BP) tissue (CardioCel, AdmedusRegen Pty Ltd, Perth, WA, Australia) to eliminate cytotoxicity, improve resistance to acute and chronic inflammation, reduce calcification and facilitate controlled tissue remodeling. Clinical data in pediatric patients, and additional pre-market authorized prescriber data demonstrate that CardioCel performs extremely well in the short term and is safe and effective for a range of congenital heart deformations. These data are supported by animal studies which have shown no more than normal physiologic levels of calcification, with good durability, biocompatibility and controlled healing.

  19. Desarrollo de producto sobre la base de harinas de cereales y leguminosa para niños celíacos entre 6 y 24 meses; I: Formulación y aceptabilidad

    OpenAIRE

    Cerezal Mezquita, P.; Urtuvia Gatica, V.; Ramírez Quintanilla, V.; Romero Palacios, N.; Arcos Zavala, R.

    2011-01-01

    La revalorización de los cultivos andinos, quinua (Chenopodium quinua Willd) y lupino (Lupinus albus L), para ser utilizados en mezclas alimenticias, con cereales tradicionales como maíz (Zea mays L.) y arroz (Oryza sativa L.), originan mezclas sin gluten que constituyen una buena alternativa para la alimentación de niños menores de 24 meses que sufren la enfermedad celíaca, ya que mejoran la calidad de la proteína, por compensación de los aminoácidos esenciales, e incide en la diversificació...

  20. Doença celíaca: avaliação da obediência à dieta isenta de glúten e do conhecimento da doença pelos pacientes cadastrados na Associação dos Celíacos do Brasil (ACELBRA Celiac disease: evaluation of compliance to a gluten-free diet and knowledge of the disease in celiac patients registered at the Brazilian Celiac Association (BCA

    Directory of Open Access Journals (Sweden)

    Vera Lucia SDEPANIAN

    2001-10-01

    Full Text Available Racional — A obediência à dieta isenta de glúten previne a ocorrência de complicações malignas e não-malignas. Objetivo - Avaliar a obediência à dieta isenta de glúten e o conhecimento teórico acerca da doença celíaca e seu tratamento pelos pacientes cadastrados na Associação dos Celíacos do Brasil (ACELBRA. Métodos - Foi enviado por correio um questionário a respeito da obediência à dieta isenta de glúten e do conhecimento teórico da doença celíaca e seu tratamento a 584 membros cadastrados na ACELBRA. Resultados - Dos 534 (91,4% questionários recebidos, foram analisados 529 (90,6%. Quanto à obediência à dieta, 69,4% dos pacientes responderam que nunca ingerem glúten e 29,5% que não obedecem à dieta. A proporção de pacientes que ingerem glúten freqüentemente ou sem restrição alguma é maior entre aqueles com idade igual ou maior a 21 anos (17,7% do que os com idade menor (9,9%. A freqüência de obediência à dieta foi maior quando o intervalo de tempo em que foi estabelecido o diagnóstico da doença foi inferior a 5 anos. O intestino delgado foi assinalado como o principal órgão afetado na doença celíaca por 82% dos pacientes. Os principais sintomas assinalados foram diarréia (96,6%, emagrecimento (93,4%, barriga inchada (90,4%, anemia (68,1% e vômitos (59,6%. Apenas 59,0% concordaram com a existência de predisposição genética. Segundo 90,4% das respostas, a doença é permanente e 96,2% assinalaram que a dieta deve ser totalmente isenta de glúten; 67,1% responderam que o glúten é uma proteína que está presente, segundo 92,1% dos inquéritos, no trigo, centeio, cevada e aveia. Observou-se maior proporção de obediência à dieta quando há conhecimento da doença e dieta. A biopsia de intestino delgado foi considerada necessária por apenas 67,5% dos pacientes, observando-se maior freqüência de obediência à dieta nos pacientes que realizaram pelo menos uma biopsia de intestino delgado

  1. Unraveling the Secondary Metabolism of the Biotechnological Important Filamentous Fungus Trichoderma reesei ( Teleomorph Hypocrea jecorina)

    DEFF Research Database (Denmark)

    Jørgensen, Mikael Skaanning

    that would enable pursuance of the primary objective. The developed molecular tools were assembled into an expression system for high-throughput construction of defined integrated T. reesei mutants and combined inactivation of the non-homologous end joining pathway that facilitates ectopic integration...... of exposed DNA fragments, and a color maker so that the mutants, in which the substrate had been integrated correct, could be identified by their phenotype. A new bidirectional selective marker system was developed based on the pyr2 gene, involved in the pyrimidine biosynthesis pathway, and was included...... essential for biosynthesis of the sorbicillinoids. Hence, genes involved in biosynthesis of this group of polyketides were identified for the first time. Comparative genomics was subsequently used to identify a highly similar polyketide synthase gene cluster in another well-known sorbicillinoid producer...

  2. Origem, ramificação e distribuição da artéria celíaca no tucano-de-bico-verde (Ramphastos dicolorus Linnaeus, 1766

    Directory of Open Access Journals (Sweden)

    Osório J. Silva Neto

    2013-03-01

    Full Text Available O tucano-de-bico-verde (Ramphastos dicolorus é uma ave encontrada nas florestas tropicais americanas e pertence à Ordem Piciforme, Família Ramphastidae. Neste trabalho objetivou-se descrever a origem, a ramificação e a distribuição da artéria celíaca do tucano-de-bico-verde. Foram utilizados três espécimes provenientes do Criatório Científico e Cultural de Poços de Caldas, MG (IBAMA, 2.31.94-00006, doados após óbito por causas naturais. As aves tiveram a artéria isquiática direita canulada para injeção de solução de látex corado, e após fixação em solução de formol a 10% foram dissecadas. A artéria celíaca originou-se a partir da porção descendente da aorta, emitindo como primeiro ramo colateral a artéria pró-ventricular dorsal. Esta emitiu ramos esofágicos e continuou-se como artéria gástrica dorsal, de aspecto tortuoso, terminando em anastomose com a artéria gástrica direita. Após curto trajeto, a artéria celíaca formou dois ramos colaterais, o esquerdo e o direito. O ramo esquerdo logo se ramificou formando a artéria pró-ventricular ventral com seus ramos esofágicos, artéria gástrica esquerda, que originou a artéria hepática esquerda, e finalmente a artéria gastroduodenal, que emitiu as artérias gástricas ventrais e duodenais. O ramo direito da artéria celíaca emitiu as artérias lienais e hepática direita, continuando-se como artéria pancreático-duodenal. Esta formou a artéria pilórica dorsal, duas artérias gástricas direitas, vários ramos duodenais, pancreáticos e a artéria duodeno-jejunal. Assim, a artéria celíaca nos três espécimes de tucano-de-bico-verde, exibiu um arranjo que se assemelha tanto ao descrito em aves domésticas quanto ao de aves silvestres.

  3. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  4. Optimization of the Medium for the Production of Cellulase by the Mutant Trichoderma reesei WX-112 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Xue-Cai Hao

    2006-01-01

    Full Text Available The mutant strain Trichoderma reesei WX-112 with high cellulase activity was isolated by a newly invented plate. The mutant’s ability to produce cellulase increased 1.95 times after the treatment with UV and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG. Also, the medium composition was optimized using response surface methodology (RSM. A fractional factorial design (26–2 was applied to elucidate the medium components that significantly affect cellulase production. The concentration of Avicel and soybean cake flour in the medium were significant factors. The steepest ascent method was used to locate the optimal domain and a central composite design was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined. The composition of fermentation medium optimized with response surface methodology was (in g/L: wheat bran 30, Avicel 36.4, soybean cake flour 24.7, KH2PO4 4 and corn steep flour 5. Compared to the original medium, the cellulase activity increased from 7.2 to 10.6 IU/mL.

  5. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering

  6. KINETIKA FERMENTASI SELULOSA MURNI OLEH Trichoderma reesi QM 9414 MENJADI GLUKOSA DAN PENERAPANNYA PADA JERAMI PADI BEBAS LIGNIN [Kinetics of Pure Cellulose Fermentation by Trichoderma Reesei QM 9414 to Glucose and Its Application of on Lignin Free Rice Straw

    Directory of Open Access Journals (Sweden)

    M Iyan Sofyan

    2004-12-01

    Full Text Available The objectives of this research were: 1 to determine aeration rate and substrate concentration of pure cellulose to produce maximum glucose by Trichoderma reesei QM 9414 at 30 oC, and agitation 150 rpm; 2 to study the kinetics of pure cellulose fermentation by Trichoderma reesei QM 9414 to glucose and its implication upon fermentation of the lignin free rice straw. The experiment was arranged in factorial randomized complete design in three times replication. Treatments consisted of three levels of aeration (1,00 vvm; 1,5 vvm; 2,0 vvm and three levels of substrate concentration (0,75 ; 1,00 ; 1,25 % w/v. The results showed that at the exponential phase the average specific growth of Trichoderma reesei QM 9414 was 0,05374 hour-1, the maximum glucose product concentration of pure cellulose was 0.1644 gL-1,and the oxygen transfer was 0,0328 mg L-1 hour-1. According to t-test, the kinetics of pure cellulose fermentation model just the same as the lignin free rice straw fermentation.The enzymes produced by Trichoderma reesei QM 9414 in pure cellulose fermentation media followed the Michaelis-Menten model. The enzyme kinetic parameters were the maximum growth rate was 37x10-3 hour-1 and Michaelis-Menten constant was ½ maximum μ =17,5x10-3 hour-1. The volumetric oxygen transfer (KLa using rice straw was 0,0337 mg.hour-1. The value of KLa could be used for conversion from bioreactor at laboratory scale to commercial scale design.

  7. Doença celíaca: sua relação com a saúde bucal Celiac disease's relationship with the oral health

    Directory of Open Access Journals (Sweden)

    Michelle Soares Rauen

    2005-04-01

    Full Text Available Doença Celíaca é uma intolerância permanente às proteínas contidas no glúten de alguns cereais, como o trigo, o centeio, a cevada e a aveia. A doença manifesta-se principalmente nos primeiros dois anos de vida, sendo o intestino delgado o principal órgão afetado, com manifestações clínicas de diarréia, vômitos e emagrecimento; porém, o diagnóstico, muitas vezes, é difícil, devido ao grande número de casos atípicos da doença. Nestes casos, os sintomas podem ser numerosos e diversificados, tais como baixa estatura, anemia, osteoporose, hipoplasia do esmalte dentário, além de sintomas próprios do quadro clínico de outras doenças imunológicas que podem associar-se à doença celíaca, tais como diabetes mellitus, dermatite herpertiforme, doenças da tireóide, alergia, estomatite aftosa recorrente, entre outras. Devido a essa associação, os profissionais da saúde procurados pelos pacientes podem não relacionar os sintomas à enteropatia; entretanto, esta, se não tratada, pode trazer várias outras complicações à saúde. O objetivo desta comunicação é demonstrar a importância das manifestações bucais, as quais, quando devidamente observadas, contribuem ao diagnóstico da doença celíaca.Celiac Disease is a permanent intolerance to proteins contained in the gluten of some cereals, such as wheat, rye, barley and oat. The disease appears mainly during the first two years of life, the small bowel being the main affected organ, with clinical manifestations such as diarrhea, vomiting and weight loss. The diagnosis, however, is often difficult, due to the large number of atypical manifestations of the disease. In such cases, numerous and diversified symptoms, such as low stature, anemia, osteoporosis, and dental enamel hypoplasia, may be concurrent with symptoms of immune diseases associated to the celiac disease (diabetes mellitus, dermatitis herpetiformis, thyroid diseases, allergy, and recurrent aphtous

  8. Product inhibition of five Hypocrea jecorina cellulases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Westh, Peter; Bohlin, Christina

    2013-01-01

    Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...... on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly...

  9. Soroprevalência da doença celíaca em crianças e adolescentes com diabetes melito tipo 1 Serum prevalence of celiac disease in children and adolescents with type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jacqueline Araújo

    2006-06-01

    Full Text Available OBJETIVO: A associação de doença celíaca e diabetes melito já é conhecida há várias décadas. Pode ser encontrada em uma grande proporção de pacientes diabéticos, que geralmente são assintomáticos. O objetivo do estudo foi avaliar a soroprevalência da doença celíaca em crianças e adolescentes com diabetes melito tipo 1. MÉTODOS: Através de um estudo transversal, realizou-se triagem sorológica com anticorpo IgA antitransglutaminase humana em 354 crianças e adolescentes diabéticos, atendidos em ambulatórios de endocrinologia pediátrica de Recife, Pernambuco, no período de janeiro a junho de 2004. RESULTADOS: O antitransglutaminase humana foi positivo em 37/354 pacientes, resultando em soroprevalência de 10,5% (IC95% 7,6-14,2%. Dentre os pacientes soropositivos, houve predomínio do sexo masculino (56,8% em relação ao feminino (43,2%, porém sem significância estatística. O anticorpo antiendomísio foi realizado nos pacientes com antitransglutaminase humana positivo, sendo negativo em 14/37 (37,8% e positivo em 22/37 (59,5%. CONCLUSÕES: A soroprevalência da doença celíaca em crianças e adolescentes diabéticos encontrada em Pernambuco é elevada, sendo comparável à observada em estudos da América do Norte e Europa e menor do que na África, sugerindo que a triagem sorológica para doença celíaca seja realizada em todas as crianças e adolescentes com diabetes melito tipo 1.OBJECTIVE: The association between celiac disease and diabetes mellitus has been known for many decades. This combination can be observed in a large proportion of diabetic patients, who are generally asymptomatic. The objective of this study was to evaluate the seroprevalence of celiac disease in children and adolescents with type 1 diabetes mellitus. METHODS: This was a cross-sectional study employing antibody IgA anti-transglutaminase for the serological screening of 354 diabetic children and adolescents treated at pediatric endocrinology

  10. Characteristics of Lignin Fractions from Dilute Acid Pretreated Switchgrass and Their Effect on Cellobiohydrolase from Trichoderma longibrachiatum

    Directory of Open Access Journals (Sweden)

    Lan Yao

    2018-02-01

    Full Text Available To investigate the interactions between acid pretreated switchgrass lignin and cellobiohydrolase (CBH, three different lignin fractions were isolated from dilute acid pretreated switchgrass by (i ethanol extraction, followed by (ii dioxane/H2O extraction, and (iii cellulase treatment, respectively. Structural properties of each lignin fraction were elucidated by GPC, 13C-NMR, and 2D-HSQC NMR analyses. The adsorptions of CBH to the isolated lignin fractions were also studied by Langmuir adsorption isotherms. Ethanol-extractable lignin fraction, mainly composed of syringyl (S and guaiacyl (G units, had the lowest molecular weight, while dioxane/H2O-extracted lignin fraction had the lowest S/G ratio with higher content of p-coumaric acid (pCA unit. The residual lignin fraction after enzymatic treatment had the highest S/G ratio without hydroxyphenyl (H unit. Strong associations were found between lignin properties such as lignin composition and S/G ratio and its non-productive enzyme adsorption factors including the maximum adsorption capacity and binding strength.

  11. Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei.

    Science.gov (United States)

    Wang, Juan; Zeng, Desheng; Liu, Gang; Wang, Shaowen; Yu, Shaowen

    2014-01-01

    To obtain high expression efficiency of a mannanase gene, ThMan5A, cloned from Trichoderma harzianum MGQ2, both the full-length gene and a truncated gene (ThMan5AΔCBM) that contains only the catalytic domain, were expressed in Trichoderma reesei QM9414 using the strong constitutive promoter of the gene encoding pyruvate decarboxylase (pdc), and purified to homogeneity, respectively. We found that truncation of the gene improved its expression efficiency as well as the enzymatic properties of the encoded protein. The recombinant strain expressing ThMan5AΔCBM produced 2,460 ± 45.1 U/ml of mannanase activity in the culture supernatant; 2.3-fold higher than when expressing the full-length ThMan5A gene. In addition, the truncated mannanase had superior thermostability compared with the full-length enzyme and retained 100 % of its activity after incubation at 60 °C for 48 h. Our results clearly show that the truncated ThMan5A enzyme exhibited improved characteristics both in expression efficiency and in its thermal stability. These characteristics suggest that ThMan5AΔCBM has potential applications in the food, feed, paper, and pulp industries.

  12. Grado de información, acceso y prácticasde elaboración de alimentos sin TACC de beneficios del programa de Asistencia Alimentaria para Celíacos de General Madariaga

    OpenAIRE

    Chaparro, María Victoria

    2015-01-01

    La Enfermedad Celíaca, también conocida como esprúe celíaco o enteropatía sensible al gluten, se la define como la intolerancia alimentaria de orden genético más frecuente de la especie humana. El único tratamiento es una dieta estricta y de por vida Sin TACC. La incidencia es mayor en mujeres, que en varones, siendo su prevalencia aproximadamente el 1% de la población. Objetivos: Determinar el grado de información, el acceso y las prácticas de elaboración de alimentos Sin T...

  13. Identification of the C-Terminal GH5 Domain from CbCel9B/Man5A as the First Glycoside Hydrolase with Thermal Activation Property from a Multimodular Bifunctional Enzyme.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available Caldicellulosiruptor bescii encodes at least six unique multimodular glycoside hydrolases crucial for plant cell wall polysaccharides degradation, with each having two catalytic domains separated by two to three carbohydrate binding modules. Among the six enzymes, three have one N- or C-terminal GH5 domain with identical amino acid sequences. Despite a few reports on some of these multimodular enzymes, little is known about how the conserved GH5 domains behave, which are believed to be important due to the gene duplication. We thus cloned a representative GH5 domain from the C-terminus of a multimodular protein, i.e. the bifunctional cellulase/mannanase CbCel9B/Man5A which has been reported, and expressed it in Escherichia coli. Without any appending CBMs, the recombinant CbMan5A was still able to hydrolyze a variety of mannan substrates with different backbone linkages or side-chain decorations. While CbMan5A displayed the same pH optimum as CbCel9B/Man5A, it had an increased optimal temperature (90°C and moreover, was activated by heating at 70°C and 80°C, a property not ever reported for the full-length protein. The turnover numbers of CbMan5A on mannan substrates were, however, lower than those of CbCel9B/Man5A. These data suggested that evolution of CbMan5A and the other domains into a single polypeptide is not a simple assembly; rather, the behavior of one module may be affected by the other ones in the full-length enzyme. The differential scanning calorimetry analysis further indicated that heating CbMan5A was not a simple transition state process. To the best knowledge of the authors, CbMan5A is the first glycoside hydrolase with thermal activation property identified from a multimodular bifunctional enzyme.

  14. ICECO-CEL: a coupled Eulerian-Lagrangian code for analyzing primary system response in fast reactors

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1981-02-01

    This report describes a coupled Eulerian-Lagrangian code, ICECO-CEL, for analyzing the response of the primary system during hypothetical core disruptive accidents. The implicit Eulerian method is used to calculate the fluid motion so that large fluid distortion, two-dimensional sliding interface, flow around corners, flow through coolant passageways, and out-flow boundary conditions can be treated. The explicit Lagrangian formulation is employed to compute the response of the containment vessel and other elastic-plastic solids inside the reactor containment. Large displacements, as well as geometrical and material nonlinearities are considered in the analysis. Marker particles are utilized to define the free surface or the material interface and to visualize the fluid motion. The basic equations and numerical techniques used in the Eulerian hydrodynamics and Lagrangian structural dynamics are described. Treatment of the above-core hydrodynamics, sodium spillage, fluid cavitation, free-surface boundary conditions and heat transfer are also presented. Examples are given to illustrate the capabilities of the computer code. Comparisons of the code predictions with available experimental data are also made

  15. Discordância de apresentação da doença celíaca em gêmeos monozigóticos

    Directory of Open Access Journals (Sweden)

    Magda Bahia

    2010-03-01

    Full Text Available CONTEXTO: A doença celíaca é uma enteropatia autoimune causada pela sensibilidade ao glúten em indivíduos geneticamente predispostos. Apesar da característica genética da doença, estudos demonstram discordância de 30% na sua apresentação em gêmeos monozigóticos. OBJETIVO: Apresentar dois pares de gêmeos monozigóticos, comprovados por estudos genéticos, discordantes para apresentação da doença celíaca. MÉTODO: Os pacientes foram acompanhados no Serviço de Gastroenterologia Pediátrica do Hospital das Clínicas da Universidade Federal de Minas Gerais desde 1990, sendo submetidos a exames clínicos periódicos, biopsias intestinais e sorologia para anticorpos IgG e IgA antigliadina, determinados pela técnica de ELISA (ensaio imunoenzimático, e anticorpos classe IgA antiendomísio, determinados pela técnica de imunofluorescência indireta. Estudos genéticos foram realizados através da técnica de amplificação por PCR e posterior tipagem de loci de microssatélites do tipo STR (short tandem repeats. RESULTADOS: Em cada par de gêmeos, apenas um apresentou doença celíaca até o momento, mostrando que, apesar do genótipo idêntico, este não foi o único determinante para a expressão da doença. CONCLUSÃO: Outros fatores, ambientais e genéticos, parecem contribuir para determinação da doença.CONTEXT: The celiac disease is an immune-mediated enteropathy caused by a permanent sensitivity to gluten in genetically susceptible individuals. Despite the genetic characteristic of the disease, studies show discrepancy of 30% in its presentation in monozygotic twins. OBJECTIVE: To present two pairs of monozygotic confirmed by genetic study and discordant for presentation of celiac disease. METHODS: The patients were followed up at the Pediatric Gastroenterology Service - Hospital das Clínicas da Universidade Federal de Minas Gerais, MG, Brazil, since 1990, and were submitted to periodical clinical examinations, intestinal

  16. Modified wick method using Weck-Cel sponges for collection of human rectal secretions and analysis of mucosal HIV antibody.

    Science.gov (United States)

    Kozlowski, P A; Lynch, R M; Patterson, R R; Cu-Uvin, S; Flanigan, T P; Neutra, M R

    2000-08-01

    Weck-Cel sponges were examined for suitability as an absorbent material for nontraumatic collection of rectal secretions in humans. Sponges were tested in vitro and determined by quantitative enzyme-linked immunosorbent assay (ELISA) to be capable of releasing 100% of absorbed albumin and all immunoglobulin subtypes after treatment with detergent-supplemented buffer. Protein composition in rectal secretions collected from normal women with dry sponges (DS) or with sponges previously softened by moistening with saline (MS) was subsequently compared. DS secretions showed evidence of contamination with blood and interstitial fluid-derived albumin, immunoglobulin G (IgG), and monomeric IgA. MS secretions appeared to represent local mucosal secretions more accurately because they contained negligible blood, a greater percentage of secretory IgA within the total IgA, and both lower albumin/IgG ratios and more dramatic alterations in IgG subclass distribution compared with corresponding serum. Anti-HIV IgG, IgM, IgA, and antibodies with secretory component could be demonstrated by ELISA in rectal secretions collected with moist sponges from 8 of 8, 1 of 8, 5 of 8, and 3 of 8 HIV-infected women, respectively. The data show that Weck-Cel sponges, if premoistened, can be used to collect rectal fluids nontraumatically and to obtain quantitative information about concentrations of immunoglobulins and specific antibodies on rectal mucosal surfaces.

  17. Celiac artery in New Zealand rabbit: anatomical study of its origin and arrangement for experimental research and surgical practice Artéria celíaca em coelhos Nova Zelândia: estudo anatômico de sua origem e arranjo para a pesquisa experimental e a prática cirúrgica

    Directory of Open Access Journals (Sweden)

    Marcelo Abidu-Figueiredo

    2008-05-01

    trajeto. Foram utilizados 30 coelhos, 13 machos e 17 fêmeas, pesando em media 2,5 kg e apresentando comprimento rostro-sacral em torno de 40cm. A artéria aorta torácica foi canulada e através da mesma foi feita à fixação com solução de formaldeído a 10% e repleções vasculares com solução de Petrolátex S65 corado. A artéria celíaca e suas ramificações proximais foram dissecadas ao longo do seu percurso, registrando com auxílio de um paquímetro seu comprimento e sua esqueletopia. A artéria celíaca teve sua emergência de forma única diretamente da artéria aorta abdominal em todos os animais dissecados. Emitiu inicialmente a artéria lienal e a seguir a artéria gástrica esquerda que se continuou como hepática em todos os 30 animais. A artéria celíaca teve sua origem entre a 12ªe 13ª vértebra torácica em 11 animais (36,7 %, na 13ª vértebra torácica em 6 (20 %, entre a 13ª vértebra torácica e a 1ª vértebra lombar em 12 (40 % e na 1ª vértebra lombar em apenas 1 animal (3,3%. O comprimento médio da artéria celíaca foi de 0,5cm. Não foi observada relação entre o comprimento da artéria celíaca e o comprimento rostro-sacral dos coelhos. O número de artérias gástricas esquerdas, ramificações principais da artéria lienal, bem como a origem da artéria celíaca independeram do sexo do animal.

  18. Effect of pH on production of xylanase by Trichoderma reesei on xylan- and cellulose-based media

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.J. (VTT, Biotechnical Lab., Espoo (Finland)); Buchert, J. (VTT, Biotechnical Lab., Espoo (Finland)); Viikari, L. (VTT, Biotechnical Lab., Espoo (Finland))

    1993-11-01

    Trichoderma reesei VTT-D-86271 (Rut C-30) was cultivated on media based on cellulose and xylan as the main carbon source in fermentors with different pH minimum controls. Production of xylanase was favoured by a rather high pH minimum control between 6.0 and 7.0 on both cellulose- and xylan-based media. Although xylanase was produced efficiently on cellulose as well as on xylan as the carbon source, significant production of cellulase was observed only on the cellulose-based medium and best production was at lower pH (4.0 minimum). Production of xylanase at pH 7.0 was shown to be dependent on the nature of the xylan in the cultivation medium but was independent of other organic components. Best production of xylanase was observed on insoluble, unsubstituted beech xylan at pH 7.0. Similar results were obtained in laboratory and pilot (200-1) fermentors. Downstream processing of the xylanase-rich, low-cellulase culture filtrate presented no technical problems despite apparent autolysis of the fungus at the high pH. Enzyme produced in the 200-1 pilot fermentor was shown to be suitable for use in enzyme-aided bleaching of kraft pulp. Due to the high xylanase/cellulase ratio of enzyme activities in the culture filtrate, pretreatment for removal of cellulase activity prior to pulp bleaching was unnecessary. (orig.)

  19. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    International Nuclear Information System (INIS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-01-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli

  20. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  1. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Science.gov (United States)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  2. Doença celíaca em tratamento: avaliação da densidade mineral óssea Celiac disease under treatment: evaluation of bone mineral density

    Directory of Open Access Journals (Sweden)

    Cecília Noronha de Miranda Carvalho

    2003-08-01

    Full Text Available OBJETIVO: comparar a densidade mineral óssea de crianças e adolescentes com doença celíaca em tratamento com controles sadios, e avaliar exames laboratoriais relacionados com o metabolismo do cálcio. MÉTODOS: foram estudados 30 pacientes com doença celíaca em dieta isenta de glúten, 17 crianças e 13 adolescentes, e 23 indivíduos saudáveis. Todos os pacientes e controles realizaram a densidade mineral óssea (DEXA, Lunar. Os pacientes realizaram dosagem sérica de cálcio total, cálcio ionizado, fósforo, magnésio, fosfatase alcalina e paratormônio. RESULTADOS: a média de peso, estatura e densidade mineral óssea dos adolescentes com doença celíaca foi menor do que dos controles (pOBJECTIVE: the present study was designed to compare the bone mineral density of children and adolescents with celiac disease to the bone mineral density of controls, and to evaluate laboratory analysis of calcium metabolism of celiac disease patients. METHODS: thirty celiac disease patients (17 children, 13 adolescents, on a gluten-free diet, and 23 healthy subjects were studied. Tests of bone mineral density of the lumbar spine (DEXA, Lunar were performed in all patients and controls. Laboratory analysis of calcium metabolism was performed in all patients. RESULTS: mean weight and height of adolescents with celiac disease were lower than mean weight and height of controls (p<0.05. Bone mineral density in adolescents with celiac disease was significantly reduced if compared to controls (p=0.015, whereas no significant difference was found among children with celiac disease and controls. The number of adolescents who had started a gluten-free diet after the age of 2 years was higher than in children (p=0.003. Serum levels of ionized calcium, total calcium and parathormone were normal. CONCLUSIONS: the one mineral density of adolescents with celiac disease was lower than controls; whereas, no difference was found between the bone mineral density of

  3. Preventive but Not Curative Efficacy of Celecoxib on Bladder Carcinogenesis in a Rat Model

    Directory of Open Access Journals (Sweden)

    José Sereno

    2010-01-01

    Full Text Available To evaluate the effect of a cyclooxygenase 2 inhibitor, celecoxib (CEL, on bladder cancer inhibition in a rat model, when used as preventive versus as curative treatment. The study comprised 52 male Wistar rats, divided in 5 groups, during a 20-week protocol: control: vehicle, carcinogen: 0.05% of N-butyl-N-(4-hydroxybutyl nitrosamine (BBN, CEL: 10 mg/kg/day of the selective COX-2 inhibitor Celebrex, preventive CEL (CEL+BBN-P, and curative CEL (BBN+CEL-C groups. Although tumor growth was markedly inhibited by the preventive application of CEL, it was even aggravated by the curative treatment. The incidence of gross bladder carcinoma was: control 0/8(0%, BBN 13/20(65%, CEL 0/8(0%, CEL+BBN-P 1/8(12.5%, and BBN+CEL-C 6/8(75%. The number and volume of carcinomas were significantly lower in the CEL+BBN-P versus BBN, accompanied by an ample reduction in hyperplasia, dysplasia, and papillary tumors as well as COX-2 immunostaining. In spite of the reduction of tumor volumes in the curative BBN+CEL-C group, tumor malignancy was augmented. An anti-inflammatory and antioxidant profile was encountered only in the group under preventive treatment. In conclusion, preventive, but not curative, celecoxib treatment promoted a striking inhibitory effect on bladder cancer development, reinforcing the potential role of chemopreventive strategies based on cyclooxygenase 2 inhibition.

