WorldWideScience

Sample records for reef fish ecology

  1. Behavioral Ecology of Coral Reef Fishes at Spawning Aggregation Sites

    National Research Council Canada - National Science Library

    Sancho, Gorka

    1998-01-01

    This thesis is an extensive investigation of the behavioral and ecological relationships between spawning reef fishes, their predators, and various environmental parameters at spawning aggregation sites...

  2. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs.

    Science.gov (United States)

    Brandl, Simon J; Goatley, Christopher H R; Bellwood, David R; Tornabene, Luke

    2018-05-07

    Teleost fishes are the most diverse group of vertebrates on Earth. On tropical coral reefs, their species richness exceeds 6000 species; one tenth of total vertebrate biodiversity. A large proportion of this diversity is composed of cryptobenthic reef fishes (CRFs): bottom-dwelling, morphologically or behaviourally cryptic species typically less than 50 mm in length. Yet, despite their diversity and abundance, these fishes are both poorly defined and understood. Herein we provide a new quantitative definition and synthesise current knowledge on the diversity, distribution and life history of CRFs. First, we use size distributions within families to define 17 core CRF families as characterised by the high prevalence (>10%) of small-bodied species (fishes, in which virtually no small-bodied species have evolved. We posit that small body size has allowed CRFs to diversify at extremely high rates, primarily by allowing for fine partitioning of microhabitats and facilitation of allopatric reproductive isolation; yet, we are far from understanding and documenting the biodiversity of CRFs. Using rates of description since 1758, we predict that approximately 30 new species of cryptobenthic species will be described per year until 2050 (approximately twice the annual rate compared to large fishes). Furthermore, we predict that by the year 2031, more than half of the described coral reef fish biodiversity will consist of CRFs. These fishes are the 'hidden half' of vertebrate biodiversity on coral reefs. Notably, global geographic coverage and spatial resolution of quantitative data on CRF communities is uniformly poor, which further emphasises the remarkable reservoir of biodiversity that is yet to be discovered. Although small body size may have enabled extensive diversification within CRF families, small size also comes with a suite of ecological challenges that affect fishes' capacities to feed, survive and reproduce; we identify a range of life-history adaptations that

  3. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  5. The importance of spatial fishing behavior for coral reef resilience

    Science.gov (United States)

    Rassweiler, A.; Lauer, M.; Holbrook, S. J.

    2016-02-01

    Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.

  6. Social interactions among grazing reef fish drive material flux in a coral reef ecosystem.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M

    2017-05-02

    In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.

  7. Global ecological success of Thalassoma fishes in extreme coral reef habitats

    KAUST Repository

    Fulton, Christopher J.

    2016-12-20

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  8. Global ecological success of Thalassoma fishes in extreme coral reef habitats.

    Science.gov (United States)

    Fulton, Christopher J; Wainwright, Peter C; Hoey, Andrew S; Bellwood, David R

    2017-01-01

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma , with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  9. Global ecological success of Thalassoma fishes in extreme coral reef habitats

    KAUST Repository

    Fulton, Christopher J.; Wainwright, Peter C.; Hoey, Andrew; Bellwood, David R.

    2016-01-01

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  10. Global trends on reef fishes' ecology of fear: Flight initiation distance for conservation.

    Science.gov (United States)

    Nunes, José Anchieta C C; Costa, Yuri; Blumstein, Daniel T; Leduc, Antoine O H C; Dorea, Antônio C; Benevides, Larissa J; Sampaio, Cláudio L S; Barros, Francisco

    2018-05-01

    Escape behaviors have a great potential as an indicator of the efficacy of management. For instance, the degree of fear perceived by fishes targeted by fisheries is frequently higher in unprotected marine areas than in areas where some protection is provided. We systematically reviewed the literature on how fear, which we define as variation in escape behavior, was quantified in reef fishes. In the past 25 years, a total of 33 studies were identified, many of which were published within the last five years and nearly 40% of those (n = 13) focused on Indo-Pacific reefs, showing that there are still many geographical gaps. While eleven escape metrics were identified to evaluate fish escape, flight initiation distance (FID) was the most commonly employed (n = 23). FID was used to study different questions of applied and theoretical ecology, which involved 14 reef fish families. We also used a formal meta-analysis to investigate the effects of fishing by comparing FID inside and outside marine protected areas. Fishes outside MPAs had increased FID compared to those inside MPAs. The Labridae family had a significantly higher effect sizes than Acanthuridae and Epinephelidae, suggesting that fishes in this family may be indicators of effective MPAs using FID. We conclude that protocols aimed to quantify fear in fishes, which provide accurate assessments of fishing effects on fish escape behavior, will help gauge the compliance of marine protected areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Influence of landscape structure on reef fish assemblages

    Science.gov (United States)

    Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.