  4. Market regulation in Central America and Bit-Energy.CEL as tool for improving the self regulating forces for a liberalised market

    International Nuclear Information System (INIS)

    Reisinger, H.; Reuter, A.; Dulle, H.

    2002-01-01

    establishment of regional spot and contracts market comprising 6 Central American countries; 3. the introduction of a retail market, allowing auto generation for industrial consumers; 4. the introduction of a renewable and rural electrification support scheme; 5. the introduction of the stochastic planning tool Bit-Energy.CEL for making offers for the spot market less predictable and more flexible. The proposed paper will show more details on the history of market liberalisation in Central America, summarise ongoing activities for improving market efficiency and explain in more detail which role Bit-Energy.CEL plays in this process. (author)

  5. Cellulolytic (cel) genes of Clostridium thermocellum F7 and the proteins encoded by them

    International Nuclear Information System (INIS)

    Piruzyan, E.S.; Mogutov, M.A.; Velikodvorskaya, G.A.; Pushkarskaya, T.A.

    1988-01-01

    This study is concerned with genes cell, ce12, and ce13 encoding the endoglucanase of the cellulolytic complex of the anaerobic thermophilic Clostridium thermocellum F7 bacteria, these genes having been closed by us earlier. The authors present the characteristics of proteins synthesized by the cel genes in the minicell system of the strain Escherichia coli K-12 X925. The molecular weights of the proteins encoded by genes cell, ce12, and ce13 are 30,000, 45,000, and 50,000 dalton, respectively. The study of the homology of the cloned section of the C. thermocellum DNA containing the endoglucanase genes, using Southern's blot-hybridization method, did not reveal their physical linkage in the genome. The authors detected a plasmid with a size of about 30 kb in the cells of the C. thermocellum F7 strain investigated

  6. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.

    Science.gov (United States)

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Santana, Eliane Silva; Zanini, Guilherme Keppe; Dos Santos, Renato Augusto Corrêa; de Oliveira Pontes, Angélica; de Souza, Aline Tieppo; Dal'Mas, Roberta Maria Menegaldo Tavares Soares; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2017-06-30

    Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass

  7. Manejo nutricional de la enfermedad celíaca Nutritional management of the celiac disease

    Directory of Open Access Journals (Sweden)

    Daris I. González Hernández

    2006-06-01

    Full Text Available La enfermedad celíaca es una causa importante de malaabsorción en la niñez. Se caracteriza por una intolerancia total y permanente al gluten que contiene la fracción proteica del trigo y otros cereales. La patogenia de la enfermedad es multifactorial y tiene un cuadro clínico variado, en el cual predominan los síntomas de malaabsorción y la desnutrición. La dieta exenta de gluten es la parte más importante de la terapéutica, además de hacer frente a las deficiencias nutricionales. Se hace una revisión del manejo dietético y la educación nutricional del paciente y sus familiares, con énfasis en los alimentos que pueden contener gluten de forma enmascarada.

  8. Design and characterizations of two novel cellulases through single-gene shuffling of Cel12A (EG3) gene from Trichoderma reseei.

    Science.gov (United States)

    Yenenler, Asli; Sezerman, Osman Ugur

    2016-06-01

    Cellulases have great potential to be widely used for industrial applications. In general, naturally occurring cellulases are not optimized and limited to meet the industrial needs. These limitations lead to demand for novel cellulases with enhanced enzymatic properties. Here, we describe the enzymatic and structural properties of two novel enzymes, EG3_S1 and EG3_S2, obtained through the single-gene shuffling approach of Cel12A(EG3) gene from Trichoderma reseei EG3_S1 and EG3_S2 shuffled enzymes display 59 and 75% identity in protein sequence with respect to native, respectively. Toward 4-MUC, the minimum activity of EG3_S1 was reported as 5.9-fold decrease in native at 35°C, whereas the maximum activity of EG3_S2 was reported as 15.4-fold increase in native activity at 40°C. Also, the diminished enzyme activity of EG3_S1 was reported within range of 0.6- to 0.8-fold of native and within range of 0.5- to 0.7-fold of native toward CMC and Na-CMC, respectively. For EG3_S2 enzyme, the improved enzymatic activities within range of 1.1- to 1.4-fold of native and within range of 1.1- to 1.6-fold of native were reported toward CMC and Na-CMC, respectively. Moreover, we have reported 6.5-fold increase in the kcat/Km ratio of EG3_S2 with respect to native and suggested EG3_S2 enzyme as more efficient catalysis for hydrolysis reactions than its native counterpart. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii.

    Science.gov (United States)

    Ye, Libin; Su, Xiaoyun; Schmitz, George E; Moon, Young Hwan; Zhang, Jing; Mackie, Roderick I; Cann, Isaac K O

    2012-10-01

    A large polypeptide encoded in the genome of the thermophilic bacterium Caldicellulosiruptor bescii was determined to consist of two glycoside hydrolase (GH) modules separated by two carbohydrate-binding modules (CBMs). Based on the detection of mannanase and endoglucanase activities in the N-terminal GH5 and the C-terminal GH44 module, respectively, the protein was designated CbMan5B/Cel44A. A GH5 module with >99% identity from the same organism was characterized previously (X. Su, R. I. Mackie, and I. K. Cann, Appl. Environ. Microbiol. 78:2230-2240, 2012); therefore, attention was focused on CbMan5A/Cel44A-TM2 (or TM2), which harbors the GH44 module and the two CBMs. On cellulosic substrates, TM2 had an optimal temperature and pH of 85°C and 5.0, respectively. Although the amino acid sequence of the GH44 module of TM2 was similar to those of other GH44 modules that hydrolyzed cello-oligosaccharides, cellulose, lichenan, and xyloglucan, it was unique that TM2 also displayed modest activity on mannose-configured substrates and xylan. The TM2 protein also degraded Avicel with higher specific activity than activities reported for its homologs. The GH44 catalytic module is composed of a TIM-like domain and a β-sandwich domain, which consists of one β-sheet at the N terminus and nine β-sheets at the C terminus. Deletion of one or more β-sheets from the β-sandwich domain resulted in insoluble proteins, suggesting that the β-sandwich domain is essential for proper folding of the polypeptide. Combining TM2 with three other endoglucanases from C. bescii led to modest synergistic activities during degradation of cellulose, and based on our results, we propose a model for cellulose hydrolysis and utilization by C. bescii.

  10. Investigation of an "alternate water supply system" in enzymatic hydrolysis in the processive endocellulase Cel7A from Rasamsonia emersonii by molecular dynamics simulation.

    Science.gov (United States)

    Sun, Xun; Qian, Meng-Dan; Guan, Shan-Shan; Shan, Ya-Ming; Dong, Ying; Zhang, Hao; Wang, Song; Han, Wei-Wei

    2017-02-01

    Cel7A from Rasamsonia emersonii is one of the processive endocellulases classified under family 7 glycoside hydrolase. Molecular dynamics simulations were carried out to obtain the optimized sliding and hydrolyzing conformations, in which the reducing ends of sugar chains are located on different sites. Hydrogen bonds are investigated to clarify the interactions between protein and substrate in either conformation. Nine hydrogen bonding interactions are identified in the sliding conformation, and six similar interactions are also found correspondingly in the hydrolyzing conformation. In addition, four strong hydrophobic interactions are also determined. The domain cross-correlation map analysis shows movement correlation of protein including autocorrelation between residues. The root mean square fluctuations analysis represents the various flexibilities of different fragment in the two conformations. Comparing the two conformations reveals the water-supply mechanism of selective hydrolysis of cellulose in Cel7A. The mechanism can be described as follow. When the reducing end of substrate slides from the unhydrolyzing site (sliding conformation) to the hydrolyzing site (hydrolyzing conformation), His225 is pushed down and rotated, the rotation leads to the movement of Glu209 with the interstrand hydrogen bonding in β-sheet. It further makes Asp211 close to the hydrolysis center and provides a water molecule bounding on its carboxyl in the previous unhydrolyzing site. After the hydrolysis takes place and the product is excluded from the enzyme, the Asp211 comes back to its initial position. In summary, Asp211 acts as an elevator to transport outer water molecules into the hydrolysis site for every other glycosidic bond. © 2016 Wiley Periodicals, Inc.

  11. Immobilization of trichoderma REESEI (QM 9414) cells with paper covered with ionic copolymer by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin

    1992-01-01

    Cationic-hydrophobic copolymer and anionic-hydrophobic copolymer was covered onto surface of paper by radiation polymerization. The paper covered with ionic copolymer was used as carrier of immobilizing Trichoderma reesei cells. Results showed that the cells were immobilized firmly on the carriers and not dislocated from the carriers by shaking. All of FPA of the cells immobilized with the carriers covered with cationic copolymer were higher than that of un-immobilized free cells. The carriers covered with anionic copolymer showed good effect on immobilization of the cells. The weight of immobilized cells increase as increasing the component of DEAEMA in poly (DEAEMA-ATMPT) or decreasing the component of AA in poly (AA-ATMPT). It also increase with the increase of water absorption in poly (DEAEMA-ATMPT) or decrease of water absorption in poly (AA-ATMPT). It shows the static interaction play an important role in the immobilization of cells with ionic copolymer materials

  12. A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Alberto Alonso Monroy

    Full Text Available Changing light conditions, caused by the rotation of earth resulting in day and night or growth on the surface or within a substrate, result in considerably altered physiological processes in fungi. For the biotechnological workhorse Trichoderma reesei, regulation of glycoside hydrolase gene expression, especially cellulase expression was shown to be a target of light dependent gene regulation. Analysis of regulatory targets of the carbon catabolite repressor CRE1 under cellulase inducing conditions revealed a secondary metabolite cluster to be differentially regulated in light and darkness and by photoreceptors. We found that this cluster is involved in production of trichodimerol and that the two polyketide synthases of the cluster are essential for biosynthesis of dihydrotrichotetronine (syn. bislongiquinolide or bisorbibutenolide. Additionally, an indirect influence on production of the peptaibol antibiotic paracelsin was observed. The two polyketide synthetase genes as well as the monooxygenase gene of the cluster were found to be connected at the level of transcription in a positive feedback cycle in darkness, but negative feedback in light, indicating a cellular sensing and response mechanism for the products of these enzymes. The transcription factor TR_102497/YPR2 residing within the cluster regulates the cluster genes in a light dependent manner. Additionally, an interrelationship of this cluster with regulation of cellulase gene expression was detected. Hence the regulatory connection between primary and secondary metabolism appears more widespread than previously assumed, indicating a sophisticated distribution of resources either to degradation of substrate (feed or to antagonism of competitors (fight, which is influenced by light.

  13. Fabrication of polystyrene/agave particle biocomposites using ...

    Indian Academy of Sciences (India)

    marine, sports, automobile, aerospace industry, etc. This is mainly due to increasing environmental concerns and ..... -4.0. -6.0. -8.0. -10.0. 391 Cel. 1.84 mg/min. 22 Cel. 100.0 %. 101 Cel. 100.2 %. 419 Cel. 1.1 %. 965 Ce. -0.8 %. 275 Cel. 97.9 %. 486 Cel. 14.47 uV. 395 Cel. 4.82 uV. -172 mJ/mg. -150 mJ/mg. 121 mJ/mg.

  14. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.

    Science.gov (United States)

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-10-24

    the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase).

  15. fA cellular automaton model of crystalline cellulose hydrolysis by cellulases

    Directory of Open Access Journals (Sweden)

    Little Bryce A

    2011-10-01

    Full Text Available Abstract Background Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. Results The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall

  16. Biosynthesis of the enzymes of the cellulase system by T. Reesei QM 9414 in the presence of sophorose

    Science.gov (United States)

    Gritzali, M.

    1982-12-01

    As conventional, nonrenewable energy sources are rapidly depleted and it was necessary to search for alternative sources of energy. It was increasingly apparent that biomass and waste are alternatives well worth exploring. The sources of biomass and wastes that considered for conversion to useful products are quite diverse, but the most abundant constituent of almost every type is cellulose. Cellulose is cleanly converted to soluble fermentable sugars enzymatically, and cellulose enzymes were isolated from a number of microbial sources. It is generally agreed that the most effective system of enzymes for the conversion of cellulose to glucose is produced by species of the imperfect fungus Trichoderma. The mutant organism Trichoderma reesei QM 9414 is among the best producers of high levels of enzymes; these are extracellular and have carbonhydrate covalently bound to the peptide. Trichoderma produces three types of enzymes which, in a sequential and cooperative manner, convert cellulose to soluble oligosaccharides and glucose.

  17. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    Science.gov (United States)

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    International Nuclear Information System (INIS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-01-01

    This study investigated the effects of irradiation on N ε -carboxymethyl-lysine (CML) and N ε -carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810–0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage. - Highlights: • The effect of irradiation on CML and CEL formation in meat products is investigated. • CML and CEL contents in irradiated meat products exhibit a higher growth rate than non-irradiated samples. • PUFAs oxidation induced by irradiation promotes CML and CEL formation. • Lipid oxidation pathways are an important pathway for CML and CEL accumulation in irradiated samples during storage.

  19. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    Science.gov (United States)

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  20. Fondurile cinegetice ale Universității ”Ștefan cel Mare” Suceava – Facultatea de Silvicultură: o retrospectivă a activității [Hunting Funds of Ștefan cel Mare University of Suceava - Faculty of Forestry: a retrospective of work

    Directory of Open Access Journals (Sweden)

    Dănilă G

    2016-12-01

    Full Text Available Ștefan cel Mare University’s Hunting Funds, through the Faculty of Forestry, consists of three hunting territories (HT: HT no. 55 Mitoc, HT no. 69 Râșca, HT no. 56 Salcea. The first two have a high hunting potential for major hunting sedentary game species (wild boar, roe buck, roe deer, hare, wolf, bear. In over 15 years of hunting management, USV has overcome the difficulties imposed by different legislations. Also, USV, along with the University of Brașov, managed to amend Law 407/2006 and to return to free hunting use of the public lands. The teaching and research activities in the hunting territories have resulted in over 15 diploma projects, over 20 scientific articles published in specialized reviews, of which 7 ISI, over 10 scientific papers of which two were the students’ work, two research contracts and a book. The management coherence driven by the specialized staff is reflected in the higher number of top quality trophies, which started to be harvested after about 10 years of management.

  1. Caracterización bioinformática de unidades de transcripción no anotadas relacionadas con la enfermedad celíaca

    OpenAIRE

    Fernández Portela, Silvia

    2016-01-01

    La celiaquía es una enfermedad compleja y crónica que se debe a una reacción de intolerancia a la ingesta del gluten. Sus vías moleculares son poco conocidas aunque han sido muy estudiadas debido a que es multigénica. Se presenta la secuenciación de ARN como método de identificación de nuevos transcritos por todo el genoma para la compresión de la enfermedad celíaca. Pudiendo extrapolarse a cualquier otra investigación. Para ello predeciremos transcritos del RNAseq, los identificamos y caract...

  2. A new stoichiometric miniaturization strategy for screening of industrial microbial strains: application to cellulase hyper-producing Trichoderma reesei strains

    Directory of Open Access Journals (Sweden)

    Jourdier Etienne

    2012-05-01

    Full Text Available Abstract Background During bioprocess development, secondary screening is a key step at the boundary between laboratory and industrial conditions. To ensure an effective high-throughput screening, miniaturized laboratory conditions must mimic industrial conditions, especially for oxygen transfer, feeding capacity and pH stabilization. Results A feeding strategy has been applied to develop a simple screening procedure, in which a stoichiometric study is combined with a standard miniaturization procedure. Actually, the knowledge of all nutriments and base or acid requirements leads to a great simplification of pH stabilization issue of miniaturized fed-batch cultures. Applied to cellulase production by Trichoderma reesei, this strategy resulted in a stoichiometric mixed feed of carbon and nitrogen sources. While keeping the pH between shake flask and stirred bioreactor comparable, the developed shake flask protocol reproduced the strain behaviour under stirred bioreactor conditions. Compared to a an already existing miniaturized shake flasks protocol, the cellulase concentration was increased 5-fold, reaching about 10 g L-1. Applied to the secondary screening of several clones, the newly developed protocol succeeded in selecting a clone with a high industrial potential. Conclusions The understanding of a bioprocess stoichiometry contributed to define a simpler and more effective miniaturization. The suggested strategy can potentially be applied to other fed-batch processes, for the screening of either strain collections or experimental conditions.

  3. Estudo anatômico dos gânglios celíaco, celiacomesentérico e mesentérico cranial e de suas conexões no gato doméstico (Felix domestica, Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Antonio Augusto Coppi Maciel Ribeiro

    2000-01-01

    Full Text Available O gânglio celíaco é um dos principais responsáveis pela inervação do estômago, intestinos, fígado, pâncreas e ainda contribui para a inervação do baço, sendo desta forma essencial ao controle da motilidade gastrointestinal. O conhecimento do suprimento nervoso endereçado a estes órgãos é fundamental na clínica médica e cirúrgica no tocante às atonias digestivas, gastroenterites hemorrágicas, torções gástricas e invaginações intestinais. Neste trabalho, estudou-se a anatomia macro e microscópica dos gânglios celíaco, celiacomesentérico e mesentérico cranial. Foram utilizados trinta gatos domésticos, adultos, 10 machos e 20 fêmeas. A aorta torácica desses gatos foi injetada com solução de Neoprene látex 650 corada, sendo os animais congelados por no mínimo 48 horas. A fixação foi feita posteriormente com solução aquosa de formol a 10%. Nos estudos microscópicos, utilizaram-se as seguintes colorações: hematoxilina-eosina, tricrômico de Masson, reticulina e hematoxilina ácida fosfotúngstica. O gânglio celíaco ocorreu 7 vezes, sendo 4 direitos e 3 esquerdos, predominando a forma elíptica (23,3% e a situação periarterial. Os gânglios celiacomesentéricos foram contados em número de 24, sendo 11 independentes; 2 apresentando as porções direita e esquerda e 11 gânglios celiacomesentéricos direitos com uma porção mesentérica cranial esquerda, tendo formato semilunar assimétrico. Esses achados sugerem o predomínio da fusão do gânglio celíaco ao mesentérico cranial, constituindo assim o gânglio celiacomesentérico. Este é formado por neurônios imersos em abundante matriz conjuntiva fibrosa, envoltos por uma cápsula contendo fibras elásticas, colágenas e reticulares, apresentando uma continuidade nos pontos de fusão ganglionar.

  4. TAHSĐN YÜCEL'S SHORT STORIES IN HIS BOOK 'MYSELF AND THE OTHER’ READING WITH THE 9th SYMPHONY OR THE CIRCUMSTANCES OF ÖTEGEÇE'S IN THE RHYTM OF 9th SYMPHONY

    Directory of Open Access Journals (Sweden)

    Ferhan AKGÜN (M.A.H.

    2009-01-01

    Full Text Available Literary works transforming in time have started toemerge in especially personal inclinations, psychologicalanalysis and universal matters; and have pushed thelimit lines lately. This limit was not only all about thecontent of the literature but also reflected towards theother fields of art. This intertextuality forms the roots ofhis short stories within “Me and the Others” by TahsinYücel, who is among the short story writers of 1950s.Tahsin Yücel expreses this in his words: “there exists arelation between the smallest and the greatest structures,between my structure and the others’. Reflecting theindividual and his inner world, departing from theindividual and giving messages to the society andhumankind, the writer endeavours to reach from localmatters to universal ones in his short stories within “Meand the Others”.

  5. Efecto de la incorporación de fibras dietéticas en la calidad de panes para celíacos

    OpenAIRE

    Díaz Malmierca, Álvaro

    2013-01-01

    La investigación en la elaboración de panes sin gluten está muy avanzada, siendo el déficit en micronutrientes de estos productos uno de los problemas sobre el que se está centrando la investigación. Uno de los nutrientes más deficitarios, y que más problemas causa sobre la salud de los pacientes celíacos es la fibra dietética. En este estudio se ha investigado el efecto que produce la adición de un 10% de diferentes fibras sobre las características de los panes, la influencia ...

  6. Doença celíaca: a evolução dos conhecimentos desde sua centenária descrição original até os dias atuais Celiac disease: evolution in knowledge since its original centennial description up to the present days

    Directory of Open Access Journals (Sweden)

    Vera Lucia SDEPANIAN

    1999-12-01

    Full Text Available Nos últimos anos, alguns aspectos da doença celíaca têm sido discutidos na literatura, especialmente relacionados à predisposição genética, patogênese, formas de apresentação clínica e critérios diagnósticos. Inúmeros estudos demonstraram anormalidades imunológicas características da doença como a presença de anticorpos circulantes e de linfócitos com receptores gama/delta presentes em grande número a nível intraepitelial da mucosa intestinal. Outras formas de apresentação clínica, além da forma clássica, têm merecido destaque como baixa estatura, anemia resistente à ferroterapia oral, hipoplasia do esmalte dentário, constipação intestinal, manifestações neurológicas e osteoporose, dentre outras. A forma assintomática foi reconhecida especialmente nas duas últimas décadas após o desenvolvimento de marcadores sorológicos como anticorpo antigliadina, anti-reticulina e antiendomísio. Até o presente momento, a biopsia de intestino delgado continua sendo imprescindível para o diagnóstico da doença celíaca. No Brasil, fatos marcantes ocorreram nos últimos anos, como a promulgação da Lei Federal que dispõe sobre a obrigatoriedade dos rótulos dos produtos industrializados informarem sobre a presença de glúten. Houve, também, aumento do número de portadores de doença celíaca cadastrados na Associação dos Celíacos do Brasil.In the recent past, some celiac disease features have been discussed in literature specially related to genetic susceptibility, pathogenesis, clinical presentation and diagnostic criteria. Immunological abnormalities characteristic of celiac disease, such as circulating antibodies and increased numbers of intra-epithelial lymphocytes containing a high percentage of gamma-delta T cells have been demonstrated. Other pictures of clinical presentation besides the classical one deserve attention namely short stature, iron-resistant anaemia, enamel hypoplasia, constipation

  7. Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation.

    Science.gov (United States)

    Laothanachareon, Thanaporn; Bunterngsook, Benjarat; Suwannarangsee, Surisa; Eurwilaichitr, Lily; Champreda, Verawat

    2015-12-01

    Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Studies on quantitative physiology of Trichoderma reesei with two-stage continuous culture for cellulase production

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D; Andreotti, R; Mandels, M; Gallo, B; Reese, E T

    1979-11-01

    By employing a two-stage continuous-culture system, some of the more important physiological parameters involved in cellulase biosynthesis have been evaluated with an ultimate objective of designing an optimally controlled cellulase process. The two-stage continuous-culture system was run for a period of 1350 hr with Trichoderma reesei strain MCG-77. The temperature and pH were controlled at 32/sup 0/C and pH 4.5 for the first stage (growth) and 28/sup 0/C and pH 3.5 for the second stage (enzyme production). Lactose was the only carbon source for both stages. The ratio of specific uptake rate of carbon to that of nitrogen, Q(C)/Q(N), that supported good cell growth ranged from 11 to 15, and the ratio for maximum specific enzyme productivity ranged from 5 to 13. The maintenance coefficients determined for oxygen, M/sub 0/, and for carbon source, M/sub c/, are 0.85 mmol O/sub 2//g biomass/hr and 0.14 mmol hexose/g biomass/hr, respectively. The yield constants determined are: Y/sub X/O/ = 32.3 g biomass/mol O/sub 2/, Y/sub X/C/ = 1.1 g biomass/g C or Y/sub X/C/ = 0.44 g biomass/g hexose, Y/sub X/N/ = 12.5 g biomass/g nitrogen for the cell growth stage, and Y/sub X/N/ = 16.6 g biomass/g nitrogen for the enzyme production stage. Enzyme was produced only in the second stage. Volumetric and specific enzyme productivities obtained were 90 IU/liter/hrand 8 IU/g biomass/hr, respectively. The maximum specific enzyme productivity observed was 14.8 IU/g biomass/hr. The optimal dilution rate in the second stage that corresponded to the maximum enzyme productivity was 0.026 approx. 0.028 hr/sup -1/, and the specific growth rate in the second stage that supported maximum specific enzyme productivity was equal to or slightly less than zero.

  9. PREFACE: 6th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS2012)

    Science.gov (United States)

    Dimian, Mihai; Rachinskii, Dmitrii

    2015-02-01

    The International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS) conference series focuses on multiple scale systems, singular perturbation problems, phase transitions and hysteresis phenomena occurring in physical, biological, chemical, economical, engineering and information systems. The 6th edition was hosted by Stefan cel Mare University in the city of Suceava located in the beautiful multicultural land of Bukovina, Romania, from May 21 to 24, 2012. This continued the series of biennial multidisciplinary conferences organized in Cork, Ireland from 2002 to 2008 and in Pécs, Hungary in 2010. The MURPHYS 2012 Workshop brought together more than 50 researchers in hysteresis and multi-scale phenomena from the United State of America, the United Kingdom, France, Germany, Italy, Ireland, Czech Republic, Hungary, Greece, Ukraine, and Romania. Participants shared and discussed new developments of analytical techniques and numerical methods along with a variety of their applications in various areas, including material sciences, electrical and electronics engineering, mechanical engineering and civil structures, biological and eco-systems, economics and finance. The Workshop was sponsored by the European Social Fund through Sectoral Operational Program Human Resources 2007-2013 (PRO-DOCT) and Stefan cel Mare University, Suceava. The Organizing Committee was co-chaired by Mihai Dimian from Stefan cel Mare University, Suceava (Romania), Amalia Ivanyi from the University of Pecs (Hungary), and Dmitrii Rachinskii from the University College Cork (Ireland). All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Guest Editors wish to place on record their sincere gratitude to Miss Sarah Toms for the assistance she provided

  10. Desarrollo de métodos cuantitativos de alto poder de detección de proteínas en alimentos : Certificación de alimentos destinados a enfermos celíacos

    OpenAIRE

    Doña, Vanina V.

    2009-01-01

    La enfermedad celíaca (EC) es una enteropatía crónica mediada por mecanismos inmunológicos, que se desencadena en individuos genéticamente susceptibles por la ingestión de un grupo de proteínas (llamadas prolaminas) presentes en trigo, cebada, centeno y avena (aunque se debate sobre la toxicidad de esta última). La activación del sistema inmune genera alteraciones histológicas típicas (atrofia vellositaria, hiperplasia de criptas) y funcionales en la mucosa intestinal, produciendo un síndrome...

  11. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate.

    Science.gov (United States)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased. © 2013.

  12. A Novel GH7 Endo-β-1,4-Glucanase from Neosartorya fischeri P1 with Good Thermostability, Broad Substrate Specificity and Potential Application in the Brewing Industry.

    Directory of Open Access Journals (Sweden)

    Yun Liu

    Full Text Available An endo-β-1,4-glucanase gene, cel7A, was cloned from the thermophilic cellulase-producing fungus Neosartorya fischeri P1 and expressed in Pichia pastoris. The 1,410-bp full-length gene encodes a polypeptide of 469 amino acids consisting of a putative signal peptide at residues 1-20, a catalytic domain of glycoside hydrolase family 7 (GH7, a short Thr/Ser-rich linker and a family 1 carbohydrate-binding module (CBM 1. The purified recombinant Cel7A had pH and temperature optima of pH 5.0 and 60°C, respectively, and showed broad pH adaptability (pH 3.0-6.0 and excellent stability at pH3.0-8.0 and 60°C. Belonging to the group of nonspecific endoglucanases, Cel7A exhibited the highest activity on barley β-glucan (2020 ± 9 U mg-1, moderate on lichenan and CMC-Na, and weak on laminarin, locust bean galactomannan, Avicel, and filter paper. Under simulated mashing conditions, addition of Cel7A (99 μg reduced the mash viscosity by 9.1% and filtration time by 24.6%. These favorable enzymatic properties make Cel7A as a good candidate for applications in the brewing industry.

  13. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: Influence of pore size on release rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity

  14. Estudio de la enfermedad celíaca mediante el desarrollo de un ensayo inmunocromatográfico para la determinación de anticuerpos antitransglutaminasa

    OpenAIRE

    Galván Cabrera, José Armando

    2012-01-01

    En el presente trabajo se muestran los resultados del desarrollo y la evaluación de un sistema inmunocromatográfico rápido y sencillo para la detección de anticuerpos antitransglutaminasa, que es un importante marcador serológico en el diagnóstico de la enfermedad celíaca (EC). Con este sistema se pueden detectar en una misma prueba tanto anticuerpos de tipo IgA como IgG. Se obtuvieron niveles de sensibilidad, especificidad y concordancia elevados cuando se compararon con la biopsia de yeyuno...

  15. Avaliação nutricional e consumo alimentar de pacientes com doença celíaca com e sem transgressão alimentar

    Directory of Open Access Journals (Sweden)

    Cristiana Santos Andreoli

    2013-06-01

    Full Text Available OBJETIVO: Avaliar o estado nutricional e a ingestão de energia e de macronutrientes de pacientes com diagnóstico de doença celíaca que transgrediam ou não a dieta isenta de glúten. MÉTODOS: Foram estudados 63 pacientes com doença celíaca: 34 crianças e 29 adolescentes. Transgressão à dieta isenta de glúten foi caracterizada por meio da dosagem sérica do anticorpo antitransglutaminase tissular recombiante humana. O estado nutricional foi avaliado com base nos escores-Z de peso/idade, estatura/idade e no índice de massa corporal. A ingestão alimentar foi avaliada por meio do inquérito alimentar de 24 horas. RESULTADOS: A transgressão à dieta sem glúten foi constatada em 41,2% das crianças e em 34,5% dos adolescentes. Nas crianças com transgressão alimentar, a média do escore-Z de estatura/idade foi inferior à das crianças do grupo que não transgredia (p=0,024. Todavia, o grupo com transgressão apresentou maior escore-Z do índice de massa corporal em relação aos que não transgrediam (p=0,021. Os adolescentes que não transgrediam apresentaram maior índice de massa corporal quando comparados aos que transgrediam a dieta (p=0,037. Em relação à ingestão alimentar, não se observou diferença estatística entre os grupos. Todavia, cerca de 70,0% das crianças e adolescentes apresentaram consumo de energia acima de 120,0% da recomendação. CONCLUSÃO: As crianças que transgrediam a dieta apresentaram menor escore-Z de estatura/idade e maior escore-Z para índice de massa corporal do que crianças que seguem sem transgressões alimentares. Os adolescentes que não transgrediam a dieta apresentaram maior média de índice de massa corporal quando comparados aos que transgrediam a dieta. Consumo energético elevado foi observado tanto nas crianças quanto nos adolescentes.

  16. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    Science.gov (United States)

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Treatment of multiple sclerosis relapses with high-dose methylprednisolone reduces the evolution of contrast-enhancing lesions into persistent black holes.

    Science.gov (United States)

    Di Gregorio, Maria; Gaetani, Lorenzo; Eusebi, Paolo; Floridi, Piero; Picchioni, Antonella; Rosi, Giovanni; Mancini, Andrea; Floridi, Chiara; Baschieri, Francesca; Gentili, Lucia; Sarchielli, Paola; Calabresi, Paolo; Di Filippo, Massimiliano

    2018-03-01

    The MRI evidence of persistent black holes (pBHs) on T1-weighted images reflects brain tissue loss in multiple sclerosis (MS). The evolution of contrast-enhancing lesions (CELs) into pBHs probably depends on the degree and persistence of focal brain inflammation. The aim of our retrospective study was to evaluate the effect of a single cycle of intravenous methylprednisolone (IVMP), as for MS relapse treatment, on the risk of CELs' evolution into pBHs. We selected 57 patients with CELs on the baseline MRI scan. We evaluated the evolution of CELs into pBHs on a follow-up MRI scan performed after ≥ 6 months in patients exposed and not exposed to IVMP for the treatment of relapse after the baseline MRI. In our cohort, 182 CELs were identified in the baseline MRI and 57 of them (31.3%) evolved into pBHs. In the multivariate analysis, the exposure of CELs to IVMP resulted to be a significant independent protective factor against pBHs' formation (OR 0.28, 95% CI 0.11-0.766, p = 0.005), while ring enhancement pattern and the fact of being symptomatic were significant risk factors for CELs' conversion into pBHs (OR 6.42, 95% CI 2.55-17.27, p < 0.001 and OR 13.19, 95% CI 1.56-288.87, p = 0.037). The exposure of CELs to a cycle of IVMP as for relapse treatment is associated with a lower risk of CELs' evolution into pBHs. Future studies are required to confirm the potential independent protective effect of IVMP on CELs' evolution into pBHs.

  18. mxCSM: A 100-slit, 6-Wavelength Wide-Field Coronal Spectropolarimeter for the Study of the Dynamics and the Magnetic Fields of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haosheng, E-mail: lin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States)

    2016-03-30

    Tremendous progress has been made in the field of observational coronal magnetometry in the first decade of the Twenty-First century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP) instrument, observations of the linear polarization of the coronal emission lines (CELs), which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important for our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employs large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six CELs simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  19. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.

    Directory of Open Access Journals (Sweden)

    Pankaj Agrawal

    Full Text Available Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight. Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C and wider pH optima (pH 3.0 to 7.0 than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the

  20. Gradiente de riesgo genético HLA-DQ para diabetes tipo 1 y enfermedad celíaca en el noroeste de México

    OpenAIRE

    Mejía-León, M.E.; Ruiz-Dyck, K.M.; Calderón de la Barca, A.M.

    2015-01-01

    Antecedentes: La diabetes tipo 1 (DT1) y la enfermedad celíaca (EC) son 2 enfermedades autoinmunes frecuentes en la infancia y comparten su predisposición genética (HLA-DQ2 y DQ8). La prevalencia de ambas se ha incrementado en el mundo. En el estado de Sonora (15 habitantes/km2), se desconoce información sobre su riesgo genético o la distribución de los alelos asociados en la población general. Objetivo: Comparar la frecuencia alélica HLA-DQ de una muestra representativa de recién nacidos ...

  1. Filamentous fungi and media for cellulase production in solid state cultures

    Science.gov (United States)

    Kilikian, B.V.; Afonso, L.C.; Souza, T.F.C.; Ferreira, R.G.; Pinheiro, I.R.

    2014-01-01

    Cellulase production was evaluated in two reference strains (T. reesei Rut-C30 and T. reesei QM9414), two strains isolated from a sugarcane cultivation area (Trichoderma sp. IPT778 and T. harzianum rifai IPT821) and one strain isolated in a program for biodiversity preservation in São Paulo state (Myceliophthora thermophila M77). Solid state cultures were performed using sugarcane bagasse (C), wheat bran (W) and/or soybean bran (S). The highest FPA was 10.6 U/gdm for M77 in SC (10:90) at 80% moisture, which was 4.4 times higher than production in pure W. C was a strong inducer of cellulase production, given that the production level of 6.1 U/gdm in WC (40:60) was 2.5 times higher than in pure W for strain M77; T. reesei Rut-C30 did not respond as strongly with about 1.6-fold surplus production. S advantageously replaced W, as the surplus production on SC (20:80) was 2.3 times relative to WC (20:80) for M77. PMID:24948946

  2. Evaluación de la validez y fiabilidad de un cuestionario específico de calidad de vida relacionada con la salud en celíacos de 8-18 años.

    OpenAIRE

    Barrio Torres, Josefa

    2016-01-01

    Tesis Doctoral leída en la Universidad Rey Juan Carlos de Madrid en 2015. Directores de la Tesis: Angel Gil Miguel, Enriqueta Román Riechmann y Mª Luz Cilleruelo La enfermedad celíaca (EC) es una enfermedad sistémica mediada por el sistema inmune y ocasionada por el gluten y las prolaminas relacionadas que se produce en individuos genéticamente predispuestos. Cursa con una atrofia de las vellosidades intestinales de la mucosa del intestino delgado superior y como consecuencia s...

  3. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  4. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Science.gov (United States)

    Rooijakkers, Bart J M; Ikonen, Martina S; Linder, Markus B

    2018-01-01

    Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  5. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Directory of Open Access Journals (Sweden)

    Bart J M Rooijakkers

    Full Text Available Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  6. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana.

    Science.gov (United States)

    Lü, Ruihua; Zhao, Aichun; Li, Jun; Liu, Changying; Wang, Chuanhong; Wang, Xiling; Wang, Xiaohong; Pei, Ruichao; Lu, Cheng; Yu, Maode

    2015-07-10

    A cellulase gene (KJ700939, CsCelA) from Ciboria shiraiana that is highly expressed during the infection of mulberry fruit was screened by quantitative real-time PCR (qRT-PCR). Using cDNA isolated from infected mulberry fruits as template, the full-length 1170-bp sequence of CsCelA was obtained, which encodes a 390-amino acid protein with a putative signal peptide of 24 amino acids. The 998-bp fragment encoding the mature peptide of CsCelA was cloned into the multiple cloning site of the pPIC9K vector and overexpressed as an active protein of 55.3kDa in the methylotrophic yeast Pichia pastoris. The specific activity of induced supernatants of the recombinant cellulase (CsCelA) was 17.44U/ml and 135U/g for freeze-dried powder. The Kmax and Vmax of CsCelA for sodium carboxymethylcellulose (CMC) were 4.6mg/ml and 107.2U/mg, respectively. The supernatant and freeze-dried powder of the recombinant cellulase exhibited stable activity from pH4.0 to 9.0, and at temperatures ranging from 30°C to 55°C. Finally, the activity of the recombinant cellulase was assessed by enzymatic hydrolysis of the cell walls of mulberry leaves. CsCelA showed an endo-cellulase mode of cleavage, as assessed by thin layer chromatography (TLC). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dicty_cDB: Contig-U15993-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available liant... 48 0.74 1 ( BQ829038 ) LL6in20026 AFT024-subtracted library Mus musculus... 48 0.74 1 ( BQ550344 ) ...RIKEN fu... 48 0.74 1 ( W28637 ) 49g3 Human retina cDNA randomly primed sublibrary H... 48 0.74 1 ( FK711462...ixis FlyTag MN08 BlueScript Dr... 50 0.19 1 ( CF879159 ) tric019xf19.b13 T.reesei mycelial culture, Versio...... 50 0.19 1 ( CF869496 ) tric019xi11.b1 T.reesei mycelial culture, Version... 50 ...-G09.y1d-s SHGC-CDA Gasterosteus aculeatus c... 50 0.19 1 ( CB899638 ) tric019xi11 T.reesei mycelial culture

  9. Relapse May Serve as a Mediator Variable in Longitudinal Outcomes in Multiple Sclerosis.

    Science.gov (United States)

    Stone, Lael Anne; Cutter, Gary Raymond; Fisher, Elizabeth; Richert, Nancy; McCartin, Jennifer; Ohayon, Joan; Bash, Craig; McFarland, Henry

    2016-05-01

    Contrast-enhancing lesions (CEL) on magnetic resonance imaging (MRI) are believed to represent inflammatory disease activity in multiple sclerosis (MS), but their relationship to subsequent long-term disability and progression is unclear, particularly at longer time periods such as 8-10 years. Between 1989 and 1994, 111 MS patients were seen at the National Institutes of Health for clinical evaluations and 3 monthly contrast-enhanced MRI scans. Of these, 94 patients were re-evaluated a mean of 8 years later (range 6.1-10.5 years) with a single MRI scan and clinical evaluation. CEL number and volume were determined at baseline and follow-up. The number of relapses was ascertained over the follow-up period and annualized relapse rates were calculated. Other MRI parameters, such as T2 hyperintensity volume, T1 volume, and brain parenchymal fraction, were also calculated. While there was no direct correlation between CEL number or volume at baseline and disability status at follow-up, CEL measures at baseline did correlate with number of relapses observed in the subsequent years, and the number of relapses in turn correlated with subsequent disability as well as transition to progressive MS. While number and volume of CEL at baseline do not directly correlate with disability in the longer term in MS, our data suggest that 1 route to disability involves relapses as a mediator variable in the causal sequence of MS progression from CEL to disability. Further studies using relapse as a mediator variable in a larger data set may be warranted. Copyright © 2015 by the American Society of Neuroimaging.

  10. IRONY IN THE POEMS OF CAN YÜCEL CAN YÜCEL’İN ŞİİRLERİNDE İRONİ

    Directory of Open Access Journals (Sweden)

    Soner AKPINAR

    2010-04-01

    Full Text Available Can Yücel, who started to contribute to literature in 1950 with his book “Yazma” , has attracted the attention of the poetry environment especially after 1965, after a 15-20 year of search period. The poet tried to approach the events (incidents and facts with a socialist point of view in his poems in which he put forward swearing, slang and obscenity. One of the reflection forms of his social sensitivity and critical point of view – within the effect of his perception of life – is lampooning. Irony in this respect is the part of lampooning, in addition it’s a vehicle for the poet to locate himself against “nonsense” . In this study the significance of irony in the structure of Can Yücel’s poems is going to be evaluated via examples. 1950 yılında yayımladığı “Yazma” adlı şiir kitabıyla edebiyat dünyasına giren Can Yücel, 15-20 senelik bir arayış devresinin ardından özellikle 1965’ten sonra şiir kamuoyunun dikkatini çekmiştir. Şair, yüzey yapıda küfür, argo ve müstehcenliğin öne çıktığı şiirlerinde toplumcu bir bakış açısıyla olay ve olgulara yaklaşmaya çalışmıştır. Onun toplumsal duyarlılığının, eleştirel bakış açısının yansıma biçimlerinden birisi -yaşam algısının da etkisiyle- taşlama, yergidir. İroni de bu anlamda taşlamanın bir parçası olmakla birlikte, şairin “saçma” karşısında kendisini konumlandırmasına yarayan bir araçtır. Bu incelemede ironinin Can Yücel’in şiirlerinin yapısı içindeki önemi, örnekler üzerinden değerlendirilmeye çalışılacaktır.

  11. ExCEL in Social Work: Excellence in Cancer Education & Leadership: An Oncology Social Work Response to the 2008 Institute of Medicine Report.

    Science.gov (United States)

    Otis-Green, Shirley; Jones, Barbara; Zebrack, Brad; Kilburn, Lisa; Altilio, Terry A; Ferrell, Betty

    2015-09-01

    ExCEL in Social Work: Excellence in Cancer Education & Leadership was a multi-year National Cancer Institute (NCI)-funded grant for the development and implementation of an innovative educational program for oncology social workers. The program's curriculum focused upon six core competencies of psychosocial-spiritual support necessary to meet the standard of care recommended by the 2008 Institute of Medicine (IOM) Report: Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. The curriculum was delivered through a collaborative partnership between the City of Hope National Medical Center and the two leading professional organizations devoted exclusively to representing oncology social workers--the Association of Oncology Social Work and the Association of Pediatric Oncology Social Workers. Initial findings support the feasibility and acceptability of this tailored leadership skills-building program for participating oncology social workers.

  12. Cellulose hydrolysis by Trichoderma reesei cellulases: studies on adsorption, sugar production and synergism of cellobiohydrolase I,II and endoglucanase II

    Energy Technology Data Exchange (ETDEWEB)

    Medve, J.

    1997-02-01

    Three major cellulases have been purified by ion-exchange chromatography in an FPLC system. Microcrystalline cellulose (Avicel) was hydrolyzed by the single enzymes and by equimolar mixtures of CBH I-CBH II and CBH I-EG II. Enzyme adsorption was followed indirectly by selectively quantifying the enzymes in the supernatant by ion-exchange chromatography in an FPLC system. The (synergistic) production of small, soluble sugars (glucose, cellobiose and cellotriose) by the enzymes was followed by HPLC. 76 refs

  13. Elaboração e caracterização de cookies sem glúten enriquecidos com farinha de coco: uma alternativa para celíacos

    Directory of Open Access Journals (Sweden)

    Ana Maria Queiroz

    2017-05-01

    Full Text Available Resumo Os celíacos encontram dificuldades na adoção de uma dieta totalmente isenta de glúten e com qualidade nutricional. Para tanto, objetivou-se desenvolver e avaliar cookies sem glúten enriquecidos com farinha de coco. A farinha de coco com elevado teor de cinzas, proteínas e lipídios pode ser utilizada para enriquecer produtos alimentícios. Foram elaborados cookies com base na composição de uma mistura da Federação Nacional das Associações de Celíacos do Brasil - Fenacelbra (“mix de farinha preparada II” para cookies sem glúten: Padrão FP (formulação semelhante à composição do “mix de farinha preparada II” da Fenacelbra, F1 (modificação de FP com substituição da fécula de batata por 10% de farinha de coco, F2 (modificação de FP com adição de 5% de farinha de coco, F3 (modificação de FP com substituição do polvilho doce por 5% de farinha de coco. Os cookies foram avaliados quanto às características físicas (peso pós-cocção, diâmetro e espessura pós-cocção, fator de expansão, rendimento, Aw, dureza e cor – L*a*b*, físico-químicas (umidade, cinzas, proteínas, lipídios, carboidratos e valor calórico, aceitabilidade quanto aos atributos sensoriais (aceitação global, aparência, cor, aroma, sabor e textura e atitude de compra. A adição de farinha de coco às formulações melhorou as propriedades nutricionais dos cookies sem glúten, aumentando o teor de lipídios e proteínas, e reduzindo o teor de carboidratos. Os cookies desenvolvidos apresentaram boa aceitação sensorial e intenção de compra satisfatória., A adição de 10% de farinha de coco em substituição da fécula de batata na formulação F1 não alterou as características sensoriais do produto, porém proporcionou propriedades físicas e físico-químicas superiores. Dessa forma, cookies sem glúten enriquecidos com farinha de coco constituem uma alternativa viável de alimentos destinados para pessoas portadoras de

  14. Comparação dos anticorpos anti-reticulina e antiendomísio classe IGA para diagnóstico e controle da dieta na doença celíaca Comparison of IgA class reticulin and endomysium antibodies for diagnosis and control of the diet in celiac disease

    Directory of Open Access Journals (Sweden)

    Lorete Maria da Silva KOTZE

    1999-12-01

    Full Text Available Sensibilidade ao glúten é um estado de elevada resposta iamunológica (celular e humoral à ingestão de proteínas do glúten do trigo, centeio, cevada e aveia, em indivíduos geneticamente predispostos. A doença celíaca é sua expressão mais freqüente, variando as formas de apresentação. Tem como tratamento a exclusão de alimentos contendo as gliadinas tóxicas. Embora a biopsia do intestino delgado proximal seja necessária, tem-se ressaltado a importância de testes sorológicos no rastreamento, diagnóstico e monitorização da dieta isenta de glúten em pacientes com doença celíaca. O objetivo do presente estudo foi investigar a presença dos anticorpos antiendomísio (EmA-IgA e anti-reticulina (ARA-IgA em 56 pacientes celíacos (17 recém diagnosticados; 24 aderentes à dieta; 15 com transgressão à dieta. Os anticorpos foram detectados por imunofluorescência indireta, utilizando como substrato cordão umbilical humano para os EmA-IgA, fígado e rim de rato para os ARA-IgA. Nos pacientes recém diagnosticados e no grupo com transgressão à dieta houve positividade total de 100% para os EmA-IgA e 59,4% para ARA-IgA. Nos pacientes aderentes à dieta nenhum dos anticorpos foi detectado. Dentre os 32 pacientes positivos, a concordância foi de 59,4% (19, sendo que 40,6 % (13/32 eram ARA-IgA negativo e EmA-IgA positivo. Nenhum paciente mostrou-se positivo para os ARA-IgA e negativo para os EmA-IgA. Portanto, a sensibilidade para os EmA-IgA foi de 100% e de 59,4% para os ARA-IgA. A associação dos dois testes não aumentou os índices de positividade total nas amostras. Conclui-se que, atualmente, a pesquisa dos EmA-IgA pode constituir teste sorológico de escolha, seja para diagnóstico, seja para seguimento dos pacientes celíacos, pelo alto valor preditivo, alta sensibilidade e especificidade e relativo baixo custo quando se utiliza cordão umbilical humano como substrato.Sensibility to gluten is a condition with high

  15. COMPARED ANALYSIS OF CATALASE AND PEROXIDASE ACTIVITY IN CELLULOLYTIC FUNGUS TRICHODERMA REESEI GROWN ON MEDIUM WITH DIFFERENT CONCENTRATIONS OF GRINDED WHEAT AND BARLEY STRAWS

    Directory of Open Access Journals (Sweden)

    Mihaela Cristica

    2010-09-01

    Full Text Available The purpose of this study was to assess the evolution of catalase and peroxidase activity in Trichoderma reesei grown on medium containing grinded wheat and barley straws. Carbon source of cultivation medium - glucose was replaced by various concentrations of grinded wheat and barley straws, finally resulting three experimental variants as follows: V1 = 20 g/l, V2 = 30 g/l, V3 = 40 g/l. ĂŽn addition to these variants a control sample was added in which composition remainded unchanged. The catalase activity was determined by spectrophotometric Sinha method (Artenie et al., 2008 while peroxidase activity was assesed using the o-dianisidine method (Cojocaru, 2009. Enzymatic determinations were carried out at 7 and 14 days from inoculation, in both fungus mycelium and culture liquid. The enzymatic assay showed significant differences between determinations intervals and work variants. Enzyme activity is influenced by the age of fungus and by the different nature of the substrate used.

  16. Efeito do meio Erd Schreiber no cultivo das microalgas Dunaliella salina, Tetraselmis chuii e Isochrysis galbana = Erd Schreiber medium effect in culture of microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana

    Directory of Open Access Journals (Sweden)

    Vera Lucia Mota Klein

    2006-04-01

    Full Text Available As microalgas são utilizadas como fonte de alimento em aqüicultura. Neste trabalho cultivaram-se D. salina, T. chuii e I. galbana. O objetivo do trabalho consistiu em determinar o efeito do meio Erd Schreiber sobre o seu crescimento. Iniciou-se o cultivo com a mistura de 200 mg de Na2HPO4,7H2O, 100 mg de NaNO3 e 50 mL de extrato de solo. No monitoramento, manteve-se a temperatura entre 24 - 28 oC, a salinidade a 34 ppt, à iluminação constante, a densidade celular com uma câmara de Neubauer e um microscópio binocular modelo ZEISS. Como resultado, I. galbana, D. salina e T. chuii atingiram 969 104 cel/mL, 457 x 104 cel/mL e 258,66 x 104 cel/mL, respectivamente, e oscoeficientes angulares b foram 3,76 x 104 cel./mL/dia, 6,84 x 104 cel./mL/dia e 2,08 x 104 cel./mL/dia respectivamente, indicando bom desempenho de todas as microalgas no meio Erd Shreiber.The microalgae is used as food source in aqüicultura. In this work they had cultivated D. salina , T. chuii and I. galbana . The objective of the work is to determine the effect of Erd Schreiber´s culture medium on the microalgae growth. The culture initiated mixting 200mg of Na2HPO4,7H2O, 100 mg of NaNO3 and 50 mL of soil extract. During the culture the temperature had varied between 24 and 28oC, the salinity was fixed on 34 %o, and the illumination was maintained constant. The assessment of the culture was made by a chamber of Neubauer and a binocular microscope ZEISS model. As result I. galbana D. salina and T.chuii reached 969 104 cel/mL, 457 x 104cel/mL and 258,66 x 104 cel/mL respectively and as angular coefficient 3,76 x 104 cel/mL/dia, 6,84 x 104 cel/mL/dia and 2,08 104 x cel/mL/dia respectively, showing good answer of the microalgae to the effect of Erd Schreiber´ s medium.

  17. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis.

    Science.gov (United States)

    An, Tianchen; Dong, Zhu; Lv, Junchen; Liu, Yujun; Wang, Manchuriga; Wei, Shuangshuang; Song, Yanting; Zhang, Yingxia; Deng, Shiming

    2015-04-01

    A cellulase with wide range of pH resistance and high salt tolerance was isolated from the digestive gland of the oyster Crassostrea rivularis living in mangrove forests. The 27 kDa cellulase named as CrCel was purified 40.6 folds by anion exchange chromatography and extraction from the gel after non-reducing sodium dodecylsufate-polyacrylamide gel electrophoresis. The specific activity of the purified cellulase was 23.4 U/mg against carboxymethyl cellulose (CMC). The N-terminal amino acid sequence of CrCel was determined to be NQKCQANSRV. CrCel preferably hydrolyzes β-1,4-glucosidic bonds in the amorphous parts of cellulose materials and displays degradation activity toward xylan. The Km and Vmax values of CrCel for CMC were determined to be 2.1% ± 0.4% and 73.5 ± 3.3 U mg(-1), respectively. The optimal pH value and temperature of CrCel were 5.5 and 40°C, respectively. The enzyme was stable in a wide range of pH, retaining over 60% activity after incubation for 80 min in the pH range of 3.0-9.0. In addition, CrCel showed remarkable tolerance to salt and remained active at high NaCl concentrations, but also retained over 70% activity after incubation in 0.5-2 M NaCl for up to 24 h. On the basis of the N-terminal sequence alignment and its similar properties to other animal cellulases, CrCel was regarded as a member of glycosyl hydrolase family 45 β-1,4-glucanases. CrCel is the first reported cellulase isolated from mangrove invertebrates, which suggests that it may participate in the assimilation of cellulolytic materials derived from the food sources of the oyster and contribute to the consumption of mangrove primary production. The unique properties of this enzyme make it a potential candidate for further industrial application. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. ExCEL in Social Work: Excellence in Cancer Education & Leadership An Oncology Social Work Response to the 2008 Institute of Medicine Report

    Science.gov (United States)

    Otis-Green, Shirley; Jones, Barbara; Zebrack, Brad; Kilburn, Lisa; Altilio, Terry A.; Ferrell, Betty

    2014-01-01

    ExCEL in Social Work : Excellence in Cancer Education & Leadership was a multi-year National Cancer Institute (NCI)-funded grant for the development and implementation of an innovative educational program for oncology social workers. The program’s curriculum focused upon six core competencies of psychosocial-spiritual support necessary to meet the standard of care recommended by the 2008 Institute of Medicine (IOM) Report: Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. The curriculum was delivered through a collaborative partnership between the City of Hope National Medical Center and the two leading professional organizations devoted exclusively to representing oncology social workers - the Association of Oncology Social Work and the Association of Pediatric Oncology Social Workers. Initial findings support the feasibility and acceptability of this tailored leadership skills-building program for participating oncology social workers. PMID:25146345

  19. Van Nuys, California. Limited Surface Observations Climatic Summary ’LISOCS.’ Parts A-F.

    Science.gov (United States)

    1987-08-04

    MONTH: JUL HOURS(LSI: 0600-39CO I WIND SPEE) TN KNOTS DIRECTION I 1-3 4 -6 i-10 121-16 17-2 1 22-??7 28- 33 34-4O NT1 -Ri 7 4-55 OF 56 TOTAL MEAN...NO CElL 1 89.1 9.1 54.6 55.7 S6.9 6.9 57.1 57.2 57.2 𔄁. 1. 1 97.3 57.! 97.3 51,’ 47.3 bE LOUCO 93.9 59.4 63.1 61.4 62.6 62.9 63.2 63.3 63...NO CElL I 77.: 47.4 5z.6 54.9 56.7 57.7 59.5 59.5 59.5 59.5 57.81 51 59.5 "q .5 59.5

  20. Development of a bifunctional xylanase-cellulase chimera with enhanced activity on rice and barley straws using a modular xylanase and an endoglucanase procured from camel rumen metagenome.