    2008-01-01

    Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.

  12. Extinction vulnerability of coral reef fishes.

    Science.gov (United States)

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  13. The Ecological Role of Sharks on Coral Reefs.

    Science.gov (United States)

    Roff, George; Doropoulos, Christopher; Rogers, Alice; Bozec, Yves-Marie; Krueck, Nils C; Aurellado, Eleanor; Priest, Mark; Birrell, Chico; Mumby, Peter J

    2016-05-01

    Sharks are considered the apex predator of coral reefs, but the consequences of their global depletion are uncertain. Here we explore the ecological roles of sharks on coral reefs and, conversely, the importance of reefs for sharks. We find that most reef-associated shark species do not act as apex predators but instead function as mesopredators along with a diverse group of reef fish. While sharks perform important direct and indirect ecological roles, the evidence to support hypothesised shark-driven trophic cascades that benefit corals is weak and equivocal. Coral reefs provide some functional benefits to sharks, but sharks do not appear to favour healthier reef environments. Restoring populations of sharks is important and can yet deliver ecological surprise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tortugas Reef Fish Census (CRCP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a long term data set collecting visual census transect data on reef fishes at staions located at Rileys Hump, Tortugas South Ecological Reservee.

  15. Reef odor: a wake up call for navigation in reef fish larvae.

    Directory of Open Access Journals (Sweden)

    Claire B Paris

    Full Text Available The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC, deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.

  16. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at

  17. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  18. Ecological States and the Resilience of Coral Reefs

    Directory of Open Access Journals (Sweden)

    Tim McClanahan

    2002-12-01

    Full Text Available We review the evidence for multiple ecological states and the factors that create ecological resilience in coral reef ecosystems. There are natural differences among benthic communities along gradients of water temperature, light, nutrients, and organic matter associated with upwelling-downwelling and onshore-offshore systems. Along gradients from oligotrophy to eutrophy, plant-animal symbioses tend to decrease, and the abundance of algae and heterotrophic suspension feeders and the ratio of organic to inorganic carbon production tend to increase. Human influences such as fishing, increased organic matter and nutrients, sediments, warm water, and transportation of xenobiotics and diseases are common causes of a large number of recently reported ecological shifts. It is often the interaction of persistent and multiple synergistic disturbances that causes permanent ecological transitions, rather than the succession of individual short-term disturbances. For example, fishing can remove top-level predators, resulting in the ecological release of prey such as sea urchins and coral-eating invertebrates. When sea urchins are not common because of unsuitable habitat, recruitment limitations, and diseases, and when overfishing removes herbivorous fish, frondose brown algae can dominate. Terrigenous sediments carried onto reefs as a result of increased soil erosion largely promote the dominance of turf or articulated green algae. Elevated nutrients and organic matter can increase internal eroders of reef substratum and a mixture of filamentous algae. Local conservation actions that attempt to reduce fishing and terrestrial influences promote the high production of inorganic carbon that is necessary for reef growth. However, global climate change threatens to undermine such actions because of increased bleaching and mortality caused by warm-water anomalies, weakened coral skeletons caused by reduced aragonite availability in reef waters, and increased

  19. Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.

    Directory of Open Access Journals (Sweden)

    Benjamin L Richards

    Full Text Available Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores. Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.

  20. Phylogenetic perspectives on reef fish functional traits.

    Science.gov (United States)

    Floeter, Sergio R; Bender, Mariana G; Siqueira, Alexandre C; Cowman, Peter F

    2018-02-01

    Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef-associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid-sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait-environment interactions as well as by species and trait-trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a

  1. The Assessment of Current Biogeographic Patterns of Coral Reef Fishes in the Red Sea by Incorporating Their Evolutionary and Ecological Background

    KAUST Repository

    Robitzch Sierra, Vanessa S. N.