    Science.gov (United States)

    Khalili Ghadikolaei, Kamran; Akbari Noghabi, Kambiz; Shahbani Zahiri, Hossein

    2017-09-01

    The camel rumen metagenome is an untapped source of glycoside hydrolases. In this study, novel genes encoding for a modular xylanase (XylC) and a cellulase (CelC) were isolated from a camel rumen metagenome and expressed in Escherichia coli BL21 (DE3). XylC with xylanase (Xyn), CBM, and carbohydrate esterase (CE) domains was characterized as a β-1,4-endoxylanase with remarkable catalytic activity on oat-spelt xylan (K cat  = 2919 ± 57 s -1 ). The implication of XylC's modular structure in its high catalytic activity was analyzed by truncation and fusion construction with CelC. The resulting fusions including Cel-CBM, Cel-CBM-CE, and Xyn-CBM-Cel showed remarkable enhancement in CMCase activity with K cat values of 742 ± 12, 1289 ± 34.5, and 2799 ± 51 s -1 compared to CelC with a K cat of 422 ± 3.5 s -1 . It was also shown that the bifunctional Xyn-CBM-Cel with synergistic xylanase/cellulase activities was more efficient than XylC and CelC in hydrolysis of rice and barley straws.

  1. Phytoplanktonic composition of three cultivation systems used in Litopenaeus vannamei (BOONE, 1931 marine shrimp farms = Composição fitoplanctônica em três sistemas de cultivo do camarão marinho Litopenaeus vannamei (BOONE, 1931

    Directory of Open Access Journals (Sweden)

    Michelle Pereira Melo

    2010-07-01

    Full Text Available The aim of this work is to assess the different compositions of phytoplankton in three cultivation systems of marine shrimps Litopenaeus vannamei (BOONE, 1931, denominated as organic, intensive and semi intensive. The samples were done fortnightly, when phytoplankton was collected by a net for phytoplankton, 65 ƒÊm mesh, being then filtrated in a total volume of water of 100 L, and preserved in formaldehyde solution at 4% and identified according to the methodology of Cordeiro et al. (1997. The results show that the densities of Diatoms were of 16.65, 10.47 and 7.57 cel. 103 mL-1 for the organic, intensive and semi intensive cultivations, respectively. As for cyanobacteria, the average figures were 42.06 cel. 103 mL-1 forsemi intensive 17.27 cel. 103 mL-1, in the intensive cultivation and 6.11 cel. 103 mL-1 for the organic cultivation system. The dinoflagellates had the highest cellular density in the phytoplankton community analyzed with 61.9 cel. 103 mL-1 in the intensive cultivation, 0.33 and 0.03 cel. 103 mL-1 for both semi intensive and organic cultivation systems respectively. Euglenas presented the results of 4.98 and 14.86 cel. 103 mL-1 only for semi intensive and intensive cultivations. It was then concluded that all cultivations presented average rates below recommended for such studied systems.Conduziu-se esse trabalho com o objetivo de avaliar as diferentes composicoes fitoplanctonicas em tres sistemas de cultivo para o camarao marinho Litopenaeus vannamei (BOONE, 1931, denominados de organico, intensivo e semiintensivo. As amostragens foram realizadas quinzenalmente, onde o fitoplancton foi coletado atraves de uma rede de plancton, com malha de 65 ƒÊm, sendo filtrado um volume de agua total de 100 litros, que foram preservadas em solucao de formol a 4% e identificadas segundo a metodologia de Cordeiro et al. (1997. Os resultados mostram que as densidades de diatomaceas foram de 16,65; 10,47 e 7,57 cel. 103 mL-1, respectivamente

  2. Protocolul persan de la Cirus cel Mare până la Chosroes I

    Directory of Open Access Journals (Sweden)

    Orest TĂRÎȚĂ

    2017-12-01

    Full Text Available În articol se abordează unele aspecte - cheie ale protocolului și ceremonialului persan din tim-pul celor patru perioade istorice ale statalității persane începând cu anul 700 până la Hristos și finalizând cu anul 651 ale erei creștine. Prin prisma analizei este trecută domnia lui Cirus al II-lea cel Mare – fondatorul Imperiului Per-san, care a introdus la curtea sa protocolul și ceremonialul pentru a-i debarasa pe persani de obiceiurile barbare și a-i familiariza cu subtilitățile bunelor maniere. Un spațiu aparte este rezervat perioadei sasanide (224 î. Hr. - 651, când curtea regală este con¬dusă de șeful de protocol, situat pe primul loc la curtea șahinșahului, fiind urmat de succesorul la tron, șeful regimentului de „nemuritori” și alte demnități; este descrisă scena încoronării lui Șapur I și ordinea ierarhică a înalților demnitari regali de la curtea sa, primirea cu onoruri a ambasa¬dorilor străini la curte și alaiurile publice ale șahinșahului, care urmăreau nu altceva decât să perpetueze măreția Marelui Imperiu, atât în interior, cât și în relațiile cu țările vecine.

  3. Dynamic study of a compressed electron layer during the hole-boring stage in a sharp-front laser interaction region

    Directory of Open Access Journals (Sweden)

    W. P. Wang

    2012-08-01

    Full Text Available This study investigates the dynamics of a compressed electron layer (CEL when a circularly polarized laser pulse with a sharp front irradiates a high-density foil. A time-dependent model for CEL motion during the hole-boring stage is proposed to describe details of the interaction for any shape of laser pulse. The opacity case, where the laser pulse is totally reflected, is investigated using this model. The results obtained are consistent with the results from particle-in-cell (PIC simulations. A relaxation distance determined by the laser-front steepness is necessary to build a stable CEL state before ions rejoin into the CEL. For the transparent case, the laser-front steepness is important for the formation of the stable CEL state at the back surface of the target. Considering the motion of ions, both the CEL and ion dynamics are important to rebalance the laser pressure and electrostatic charge-separation force as the hole-boring stage changes to the light-sail stage.

  4. La Corte Europea de Derechos Humanos y la protección de la autonomía de las comunidades religiosas: análisis del caso Sindicatul Pãstorul cel Bun con Rumania

    Directory of Open Access Journals (Sweden)

    Stéphanie Wattier

    2014-06-01

    Full Text Available El presente artículo analiza la sentencia dictada por la Gran Sala de la Corte Europea de Derechos Humanos, en el caso Sindicatul Pãstorul cel Bun con Rumania de 9 de julio de 2013. La autora examina el razonamiento de la Corte Europea y describe la forma en que se ha concebido la relación entre la libertad religiosa y la libertad de asociación en la jurisprudencia del Tribunal de Estrasburgo. A partir de este análisis, concluye que actualmente no existe un modelo europeo de relaciones entre el Estado y las confesiones religiosas, lo que ha llevado a la Corte Europea a aplicar con mayor laxitud el margen de apreciación nacional.

  5. New engineering treatment of bovine pericardium confers outstanding resistance to calcification in mitral and pulmonary implantations in a juvenile sheep model.

    Science.gov (United States)

    Brizard, Christian P; Brink, Johann; Horton, Steven B; Edwards, Glenn Anthony; Galati, John C; Neethling, William M L

    2014-12-01

    To conduct a test of noninferiority for CardioCel (Admedus, Brisbane, Australia), a chemically engineered bovine pericardium over autologous pericardium treated intraoperatively with glutaraldehyde in a chronic juvenile sheep model of pulmonary valve (PV) and mitral valve (MV) reconstruction. We replaced the posterior leaflet of the MV and of 1 PV cusp with patches in ewes aged 10 months. There were 2 groups: CardioCel (n = 6) and control (n = 4). All valves were competent. Echocardiography was performed before euthanasia. The collected data were function, macroscopy, histology, and calcium contents. The primary end points were thickening and calcium content. All animals survived until sacrifice after 7 months. The valves had normal echo. The macroscopic aspect of the valves was excellent. Examination of the slides for both groups revealed a continuous endothelium on both sides of the patch and a layer of new collagen developed on both sides between patch and endothelium and interstitial cells and smooth muscle cell in these layers. The patch had not thickened but the 2 layers of new collagen for the PV showed a median thickening of 37% in the CardioCel group and 111% in the control group (P = .01), and for the MV a thickening of 108% and 251%, respectively, was seen (P = .01). The median calcium content in the PV was 0.24 μg/mg (range, 0.19-0.30) in the CardioCel group versus 0.34 μg/mg (range, 0.24-0.62) in controls (P = .20). In the MV it was 0.46 μg/mg (range, 0.30-1.0) in the CardioCel group and 0.47 μg/mg (range, 0.29-1.9) in controls (P = 1.0). In this growing lamb model the CardioCel patch allowed accurate valve repair at both systemic and pulmonary pressure. The mechanical properties of CardioCel after 7 months were preserved with a more controlled healing than the treated autologous pericardium and without calcification. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  6. Crustal structure of the Western Carpathians and Pannonian Basin System: seismic models from CELEBRATION 2000 data and geological implication

    Science.gov (United States)

    Janik, Tomasz; Grad, Marek; Guterch, Aleksander; Vozár, Jozef; Bielik, Miroslav; Vozárova, Anna; Hegedżs, Endre; Attila Kovács, Csaba; Kovács, István.; Celebration 2000 Working Group

    2010-05-01

    During CELEBRATION 2000 experiment the area of the Western Carphathians and Pannonian Basin System on the territory of southeastern Poland, Slovak Republic and Hungary was investigated by dense system of the deep seismic sounding profiles. In this paper, we present results of modelling of refracted and reflected waves with use 2-D ray tracing technique for profiles CEL01, CEL04, CEL05, CEL06, CEL11, CEL12 and CEL28. All seven profiles were jointly interpreted with verification and control the models at crossing points. Obtained P-wave velocity models of the crust and uppermost mantle are very complex and show differentiation of the seismic structure, where the depth of the Moho discontinuity is changing from about 25 to about 45 km. In the southern part of the area the relatively thin Pannonian Basin System crust consists of 3-7 km thick sediments and two crustal layers with 5.9-6.3 km/s in the upper crust and 6.3-6.6 km/s in the lower crust. In the upper crust of ALCAPA beneath profile CEL05 a high velocity body of Vp≥ 6.4 km/s was detected in the uppermost 5 km, which corresponds to the Bükk Composite Terrane. The total thickness of the ALCAPA crust is 1-2 km bigger than in the Tisza-Dacia. In the northern part of the area we observe 10-20 km thick uppermost crust with low velocity (Vp≤6.0 km/s), connected with TESZ and Carpathian Foredeep. Together with ca. 6.2-6.5 km/s and 6.5-6.9 km/s crustal layers they have a total thickness of 30-45 km (north of the Pieniny Klippen Belt). A sub-Moho velocities have in average values of 7.8-8.0 km/s for the Pannonian basin System, while in the Western Carpathian, the Trans-European suture zone (TESZ) and the East European Craton (EEC) part they are slightly bigger, 8.0-8.1 km/s. Lower velocities beneath the microplates ALCAPA and Tisza-Dacia could be caused by the different mineralogical and petrological compositions and the significant higher surface heat flow and temperature within the upper mantle. Beneath some

  7. Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Kubicek Christian P

    2009-09-01

    Full Text Available Abstract Background The filamentous ascomycete Hypocrea jecorina (anamorph Trichoderma reesei is primarily known for its efficient enzymatic machinery that it utilizes to decompose cellulosic substrates. Nevertheless, the nature and transmission of the signals initiating and modulating this machinery are largely unknown. Heterotrimeric G-protein signaling represents one of the best studied signal transduction pathways in fungi. Results Analysis of the regulatory targets of the G-protein α subunit GNA1 in H. jecorina revealed a carbon source and light-dependent role in signal transduction. Deletion of gna1 led to significantly decreased biomass formation in darkness in submersed culture but had only minor effects on morphology and hyphal apical extension rates on solid medium. Cellulase gene transcription was abolished in Δgna1 on cellulose in light and enhanced in darkness. However, analysis of strains expressing a constitutively activated GNA1 revealed that GNA1 does not transmit the essential inducing signal. Instead, it relates a modulating signal with light-dependent significance, since induction still required the presence of an inducer. We show that regulation of transcription and activity of GNA1 involves a carbon source-dependent feedback cycle. Additionally we found a function of GNA1 in hydrophobin regulation as well as effects on conidiation and tolerance of osmotic and oxidative stress. Conclusion We conclude that GNA1 transmits a signal the physiological relevance of which is dependent on both the carbon source as well as the light status. The widespread consequences of mutations in GNA1 indicate a broad function of this Gα subunit in appropriation of intracellular resources to environmental (especially nutritional conditions.

  8. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent

    Directory of Open Access Journals (Sweden)

    Thaís V. Souza

    2016-03-01

    Full Text Available CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  9. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease.

    Directory of Open Access Journals (Sweden)

    Eleonora A M Festen

    2011-01-01

    Full Text Available Crohn's disease (CD and celiac disease (CelD are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general population. These observations suggest that CD and CelD may share common genetic risk loci. Two such shared loci, IL18RAP and PTPN2, have already been identified independently in these two diseases. The aim of our study was to explicitly identify shared risk loci for these diseases by combining results from genome-wide association study (GWAS datasets of CD and CelD. Specifically, GWAS results from CelD (768 cases, 1,422 controls and CD (3,230 cases, 4,829 controls were combined in a meta-analysis. Nine independent regions had nominal association p-value <1.0 x 10⁻⁵ in this meta-analysis and showed evidence of association to the individual diseases in the original scans (p-value < 1 x 10⁻² in CelD and < 1 x 10⁻³ in CD. These include the two previously reported shared loci, IL18RAP and PTPN2, with p-values of 3.37 x 10⁻⁸ and 6.39 x 10⁻⁹, respectively, in the meta-analysis. The other seven had not been reported as shared loci and thus were tested in additional CelD (3,149 cases and 4,714 controls and CD (1,835 cases and 1,669 controls cohorts. Two of these loci, TAGAP and PUS10, showed significant evidence of replication (Bonferroni corrected p-values <0.0071 in the combined CelD and CD replication cohorts and were firmly established as shared risk loci of genome-wide significance, with overall combined p-values of 1.55 x 10⁻¹⁰ and 1.38 x 10⁻¹¹ respectively. Through a meta-analysis of GWAS data from CD and CelD, we have identified four shared risk loci: PTPN2, IL18RAP, TAGAP, and PUS10. The combined analysis of the two datasets provided the power, lacking in the individual GWAS for single diseases, to detect shared loci with a

  10. Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in tea and the factors affecting their formation.

    Science.gov (United States)

    Jiao, Ye; He, Jialiang; Li, Fengli; Tao, Guanjun; Zhang, Shuang; Zhang, Shikang; Qin, Fang; Zeng, Maomao; Chen, Jie

    2017-10-01

    The levels of N ε -(carboxymethyl)lysine (CML) and N ε -(carboxyethyl)lysine (CEL) in 99 tea samples from 14 geographic regions, including 44 green, 7 oolong, 41 black, and 7 dark teas were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CML and CEL contents varied from 11.0 to 1701μg/g tea and 4.6 to 133μg/g tea, respectively. Dark tea presented the highest levels of CML and CEL, whereas green and oolong teas presented the lowest levels. Five kinds of catechins in the tea were also analyzed, and spearman's correlation coefficients showed that all the catechins negatively correlated with CML and CEL. The results suggested that withering, fermentation and pile fermentation may facilitate the formation of CML and CEL. Catechins might inhibit the formation of CML and CEL, but their inhibitory effects may be affected by tea processing. The results of this study are useful for the production of healthier tea. Copyright © 2017. Published by Elsevier Ltd.

  11. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability

    International Nuclear Information System (INIS)

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan; Zhang, Zhiwen; Jiang, Tongying; Sun, Jin; Li, Yaping; Wang, Siling

    2014-01-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability. - Highlights: • Mesoporous carbon with spherical pore structure was prepared according to the needlelike crystalline of celecoxib. • The

  12. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Zhang, Zhiwen [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Jiang, Tongying; Sun, Jin [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Li, Yaping [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China)

    2014-06-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability. - Highlights: • Mesoporous carbon with spherical pore structure was prepared according to the needlelike crystalline of celecoxib. • The

  13. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young.

    Directory of Open Access Journals (Sweden)

    Helge Ræder

    Full Text Available CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL. The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas.We established a monotransgenic floxed (flanking LOX sequences mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL. Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD as well as the effects of short-term and long-term cerulein exposure.Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation.In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.

  14. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young).

    Science.gov (United States)

    Ræder, Helge; Vesterhus, Mette; El Ouaamari, Abdelfattah; Paulo, Joao A; McAllister, Fiona E; Liew, Chong Wee; Hu, Jiang; Kawamori, Dan; Molven, Anders; Gygi, Steven P; Njølstad, Pål R; Kahn, C Ronald; Kulkarni, Rohit N

    2013-01-01

    CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.

  15. Dicty_cDB: Contig-U06541-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 1 ( CW927554 ) EDCBM45TF A. castellanii, 6-8 kb library from tot... 44 7.5 1 ( CL534328 ) trib011xa13.g1 T. reesei HindIII BAC librar...y Hypo... 44 7.5 1 ( CL531533 ) trib005xd13.b1 T. reesei HindIII BAC library...CCNP644_b1 Cowpea UCR 779 Mixed Tissue an... 44 7.5 1 ( DQ121376 ) Uncultured bacterium clone YC01G10, parti..., ge... 44 7.5 1 ( CW927722 ) EDCBN39TR A. castellanii, 6-8 kb library from tot... 44 7.5 ...4 7.5 1 ( DW476283 ) GH_RMIRS_002_B08_F Cotton Normalized Library rand... 44 7.5 1 ( DR951133 ) EST1142672 Aquilegia cDNA library

  16. mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona

    Directory of Open Access Journals (Sweden)

    Haosheng eLin

    2016-03-01

    Full Text Available remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP instrument, observations of the linear polarization of the coronal emission lines (CELs, which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important {bf of} our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  17. Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method.

    Science.gov (United States)

    Jampala, Preethi; Tadikamalla, Satish; Preethi, M; Ramanujam, Swathy; Uppuluri, Kiran Babu

    2017-05-01

    Application of multiple response optimizations using desirability function in the production of microbial metabolites improves economy and efficiency. Concurrent production of cellulase and xylanase in Trichoderma reesei NCIM 1186 using an agricultural weed, Prosopis juliflora pods, was studied. The main aim of the study was to optimize significant medium nutrient parameters for maximization of cellulase and xylanase by multi-objective optimization strategy using biomass. Process parameters such as the nutrient concentrations (pods, sucrose, and yeast extract) and pH were investigated to improve cellulase and xylanase activities by one factor at a time approach, single response optimization and multi-objective optimization. At the corresponding optimized process parameters in single response optimization, the maximum cellulase activity observed was 3055.65 U/L where xylanase highest activity was 422.16 U/L. Similarly, the maximum xylanase activity, 444.94 U/L, was observed with the highest cellulase activity of 2804.40 U/L. The multi-objective optimization finds a tradeoff between the two objectives and optimal activity values in between the single-objective optima were achieved, 3033.74 and 439.13 U/L for cellulase and xylanase, respectively.

  18. Molecular cloning, purification, expression, and characterization of β-1, 4-endoglucanase gene ( from sp. isolated from Holstein steers’ rumen

    Directory of Open Access Journals (Sweden)

    Tansol Park

    2018-04-01

    Full Text Available Objective This study was conducted to isolate the cellulolytic microorganism from the rumen of Holstein steers and characterize endoglucanase gene (Cel5A from the isolated microorganism. Methods To isolate anaerobic microbes having endoglucanase, rumen fluid was obtained from Holstein steers fed roughage diet. The isolated anaerobic bacteria had 98% similarity with Eubacterium cellulosolvens (E. cellulosolvens Ce2 (Accession number: AB163733. The Cel5A from isolated E. cellulolsovens sp. was cloned using the published genome sequence and expressed through the Escherichia coli BL21. Results The maximum activity of recombinant Cel5A (rCel5A was observed at 50°C and pH 4.0. The enzyme was constant at the temperature range of 20°C to 40°C but also, at the pH range of 3 to 9. The metal ions including Ca2+, K+, Ni2+, Mg2+, and Fe2+ increased the endoglucanase activity but the addition of Mn2+, Cu2+, and Zn2+ decreased. The Km and Vmax value of rCel5A were 14.05 mg/mL and 45.66 μmol/min/mg. Turnover number, Kcat and catalytic efficiency, Kcat/Km values of rCel5A was 96.69 (s−1 and 6.88 (mL/mg/s, respectively. Conclusion Our results indicated that rCel5A of E. cellulosolvens isolated from Holstein steers had a broad pH range with high stability under various conditions, which might be one of the beneficial characteristics of this enzyme for possible industrial application.

  19. Synthesis and functioning of the colicin E1 lysis protein: Comparison with the colicin A lysis protein

    International Nuclear Information System (INIS)

    Cavard, D.

    1991-01-01

    The colicin E1 lysis protein, CelA, was identified as a 3-kDa protein in induced cells of Escherichia coli K-12 carrying pColE1 by pulse-chase labeling with either [ 35 S]cysteine or [ 3 H]lysine. This 3-kDa protein was acylated, as shown by [2- 3 H]glycerol labeling, and seemed to correspond to the mature CelA protein. The rate of modification and processing of CelA was different from that observed for Cal, the colicin A lysis protein. In contrast to Cal, no intermediate form was detected for CelA, no signal peptide accumulated, and no modified precursor form was observed after globomycin treatment. Thus, the rate of synthesis would not be specific to lysis proteins. Solubilization in sodium dodecyl sulfate of the mature forms of both CelA and Cal varied similarly at the time of colicin release, indicating a change in lysis protein structure. This particular property would play a role in the mechanism of colicin export. The accumulation of the signal peptide seems to be a factor determining the toxicity of the lysis proteins since CelA provoked less cell damage than Cal. Quasi-lysis and killing due to CelA were higher in degP mutants than in wild-type cells. They were minimal in pldA mutants

  20. Characterization of a Newly Developed Contrast Enhancement Material for G-line Exposure

    Science.gov (United States)

    Nakase, Makoto; Niki, Hirokazu; Satoh, Takashi; Kumagae, Akitoshi

    1987-02-01

    The bleaching characteristics for a contrast enhancement layer (CEL) material were succesfully described by parameters A, B and C; these were used for the modeling of a positive photoresist exposure. As a result, it was clarified that both the A and C values should be large, but the B value must be as small as possible. According to the obtained information, a new CEL material was proposed, which consists of the diazonium compound and the alkyl modified phenol resin. Using the composed CEL material, a submicron resist pattern with a steep profile was obtained. Furthermore, it was found that the development latitude increases, but that the exposure latitude does not change upon using the CEL.

  1. Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice.

    Science.gov (United States)

    Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q

    2015-12-21

    The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion.

  2. Cellulose synthases: new insights from crystallography and modeling.

    Science.gov (United States)

    Slabaugh, Erin; Davis, Jonathan K; Haigler, Candace H; Yingling, Yaroslava G; Zimmer, Jochen

    2014-02-01

    Detailed information about the structure and biochemical mechanisms of cellulose synthase (CelS) proteins remained elusive until a complex containing the catalytic subunit (BcsA) of CelS from Rhodobacter sphaeroides was crystalized. Additionally, a 3D structure of most of the cytosolic domain of a plant CelS (GhCESA1 from cotton, Gossypium hirsutum) was produced by computational modeling. This predicted structure contributes to our understanding of how plant CelS proteins may be similar and different as compared with BcsA. In this review, we highlight how these structures impact our understanding of the synthesis of cellulose and other extracellular polysaccharides. We show how the structures can be used to generate hypotheses for experiments testing mechanisms of glucan synthesis and translocation in plant CelS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Linseed Dietary Fibers Reduce Apparent Digestibility of Energy and Fat and Weight Gain in Growing Rats

    Directory of Open Access Journals (Sweden)

    Arne Astrup

    2013-08-01

    Full Text Available Dietary fibers (DF may affect energy balance, an effect often ascribed to the viscous nature of some water soluble DF, which affect luminal viscosity and thus multiple physiological processes. We have tested the hypothesis that viscous linseed DF reduce apparent nutrient digestibility, and limit weight gain, in a randomized feeding trial where 60 male, growing, Wistar rats, with an initial weight of ~200 g, were fed different diets (n = 10 per group: low DF control (C, 5% DF from cellulose (5-CEL, CEL + 5% DF from whole (5-WL or ground linseed (5-GL, CEL + 5% DF from linseed DF extract (5-LDF, and CEL + 10% DF from linseed DF extract (10-LDF. Diets were provided ad libitum for 21 days. Feed intake and faecal output were measured during days 17–21. Faecal fat excretion increased with increasing DF content and was highest in the 10-LDF group. Apparent fat digestibility was highest with the C diet (94.9% ± 0.8% and lowest (74.3% ± 0.6% with the 10-LDF diet, and decreased in a non-linear manner with increasing DF (p < 0.001. Apparent fat digestibility also decreased with increased accessibility of DF (5-WL vs. 5-GL and when the proportion of viscous DF increased (5-GL vs. 5-LDF. The 10-LDF resulted in a lower final body weight (258 ± 6.2 g compared to C (282 ± 5.9 g, 5-CEL (281 ± 5.9 g, and 5-WL (285 ± 5.9 g (p < 0.05. The 10-LDF diet reduced body fat compared to 5-CEL (p < 0.01. In conclusion, DF extracted from linseed reduced apparent energy and fat digestibility and resulted in restriction of body weight gain in growing rats.

  4. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    Science.gov (United States)

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.

  5. Assessment of celecoxib poly(lactic-co-glycolic) acid nanoformulation on drug pharmacodynamics and pharmacokinetics in rats.

    Science.gov (United States)

    Harirforoosh, S; West, K O; Murrell, D E; Denham, J W; Panus, P C; Hanley, G A

    2016-11-01

    Celecoxib (CEL) is a nonsteroidal anti-inflammatory drug (NSAID) showing selective cycloxygenase-2 inhibition. While effective as a pain reducer, CEL exerts some negative influence on renal and gastrointestinal parameters. This study examined CEL pharmacodynamics and pharmacokinetics following drug reformulation as a poly(lactic-co-glycolic) acid nanoparticle (NP). Rats were administered either vehicle (VEH) (methylcellulose solution), blank NP, 40 mg/kg CEL in methylcellulose, or an equivalent NP dose (CEL-NP). Plasma and urine (over 12 hrs) samples were collected prior to and post-treatment. The mean percent change from baseline of urine flow rate along with electrolyte concentrations in plasma and urine were assessed based on 100 g body weight. Using tissues collected 24 hrs post-treatment, gastrointestinal inflammation was estimated through duodenal and gastric prostaglandin E2 (PGE2) and duodenal myeloperoxidase (MPO) levels; while kidney tissue was examined for dilatation and necrosis. CEL concentration was assayed in renal tissue and plasma utilizing high-performance liquid chromatography. Although there were significant changes when comparing CEL and CEL-NP to VEH in plasma sodium concentration and potassium excretion rate, there was no significant variation between CEL and CEL-NP. There was a significant reduction of protective duodenal PGE2 in CEL compared to VEH (p = 0.0088) and CEL-NP (p = 0.02). In the CEL-NP formulation, t1/2, Cmax, AUC0-∞, and Vd/F increased significantly when compared to CEL. At the observed dosage and duration, CEL-NP may not affect CEL-associated electrolyte parameters in either plasma or urine; however, it does provide increased systemic exposure while potentially alleviating some gastrointestinal outcomes related to inflammation.

  6. Electrotransformation and expression of cellulase genes in wild-type Lactobacillus reuteri.

    Science.gov (United States)

    Li, Wang; Yang, Ming-Ming; Zhang, Guang-Qin; He, Wan-Ling; Li, Yuan-Xiao; Chen, Yu-Lin

    2012-01-01

    Two cellulase genes, Cel15 and Cel73, were amplified from Bacillus subtilis genome DNA in a previous study. Two integrative vectors, pLEM4153 and pLEM4154, containing the genes Cel15 and Cel73, respectively, were constructed and successfully electroporated into the wild-type Lactobacillus reuteri which was isolated from chick guts through an optimized procedure. Two recombinant L. reuteri were selected from a Man, Rogosa, and Sharp (MRS) plate with 10 µg/ml erythromycin, and named L. reuteri XNY-Cel15 and L. reuteri XNY-Cel73, respectively. To verify the transcription and expression of the two cellulase genes in the recombinant L. reuteri strains, the mRNA relative quantity (RQ) and the cellulase activity were determined. The mRNA RQ of Cel15 in L. reuteri XNY-Cel15 is 1,8849.5, and that of Cel73 in L. reuteri XNY-Cel73 is 1,388, and the cellulase activity of the modified MRS broth cultured with L. reuteri XNY-Cel15 was 0.158 U/ml, whereas that with L. reuteri XNY-Cel73 was 0.15 U/ml. Copyright © 2012 S. Karger AG, Basel.

  7. Forces released during alignment with a preadjusted appliance with different types of elastomeric ligatures.

    Science.gov (United States)

    Franchi, Lorenzo; Baccetti, Tiziano

    2006-05-01

    The purpose of this in-vitro study was to compare the forces generated by new nonconventional elastomeric ligatures (NCEL) and conventional elastomeric ligatures (CEL) during leveling and aligning phases. The testing model consisted of 5 stainless steel 0.022-in preadjusted brackets for second premolar, first premolar, canine, lateral incisor, and central incisor. The canine bracket was welded to a sliding bar that allowed for different vertical positions. The forces generated by 3 sizes of wires (0.012-, 0.014-, and 0.016-in superelastic nickel-titanium) with the 2 types of elastomeric ligatures at different amounts of upward canine misalignment (1.5, 3, 4.5, and 6 mm) were recorded. Significant differences between CEL and NCEL were found for all tested variables (P <.01) with the exception of the 0.014- and 0.016-in wires at canine misalignment of 1.5 mm. A noticeable amount of force was generated with the NCEL at all 4 canine positions with all 3 wire sizes (from about 50 to about 150 g). With 4.5 mm of canine misalignment or more, the average amount of released force with the CEL was approximately zero.

  8. Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil

    Directory of Open Access Journals (Sweden)

    Junyoung Ko

    2017-10-01

    Full Text Available This paper presents the application of the Coupled Eulerian–Lagrangian (CEL technique on the constructability problems of site on very soft soil. The main objective of this study was to investigate the constructability and application of two ground improvement methods, such as the forced replacement method and the deep mixing method. The comparison between the results of CEL analyses and field investigations was performed to verify the CEL modelling. The behavior of very soft soil and constructability with methods can be appropriately investigated using the CEL technique, which would be useful tools for comprehensive reviews in preliminary design.

  9. Natural cellulose ionogels for soft artificial muscles.

    Science.gov (United States)

    Nevstrueva, Daria; Murashko, Kirill; Vunder, Veiko; Aabloo, Alvo; Pihlajamäki, Arto; Mänttäri, Mika; Pyrhönen, Juha; Koiranen, Tuomas; Torop, Janno

    2018-01-01

    Rapid development of soft micromanipulation techniques for human friendly electronics has raised the demand for the devices to be able to carry out mechanical work on a micro- and macroscale. The natural cellulose-based ionogels (CEL-iGEL) hold a great potential for soft artificial muscle application, due to its flexibility, low driving voltage and biocompatibility. The CEL-iGEL composites undergo reversible bending already at ±500mV step-voltage values. A fast response to the voltage applied and high ionic conductivity of membranous actuator is achieved by a complete dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate [EMIm][OAc]. The CEL-iGEL supported cellulose actuator films were cast out of cellulose-[EMIm][OAc] solution via phase inversion in H 2 O. The facile preparation method ensured uniform morphology along the layers and stand for the high ionic-liquid loading in a porous cellulose scaffold. During the electromechanical characterization, the CEL-iGEL actuators showed exponential dependence to the voltage applied with the max strain difference values reaching up to 0.6% at 2 V. Electrochemical analysis confirmed the good stability of CEL-iGEL actuators and determined the safe working voltage value to be below 2.5V. To predict and estimate the deformation for various step input voltages, a mathematical model was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Severe necrotic dermatitis in the combs of line 6-3 chickens is associated with Marek's disease virus-induced immunosuppression

    Science.gov (United States)

    Marek’s disease (MD), a lymphoproliferative disorder of domestic chickens is characterized by bursal–thymic atrophy and rapid onset of T-cell lymphomas that infiltrate lymphoid tissues, visceral organs, and peripheral nerves. Marek’s disease virus (MDV), the etiological agent of MD, is a highly cel...

  11. Neurological manifestations of celiac disease Manifestações neurológicas da doença celíaca

    Directory of Open Access Journals (Sweden)

    José Ibiapina Siqueira Neto

    2004-12-01

    Full Text Available Celiac disease (CD/ Nontropicalsprue, gluten-sensitive enteropathy is a malabsortive condition in which an allergic reaction to the cereal grain-protein gluten (present in wheat, rye and barley causes small intestine mucosal injury. The onset is in the first four decades of life, with a female to male ratio of 2:1. It may be associated with a wide spectrum of neurological manifestations including cerebellar ataxia, epileptic seizures, dementia, neuropathy, myopathy and multifocal leucoencephalopathy. We report three patients with neurological manifestations related with CD: one with cerebellar ataxia, one with epilepsy and one with cognitive impairment. The diagnosis of CD was confirmed by serologic tests (antiendomysial and antigliadin antibodies and biopsy of the small intestine. In two patients the neurological symptoms preceded the gastrointestinal abnormalities and in all of them gluten restriction failed to improve the neurological disability. Conclusion: CD should be ruled out in the differential diagnosis of neurological dysfunction of unknown cause, including ataxia, epilepsy and dementia. A gluten free diet, the mainstay of treatment, failed to improve the neurological disability.A doença celíaca (DC, enteropatia sensível ao glúten é desordem caracterizada por mal absorção causada por reação alérgica ao glúten, proteína presente em diversos cereais. As manifestações iniciais ocorrem nas primeiras quatro décadas de vida, sendo cerca de duas vezes mais freqüente no sexo feminino. DC pode estar associada a largo espectro de manifestações neurológicas incluindo ataxia cerebelar, epilepsia, demência, neuropatia, miopatia e leucoencefalopatia multifocal. Relatamos três casos de pacientes com manifestações neurológicas da DC: um com ataxia cerebelar, outro com epilepsia e o último com déficit cognitivo. O diagnóstico de DC foi estabelecido com base em testes sorológicos (anticorpos antiendomísio e antigliadina e

  12. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    methods. Protein engineering targets to improve cellulases include reducing enzyme inhibition, improving inter-enzyme synergy, and increasing enzyme thermotolerance. Ameliorating enzyme inhibition could improve catalytic activity and thus the speed of conversion from biomass to fermentable sugars. Improved enzyme synergy could reduce the enzyme loading required to achieve equivalent biomass conversion. Finally, thermostable enzymes could enable more biomass to be processed at a time, due to high temperatures decreasing the viscosity of biomass slurries. A high-temperature enzyme saccharification reaction could also decrease the risk of contamination in the resulting concentrated sugar solution. Throughout my PhD, I have explored research projects broadly across all of these topics, with the most success in addressing the issue of enzyme inhibition. Cellulase enzyme Cel7A is the most abundant cellulase employed by natural systems for cellulose hydrolysis. Cellobiohydrolase enzymes like Cel7A break down cellulose into cellobiose (two glucose molecules). Unfortunately, upon cleavage, this product molecule interferes with continued hydrolysis activity of Cel7A; the strong binding of cellobiose in the active site can obstruct the enzyme from processing down the cellulase chain. This phenomenon, known as product inhibition, is a bottleneck to efficient biomass breakdown. Using insights from computational protein modeling studies, I experimentally generated and tested mutant Cel7A enzymes for improved tolerance to cellobiose. Indeed, this strategy yielded Cel7A enzymes exhibiting reduced product inhibition, including some mutants completely impervious to cellobiose. The improvements in tolerance to cellobiose, however, resulted in an overall reduction of enzyme activity for the mutants tested. Nevertheless, my findings substantiated computational reports with experimental evidence and pinpointed an amino acid residue in the Cel7A product binding site that is of interest for

  13. Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2016-08-01

    Full Text Available Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on

  14. Expression of two functionally distinct plant endo-beta-1,4-glucanases is essential for the compatible interaction between potato cyst nematode and its hosts.

    Science.gov (United States)

    Karczmarek, Aneta; Fudali, Sylwia; Lichocka, Malgorzata; Sobczak, Miroslaw; Kurek, Wojciech; Janakowski, Slawomir; Roosien, Jan; Golinowski, Wladyslaw; Bakker, Jaap; Goverse, Aska; Helder, Johannes

    2008-06-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-beta-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the expression of two out of the at least eight EGases, namely Sl-cel7 and Sl-cel9C1, is specifically upregulated during syncytium formation. In situ hybridization and immunodetection studies demonstrated that both EGases are specifically expressed inside and adjacent to proliferating syncytia. To assess the importance of Sl-cel7 and Sl-cel9C1 for nematode development, we decided to knock them out individually. Sl-cel9C1 probably is the only class C EGase in tomato, and we were unable to regenerate Sl-cel9C1-silenced plants. Potato (S. tuberosum), a close relative of tomato, harbors at least two class C EGases, and St-cel7-or St-cel9C1-silenced potato plants showed no obvious aberrant phenotype. Infection with potato cyst nematodes resulted in a severe reduction of the number of adult females (up to 60%) and a sharp increase in the fraction of females without eggs (up to 89%). Hence, the recruitment of CEL7, an enzyme that uses xyloglucan and noncrystalline cellulose as natural substrates, and CEL9C1, an enzyme that uses crystalline cellulose, is essential for growth and development of potato cyst nematodes.

  15. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)

    2012-05-15

    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  16. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

    Science.gov (United States)

    Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo

    2009-11-01

    XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.

  17. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  18. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    International Nuclear Information System (INIS)

    Halbert, Candice E.; Ankner, John Francis; Kent, Michael S.; Jaclyn, Murton K.; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 C and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ∼ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  19. The effect of laccase on cellulase-treated lignin in 1-n-butyl-3 ...

    African Journals Online (AJOL)

    treated lignin (CEL) in two different solution systems was further investigated. Results obtained were as follows: After laccase treatment of CEL in the heterogeneous water solution, CEL was then compared with control sample A. Ultraviolet (UV) ...

  20. Development and characterization of membrane surface display system using molecular chaperon, prsA, of Bacillus subtilis

    International Nuclear Information System (INIS)

    Kim, June-Hyung; Park, In-Suk; Kim, Byung-Gee

    2005-01-01

    We report a new membrane surface display system based on molecular chaperon, prsA, of Bacillus subtilis. Clostridium thermocellum cellulase, celA, was fused to C-terminal end of PrsA. Cellulase activity of B. subtilis protoplast, which expressed PrsA-CelA was 15 times higher compared to control strain. More than 85% of total cellulase activity was observed in surface displayed format and less than 15% of total cellulase activity was found in supernatant. Flow cytometric analysis of protoplast of PrsA-CelA fusion expressing bacteria provided another proof of uniform expression of fusion protein onto cytoplasmic membrane of B. subtilis. Without lysozyme treatment, only part of cellulase activity (10%) was observed in whole cell fraction

  1. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass.

    Science.gov (United States)

    Minty, Jeremy J; Singer, Marc E; Scholz, Scott A; Bae, Chang-Hoon; Ahn, Jung-Ho; Foster, Clifton E; Liao, James C; Lin, Xiaoxia Nina

    2013-09-03

    Synergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging. In this work, we bridge ecology theory with engineering principles to develop robust synthetic fungal-bacterial consortia for efficient biosynthesis of valuable products from lignocellulosic feedstocks. The required biological functions are divided between two specialists: the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We developed and experimentally validated a comprehensive mathematical model for T. reesei/E. coli consortia, providing insights on key determinants of the system's performance. To illustrate the bioprocessing potential of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated corn stover to isobutanol. Without costly nutrient supplementation, we achieved titers up to 1.88 g/L and yields up to 62% of theoretical maximum. In addition, we show that cooperator-cheater dynamics within T. reesei/E. coli consortia lead to stable population equilibria and provide a mechanism for tuning composition. Although we offer isobutanol production as a proof-of-concept application, our modular system could be readily adapted for production of many other valuable biochemicals.

  2. Anomeric Selectivity and Product Profile of a Processive Cellulase

    DEFF Research Database (Denmark)

    Kari, Jeppe; Kont, Riin; Borch, Kim

    2017-01-01

    Cellobiohydrolases (CBHs) make up an important group of enzymes for both natural carbon cycling and industrial deconstruction of lignocellulosic biomass. The consecutive hydrolysis of one cellulose strand relies on an intricate pattern of enzyme–substrate interactions in the long, tunnel-shaped b...

  3. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    Science.gov (United States)

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. Conclusions The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants. PMID:21501500

  4. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    Science.gov (United States)

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Doença celíaca associada à tireoidite de Hashimoto e síndrome de Noonan Celiac disease associated with Hashimoto's thyroiditis and Noonan syndrome

    Directory of Open Access Journals (Sweden)

    Mariana Ortega Perez

    2010-12-01

    Full Text Available OBJETIVO: Relatar o caso clínico de uma criança portadora de doença celíaca, tireoidite de Hashimoto e síndrome de Noonan. DESCRIÇÃO DE CASO: Menina de dez anos e seis meses, branca, apresentando história de diarreia líquida há cinco meses e "aumento da barriga". Ao exame, mostrava peso de 20.580g (pOBJECTIVE: To describe the clinical case of a child with celiac disease, Hashimoto's thyroiditis and Noonan syndrome. CASE DESCRIPTION: A Caucasian girl aged ten years and six months had liquid diarrhea for five months, and a "distended belly". At the physical exam: weight of 20,580g (p<3, length of 114cm (p<3, hydrated, anemic 2+/4+ and conscious. The patient presented triangular facies, apparent ocular hypertelorism, antimongoloid position of the palpebral fissures, ears with low implantation, micrognathia, short neck and pectus excavatum. The abdomen was globular, flaccid and painless; the liver was 2cm below the right costal margin. Lymphedema in right upper limb and lower limb edema was also noted. Laboratory exams showed microcytic and hypochromic anemia, deficit of total proteins, Hashimoto's thyroiditis and a 5-year delay in bone age. Abdominal ultrasonography showed the bowel slightly dilated. Due to lymphedema and chronic diarrhea, the initial hypothesis was intestinal lymphangiectasis, which was confirmed by a jejunal biopsy, which also showed celiac disease. The genetic evaluation revealed a 46XX karyotype and a clinical diagnosis of Noonan syndrome. COMMENTS: Different autoimmune diseases can be associated. In this case, the celiac disease and the Hashimoto's thyroiditis are possibly related to the presence of HLA system antigens. However, the association of the celiac disease with the Noonan syndrome is very rare, and this is the third report in the literature.

  6. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles

    International Nuclear Information System (INIS)

    Faria-Tischer, Paula C.S.; Tischer, Cesar A.; Heux, Laurent; Le Denmat, Simon; Picart, Catherine; Sierakowski, Maria-R.

    2015-01-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and III I (Cel III I ) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel III I was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel III I resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs

  7. Identifying Beneficial Qualities of Trichoderma parareesei for Plants

    Science.gov (United States)

    Rubio, M. Belén; Quijada, Narciso M.; Pérez, Esclaudys; Domínguez, Sara; Hermosa, Rosa

    2014-01-01

    Trichoderma parareesei and Trichoderma reesei (teleomorph Hypocrea jecorina) produce cellulases and xylanases of industrial interest. Here, the anamorphic strain T6 (formerly T. reesei) has been identified as T. parareesei, showing biocontrol potential against fungal and oomycete phytopathogens and enhanced hyphal growth in the presence of tomato exudates or plant cell wall polymers in in vitro assays. A Trichoderma microarray was used to examine the transcriptomic changes in T6 at 20 h of interaction with tomato plants. Out of a total 34,138 Trichoderma probe sets deposited on the microarray, 250 showed a significant change of at least 2-fold in expression in the presence of tomato plants, with most of them being downregulated. T. parareesei T6 exerted beneficial effects on tomato plants in terms of seedling lateral root development, and in adult plants it improved defense against Botrytis cinerea and growth promotion under salt stress. Time course expression patterns (0 to 6 days) observed for defense-related genes suggest that T6 was able to prime defense responses in the tomato plants against biotic and abiotic stresses. Such responses undulated, with a maximum upregulation of the jasmonic acid (JA)/ethylene (ET)-related LOX1 and EIN2 genes and the salt tolerance SOS1 gene at 24 h and that of the salicylic acid (SA)-related PR-1 gene at 48 h after T6 inoculation. Our study demonstrates that the T. parareesei T6-tomato interaction is beneficial to both partners. PMID:24413597

  8. Prevalência da estenose aterosclerótica do tronco celíaco e da artéria mesentérica superior na arteriopatia oclusiva dos membros inferiores Prevalence of atherosclerotic stenosis of celiac trunk and superior mesenteric artery in occlusive arteriopathy of lower limbs

    Directory of Open Access Journals (Sweden)

    Wenes Pereira Reis

    2010-01-01

    Full Text Available Contexto: A eventual relação entre a aterosclerose das artérias dos membros inferiores com a aterosclerose das artérias intestinais foi pouco estudada. Objetivo: Avaliar pela ecografia vascular (Doppler presença de lesões com estenose 70% na artéria mesentérica superior e/ou tronco celíaco em doentes com arteriopatia obstrutiva crônica dos membros inferiores. Método: Foram estudados dois grupos, cada um com 60 doentes (40 homens e 20 mulheres. O grupo-caso foi composto por doentes com arteriopatia obstrutiva crônica dos membros inferiores, claudicação intermitente limitante ou dor de repouso e/ou lesões tróficas de extremidade, sem queixas gastrintestinais. O grupo-controle foi constituído por enfermos sem doença arterial obstrutiva dos membros inferiores e sem queixas gastrintestinais. Consideraram-se fatores de risco presença de diabetes melito, hipertensão arterial, obesidade, angina/infarto, tabagismo e dislipidemia. Todos os doentes foram submetidos a ecografia vascular do tronco celíaco e da artéria mesentérica superior. Os doentes do grupo-caso foram separados pela presença de claudicação intermitente limitante (N = 12 ou lesão trófica e/ou dor de repouso (N = 48. Resultados: Houve associação significante entre idade (p = 0,04 e cardiopatia isquêmica (p = 0,04 com aterosclerose da artéria mesentérica superior. Os fatores de risco não mostraram associação significante com presença de estenose do tronco celíaco. Observou-se associação significante entre arteriopatia dos membros inferiores e lesão estenótica da artéria mesentérica superior (p = 0,006 e do tronco celíaco (p Background: The occasional relationship between arterial atherosclerosis of lower limbs and atherosclerosis of intestinal arteries has not been fully studied yet. Objective: To assess the presence of lesions with ≥ 70% stenosis in the superior mesenteric artery and/or in the celiac trunk in patients with chronic obstructive

  9. Effect of two microbial phytase preparations on phosphorus utilisation in broilers fed maize-soybean meal based diets

    Directory of Open Access Journals (Sweden)

    J. VALAJA

    2008-12-01

    Full Text Available The present study was carried out to determine the effect of two microbial phytases, Aspergillus niger (FINASEâ FP-500, 291 PU (phytase units/g and Trichoderma reesei phytase (FINASEâ P, 5880 PU/g on phosphorus (P and calcium (Ca utilisation and ileal P and Ca digestibility in broiler chickens fed diets based on maize and soybean meal. A total of 96 Ross broiler chickens housed four birds to a cage were used. Four dietary treatments consisted of a positive control supplemented with dicalcium phosphate (17 g/kg, a negative control without inorganic P, basal diet without inorganic P supplemented with Aspergillus niger phytase (2.6 g/kg and basal diet without inorganic P supplemented with Trichoderma reesei phytase (0.13 g/kg. Both phytases provided 750 PU/kg feed. P retention per unit intake was lowest and P excretion highest in birds fed the positive control diet with inorganic P (P

  10. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  11. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  12. Engineering Aspergillus oryzae A-4 through the chromosomal insertion of foreign cellulase expression cassette to improve conversion of cellulosic biomass into lipids.

    Directory of Open Access Journals (Sweden)

    Hui Lin

    Full Text Available A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05 higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%-133% and 35.22%-59.57% higher amount of lipids than the reference strain A-4 (WT under submerged (SmF conditions and solid-state (SSF conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.

  13. The binding of cellulase variants to dislocations: a semi-quantitative analysis based on CLSM (confocal laser scanning microscopy) images

    DEFF Research Database (Denmark)

    Hidayat, Budi J.; Weisskopf, Carmen; Felby, Claus

    2015-01-01

    or slip planes. Here we study whether cellulases bind to dislocations to a higher extent than to the surrounding cell wall. The binding of fluorescently labelled cellobiohydrolases and endoglucanases to filter paper fibers was investigated using confocal laser scanning microscopy and a ratiometric method...

  14. ICF related experiments at CEL-V

    International Nuclear Information System (INIS)

    Andre, M.; Coutant, J.; Dautray, R.; Decroisette, M.; Duborgel, B.; Lachkar, J.; Ouvry, J.; Schurtz, G.; Watteau, J.P.

    1991-01-01

    Implosion experiments performed at Centre d'Etudes de Limeil-Valenton in the indirect drive scheme using the two-beams Nd glass laser facility Phebus at the energy level ≅ 6 kJ (blue light) are presented. A final density of compressed DT close to 100 ρ 0 has been obtained. Phebus has also been equipped with an optical fibre oscillator, to study the effect of a smoothing technique on coupling processes: at 0.53 μm, absorption efficiency is increased by ≅15-20%. With the eight beams Octal laser, hydrodynamic instabilities development in accelerated planar targets has been investigated both for direct and indirect drive. Atomic physics in laser plasmas is also deeply studied; a particular effort has been made on absorption spectroscopy which is a powerful diagnostic of ionization dynamics in cold and dense plasmas. In order to reach fuel ignition conditions, much powerful lasers, in the range of megajoule, will be needed. Their design needs further technological developments in order to reduce the capital cost. At Limeil, we work mainly on high damage threshold optical coatings, using the sol-gel process, high quality - low cost mirror fabrication, using the replica technics and incoherent laser pulse generation for beam smoothing

  15. A Meta-Analysis of Genome-Wide Association Scans Identifies IL18RAP, PTPN2, TAGAP, and PUS10 As Shared Risk Loci for Crohn's Disease and Celiac Disease

    NARCIS (Netherlands)

    Festen, Eleonora A. M.; Goyette, Philippe; Green, Todd; Boucher, Gabrielle; Beauchamp, Claudine; Trynka, Gosia; Dubois, Patrick C.; Lagace, Caroline; Stokkers, Pieter C. F.; Hommes, Daan W.; Barisani, Donatella; Palmieri, Orazio; Annese, Vito; van Heel, David A.; Weersma, Rinse K.; Daly, Mark J.; Wijmenga, Cisca; Rioux, John D.

    2011-01-01

    Crohn's disease (CD) and celiac disease (CelD) are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general

  16. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease

    NARCIS (Netherlands)

    Festen, Eleonora A. M.; Goyette, Philippe; Green, Todd; Boucher, Gabrielle; Beauchamp, Claudine; Trynka, Gosia; Dubois, Patrick C.; Lagacé, Caroline; Stokkers, Pieter C. F.; Hommes, Daan W.; Barisani, Donatella; Palmieri, Orazio; Annese, Vito; van Heel, David A.; Weersma, Rinse K.; Daly, Mark J.; Wijmenga, Cisca; Rioux, John D.

    2011-01-01

    Crohn's disease (CD) and celiac disease (CelD) are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general

  17. Gene : CBRC-CELE-01-0021 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CELE-01-0021 Novel I A UNKNOWN TBA1C_RAT 0.0 70% ref|NP_492419.2| TuBulin, Alpha family member (tba...is elegans] 0.0 88% gnl|UG|Cel#S5829910 Caenorhabditis elegans TuBulin, Alpha family member (tba-6) (tba-6)

  18. Forces released during alignment with a preadjusted appliances with SPEED supercable wire and different types of elastomeric ligatures

    Directory of Open Access Journals (Sweden)

    Suruchi Jatol-Tekade

    2016-01-01

    Full Text Available Introduction: The purpose of this in vitro study was to evaluate a new combination of wire and ligature to reduce friction further by combining slide ligatures and supercable wires. Materials and Methods: The testing model consisted of five stainless steel 0.022 inch preadjusted brackets for second premolar, first premolar, canine, lateral incisor, and central incisor. The canine bracket was welded to a sliding bar that allowed different vertical positions. The forces generated by five sizes of wires superelastic nickel-titanium (SE Ni-Ti (Unitek Nitinol Super-Elastic Archwire of diameter 0.012", 0.014", 0.016", 0.018", and 0.020" inch and three sizes of SPEED supercable wires (0.016", 0.018", and 0.022" inch with the two types of elastomeric ligatures; conventional elastomeric ligatures (CELs (Unitek, silver mini modules, with inside diameter of 1.3 mm and thickness of 0.9 mm and nonconventional elastomeric ligatures (NCELs (Slide, Leone Orthodontic Products, Sesto Fiorentino, Firenze, Italy at different amounts of upward canine misalignment (CM (1.5, 3, 4.5, and 6 mm were recorded. Results and Conclusions: Significant differences between CEL and NCEL were found for all tested variables (P - 0.01 a noticeable amount of force was generated with the NCEL at all four canine positions with all three wire sizes (from about 50 to about 150 g. With 4.5 mm of CM or more, the average amount of released force with the CEL was approximately zero.

  19. Efficacy of New 6-Phytase from Buttiauxella spp. on Growth Performance and Nutrient Retention in Broiler Chickens Fed Corn Soybean Meal-based Diets

    Science.gov (United States)

    Kiarie, E.; Woyengo, T.; Nyachoti, C. M.

    2015-01-01

    A total of 420 day-old male Ross chicks were weighed at d 1 of life and assigned to test diets to assess the efficacy of a new Buttiauxella spp. phytase expressed in Trichoderma reesei. Diets were: positive control (PC) adequate in nutrients and negative control (NC) diet (40% and 17% less available phosphorous (P) and calcium (Ca), respectively) supplemented with 6 levels of phytase 0, 250, 500, 750, 1,000, and 2,000 phytase units (FTU)/kg of diet. All diets had titanium dioxide as digestibility marker and each diet was allocated to ten cages (6 birds/cage). Diets were fed for 3 wk to measure growth performance, apparent retention (AR) on d 17 to 21 and bone ash and ileal digestibility (AID) on d 22. Growth performance and nutrient utilization was lower (pPhytase response in NC birds was linear (pphytase at ≥750 FTU resulted in AID of total AA commensurate to that of PC fed birds and at ≥1,000 FTU improved (pphytase and PC diet. In conclusion, the result from this study showed that in addition to increased P and Ca utilization, the new Buttiauxella phytase enhanced growth performance and utilization of other nutrients in broiler chickens in a dose-dependent manner. PMID:26323404

  20. Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Kastberg, H.; Jørgensen, C. I.

    2009-01-01

    The cel5C gene, coding for an endoglucanase (Cel5C) of Penicillium brasilianum was cloned and heterologously expressed in Aspergillus oryzae. This is only the second GH5 EG from the genus penicillium reported in the CAZy database. The promoter region of the gene has I)putative binding sites...

  1. Production of single-cell protein from enzymatic hydrolyzate of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, M.; Kometani, Y.; Tanaka, M.; Matsuno, R.; Kamikubo, T.

    1982-01-01

    The components of rice straw, pretreated with sodium chlorite, cellulose and hemicellulose were solubilized with culture filtrate of Pellicularia filamentosa or Trichoderma reesei. The ratio of glucose to total sugar in the solution obtained from the cellulose component with the culture filtrate of Pellicularia filamentosa was approximately twice that of Trichoderma reesei. Ten yeast strains (Candida utilis, C. tropicalis, C. guilliermondii, C. parapsilosis, Torulopsis xylinus, Trichosporon cutaneum, Debaryomyces hansenii, Rhodotorula glutinis, Saccharomyces fragilis and Saccharomyces cerevisiae) were cultivated as test organisms for single-cell protein (SCP) production on sugar solutions obtained from the straw, cellulose and hemicellulose components, pretreated with the culture filtrate of Pellicularia filamentosa. Sugar consumption, in terms of total sugar and cell yield, of the culture with the sugar solution obtained from pretreated straw were; 70% and 6.8 g/l for Candida tropicalis, 56% and 6.4 g/l for Torulopsis xylinus, 76% and 10.1 g/l for Trichosporon cutaneum, and 74% and 7.6 g/l for Candida guilliermondii. In addition, the highest consumption with respect to total sugar (87%) and the best dry cell yield (15.6 g/l) were observed with the culture of Trichosporon cutaneum using the sugar solution obtained from the hemicellulose component. (Refs. 17).

  2. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma.