    2017-03-01

    The exceptional environment of the Red Sea has lead to high rates of endemism and biodiversity. Located at the periphery of the world’s coral reefs distribution, its relatively young reefs offer an ideal opportunity to study biogeography and underlying evolutionary and ecological triggers. Here, I provide baseline information on putative seasonal recruitment patterns of reef fishes along a cross shelf gradient at an inshore, mid-shelf, and shelf-edge reef in the central Saudi Arabian Red Sea. I propose a basic comparative model to resolve biogeographic patterns in endemic and cosmopolitan reef fishes. Therefore, I chose the genetically, biologically, and ecologically similar coral-dwelling damselfishes Dascyllus aruanus and D. marginatus as a model species-group. As a first step, basic information on the distribution, population structure, and genetic diversity is evaluated within and outside the Red Sea along most of their global distribution. Second, pelagic larval durations (PLDs) within the Red Sea environmental gradient are explored. For the aforementioned, PLDs of the only other Red Sea Dascyllus, D. trimaculatus, are included for a more comprehensive comparison. Third, to further assess ongoing pathways of connectivity and geneflow related to larval behavior and dispersal in Red Sea reef fishes, the genetic composition and kinship of a single recruitment cohort of D. aruanus arriving together at one single reef is quantified using single nuclear polymorphisms (SNPs). Genetic diversity and relatedness of the recruits are compared to that of the standing population at the settlement reef, providing insight into putative dispersal strategies and behavior of coral reef fish larvae. As a fourth component to study traits shaping biogeography, the ecology and adaptive potential of the cosmopolitan D. aruanus is described by studying morphometric-geometrics of the body structure in relation to the stomach content and prey type from specimen along the cross

  2. Introduction of geospatial perspective to the ecology of fish-habitat relationships in Indonesian coral reefs: A remote sensing approach

    Science.gov (United States)

    Sawayama, Shuhei; Nurdin, Nurjannah; Akbar AS, Muhammad; Sakamoto, Shingo X.; Komatsu, Teruhisa

    2015-06-01

    Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species' density is strongly influenced by spatial configuration of its habitat, like the "edge effect." This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.

  3. Fish with Chips: Tracking Reef Fish Movements to Evaluate Size and Connectivity of Caribbean Marine Protected Areas

    Science.gov (United States)

    Pittman, Simon J.; Monaco, Mark E.; Friedlander, Alan M.; Legare, Bryan; Nemeth, Richard S.; Kendall, Matthew S.; Poti, Matthew; Clark, Randall D.; Wedding, Lisa M.; Caldow, Chris

    2014-01-01

    Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40–64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness. PMID:24797815

  4. Fish with chips: tracking reef fish movements to evaluate size and connectivity of Caribbean marine protected areas.

    Directory of Open Access Journals (Sweden)

    Simon J Pittman

    Full Text Available Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40-64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.

  5. Energetic and ecological constraints on population density of reef fishes.

    Science.gov (United States)

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).

  6. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Rodríguez-Zaragoza, Fabián Alejandro; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María Del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea.

  7. Marine ecosystem appropriation in the Indo-Pacific: a case study of the live reef fish food trade

    Science.gov (United States)

    Warren-Rhodes, Kimberley; Sadovy, Yvonne; Cesar, Herman

    2003-01-01

    Our ecological footprint analyses of coral reef fish fisheries and, in particular, the live reef fish food trade (FT), indicate many countries' current consumption exceeds estimated sustainable per capita global, regional and local coral reef production levels. Hong Kong appropriates 25% of SE Asia's annual reef fish production of 135 260-286 560 tonnes (t) through its FT demand, exceeding regional biocapacity by 8.3 times; reef fish fisheries demand out-paces sustainable production in the Indo-Pacific and SE Asia by 2.5 and 6 times. In contrast, most Pacific islands live within their own reef fisheries means with local demand at Indo-Pacific.

  8. The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef

    Science.gov (United States)

    Emslie, Michael J.; Cheal, Alistair J.; Logan, Murray

    2017-09-01

    Predatory fishes are important components of coral-reef ecosystems of the Great Barrier Reef (GBR) through both the ecological functions they perform and their high value to recreational and commercial fisheries, estimated at 30 million in 2014. However, management of GBR predatory fish populations is hampered by a lack of knowledge of their distribution and abundance, aside from that of the highly targeted coral trout ( Plectropomus spp. and Variola spp.). Furthermore, there is little information on how these fishes respond to environmental stressors such as coral bleaching, outbreaks of coral-feeding starfishes ( Acanthaster planci) and storms, which limits adaptive management of their populations as the frequency or severity of such natural disturbances increases under climate change. Here, we document the distribution and abundance of 48 species of reef-associated predatory fishes and assess their vulnerability to a range of natural disturbances. There were clear differences in predatory fish assemblages across the continental shelf, but many species were widespread, with few species restricted to either inshore or offshore waters. There was weak latitudinal structure with only a few species restricted to either the northern or southern GBR. On the whole, predatory fishes were surprisingly resistant to the effects of disturbance, with few clear changes in abundance or species richness following 66 documented disturbances of varying magnitudes.