    Science.gov (United States)

    Kubicek, Christian P; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A; Druzhinina, Irina S; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A; Mukherjee, Prasun K; Mukherjee, Mala; Kredics, László; Alcaraz, Luis D; Aerts, Andrea; Antal, Zsuzsanna; Atanasova, Lea; Cervantes-Badillo, Mayte G; Challacombe, Jean; Chertkov, Olga; McCluskey, Kevin; Coulpier, Fanny; Deshpande, Nandan; von Döhren, Hans; Ebbole, Daniel J; Esquivel-Naranjo, Edgardo U; Fekete, Erzsébet; Flipphi, Michel; Glaser, Fabian; Gómez-Rodríguez, Elida Y; Gruber, Sabine; Han, Cliff; Henrissat, Bernard; Hermosa, Rosa; Hernández-Oñate, Miguel; Karaffa, Levente; Kosti, Idit; Le Crom, Stéphane; Lindquist, Erika; Lucas, Susan; Lübeck, Mette; Lübeck, Peter S; Margeot, Antoine; Metz, Benjamin; Misra, Monica; Nevalainen, Helena; Omann, Markus; Packer, Nicolle; Perrone, Giancarlo; Uresti-Rivera, Edith E; Salamov, Asaf; Schmoll, Monika; Seiboth, Bernhard; Shapiro, Harris; Sukno, Serenella; Tamayo-Ramos, Juan Antonio; Tisch, Doris; Wiest, Aric; Wilkinson, Heather H; Zhang, Michael; Coutinho, Pedro M; Kenerley, Charles M; Monte, Enrique; Baker, Scott E; Grigoriev, Igor V

    2011-01-01

    Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants. © 2011 Kubicek et al.; licensee BioMed Central Ltd.

  3. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  4. Biomass production of the marine microalga; chroomonas sp. in function of the pH, luminous intensity and salinity

    International Nuclear Information System (INIS)

    Bermudez, Jose Luis; Lodeiros, Cesar; Morales, Ever

    2002-01-01

    We report the characterization of a marine microalga of the genus Chroomonas, isolated from a salt lagoon located to the north of Maracaibo, Zulia State, Venezuela. We evaluated the growth and the pigment production in discontinuous culture at different salinities (5, 10, 35, 50, 70 y 100 ppm), light intensities (39,78,117 and 156 μmol quanta.m 2 . s 1 and pH (5.0, 5.5, 6.0, 7.0, 8.0 and 9.0). The highest cellular density, 117.99±2.62x10 6 fg.cel l , was reached at 35 ppm, 156 μmol quanta.m 2 . s 1 of light intensity and a ph between 6.0 and 8.0. The cellular content of total chlorophyll and carotenoids increased with the salinity up to 100 ppm, with amounts of 246.55 ± 61.8 y 69.79±18.19 fg.cel l , respectively. The cellular productivity 4.31x10 9 cel 1 d 1 was obtained when the microalga, was grown in semi-continuous culture, at a 2.01 volume and at a daily renewal rate of 30 % (v/v). The total amount of chlorophyll and carotenoids was 1.4 and 0.48 mg.l d , respectively. These results indicate that this planktonic microalga could be used as daily live food for larvae in aquaculture and for the production of micro algal biomass and/ or pigments

  5. Two tomato endoglucanases have a function during syncytium development

    Directory of Open Access Journals (Sweden)

    Małgorzata Lichocka

    2011-01-01

    Full Text Available Globodera rostochiensis, as well as other cyst nematodes, induces formation of a multinucleate feeding site, called syncytium, in host roots. In tomato roots infected with a potato cyst nematode, the syncytium is initiated in the cortex or pericycle. Progressive cell wall dissolution and subsequent fusion of protoplasts of newly incorporated cells lead to syncytium formation. Expansion and development of a syncytium strongly depends on modifications of a cell wall, including its degradation, elongation, thickening, and formation of ingrowths within it in close contact with tracheary elements. Recent reports have demonstrated that during formation of syncytium, numerous genes of plant origin, coding for cell wall-modifying enzymes are up-re-gulated. In this research, we studied a detailed distribution and function of two tomato 1,4-β-endoglucanases in developing feeding sites induced by G. rostochiensis. In situ localization of tomato LeCel7 and LeCel8 transcripts and proteins demonstrated that these enzymes were specifically up-regulated within syncytium and in the cells adjacent to the syncytium. In non-infected roots an expression of LeCel7 and LeCel8 was observed in the root cap and lateral root primordia. Our data confirm that cell wall-modifying enzymes of plant origin have a role in a modification of cell wall within syncytia, and demonstrate that plant endoglucanases are involved in syncytia formation.

  6. Cardiorespiratory fitness: relationship with the immune system of adolescents

    Directory of Open Access Journals (Sweden)

    Anderson Zampier Ulbrich

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n4p478 This work to investigate the relationship between cardiorespiratory fitness with count of cells in the immune system (IS in adolescents. The sample was composed by 102 boys (B and 131 (G girls (12 to 17 years-old. BMI was calculated and categorized (Cole et al. and absolute and relative VO2máx was obtained through the shuttle run test (Léger et al. and categorized according to Rodrigues et al. Maturation stage was assessing (Tanner. The cells of IS by leukogram was obtained. It was hypothesized (H that individuals with higher VO2máx could present a higher ratio of chances in the counting of cells in the SI. Was used frequency distribution, Student t test, ANOVAs one-way and binary logistic regression (p< 0.05. The overweight was demonstrated that 27.8% (B 13.2% (G. The values of VO2máx were between 29 to 59 ml.kg-1.min-1 and 25 to 53 ml.kg-1.min-1 to B and G, respectively. The average of IS cells differ between B and G, and in greater range in the: Leukocytes (B = 5697.1 cel.ml and G = 6496.9 cel.ml; t= 3,959 p = 0,000, Segmented (B= 3288,1 cel.ml and G= 4023,8 cel.ml; t= 4,145; p= 0,000, and neutrophils (B = 3306,9 cel.ml and G = 4101.2 cel.ml; t= 4,431 , p= 0,000 in G, while Eosinophils (B = 286.1 cel.ml and G = 211.1 cel.ml; t= 2,644; p= 0,009 had a higher count for B. There were differences between the maturational stages only between puberty stage and pos puberty for Leukocytes and Segmented in G. The analyses of relative VO2máx indicated the M with low cardiorespiratory fitness is 4,6; 2,76; 3,57 respectively have more chances of eosinophils, lymphocytes and monocytes below the 50th percentile, as well as to observe the absolute VO2máx, the R with regular fitness is 9,0; 5,16; 9,65 respectively have more chances of leukocytes, monocytes and neutrophils below the 50th percentile. The M showed that the regular fitness has 3.0 times more chances to have leukocytes and neutrophils below

  7. Single-molecule studies of DNA replication : Visualization of DNA replication by the T7 bacteriophage replisome at a single-molecule level

    NARCIS (Netherlands)

    Geertsema, Hylkje

    2014-01-01

    De replicatie van DNA speelt een centrale rol in het overbrengen van genetische informatie van cel naar cel. Ons DNA wordt gerepliceerd door een machine van verschillende eiwitten, die elk een verschillende taak hebben maar nauw samenwerken. Eén eiwit zorgt er bijvoorbeeld voor dat het dubbelstrengs

  8. Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii.

    Science.gov (United States)

    Su, Xiaoyun; Mackie, Roderick I; Cann, Isaac K O

    2012-04-01

    Thermophilic cellulases and hemicellulases are of significant interest to the biofuel industry due to their perceived advantages over their mesophilic counterparts. We describe here biochemical and mutational analyses of Caldicellulosiruptor bescii Cel9B/Man5A (CbCel9B/Man5A), a highly thermophilic enzyme. As one of the highly secreted proteins of C. bescii, the enzyme is likely to be critical to nutrient acquisition by the bacterium. CbCel9B/Man5A is a modular protein composed of three carbohydrate-binding modules flanked at the N terminus and the C terminus by a glycoside hydrolase family 9 (GH9) module and a GH5 module, respectively. Based on truncational analysis of the polypeptide, the cellulase and mannanase activities within CbCel9B/Man5A were assigned to the N- and C-terminal modules, respectively. CbCel9B/Man5A and its truncational mutants, in general, exhibited a pH optimum of ∼5.5 and a temperature optimum of 85°C. However, at this temperature, thermostability was very low. After 24 h of incubation at 75°C, the wild-type protein maintained 43% activity, whereas a truncated mutant, TM1, maintained 75% activity. The catalytic efficiency with phosphoric acid swollen cellulose as a substrate for the wild-type protein was 7.2 s(-1) ml/mg, and deleting the GH5 module led to a mutant (TM1) with a 2-fold increase in this kinetic parameter. Deletion of the GH9 module also increased the apparent k(cat) of the truncated mutant TM5 on several mannan-based substrates; however, a concomitant increase in the K(m) led to a decrease in the catalytic efficiencies on all substrates. These observations lead us to postulate that the two catalytic activities are coupled in the polypeptide.

  9. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The white-rot, basidiomycete fungus, Phanerochaete chrysosporium, has attracted .... with Congo red (1 mg/ml) solution, incubated at room temperature for 15 min and washed several times with sterile 1 .... white rot fungus Phanerochaete chrysosporium: cloning, sequence analysis and regulation of differential expression.

  10. Dicty_cDB: Contig-U04444-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 5004 ) sat05c04.y1 Gm-c1036 Glycine max cDNA clone SOYBE... 52 0.025 1 ( BU894001 ) P085G03 Populus petioles cDNA library Popul...s cDNA, RIKEN full-l... 52 0.025 1 ( CF870513 ) tric023xm17.b1 T.reesei mycelial culture, Versio...n... 52 0.025 1 ( CF869757 ) tric020xf11.b1 T.reesei mycelial culture, Version... 52 0.025 1 ( CF867854 ) tric012xm19.b1 T.re...esei mycelial culture, Version... 52 0.025 1 ( CF867232 ) tric010xg18.b1 T.re...esei mycelial culture, Version 3 ... 52 0.025 1 ( CB899903 ) tric020xf11 T.reesei mycelial culture

  11. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration.

    Science.gov (United States)

    Mattioli-Belmonte, M; De Maria, C; Vitale-Brovarone, C; Baino, F; Dicarlo, M; Vozzi, G

    2017-07-01

    The aim of this work was the fabrication and characterization of bioactive glass-poly(lactic-co-glycolic acid) (PLGA) composite scaffolds mimicking the topological features of cancellous bone. Porous multilayer PLGA-CEL2 composite scaffolds were innovatively produced by a pressure-activated microsyringe (PAM) method, a CAD/CAM processing technique originally developed at the University of Pisa. In order to select the optimal formulations to be extruded by PAM, CEL2-PLGA composite films (CEL2 is an experimental bioactive SiO 2 -P 2 O 5 -CaO-MgO-Na 2 O-K 2 O glass developed at Politecnico di Torino) were produced and mechanically tested. The elastic modulus of the films increased from 30 to > 400 MPa, increasing the CEL2 amount (10-50 wt%) in the composite. The mixture containing 20 wt% CEL2 was used to fabricate 2D and 3D bone-like scaffolds composed by layers with different topologies (square, hexagonal and octagonal pores). It was observed that the increase of complexity of 2D topological structures led to an increment of the elastic modulus from 3 to 9 MPa in the composite porous monolayer. The elastic modulus of 3D multilayer scaffolds was intermediate (about 6.5 MPa) between the values of the monolayers with square and octagonal pores (corresponding to the lowest and highest complexity, respectively). MG63 osteoblast-like cells and periosteal-derived precursor cells (PDPCs) were used to assess the biocompatibility of the 3D bone-like scaffolds. A significant increase in cell proliferation between 48 h and 7 days of culture was observed for both cell phenotypes. Moreover, qRT-PCR analysis evidenced an induction of early genes of osteogenesis in PDPCs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose

    Science.gov (United States)

    Zhou, Qingxin; Xu, Jintao; Kou, Yanbo; Lv, Xinxing; Zhang, Xi; Zhao, Guolei; Zhang, Weixin; Chen, Guanjun

    2012-01-01

    Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals. PMID:23002106

  13. A flexible mixed-effect negative binomial regression model for detecting unusual increases in MRI lesion counts in individual multiple sclerosis patients.

    Science.gov (United States)

    Kondo, Yumi; Zhao, Yinshan; Petkau, John

    2015-06-15

    We develop a new modeling approach to enhance a recently proposed method to detect increases of contrast-enhancing lesions (CELs) on repeated magnetic resonance imaging, which have been used as an indicator for potential adverse events in multiple sclerosis clinical trials. The method signals patients with unusual increases in CEL activity by estimating the probability of observing CEL counts as large as those observed on a patient's recent scans conditional on the patient's CEL counts on previous scans. This conditional probability index (CPI), computed based on a mixed-effect negative binomial regression model, can vary substantially depending on the choice of distribution for the patient-specific random effects. Therefore, we relax this parametric assumption to model the random effects with an infinite mixture of beta distributions, using the Dirichlet process, which effectively allows any form of distribution. To our knowledge, no previous literature considers a mixed-effect regression for longitudinal count variables where the random effect is modeled with a Dirichlet process mixture. As our inference is in the Bayesian framework, we adopt a meta-analytic approach to develop an informative prior based on previous clinical trials. This is particularly helpful at the early stages of trials when less data are available. Our enhanced method is illustrated with CEL data from 10 previous multiple sclerosis clinical trials. Our simulation study shows that our procedure estimates the CPI more accurately than parametric alternatives when the patient-specific random effect distribution is misspecified and that an informative prior improves the accuracy of the CPI estimates. Copyright © 2015 John Wiley & Sons, Ltd.

  14. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants.

    Science.gov (United States)

    Brummell, D A; Catala, C; Lashbrook, C C; Bennett, A B

    1997-04-29

    Endo-1,4-beta-D-glucanases (EGases, EC 3.2.1.4) are enzymes produced in bacteria, fungi, and plants that hydrolyze polysaccharides possessing a 1,4-beta-D-glucan backbone. All previously identified plant EGases are E-type endoglucanases that possess signal sequences for endoplasmic reticulum entry and are secreted to the cell wall. Here we report the characterization of a novel E-type plant EGase (tomato Cel3) with a hydrophobic transmembrane domain and structure typical of type II integral membrane proteins. The predicted protein is composed of 617 amino acids and possesses seven potential sites for N-glycosylation. Cel3 mRNA accumulates in young vegetative tissues with highest abundance during periods of rapid cell expansion, but is not hormonally regulated. Antibodies raised to a recombinant Cel3 protein specifically recognized three proteins, with apparent molecular masses of 93, 88, and 53 kDa, in tomato root microsomal membranes separated by sucrose density centrifugation. The 53-kDa protein comigrated in the gradient with plasma membrane markers, the 88-kDa protein with Golgi membrane markers, and the 93-kDa protein with markers for both Golgi and plasma membranes. EGase enzyme activity was also found in regions of the density gradient corresponding to both Golgi and plasma membranes, suggesting that Cel3 EGase resides in both membrane systems, the sites of cell wall polymer biosynthesis. The in vivo function of Cel3 is not known, but the only other known membrane-anchored EGase is present in Agrobacterium tumefaciens where it is required for cellulose biosynthesis.

  15. Chitosan-cellulose composite materials: Preparation, Characterization and application for removal of microcystin

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Chieu D., E-mail: chieu.tran@marquette.edu [Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States); Duri, Simon [Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States); Delneri, Ambra; Franko, Mladen [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5001 Nova Gorica (Slovenia)

    2013-05-15

    Highlights: •A novel and recyclable synthetic method using an ionic liquid, a Green Solvent. •Ecocomposite materials were synthesized from cellulose (CEL) and chitosan (CS). •Adding CEL into CS substantially increases tensile strength of the composite. •The composite is much better adsorbent for cyanotoxins than other materials. •The composite can be reused because adsorbed microcystin can be desorbed. -- Abstract: We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm{sup +}Cl{sup −}], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL + CS] composites. Since majority (>88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL + CS], the method is recyclable. XRD, FTIR, NIR, {sup 13}C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5× increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4× times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency.

  16. Chitosan-cellulose composite materials: Preparation, Characterization and application for removal of microcystin

    International Nuclear Information System (INIS)

    Tran, Chieu D.; Duri, Simon; Delneri, Ambra; Franko, Mladen

    2013-01-01

    Highlights: •A novel and recyclable synthetic method using an ionic liquid, a Green Solvent. •Ecocomposite materials were synthesized from cellulose (CEL) and chitosan (CS). •Adding CEL into CS substantially increases tensile strength of the composite. •The composite is much better adsorbent for cyanotoxins than other materials. •The composite can be reused because adsorbed microcystin can be desorbed. -- Abstract: We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm + Cl − ], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL + CS] composites. Since majority (>88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL + CS], the method is recyclable. XRD, FTIR, NIR, 13 C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5× increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4× times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency

  17. Forces in the presence of ceramic versus stainless steel brackets with unconventional vs conventional ligatures.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; Camporesi, Matteo

    2008-01-01

    To compare the forces resulting from four types of bracket/ligature combinations: ceramic brackets and stainless steel brackets combined with unconventional elastomeric ligatures (UEL) and conventional elastomeric ligatures (CEL) during the leveling and aligning phases of orthodontic therapy. The testing model consisted of five 0.022-inch preadjusted brackets (second premolar, first premolar, canine, lateral incisor, and central incisor) for each of the two bracket types. The canine bracket was welded to a sliding bar that allowed for different amounts of offset in the gingival direction. The forces generated by a 0.014-inch superelastic nickel titanium wire in the presence of either the UEL or CEL bracket/ligature systems at different amounts of upward canine misalignment (1.5 mm, 3 mm, 4.5 mm, and 6 mm) were recorded. Significant differences were found between UEL and CEL systems for all tested variables (P < .01) with the exception of the canine misalignment of 1.5 mm. The average amount of recorded force in the presence of CEL was negligible with 3.0 mm or greater of canine misalignment. On the contrary, during alignment, a force available for tooth movement was recorded in the presence of both ceramic and stainless steel brackets when associated with UEL. The type of ligature used influenced the actual amount of force released by the orthodontic system significantly more than the type of bracket used (stainless steel vs ceramic).

  18. Identification of a heterologous cellulase and its N-terminus that can guide recombinant proteins out of Escherichia coli.

    Science.gov (United States)

    Gao, Dongfang; Wang, Shengjun; Li, Haoran; Yu, Huili; Qi, Qingsheng

    2015-04-10

    The Gram-negative bacterium Escherichia coli has been widely used as a cell factory for the production of proteins and specialty chemicals because it is the best characterized host with many available expression and regulation systems. However, recombinant proteins produced in Escherichia coli are generally intracellular and often found in the form of inclusion bodies. Extracellular production of proteins is advantageous compared with intracellular production because extracellular proteins can be purified more easily and can avoid protease attack, which results in higher product quality. In this study, we found a catalytic domain of a cellulase (Cel-CD) and its N-terminus can be employed as carriers for extracellular production of recombinant proteins. In this report, we identified the catalytic domain of a cellulase (Cel-CD) from Bacillus sp. that can be secreted into the medium from recombinant E. coli BL21 (DE3) in large quantities without its native signal peptide. By subcellular location analysis, we proved that the secretion was a two-step process and the N-terminal sequence of the full length Cel-CD played a crucial function in secretion. Both the Cel-CD and its N-terminal sequence can serve as carriers for efficient extracellular production of select target proteins. Fusion of heterologous proteins with N20 from Cel-CD can carry the target proteins out of the cells with a concentration from 101 to 691 mg/L in flask cultivation. The extracellular recombinant proteins with a relative high purity. The results suggested that this system has a potential application in plant biomass conversion and industrial production of enzymes and therapeutic proteins.

  19. On protein quality control, myofibrillar myopathies, and neurodegeneration

    NARCIS (Netherlands)

    Meister, Melanie

    2017-01-01

    Eiwitten zijn bouwstenen van de cel en het is noodzakelijk dat zij in specifieke -vooraf bepaalde – 3-dimensionale vormen ‘gevouwen’ worden om hun functies binnen de cel te kunnen vervullen. De cel heeft een speciaal netwerk (Protein Quality Control [PQC] netwerk) die de kwaliteit van dergelijke

  20. Cloning and molecular ontogeny of digestive enzymes in fed and food-deprived developing gilthead seabream (Sparus aurata) larvae.

    Science.gov (United States)

    Mata-Sotres, José Antonio; Martos-Sitcha, Juan Antonio; Astola, Antonio; Yúfera, Manuel; Martínez-Rodríguez, Gonzalo

    2016-01-01

    We have determined the expression pattern of key pancreatic enzymes precursors (trypsinogen, try; chymotrypsinogen, ctrb; phospholipase A2, pla2; bile salt-activated lipase, cel; and α-amylase, amy2a) during the larval stage of gilthead seabream (Sparus aurata) up to 60days after hatching (dph). Previously, complete sequences of try, cel, and amy2a were cloned and phylogenetically analyzed. One new isoform was found for cel transcript (cel1b). Expression of all enzyme precursors was detected before the mouth opening. Expression of try and ctrb increased during the first days of development and then maintained high values with some fluctuations during the whole larval stage. The prolipases pla2 and cel1b increased from first-feeding with irregular fluctuation until the end of the experiment. Contrarily, cel1a maintained low expression values during most of the larval stage increasing at the end of the period. Nevertheless, cel1a expression was negligible as compared with cel1b. The expression of amy2a sharply increased during the first week followed by a gradual decrease. In addition, a food-deprivation experiment was performed to find the differences in relation to presence/absence of gut content after the opening of the mouth. The food-deprived larvae died at 10dph. The expression levels of all digestive enzymes increased up to 7dph, declining sharply afterwards. This expression pattern up to 7dph was the same observed in fed larvae, confirming the genetic programming during the early development. Main digestive enzymes in gilthead seabream larvae exhibited the same expression profiles than other marine fish with carnivorous preferences in their juvenile stages. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Warming increases hotspot areas of enzyme activity and shortens the duration of hot moments in the detritusphere

    Science.gov (United States)

    Ma, Xiaomin; Razavi, Bahar S.; Holz, Maire; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2017-04-01

    Temperature effects on enzyme kinetics and on the spatial distribution of microbial hotspots are important because of their potential feedback to climate change. We used direct zymography to study the spatial distributions of enzymes responsible for P (phosphatase), C (cellobiohydrolase) and N (leucine-aminopeptidase) cycles in the rhizosphere (living roots of maize) and detritusphere (7 and 14 days after cutting shoots). Soil zymography was coupled with enzyme kinetics to test temperature effects (10, 20, 30 and 40 °C) on the dynamics and localization of these three enzymes in the detritusphere. Total hotspot areas of enzyme activity were 1.9-7.9 times larger and their extension was broader in the detritusphere compared to rhizosphere. From 10 to 30 °C, the hotspot areas enlarged by a factor of 2-24 and Vmax increased by 1.5-6.6 times; both, however, decreased at 40 °C. For the first time, we found a close positive correlation between Vmax and the areas of enzyme activity hotspots, indicating that maximum reaction rate is coupled with hotspot formation. The substrate turnover time at 30 °C were 1.7-6.7-fold faster than at 10 °C. The Km of cellobiohydrolase and phosphatase significantly increased at 30 and 40 °C, indicating high enzyme conformational flexibility, or isoenzyme production at warm temperatures. We conclude that soil warming (at least up to 30°C) increases hotspot areas of enzyme activity and the maximum reaction rate (Vmax) in the detritusphere. This, in turn, leads to faster substrate exhaustion and shortens the duration of hot moments.

  2. Accurate determination of process variables in a solid-state fermentation system

    NARCIS (Netherlands)

    Smits, J.P.; Rinzema, A.; Tramper, J.; Schlösser, E.E.; Knol, W.

    1996-01-01

    The solid-state fermentation (SSF) method described enabled accurate determination of variables related to biological activity. Growth, respiratory activity and production of carboxymethyl-cellulose-hydrolysing enzyme (CMC-ase) activity by Trichoderma reesei QM9414 on wheat bran was used as a model

  3. Effect of three sources of nutrients on biomass and pigment production of freshwater microalgae Hyaloraphidium contortum

    Directory of Open Access Journals (Sweden)

    Caña, E.

    2016-05-01

    Full Text Available Multifunctionality of microalgae is becoming increasingly important, hence science develops new techniques to maximize their potential by providing food, sustainable and affordable fuels and innovative environmental solutions. In this study, we analyzed the effect of different nutrient sources (Nitrofoska®, Quimifol® and Guillard and sowing time on the kinetics of growth and pigment production of freshwater microalgae Hyaloraphidium contortum; besides of registering some physical and chemical variables in different growth mediums. Bioassays were performed in batch cultures by quadruplicate, continously maintaining and controlling temperature, ventilation and lighting. Growth was determined by cell count and production of pigments by spectrophotometry. The largest population densities and productivities per volume of culture were obtained in F/2 Guillard (9.7±0.2x107 cel mL-1 and 7.6x108 cel/L/ day and Nitrofoska® (8.7±0.5x107 cel mL-1 and 5.7x108 cel/L/day. The highest average chlorophyll a, chlorophyll b and total carotenoid concentration was achieved with foliar fertilizer Nitrofoska®, on days 18 and 24 (8, 3.29 and 2.2 μg mL-1, respectively, followed by the obtained by Guillard and Quimifol®. We conclude that this microalgae can be grown with commercial agricultural fertilizers as an alternative source of nutrients to produce biomass and pigments with applications in biotechnology and aquaculture industries.

  4. Beta-Glucosidases from a new Aspergillus species can substitute commercial beta-glucosidases for saccharification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Annette; Lubeck, Peter Stephensen; Lubeck, Mette; Teller, Philip Johan; Kiaer Ahring, Birgitte

    2011-07-01

    Exploitation of lignocellulosic biomasses for the production of biofuels and biochemicals gives a promising alternative to the world's limited fossil energy resources. Cellulose is of great interest in terms of producing sugars for biofuels and biochemicals, since its hydrolysis product, glucose, can readily be fermented into ethanol or converted into high-value chemicals. The hydrolysis of cellulose involves the synergistic action of cellobiohydrolases, endoglucanases and B-glucosidases, and B-glucosidases is key in ensuring final glucose release and the decrease of the accumulation of cellobiose and shorter cellodextrins, known as product inhibitors of the cellobiohydrolases. The aim of the present work was to search for efficient B-glucosidase-producing fungi using a screening strategy based on wheat bran as fermentation substrate. The fungi selected originated from several different countries and fungal fermentation broth were compared with an onsite enzyme production in mind. The broth of the best strain was tested against commercial enzyme preparations based on enzyme kinetics and it proved to be a valid substitute.

  5. Morbidity and survival in advanced AIDS in Rio de Janeiro, Brazil Morbidade e sobrevida em AIDS avançada no Rio de Janeiro, Brasil

    Directory of Open Access Journals (Sweden)

    Ângela J. GADELHA

    2002-07-01

    Full Text Available Opportunistic diseases (OD are the most common cause of death in AIDS patients. To access the incidence of OD and survival in advanced immunodeficiency, we included 79 patients with AIDS treated at Hospital Evandro Chagas (FIOCRUZ from September 1997 to December 1999 with at least one CD4 count As doenças oportunistas (DO são a causa mais comum de morte em pacientes com AIDS. Para acessar a incidência de DO e a sobrevida na imunodeficiência avançada, foram incluídos 79 pacientes com AIDS tratados no Hospital Evandro Chagas (FIOCRUZ no período de Setembro de 1997 a Dezembro de 1999, com ao menos uma contagem de células CD4 <= 100/mm³. A incidência de DO foi analisada pela regressão de Poisson e a sobrevida pela analise de Kaplan Meier e Cox, considerando um período retrospectivo (anterior à contagem de CD4 <= 100 cels/mm³ e um prospectivo (após a contagem de CD4 <= 100 cels/mm³ e controlando-se características demográficas clínicas e laboratoriais. O intervalo de confiança estipulado foi o de 95%. O período médio de acompanhamento foi de 733 dias (IC = 683 - 782. Durante o estudo, nove (11,4% pacientes morreram. A sobrevida a partir do diagnóstico de AIDS foi em média de 2589 dias (IC = 2363 - 2816 e da data da contagem de CD4 <= 100 cels/mm³ foi em média de 1376 dias (IC = 1181 - 1572. A incidência de DO foi de 0,51 pp/ano no período pré-CD4 <= 100 cels/mm³ e 0,29 pp/ano no período pós-CD4 <= 100 cels/mm³. Um menor número de DO acumuladas no período pré-CD4 <= 100 cels/mm³ foi associado com taxas de incidência menores no período pós-CD4 <= 100 cels/mm³.O diagnóstico de AIDS baseado em contagem de CD4+ <= 200 cels/mm³ foi associado com menores taxas de incidência durante o período pós-CD4 <= 100 cels/mm³. As contagens basais de células CD4 acima de 50 cel/mm³ (HR = 0,16 foram associadas a um menor risco de morte assim como a restauração da contagem basal acima de 100 cels/mm³ (HR = 0

  6. Cellulolytic Enzymes Production via Solid-State Fermentation: Effect of Pretreatment Methods on Physicochemical Characteristics of Substrate.

    Science.gov (United States)

    Brijwani, Khushal; Vadlani, Praveen V

    2011-01-01

    We investigated the effect of pretreatment on the physicochemical characteristics-crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU)/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.

  7. A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment.

    Science.gov (United States)

    Khalili Ghadikolaei, Kamran; Gharechahi, Javad; Haghbeen, Kamahldin; Akbari Noghabi, Kambiz; Hosseini Salekdeh, Ghasem; Shahbani Zahiri, Hossein

    2018-03-01

    Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a V max and K m of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (E a ), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol -1 , 16.12 kJ mol -1 , and 56.09 kJ mol -1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.

  8. Baumholder AAF, Saarbrucken, Germany Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F

    Science.gov (United States)

    1972-02-07

    powsht, 44 r UAIA PlOCESSING DZYVflfON EXTREME VALUES Ali ZA H*I$I sgIWtcf/1AC SAUNQUI df*kHYAAE- -- - &#A -- FROM DILtY OWV𔃺C STAMiN STAWIN NMYAR... CElLING I .--.- 4- -t------ > 1 - 2.1.1 4. . 12.4 12. . -;6Mxx: 0tl~l 3038 12. 32o2 32, 3122 12p; W2] 32;2 32,2 -.2 32 i2. ,-80 __no l. .1 ,,l ,8 I

  9. Somatic cell count of nine dairy herds in the State of Sao Paulo as complying the Normative Instruction 62

    Directory of Open Access Journals (Sweden)

    Adna Crisléia Rodrigues Monção de Lima

    2013-12-01

    Full Text Available The technical regulation that is currently in effect for the production, identity and quality of the milk in Brazil is the Normative Instruction 62 (NI 62, published on December 29th 2011. Since January 1st, 2012 this legislation sets for pasteurized milk type A the Somatic Cell Count (SCC limit of 4.8 x 105 cel.  mL-1until June, 30th, 2014, decreasing the limit in the following years til it reaches 3.6 x 105 cel.  mL-1from July, first 2016. From now, the limit of SCC for refrigerated raw milk in the Southeast region is 6.0 x 105 cel.  mL-1, decreasing in the following years til it reaches 5.0 x 105 cel.  mL-1from July, 1st 2014. The control of the amount of SCC in the milk is important for monitoring the milk quality and sanity from a dairy herd. The objective of the present study was to verify if nine dairy farms in the state of São Paulo attend the NI 62 to the limit of SCC. Milk samples were collected directly from the milk glass recording jar in sterile flasks containing bromothymol as conservative. It was evaluated in each herd 15 cows randomly selected. From the results, averages were made from all farms. The determination of SCC was performed by flow cytometry in clinical milk ESALQ-USP, Piracicaba-SP. The herds had different results. One of the properties (A produces pasteurized milk type A and the SCC is under the limit imposed by the NI 62. The others produce refrigerated raw milk. The properties B, C and I are in the limit established by NI 62. The properties D, E, F, G and H are out of the limits stablished by the NI 62 (6.0 x 105 cel.  mL-1. The most worrisome findings derive from the properties E and F, which are the result of mismanagement and poor conditions of milking. It is known that high SCC is related to the presence of subclinical mastitis, which represents significant losses in milk production, compromises animal welfare and offers potential risks to consumer health. The owners of properties E and F should be

  10. Experiment list: SRX590337 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available hIP || strain background=C57BL/6 || genotype/variation=Foxd3 conditional knockout || cell type=EpiLC (dY cel...ls); epiblast-like cells || cell line of origin=Foxd3 conditional knockout C57BL/

  11. Members of the amylovora group of Erwinia are cellulolytic and possess genes homologous to the type II secretion pathway.

    Science.gov (United States)

    Riekki, R; Palomäki, T; Virtaharju, O; Kokko, H; Romantschuk, M; Saarilahti, H T

    2000-07-01

    A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50 degrees C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.

  12. An Investigation of the Jetevator as a Means of Thrust Vector Control

    Science.gov (United States)

    1958-02-01

    actual rocket firings. Description of the Tests The cold-flow jetevator tcsts were conduc.ted in the engine test cells of the Ordnance Aerophysics...45 and 210 psia, as noted on the figures. The cel. pres- sure was adjusted to give a ratio of supply pressure to cell pressure of approximately 37...CORPORATO t. r .U and SPACE DIVISION - FDN LMSD-2630 °; •GN F.]DE NT1 .A.L`. -[, GAP DEFLECTED NOZZLE JETEVATOR FLOW 6 =220 JETEVATOR .°=60O HINGE POINT

  13. Nitrogen fertilization and δ18 O of CO2 have no effect on 18 O-enrichment of leaf water and cellulose in Cleistogenes squarrosa (C4 ) - is VPD the sole control?

    Science.gov (United States)

    Liu, Hai Tao; Gong, Xiao Ying; Schäufele, Rudi; Yang, Fang; Hirl, Regina Theresia; Schmidt, Anja; Schnyder, Hans

    2016-12-01

    The oxygen isotope composition of cellulose (δ 18 O Cel ) archives hydrological and physiological information. Here, we assess previously unexplored direct and interactive effects of the δ 18 O of CO 2 (δ 18 O CO2 ), nitrogen (N) fertilizer supply and vapour pressure deficit (VPD) on δ 18 O Cel , 18 O-enrichment of leaf water (Δ 18 O LW ) and cellulose (Δ 18 O Cel ) relative to source water, and p ex p x , the proportion of oxygen in cellulose that exchanged with unenriched water at the site of cellulose synthesis, in a C 4 grass (Cleistogenes squarrosa). δ 18 O CO2 and N supply, and their interactions with VPD, had no effect on δ 18 O Cel , Δ 18 O LW , Δ 18 O Cel and p ex p x . Δ 18 O Cel and Δ 18 O LW increased with VPD, while p ex p x decreased. That VPD-effect on p ex p x was supported by sensitivity tests to variation of Δ 18 O LW and the equilibrium fractionation factor between carbonyl oxygen and water. N supply altered growth and morphological features, but not 18 O relations; conversely, VPD had no effect on growth or morphology, but controlled 18 O relations. The work implies that reconstructions of VPD from Δ 18 O Cel would overestimate amplitudes of VPD variation, at least in this species, if the VPD-effect on p ex p x is ignored. Progress in understanding the relationship between Δ 18 O LW and Δ 18 O Cel will require separate investigations of p ex and p x and of their responses to environmental conditions. © 2016 John Wiley & Sons Ltd.

  14. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng

    2015-10-01

    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  15. Degradability of integral sugar cane treated with different sodium hidroxide levels/ Degradabilidade ruminal da cana-de-açúcar integral tratada com diferentes níveis de hidróxido de sódio

    Directory of Open Access Journals (Sweden)

    Mauro Freitas Silva Filho

    2007-08-01

    Full Text Available The experiment was carried out being used four bovine cannulated at rumen. Corn silage and chopped sugar cane, treated with 2% NaOH were furnished to the animals during the experiment. Four treatmentsconsisting of sugar cane treated with 0, 2, 4 and 6% NaOH were evaluated by ruminal incubation using nylon bags. Dry matter (DM, organic matter (OM, neutral detergent fiber (NDF, acid detergent fiber (ADF, cellulose (CELL and hemicellulose (HEM disappearance were evaluated in 0, 6, 12, 24, 48, 72, 96 and 144 hours of ruminal incubation. Potencial degradability (PD and effective degradability (ED were determinated using the model suggested by Orskov & Mc Donald (1979, accepting a passage rate of 5%/hour. It was observed highest (PO experimento foi realizado utilizando-se quatro bovinos fistulados no rúmen. Durante o experimento, os animais receberam uma dieta à base de silagem de milho e cana-de-açúcar picada e tratada com 2% de NaOH. Foram avaliados quatro tratamentos à base de cana-de-açúcar com diferentes níveis de NaOH (0, 2, 4 e 6% incubados no rúmen usando-se sacos de náilon. Determinou-se o desaparecimento da matéria seca (MS, matéria orgânica (MO, fibra em detergente neutro (FDN, fibra em detergente ácido (FDA, celulose (CEL e hemicelulose (HEM em 0; 6; 12; 24; 48; 72; 96 e 144 horas de incubações no rúmen. As degradabilidades potencial (DP e efetiva (DE foram determinadas segundo o modelo proposto por Orskov & McDonald (1979 a uma taxa de passagem de 5%/h. Dentro dos tempos de incubação, houve maior desaparecimento de MS, MO, FDN, FDA, CEL e HEM. para o tratamento com 6% de NaOH. Observou-se maior (p < 0,05 DP e DE, respectivamente, para MS (62,01% e 49,39%, MO (62,98% e 49,10%, FDN (57,61% e 34,75%, FDA (55,67% e 35,25%, CEL (64,89% e 36,73% e HEM (61,44% e 35,72%, da cana-de-açúcar tratada com 6% de NaOH. Pode-se concluir que o tratamento químico da cana-de-açúcar com 6% de NaOH promoveu maior degradabilidade

  16. Induction of mutation in Trichoderma viride for conversion of natural cellulose into glucose

    Energy Technology Data Exchange (ETDEWEB)

    Tahoun, M.K.; Khalil, A.I.; Helmi, S.; Khairy, A.H. [Univ. of Alexandria Research Centre, Alexandria (Egypt)

    1991-12-31

    The production of cellulolytic enzymes from fungi has been extensively studied. Several mutants of Trichoderma reesei were selected. Most of the studies were carried out on T. reesei, T. viride, T. harzianum, Penicillium funiculosum, Altemaria alternata. Aspergillus phoenicis, A. ustus, A. tamarii, A. japonicus, and A. niger. T. koningii is one of the most active producers of the so-called C, factor, which is indispensable for the rapid and extensive attack on crystal-line cellulose. However, Trichodenna is known to excrete only small amounts of {beta}-glucosidase. Therefore, Trichoderma is supplemented with {beta}-glucosidase from Aspergillus to increase the saccharification rate of cellulose to glucose as the main sugar. Induction of mutations in Trichodenna spp. rather than T. viride as a tool for the enhancement of {beta}-glucosidase activity was reported. Unfortunately, T. reesei is a poor producer of {beta}-glucosidase. On the other hand, T. harzianum M{sub 5}, a mutant that was induced by gamma radiation, produced high yields, not only of Avicelase and carboxy methyl cellulose, but also of {beta}-glucosidase, than its respective wild type.

  17. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    Science.gov (United States)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  18. Cellulolytic Enzymes Production via Solid-State Fermentation: Effect of Pretreatment Methods on Physicochemical Characteristics of Substrate

    Directory of Open Access Journals (Sweden)

    Khushal Brijwani

    2011-01-01

    Full Text Available We investigated the effect of pretreatment on the physicochemical characteristics—crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.

  19. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    protein subcellular localization. We evaluate GO-TLM performance against three baseline models: MultiLoc, MultiLoc-GO and Euk-mPLoc on the benchmark datasets the baseline models adopted. 5-fold cross validation experiments show that GO-TLM achieves substantial accuracy improvement against the baseline models: 80.38% against model Euk-mPLoc 67.40% with 12.98% substantial increase; 96.65% and 96.27% against model MultiLoc-GO 89.60% and 89.60%, with 7.05% and 6.67% accuracy increase on dataset MultiLoc plant and dataset MultiLoc animal, respectively; 97.14%, 95.90% and 96.85% against model MultiLoc-GO 83.70%, 90.10% and 85.70%, with accuracy increase 13.44%, 5.8% and 11.15% on dataset BaCelLoc plant, dataset BaCelLoc fungi and dataset BaCelLoc animal respectively. For BaCelLoc independent sets, GO-TLM achieves 81.25%, 80.45% and 79.46% on dataset BaCelLoc plant holdout, dataset BaCelLoc plant holdout and dataset BaCelLoc animal holdout, respectively, as compared against baseline model MultiLoc-GO 76%, 60.00% and 73.00%, with accuracy increase 5.25%, 20.45% and 6.46%, respectively. Conclusions Since direct homology-based GO term transfer may be prone to introducing noise and outliers to the target protein, we design an explicitly weighted kernel learning system (called Gene Ontology Based Transfer Learning Model, GO-TLM to transfer to the target protein the known knowledge about related homologous proteins, which can reduce the risk of outliers and share knowledge between homologous proteins, and thus achieve better predictive performance for protein subcellular localization. Cross validation and independent test experimental results show that the homology-based GO term transfer and explicitly weighing the GO kernels substantially improve the prediction performance.

  20. Evaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF of Cellulosic Material

    Directory of Open Access Journals (Sweden)

    Leeuwen, J.

    2011-01-01

    Full Text Available Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum, white rot (Phanerochaete chrysosporium and soft rot (Trichoderma reesei. After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose of a commercial cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter paper after day 5. Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation process for the production of fuel ethanol.

  1. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Directory of Open Access Journals (Sweden)

    Okara Robi M

    2010-12-01

    Full Text Available Abstract Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex* is provided for Africa: Anopheles (Cellia arabiensis, An. (Cel. funestus*, An. (Cel. gambiae, An. (Cel. melas, An. (Cel. merus, An. (Cel. moucheti and An. (Cel. nili*, and in the European and Middle Eastern Region: An. (Anopheles atroparvus

  2. Dicty_cDB: Contig-U06875-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available . 44 3.6 1 ( DW405755 ) EST000176 Trichophyton rubrum cDNA library Tricho... 44 3.6 1 ( AU269367 ) Dictyostelium discoideum vegetati...5aa06.g2 hhd Oryza coarctata genomic clone ... 46 0.91 1 ( EV115075 ) 0120387 Brassica napus Root library Brassic...ES Homo sapiens cDNA 5', mRNA ... 46 0.91 1 ( CF872366 ) tric002xo14.b11 T.reesei mycelial culture...4 3.6 1 ( ES282448 ) PQ037G01.XT7 non-sporulating culture of P. brassi... 44 3.6 1 ( EL772758 ) Plate_11b_G10 Hibernati...ng 13-lined squirrel brain... 44 3.6 1 ( EC618786 ) S_F11_a1_093.ab1 Rabbit heart cDNA library Or

  3. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi)

    International Nuclear Information System (INIS)

    Li, Wang; Huan, Xiajuan; Zhou, Ying; Ma, Qingyi; Chen, Yulin

    2009-01-01

    A bacterial strain with high cellulase activity was isolated of feces sample of Golden Takin (Budorcas taxicolor Bedfordi). The bacterium was classified and designated Bacillus subtilis LN by morphological and 16SrDNA gene sequence analysis. Two putative cellulase genes, CelL15 and CelL73, were simultaneously cloned from the isolated strain by PCR. The putative gene CelL15 consisted of an open reading frame (ORF) of 1470 nucleotides and encoded a protein of 490 amino acids with a molecular weight of 54 kDa. The CelL73 gene consisted of an open reading frame (ORF) of 741 nucleotides and encoded a protein of 247 amino acids with a molecular weight of 27 kDa. Both genes were purified and cloned into pET-28a for expression in Escherichia coli BL21 (DE3). The ability of E. coli to degrade cellulose was enhanced when the two recombinants were cultured together.

  4. [The isolation and characterization of beta-glucosidase gene and beta-glucosidase of Trichoderma viride]: Progress report

    International Nuclear Information System (INIS)

    Stafford, D.W.

    1983-01-01

    Our project was to isolate and characterize the enzyme β-glucosidase and to clone and characterize the β-glucosidase gene; our goal is to clone and characterize each of the cellulase genes from Trichoderma. The induction of the Trichoderma reesei cellulase complex by cellulose and by the soluble inducer, sophorose, has been demonstrated. Although the induction of the cellulase complex has previously been well documented, the induction of β-glucosidase had been questioned. 49 refs., 6 figs., 2 tabs

  5. Dicty_cDB: Contig-U03456-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 2xh16.g6 T. reesei HindIII BAC library Hypo... 44 2.5 1 ( CG898233 ) pastbac066xb17.b1.ab1 Res147 1 Pasteuria... penetran... 44 2.5 1 ( CG897330 ) pastbac049xe11.b1.ab1 Res147 1 Pasteuria penetran... 44 2.5 1 ( CG896500... ) pastbac026xc21.b1.ab1 Res147 1 Pasteuria penetran... 44 2.5 1 ( EL572858 ) Phy

  6. Bioethanol Production From Banana Stem By Using Simultaneous Saccharification and Fermentation (SSF)

    Science.gov (United States)

    Kusmiyati; Mustofa, A.; Jumarmi

    2018-05-01

    The rapid growth and development of industries in the world result in a greater energy needs. Some studies show that ethanol can be used as an alternative energy. However, bioethanol production from food raw materials such as sugar and starch has drawback that cause the food crisis. This aim of this study was to convert banana stem into bioethanol. Banana stem contained of 44.6% cellulose, 36.0% hemicellulose and 19.4% lignin. After banana stems were pretreated with acid (H2SO4) and alkaline (NaOH) at a concentration of 2% w/v at 121 °C for 30 minutes, then subsequently the simultaneous saccharification and fermentation (SSF) were carried out by using mixed cultures of Aspergillus niger, Trichoderma reesei and Zymomonas mobilis at various enzymes ratios of (1:1:1), (1:2:1), (1:2:2), (1:1:2) and various pH (4, 5 and 6) with SSF time for 144 hours and temperature of 30°C. The results show that acid pretreatment showed better results than the alkali pretreatment. After acid pretreatment and alkali pretreatment, lignin content of pretreted banana stem reduced to 15.92% and 16.34%, respectively, cellulose increased to 52.11% and 50.6% respectively, hemicellulose reduced to 28.45% and 28.83%, respectively The SSF showed that pH 5 gave the highest bioethanol. The highest concentration of bioethanol (8.51 g/L) was achieved at the SSF process at pH 5 with a ratio Aspergillus niger, Trichoderma reesei and Zymomonas mobilis enzymes of (1:1:2).

  7. Irbesartan treatment does not influence plasma levels of the advanced glycation end products N(epsilon)(1-carboxymethyl)lysine and N(epsilon)(1-carboxyethyl)lysine in patients with type 2 diabetes and microalbuminuria. A randomized controlled trial

    DEFF Research Database (Denmark)

    Engelen, Lian; Persson, Frederik; Ferreira, Isabel

    2011-01-01

    to confirm such beneficial effects of ARBs on AGEs are lacking. Therefore, we investigated the effects of irbesartan treatment on plasma levels of the AGEs N(e)(1-carboxymethyl)lysine (CML) and N(e)(1-carboxyethyl)lysine (CEL) in hypertensive patients with type 2 diabetes and microalbuminuria. METHODS: We...... and -0.10 µmol/mol lysine (-0.76 to 0.56) for CEL. CONCLUSIONS: Long-term irbesartan treatment does not influence plasma levels of the AGE CML and CEL in patients with type 2 diabetes and microalbuminuria.......BACKGROUND: In vitro and animal experiments have shown inhibiting effects of angiotensin receptor blockers (ARBs) on the formation of advanced glycation end products (AGEs), which are known to be involved in the development of cardiovascular complications in diabetes. However, sufficient human data...

  8. Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass

    Science.gov (United States)

    Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH)...

  9. Effects of cell wall degrading enzymes on carbohydrate fractions and metabolites in stomach and ileum of pigs fed wheat bran based diets

    NARCIS (Netherlands)

    Meulen, van der J.; Inborr, J.; Bakker, J.G.M.

    2001-01-01

    Pigs were fed diets containing 40 heat bran incubated with a water:acetic acid mixture (control, C) and a cellulase (Cel-i) or xylanase (Xyl-i) preparation or with addition of the cellulase (Cel-a) or xylanase (Xyl-a) preparation immediately before feeding. Stomach and ileal samples were analysed

  10. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    Directory of Open Access Journals (Sweden)

    Ben-Wen Li

    2015-12-01

    Full Text Available Acetylcholine receptors (AChRs are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12 in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63 were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the

  11. Generalized nonimaging compound elliptical and compound hyperbolic luminaire designs for pair-overlap illumination applications.

    Science.gov (United States)

    Georlette, O; Gordon, J M

    1994-07-01

    Generalized nonimaging compound elliptical luminaires (CEL's) and compound hyperbolic luminaires (CHL's) are developed for pair-overlap illumination applications. A comprehensive analysis of CEL's and CHL's is presented. This includes the possibility of reflector truncation, as well as the extreme direction that spans the full range from positive to negative. Negative extreme direction devices have been overlooked in earlier studies and are shown to be well suited to illumination problems for which large cutoff angles are required. Flux maps can be calculated analytically without the need for computer ray tracing. It is demonstrated that, for a broad range of cutoff angles, adjacent pairs of CEL's and CHL's can generate highly uniform far-field illuminance while maintaining maximal lighting efficiency and excellent glare control. The trade-off between luminaire compactness and flux homogeneity is also illustrated. For V troughs, being a special case of CHL's and being well suited to simple, inexpensive fabri ation, we identify geometries that closely approach the performance characteristics of the optimized CEL's and CHL's.

  12. Modeling the minimum enzymatic requirements for optimal cellulose conversion

    International Nuclear Information System (INIS)

    Den Haan, R; Van Zyl, W H; Van Zyl, J M; Harms, T M

    2013-01-01

    Hydrolysis of cellulose is achieved by the synergistic action of endoglucanases, exoglucanases and β-glucosidases. Most cellulolytic microorganisms produce a varied array of these enzymes and the relative roles of the components are not easily defined or quantified. In this study we have used partially purified cellulases produced heterologously in the yeast Saccharomyces cerevisiae to increase our understanding of the roles of some of these components. CBH1 (Cel7), CBH2 (Cel6) and EG2 (Cel5) were separately produced in recombinant yeast strains, allowing their isolation free of any contaminating cellulolytic activity. Binary and ternary mixtures of the enzymes at loadings ranging between 3 and 100 mg g −1 Avicel allowed us to illustrate the relative roles of the enzymes and their levels of synergy. A mathematical model was created to simulate the interactions of these enzymes on crystalline cellulose, under both isolated and synergistic conditions. Laboratory results from the various mixtures at a range of loadings of recombinant enzymes allowed refinement of the mathematical model. The model can further be used to predict the optimal synergistic mixes of the enzymes. This information can subsequently be applied to help to determine the minimum protein requirement for complete hydrolysis of cellulose. Such knowledge will be greatly informative for the design of better enzymatic cocktails or processing organisms for the conversion of cellulosic biomass to commodity products. (letter)

  13. EPHECT III: Health risk assessment of exposure to household consumer products.

    Science.gov (United States)

    Trantallidi, M; Dimitroulopoulou, C; Wolkoff, P; Kephalopoulos, S; Carrer, P

    2015-12-01

    In the framework of the EU EPHECT project (Emissions, Exposure Patterns and Health Effects of Consumer Products in the EU), irritative and respiratory effects were assessed in relation to acute (30-min) and long-term (24-h) inhalation exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. A detailed Health Risk Assessment (HRA) was performed for five selected pollutants of respiratory health relevance, namely acrolein, formaldehyde, naphthalene, d-limonene and α-pinene. For each pollutant, the Critical Exposure Limit (CEL) was compared to indoor air concentrations and exposure estimates for the use of 15 selected consumer products by two population groups (housekeepers and retired people) in the four geographical regions of Europe (North, West, South, East), which were derived previously based on microenvironmental modelling. For the present HRA, health-based CELs were derived for certain compounds in case indoor air quality guidelines were not available by the World Health Organization for end-points relevant to the current study. For each pollutant, the highest indoor air concentrations in each microenvironment and exposure estimates across home microenvironments during the day were lower than the corresponding acute and long-term CELs. However, considerable contributions, especially to acute exposures, were obtained in some cases, such as formaldehyde emissions resulting from single product use of a floor cleaning agent (82% CEL), a candle (10% CEL) and an electric air freshener (17% CEL). Regarding multiple product use, the case of 30-min formaldehyde exposure reaching 34% CEL when eight product classes were used across home microenvironments, i.e. all-purpose/kitchen/floor cleaning agents, furniture/floor polish, combustible/electric air fresheners, and perfume, needs to be highlighted. Such estimated values should be evaluated with caution, as these may be attributed to the exposure scenarios

  14. Efecto del medio y condiciones de cultivo en la productividad de tres diatomeas marinas con potencial acuícola

    Directory of Open Access Journals (Sweden)

    Martha J. Prieto

    2005-05-01

    Full Text Available Las diatomeas Actinocyclus normanii , Cyclotella gromerata y Neodelphyneis pelagica fueron trabajadas en ellaboratorio de Alimento Vivo de la Universidad de Córdoba, con el fin de caracterizar las especies, obtenercepas y realizar cultivos experimentales bajo condiciones controladas de temperatura (24oC, salinidad (25-300/00 y aireación. Cultivos a 5 ml y 250 ml fueron realizados con dos medios de cultivo como tratamiento (F/2 deGuillar & Rither, y CONWAY para determinar su efecto sobre la productividad. Mediante observaciones periódicas(cada 6 horas, se registró el tamaño y densidad celular, así como, la tasa de crecimiento (K. Los resultadosmostraron diferencia significativa para el efecto de los medios de cultivo sobre el crecimiento poblacional de lasmicroalgas, las cuales alcanzan concentraciones de 267214,1 ± 277,77 cel.ml-1; 1606117 ± 69686,7 cel.ml-1 y 2735703 ± 49180,8 cel.ml-1 respectivamente para cada especie. Se concluyó que estas microalgas por suscaracterísticas de crecimiento en cultivo, presentan adaptación favorable a las condiciones de manejo para laproducción de biomasas frescas con “F/2” siendo este el medio mas adecuado, asimismo, por su tamaño sonpotencialmente útiles para ser empleadas como partícula nutritiva con fines acuícolas.

  15. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes

    Directory of Open Access Journals (Sweden)

    Nisita Ratnasari

    2017-07-01

    Full Text Available This study used polysaccharide degrading enzymes and protein precipitation to extract polyphenols from oats and to determine their bioactivity. Duplicate oat brans were treated with viscozyme (Vis, cellulase (Cel or no enzyme (control, CTL then, proteins were removed in one set (Vis1, Cel1, CTL1 and not in the other (Vis2, Cel2, CTL2. HPLC analyses showed that for cellulase treated brans, precipitation of proteins increased phenolic acids and avenanthramides by 14%. Meanwhile, a decreased of 67% and 20% respectively was found for viscozyme and control brans. The effect of protein precipitation on soluble polyphenols is therefore dependent of the carbohydrase, as proteins with different compositions will interact differently with other molecules. Radical scavenging data showed that Cel1 and Vis1 had higher quenching effects on ROO• radicals with activities of 22.1 ± 0.8 and 23.5 ± 1.2 μM Trolox Equivalents/g defatted brans. Meanwhile, CTL2 had the highest HO• radicals inhibition (49.4 ± 2.8% compared to 10.8–32.3% for others. Samples that highly inhibited lipoxygenase (LOX, an enzyme involved in lipid oxidation were Cel1 (23.4 ± 2.3% and CTL1 (18 ± 0.4%.

  16. Hemp fibres: Enzymatic effect of microbial processing on fibre bundle structure

    DEFF Research Database (Denmark)

    Thygesen, Anders; Liu, Ming; Meyer, Anne S.

    2013-01-01

    The effects of microbial pretreatment on hemp fibres were evaluated after microbial retting using the white rot fungi Ceriporiopsis subvermispora and Phlebia radiata Cel 26 and water retting. Based on chemical composition, P. radiata Cel 26 showed the highest selectivity for pectin and lignin...... degradation and lowest cellulose loss (14%) resulting in the highest cellulose content (78.4%) for the treated hemp fibres. The pectin and lignin removal after treatment with P. radiata Cel 26 were of the order 82% and 50%, respectively. Aligned epoxy-matrix composites were made from hemp fibres defibrated...... with the microbial retting to evaluate the effects on their ultrastructure. SEM microscopy of the composites showed low porosity on the fibre surfaces after defibration with P. radiata Cel 26 and C. subvermispora indicating good epoxy polymer impregnation. In contrast, fibres treated by water retting and the raw...

  17. Kombineret endoskopisk-laparoskopisk polypektomi i colon

    DEFF Research Database (Denmark)

    Jensen, Sandra; Rud, Bo

    2017-01-01

    CELS is low, and the frequency of adenocarcinoma is comparable with the frequency in large polyps (> 2 cm) resected endoscopically. CELS can be performed for a variety of indications but should be done after renewed endoscopy. Due to the risk of cancer it should only be performed in specialized centres....

  18. Isolation and characterization of β-glucosidase producing bacteria ...

    African Journals Online (AJOL)

    Administrator

    2011-10-26

    Oct 26, 2011 ... lase enzyme system, along with endoglucanase and cellobiohydrolase. ... biomass substrates, for synthesis of useful glucosides, in flavor industry for ... 2007) and in the bioconversion of phenolic anti-oxidants from defatted ...

  19. Optimitzación de la biosíntesis de nanocelulosa bacteriana por fermentación

    OpenAIRE

    García González, Alberto

    2017-01-01

    La cel·lulosa bacteriana és un biopolímer obtingut per fermentació amb diversos microorganismes, dels quals l’espècie més eficient en la producció és la Gluconacetobacter xylinus sucrofermentans. La principal diferencia entre la cel·lulosa bacteriana y la resta de cel·luloses que existeixen és la seva puresa, per això, és un del biopolímer més atractius per les seves possibles aplicacions en diverses àrees com són l’alimentació, la farmàcia i la medicina. A més de la seva puresa, les seves...

  20. Obtención de nanocelulosa a partir de madera de eucalipto mediante ozono y métodos biotecnológicos y evaluación del rendimiento del proceso

    OpenAIRE

    Aguilera Arranz, Lydia

    2016-01-01

    En el present treball es vol obtenir cel·lulosa el més pura possible a partir de fusta d’eucaliptus per tal d’obtenir-ne nanocristalls de cel·lulosa i avaluar-ne el rendiment global del procés. Es tracta d’una successió de tractaments que pretenen separar la lignina i les hemicel·luloses de la lignocel·lulosa, a través del concepte de biorrefinería. El fet d’aplicar mètodes biotecnològics suposa una millora de la qualitat del producte i respectuositat amb el medi ambient. Primerament, s’ex...

  1. Efficacy of New 6-Phytase from spp. on Growth Performance and Nutrient Retention in Broiler Chickens Fed Corn Soybean Meal-based Diets

    Directory of Open Access Journals (Sweden)

    E. Kiarie

    2015-10-01

    Full Text Available A total of 420 day-old male Ross chicks were weighed at d 1 of life and assigned to test diets to assess the efficacy of a new Buttiauxella spp. phytase expressed in Trichoderma reesei. Diets were: positive control (PC adequate in nutrients and negative control (NC diet (40% and 17% less available phosphorous (P and calcium (Ca, respectively supplemented with 6 levels of phytase 0, 250, 500, 750, 1,000, and 2,000 phytase units (FTU/kg of diet. All diets had titanium dioxide as digestibility marker and each diet was allocated to ten cages (6 birds/cage. Diets were fed for 3 wk to measure growth performance, apparent retention (AR on d 17 to 21 and bone ash and ileal digestibility (AID on d 22. Growth performance and nutrient utilization was lower (p<0.05 for NC vs PC birds. Phytase response in NC birds was linear (p<0.05 with 2,000 FTU showing the greatest improvement on body weight gain (20%, feed conversion (7.4%, tibia ash (18%, AR of Ca (38%, AR of P (51% and apparent metabolizable energy corrected for nitrogen (5.1% relative to NC. Furthermore, phytase at ≥750 FTU resulted in AID of total AA commensurate to that of PC fed birds and at ≥1,000 FTU improved (p<0.05 AR of P, dry matter, and N beyond that of the lower doses of phytase and PC diet. In conclusion, the result from this study showed that in addition to increased P and Ca utilization, the new Buttiauxella phytase enhanced growth performance and utilization of other nutrients in broiler chickens in a dose-dependent manner.

  2. Editorial

    Directory of Open Access Journals (Sweden)

    Bengisu Bayrak

    2018-04-01

    Full Text Available Volume 6.2 (2017 includes the articles by Hasan Gürkan, Bahar Muratoğlu Pehlivan & Gül Esra Atalay, Andrew Ali Ibbi, Iqbal Shailo, Alon Lazar & Tal Litvak Hirsch, Elloit Cardozo, Floribert Patrick C. Endong, Olugbenga Elegbe, Volkan Yücel & Ziya Toprak, Aslı Daldal, Funda Mardar Kara & Şakir Eşitti.

  3. Biodegradation of wheat straw by different isolates of Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    A.R. Astaraei

    2016-04-01

    Full Text Available Efficient use of agricultural wastes due to their recycling and possible production of cost effective materials, have economic and ecological advantages. A biological method used for degrading agricultural wastes is a new method for improving the digestibility of these materials and favoring the ease of degradation by other microorganisms. This research was carried out to study the possible biodegradation of wheat straw by different species and isolates of Trichoderma fungi. Two weeks after inoculation of wheat straw by different isolates, oven drying in 75◦C, the samples were weighted and (Acid Detergent Fiber ADF and NDF (Neutral Detergent Fiber reductions of each sample under influence of fungal growth were compared with their controls. The results showed that biodegradation of wheat straw were closely related to fungi species and also its isolates. The Reductions in NDF and ADF of wheat straw by T. reesei and T. longibrachiatum were more pronounced compared to others, although T. reesei was superior in ADF of wheat straw reduction. It is concluded that for improving in digestibility and also shortening the timing of composting process, it is recommended to treat the wheat straw with Trichoderma fungi and especially with T. reesei and T. longibrachiatum that performed well and had excellent efficiencies.

  4. Methods of hydrolyzing a cellulose using halophilic, thermostable and ionic liquids tolerant cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2018-01-09

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  5. SETTING THE BEAM ONTO THE REFERENCE ORBIT IN NON SCALING FFAG ACCELERATORS

    CERN Document Server

    Tzenov, S I; Muratori, B; Giboudot, Y

    2010-01-01

    De­scribed in the paper are sys­tem­at­ic pro­ce­dures to in­ject and keep the beam on the ref­er­ence tra­jec­to­ry for a fixed en­er­gy, as ap­plied to the EMMA non scal­ing FFAG ac­cel­er­a­tor. The no­tion of ac­cel­er­at­ed or­bits in FFAG ac­cel­er­a­tors has been in­tro­duced and some of their prop­er­ties have been stud­ies in de­tail

  6. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase.

    Science.gov (United States)

    Yan, Junjie; Liu, Weidong; Li, Yujie; Lai, Hui-Lin; Zheng, Yingying; Huang, Jian-Wen; Chen, Chun-Chi; Chen, Yun; Jin, Jian; Li, Huazhong; Guo, Rey-Ting

    2016-06-17

    Eukaryotic 1,4-β-endoglucanases (EC 3.2.1.4) have shown great potentials in many commercial applications because they effectively catalyze hydrolysis of cellulose, the main component of the plant cell wall. Here we expressed a glycoside hydrolase family (GH) 5 1,4-β-endoglucanase from Aspergillus niger (AnCel5A) in Pichia pastoris, which exhibits outstanding pH and heat stability. In order to further investigate the molecular mechanism of AnCel5A, apo-form and cellotetraose (CTT) complex enzyme crystal structures were solved to high resolution. AnCel5A folds into a typical (β/α)8-TIM barrel architecture, resembling other GH5 members. In the substrate binding cavity, CTT is found to bind to -4 - -1 subsites, and several polyethylene glycol molecules are found in positive subsites. In addition, several unique N-glycosylation motifs that may contribute to protein higher stability were observed from crystal structures. These results are of great importance for understanding the molecular mechanism of AnCel5A, and also provide guidance for further applications of the enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Prevalência de sarcoma de Kaposi em pacientes com aids e fatores associados, São Paulo-SP, 2003-2010

    Directory of Open Access Journals (Sweden)

    Mariza Vono Tancredi

    Full Text Available Resumo OBJETIVO: estimar a prevalência de sarcoma de Kaposi (SK em pacientes com aids e identificar os fatores associados à ocorrência da neoplasia. MÉTODOS: estudo transversal com dados de notificação em dois centros de referência em aids de São Paulo-SP, Brasil, de janeiro/2003 a março/2010; empregaram-se métodos de linkage probabilístico e regressão logística múltipla. RESULTADOS: entre 3.557 casos de aids, 213 (6% apresentavam SK, 95,3% deles do sexo masculino; associaram-se à ocorrência de SK sexo masculino (OR=3,1; IC95%=1,4;6,6, idade no momento do diagnóstico de aids >28 anos (OR=1,6; IC95%=1,0; 2,6, homens que fazem sexo com homens (OR=3,2; IC95%=2,0;4,9, uso prévio de terapia antirretroviral de alta atividade (HAART (OR=0,4; IC95%=0,3;0,5, período de diagnóstico de aids de 2007-2010 (OR=0,3; IC95%=0,2;0,4 e contagem de linfócitos T CD4+ <200cel/mm³ (OR=16,0; IC95%=6,0;42,7 e 200-500cel/mm³ (OR=2,5; IC95%=1,1;6,4. CONCLUSÃO: o SK tem alta prevalência em São Paulo-SP; estratégias para o diagnóstico precoce do HIV podem resultar em diminuição desta prevalência.

  8. Composition of cellulase complex of Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Golovchenko, N P; Chuvil' skaya, N A; Akimenko, V K

    1985-01-01

    It is thought that the anaerobic thermophilic cellulolytic bacterium C. thermocellum has the potential for direct industrial bioconversion of cellulose into ethanol. Therefore, much attention has been given to the study of the cellulolytic properties of the culture and to the characteristics of the cellulose complex, which is still not completely understood. Hence, the activity and location of various cellulolytic enzymes of C. thermocellum were determined. C. thermocellum has 6 known cellulolytic enzymes. Endoglucanase, cellobiohydrolase and exoglucosidase are extracellular enzymes (99-100 percent of the activity is located outside the cells) while cellulobiases, cellobiose phosphorylase and cellodextrine phosphorylase are inside the cells (80-90% of the activity). 25 references.

  9. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  10. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  11. The transport of integral membrane proteins across the nuclear pore complex

    NARCIS (Netherlands)

    Meinema, Anne Cornelis

    2012-01-01

    Levende organismen, zoals mensen, dieren en planten bestaan uit cellen. De cel wordt gezien als het kleinste levende onderdeel van een organisme. De mens bestaat uit ongeveer 50 biljoen cellen (dat zijn er 50 keer miljoen keer miljoen), maar er zijn ook hele kleine organismen, die uit één cel

  12. Gclust Server: 201487 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available 201487 CEL_ZK112.3_17556863 Cluster Sequences - 160 ZK112.3 1 1.00e-80 0.0 0.0 0.0 0.0 0.0 12.5 Show 2014...87 Cluster ID 201487 Sequence ID CEL_ZK112.3_17556863 Link to cluster sequences Cluste

  13. Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.

    Science.gov (United States)

    Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da

    2015-01-01

    The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi

    Directory of Open Access Journals (Sweden)

    Mario Mamede Aguiar

    2010-10-01

    Full Text Available In this present work, three strains of Pleurotus and Trichoderma reesei were cultivated in media with pre-treated bagasse and vinasse. Cellulolytic and lignolytic activities and biomass production were analyzed. The treatment of the bagasse with 2% H2O2 + 1.5% NaOH + autoclave resulted in a greater fiber breakage increasing the cellulose level up to 1.2 times and decreasing 8.5 times the hemicellulose content. This treatment also resulted in a high lignolytic activity for all cultures utilized. T. reesei produced laccase, peroxidase and manganese-peroxidase in all the treatments, having its manganese-peroxidase activity raging from 1.9 to 4.8 times higher than the basidiomycetes.Recentemente o uso de material lignocelulolítico tem mostrado um importante avanço na produção de biocombustíveis. O bagaço e a vinhaça são resíduos oriundos do processamento da cana de açúcar e contem um alto teor de carbono, que geralmente é usado na co-geração de energia e ração animal. Três linhagens de Pleurotus e um ascomiceto, Trichoderma reesei, foram cultivados em bagaço pré-tratado e vinhaça. As atividades lignolíticas e celulolíticas foram analisadas, tanto quanto a produção de biomassa. Foi observado que o tratamento no bagaço com 2% H2O2 + 1.5% NaOH + autoclave resultou numa maior quebra da fibra, aumentando o teor de celulose em 1.2 vezes mais e diminuiu em 8.5 vezes o conteúdo de hemicelulose. Este tratamento também resultou numa alta atividade lignolítica pelos fungos utilizados. O ascomiceto T. reesei produziu lacase, peroxidase e manganês-peroxidase em todos os tratamentos, tendo uma atividade de manganês-peroxidase variando entre 1.9 a 4.8 vezes mais que nos basidiomicetos.

  15. Effect of temperature on physiological responses of Peruvian scallop Argopecten purpuratus

    Directory of Open Access Journals (Sweden)

    Jhon Dionicio Acedo

    2015-12-01

    Full Text Available The effect of temperature on the clearance rate (CR, ingestion rate (IR and specific oxygen consumption (SOC in individuals of Argopecten purpuratus at different size groups were determined. The CR and IR tests were performed at a concentration of approximately 1x106 cel.mlL-1 of Chaetoceros calcitrans, two temperatures 17 and 22 °C were evaluated and different groups of average size were formed of 7.6 ± 0.265, and 0.058 ± 4.9 3.7 ± 0.173 cm. In SOC test the average size groups were 8.1 ± 0.351, 0.058 ± 5.6 and 4.3 ± 0.100 cm. The results show a significant effect of temperature in CR (Lh-1 and IR (cel.h-1 x 105 on the larger individuals (7.6 ± 0.265 cm, it was observed at 22 °C an average increase, about 17 °C, up to 250% to CR and 48% to IR. In addition, a direct relationship of body size with CR and IR in both temperatures was observed. The effect of temperature at 22 ° C on SOC in all groups was evaluated, with an increase of 239.8, 165.3 and 183.4% for size individuals of 8.1 ± 0.351, 0.058 ± 5.6 and 4.3 ± 0.100 respectively. Furthermore, in both evaluated temperatures, the results show an indirect relationship of body size with the SOC.

  16. In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis.

    Science.gov (United States)

    Yusof, Siti R; Avdeef, Alex; Abbott, N Joan

    2014-12-18

    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software

  17. Crystal Structure of Hyperthermophilic Endo-β-1,4-glucanase

    Science.gov (United States)

    Zheng, Baisong; Yang, Wen; Zhao, Xinyu; Wang, Yuguo; Lou, Zhiyong; Rao, Zihe; Feng, Yan

    2012-01-01

    Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)8-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu167-His226-Glu283, which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp61, Trp204, Phe231, and Trp240 as well as polar residues Asn51, His127, Tyr228, and His235 in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature. PMID:22128157

  18. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Directory of Open Access Journals (Sweden)

    Lu Yiming

    2011-03-01

    Full Text Available Abstract Background The Ahringer C. elegans RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1 mis-annotation (the clone with the retired gene name should be remapped to the actual target gene; 2 nonspecific PCR amplification; 3 cross-RNAi; 4 mis-operation such as sample loading error, etc. Results Here we performed a reliability analysis on the Ahringer C. elegans RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3% of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54% bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs. The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (http://biocompute.bmi.ac.cn/CelRNAi/ was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies. Conclusions Because of the potential unreliability of the Ahringer C. elegans RNAi feeding library, we strongly suggest the user examine

  19. Dicty_cDB: Contig-U04975-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 6227.fwd CAWX Helobdella robusta Primary Ear... 34 3.5 2 ( DY542495 ) HPO-N-S01-0370-LF Hematopoietic cDNA library...0.95 2 ( DT742604 ) EST1176453 Aquilegia cDNA library Aquilegia formo... 36 0.95 2 ( AC178959 ) Strongylocentrotus purpuratu...43 ) EST1164393 Aquilegia cDNA library Aquilegia formo... 48 0.037 2 ( AC115684 ) Dictyostelium discoideum c...36815 ) MM2_2_4_C09 Sugar beet 10-week GH root cDNA Beta ... 50 0.087 1 ( CF886656 ) tric084xc11.b1 T.reesei mycelial culture..., Version... 50 0.087 1 ( CB907997 ) tric084xc11 T.reesei mycelial culture

  20. SUSTAINABLE PAPER - Biotechnical modification of mechanical pulp. Final report; KESTAeVAe PAPERI - Mekaanisen massan biotekninen muokkaus. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Pere, J.; Liukkonen, S.; Gullichsen, J.; Viikari, L.

    1997-12-31

    In this work the application of purified enzymes in mechanical pulping was studied. The aim was to gain energy savings in secondary refining of mechanical pulp by modifying pulp fractions with enzymes. One special objective was to increase the flexibility and bonding ability of long fibre fraction. The main interest was in Trichoderma reesei cellulases (CBH I, CBH II, EG I) and hemicellulases (xylanase, mannanase), but a few commercial enzyme preparations (pectinase, cellulase) were also tested. Coarse mechanical pulp (CSF 350-600 ml) or functioned reject (CSF 550-700 ml) were treated with enzymes (45 deg C. pH 5,2-16 h). After enzymatic treatment the pulps were subjected to secondary refining either with a laboratory scale disk refiner (Sprout-Waldron) or a wing defibrator. Some of the results obtained in laboratory scale were further verified in pilot scale. The accessibility of mechanical pulp to enzymatic hydrolysis was limited and therefore yield losses of raw material due to the enzymatic treatments were usually very low, < 0,6 % of original dry weight. The liberation of soluble oligosaccharides was affected by the enzyme used and also depended on the freeness level and metal composition of the pulp. Endoglucanase (EG I) and mannanase solubilized reducing sugars more efficiently than cellobiohydrolases (CBH I, CBH II). If secondary refining was performed with the atmospheric disk refiner no energy savings or improvement in pulp properties were gained with any of the enzymes tested as compared with the untreated reference. But energy savings up to 20-30 % were obtained when the pulp was pretreated with CBH I prior to secondary refining with the wing defibrator. Pretreatment of the pulp with mannanase gave small energy savings (10-20 %), too. Boosting of secondary refining with CBH I and mannanase was attained while retaining good handsheet properties of the pulp. The positive effects of CBH I on secondary refining were further verified in pilot scale. In a two

  1. Spatial heterogeneity of cellulolytic activity and fungal communities within individual decomposing Quercus petraea leaves

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, Diana; Větrovský, Tomáš; Baldrian, Petr

    27 Part A, JUNE (2017), s. 125-133 ISSN 1754-5048 R&D Projects: GA ČR GA13-06763S; GA MŠk(CZ) LD15086 Institutional support: RVO:61388971 Keywords : Cellulose decomposition * Cellobiohydrolase * Enzyme activity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.219, year: 2016

  2. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

    Science.gov (United States)

    Yarbrough, John M; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J; Decker, Stephen R; Himmel, Michael E; Ciesielski, Peter N

    2017-03-28

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  3. Gclust Server: 136363 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available 136363 CEL_R04E5.9_17569269 Cluster Sequences - 175 R04E5.9 1 1.00e-90 0.0 0.0 0.0 0.0 0.0 12.5 Show 13636...3 Cluster ID 136363 Sequence ID CEL_R04E5.9_17569269 Link to cluster sequences Cluste

  4. Gclust Server: 201474 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available 201474 CEL_C18H2.2_32564973 Cluster Sequences - 366 C18H2.2 1 1.00e-99 0.0 0.0 0.0 0.0 0.0 12.5 Show 2014...74 Cluster ID 201474 Sequence ID CEL_C18H2.2_32564973 Link to cluster sequences Cluste

  5. The central amygdala circuits in fear regulation

    Science.gov (United States)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  6. Genomics of aerobic cellulose utilization systems in actinobacteria.

    Directory of Open Access Journals (Sweden)

    Iain Anderson

    Full Text Available Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.

  7. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    Science.gov (United States)

    Shrestha, Prachand

    This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed

  8. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study.

    Directory of Open Access Journals (Sweden)

    Jason C Slot

    Full Text Available High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(PH-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts. We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota, which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.

  9. The relationship between inflammatory activity and brain atrophy in natalizumab treated patients

    International Nuclear Information System (INIS)

    Magraner, M.; Coret, F.; Casanova, B.

    2012-01-01

    Objective: To assess the evolution of brain atrophy and its relationship with inflammatory activity in RRMS patients treated with natalizumab. Methods: Eighteen RRMS patients were prospectively followed up for 18 months after starting natalizumab therapy. Patients were monitored monthly and assessed for signs of relapses, adverse events or disability increase. MRI scans were performed before starting natalizumab and every six months. Cross-sectional T2 lesion volume (T2LV) and the normalized brain volume (NBV) at baseline and 18 months MRI scans were calculated using the Steronauta ® and SIENAx softwares, respectively. Longitudinal Percentage of Brain Volume Change (PBVC) was estimated with SIENA. Linkage between inflammatory activity and brain atrophy was studied. Results: Natalizumab reduced ARR by 67% and cumulative CEL by 87.5%. T2 lesion volume decreased from 1000 mm 3 , to 960 mm 3 (p = 0.006) and NBV decreased from 1.55 × 10 5 mm 3 to 1.42 × 10 5 mm 3 (p = 0.025). Global PBVC from baseline to 18 months was −2.5%, predominantly during the first six months (0–6 months PBVC −1.7%; 6–12 months PBVC −0.74%; 12–18 months PBVC −0.50%). The number of relapses before treatment was correlated to the PBVC during the first semester (Pearson's coefficient −0.520, p = 0.003), while the number of basal CEL or baseline T2LV did not correlate with brain atrophy rate. During follow-up, nine patients had clinical or radiological inflammatory activity. Their PBVC was significantly higher in the first semester (−2.3% to −1.1%, p = 0.002). Conclusions: Natalizumab reduced relapse rate and CEL in MRI. Brain atrophy predominated in the first semester and was related to previous inflammatory activity.

  10. The relationship between inflammatory activity and brain atrophy in natalizumab treated patients

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, M., E-mail: majomagbe@ono.com [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain); Coret, F., E-mail: coret_fra@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Clinic de Valencia, Avda Blasco Ibanez 17, 46010 Valencia (Spain); Casanova, B., E-mail: Casanova_bon@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain)

    2012-11-15

    Objective: To assess the evolution of brain atrophy and its relationship with inflammatory activity in RRMS patients treated with natalizumab. Methods: Eighteen RRMS patients were prospectively followed up for 18 months after starting natalizumab therapy. Patients were monitored monthly and assessed for signs of relapses, adverse events or disability increase. MRI scans were performed before starting natalizumab and every six months. Cross-sectional T2 lesion volume (T2LV) and the normalized brain volume (NBV) at baseline and 18 months MRI scans were calculated using the Steronauta{sup Registered-Sign} and SIENAx softwares, respectively. Longitudinal Percentage of Brain Volume Change (PBVC) was estimated with SIENA. Linkage between inflammatory activity and brain atrophy was studied. Results: Natalizumab reduced ARR by 67% and cumulative CEL by 87.5%. T2 lesion volume decreased from 1000 mm{sup 3}, to 960 mm{sup 3} (p = 0.006) and NBV decreased from 1.55 Multiplication-Sign 10{sup 5} mm{sup 3} to 1.42 Multiplication-Sign 10{sup 5} mm{sup 3} (p = 0.025). Global PBVC from baseline to 18 months was -2.5%, predominantly during the first six months (0-6 months PBVC -1.7%; 6-12 months PBVC -0.74%; 12-18 months PBVC -0.50%). The number of relapses before treatment was correlated to the PBVC during the first semester (Pearson's coefficient -0.520, p = 0.003), while the number of basal CEL or baseline T2LV did not correlate with brain atrophy rate. During follow-up, nine patients had clinical or radiological inflammatory activity. Their PBVC was significantly higher in the first semester (-2.3% to -1.1%, p = 0.002). Conclusions: Natalizumab reduced relapse rate and CEL in MRI. Brain atrophy predominated in the first semester and was related to previous inflammatory activity.

  11. Gclust Server: 2779 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available ion clu-1: yeast CLU (mitochondrial clustering) related family member (clu-1) Number of Sequences 34 Homolog...2779 CEL_F55H2.6_17552758 Cluster Sequences Related Sequences(87) 1247 clu-1: yeast CLU (mitochondrial clust...ering) related family member (clu-1) 34 1.00e-80 71.43 66.67 0.0 0.0 0.0 50.0 Show

  12. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  13. Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites.

    Science.gov (United States)

    Immonen, Kirsi; Lahtinen, Panu; Pere, Jaakko

    2017-11-17

    Thermoplastic composite materials containing wood fibers are gaining increasing interest in the manufacturing industry. One approach is to use nano- or micro-size cellulosic fibrils as additives and to improve the mechanical properties obtainable with only small fibril loadings by exploiting the high aspect ratio and surface area of nanocellulose. In this study, we used four different wood cellulose-based materials in a thermoplastic polylactide (PLA) matrix: cellulose nanofibrils produced from softwood kraft pulp (CNF) and dissolving pulp (CNFSD), enzymatically prepared high-consistency nanocellulose (HefCel) and microcellulose (MC) together with long alkyl chain dispersion-improving agents. We observed increased impact strength with HefCel and MC addition of 5% and increased tensile strength with CNF addition of 3%. The addition of a reactive dispersion agent, epoxy-modified linseed oil, was found to be favorable in combination with HefCel and MC.

  14. Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Science.gov (United States)

    Ivan P. Edwards; Donald R. Zak

    2011-01-01

    The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...

  15. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  16. Transcript patterns of Phanerochaete chrysosporium genes in organopollutant contaminated soils and in wood

    Science.gov (United States)

    Amber. Vanden Wymelenberg; Bernard. Janse; Jill. Gaskell; Diane. Dietrich; Marcelo. Vallim; Dan. Cullen

    1998-01-01

    We describe here recent methods for quantitative assessment of specific P. chrysosporium mRNAs in organopollutant contaminated soils and in Aspen wood chips. Magnetic capture techniques were used to rapidly purify poly(A)-RNA, and quantitative RT-PCR protocols were developed for all known lignin peroxidase (lip) and cellobiohydrolase (cbh1) genes. The methodology is...

  17. NIOSH Certified Equipment List (CEL)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Institute for Occupational Safety and Health (NIOSH), under the authorization of the Federal Mine Safety and Health Act of 1977 and the Occupational...

  18. Functional comparison of the nematode Hox gene lin-39 in C. elegans and P. pacificus reveals evolutionary conservation of protein function despite divergence of primary sequences.

    Science.gov (United States)

    Grandien, K; Sommer, R J

    2001-08-15

    Hox transcription factors have been implicated in playing a central role in the evolution of animal morphology. Many studies indicate the evolutionary importance of regulatory changes in Hox genes, but little is known about the role of functional changes in Hox proteins. In the nematodes Pristionchus pacificus and Caenorhabditis elegans, developmental processes can be compared at the cellular, genetic, and molecular levels and differences in gene function can be identified. The Hox gene lin-39 is involved in the regulation of nematode vulva development. Comparison of known lin-39 mutations in P. pacificus and C. elegans revealed both conservation and changes of gene function. Here, we study evolutionary changes of lin-39 function using hybrid transgenes and site-directed mutagenesis in an in vivo assay using C. elegans lin-39 mutants. Our data show that despite the functional differences of LIN-39 between the two species, Ppa-LIN-39, when driven by Cel-lin-39 regulatory elements, can functionally replace Cel-lin-39. Furthermore, we show that the MAPK docking and phosphorylation motifs unique for Cel-LIN-39 are dispensable for Cel-lin-39 function. Therefore, the evolution of lin-39 function is driven by changes in regulatory elements rather than changes in the protein itself.

  19. Proteomic and functional analysis of the cellulase system expressed by Postia placenta during brown rot of solid wood

    Science.gov (United States)

    Jae San Ryu; Semarjit Shary; Carl J. Houtman; Ellen A. Panisko; Premsagar Korripally; Franz J. St. John; Casey Crooks; Matti Siika-aho; Jon K. Magnuson; Kenneth E. Hammel

    2011-01-01

    Brown rot basidiomycetes have an important ecological role in lignocellulose recycling and are notable for their rapid degradation of wood polymers via oxidative and hydrolytic mechanisms. However, most of these fungi apparently lack processive (exo-acting) cellulases, such as cellobiohydrolases, which are generally required for efficient cellulolysis. The recent...

  20. Degradation of cellulose by basidiomycetous fungi

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Valášková, Vendula

    2008-01-01

    Roč. 32, č. 3 (2008), s. 501-521 ISSN 0168-6445 R&D Projects: GA MŠk LC06066; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : cellobiohydrolase * cellulose dehydrogenase * basidiomycetes Subject RIV: EE - Microbiology, Virology Impact factor: 7.963, year: 2008