  9. Ecological Processes and Contemporary Coral Reef Management

    Directory of Open Access Journals (Sweden)

    Angela Dikou

    2010-05-01

    Full Text Available Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbreak while bottom-up controls have increased due to water quality degradation (increase in sediment and nutrient load and climate forcing (seawater warming and acidification leading to algal-dominated alternate benthic states of coral reefs, which are indicative of a trajectory towards ecological extinction. Management to reverse common trajectories of degradation for coral reefs necessitates a shift from optimization in marine resource use and conservation towards building socio-economic resilience into coral reef systems while attending to the most manageable human impacts (fishing and water quality and the global-scale causes (climate change.

  10. Parasite infestation increases on coral reefs without cleaner fish

    Science.gov (United States)

    Grutter, A. S.; De Brauwer, M.; Bshary, R.; Cheney, K. L.; Cribb, T. H.; Madin, E. M. P.; McClure, E. C.; Meekan, M. G.; Sun, D.; Warner, R. R.; Werminghausen, J.; Sikkel, P. C.

    2018-03-01

    Mutualisms are pivotal in shaping ecological communities. Iconic images of cleaner fish entering the mouths of predatory fish clients to remove ectoparasites epitomize their mutual benefit. Experimental manipulations of cleaner wrasse reveal declines in fish size and growth, and population abundance and diversity of client fishes in the absence of cleaner wrasse. Fishes grow more slowly and are less abundant and diverse on reefs without cleaner wrasse, both for larger species that are regularly cleaned and have high ectoparasite loads ("attractive species"), and for those smaller species that are rarely cleaned and are rarely infested with parasites ("unattractive species"). We therefore considered whether these previously observed declines in individual and population parameters on reefs without cleaners were related to increased ectoparasite infestation using an attractive species ( Hemigymnus melapterus, Labridae) and an unattractive species ( Pomacentrus amboinensis, Pomacentridae). Traps with these fish as a form of bait were deployed to sample blood-sucking gnathiid ectoparasites (Gnathiidae: Isopoda) on reefs from which cleaners ( Labroides dimidiatus, Labridae) have been removed for 13 yr. Cleaner fish could not enter traps to access the clients/hosts, but gnathiids could enter the traps to infest hosts; thus, this method sampled the indirect effect of cleaners on gnathiid infestation of fish. Infestation was higher on reefs without cleaners than on those with them. The effect was only detected during the daytime when cleaners are active and only on the attractive species ( H. melapterus). Thus, cleaner presence indirectly reduced fish exposure to parasites in a species that is highly susceptible to parasites, but not in one that is rarely infested with parasites. This suggests that cleaner presence indirectly reduces exposure of a common fish species to harmful parasites, which may explain some observed benefits in fishes at this location.

  11. Evaluating the Potential for Marine and Hydrokinetic Devices to Act As Artificial Reefs or Fish Aggregating Devices

    Science.gov (United States)

    Kramer, S.; Nelson, P.

    2016-02-01

    Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai'i, and a better understanding of their ecological effects on fish, particularly on special status fish is needed to facilitate project siting, design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs). We evaluated these potential ecological interactions by comparing them to surrogate structures, such as artificial reefs, natural reefs, kelp vegetation, floating and sunken debris, oil and gas platforms, anchored FADs deployed to enhance fishing opportunities, net cages used for mariculture, and piers and marinas. We also conducted guided discussions with scientists and resource managers to provide unpublished observations. Our findings indicate the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai`i likely will function as small scale artificial reefs and attract potentially high densities of reef associated fishes and the midwater and surface structures of WECs placed in the tropical waters of Hawai`i likely will function as de facto FADs.

  12. Artisanal fishing of spiny lobsters with gillnets — A significant anthropic impact on tropical reef ecosystem

    Directory of Open Access Journals (Sweden)

    Bruno Welter Giraldes

    2015-07-01

    Full Text Available Artisanal fishing activity with gillnets to capture the spiny lobster is a common practice along the coastal reefs of Brazil. This research aims to understand the impact that this artisanal fishing practice is having on the coastal reef systems analysing its associated fauna (bycatch and the stock of the target species Panulirus echinatus. The study compared an area which was subjected to intense gillnet fishing against one were the practice was absent. The analysis of target species using nocturnal visual census demonstrated a significantly higher number of P. echinatus at the site where gillnet use was virtually absent within three sampled habitats, fringe, cave and soft bottom. The analysis of bycatch species from artisanal fishermen’s gillnet landings recorded 4 lobster species and 10 crab species. These decapod species play an important ecological role as detritivores, herbivorous and first consumers within the reef ecosystem as well as being natural prey items for several reef fishes. The study concludes that this non-discriminatory fishing technique impacts directly on populations of P. echinatus, P. argus and P. laevicauda as well as other lobster and crab species which in-turn indirectly affects the ecological role of the tropical coastal reefs of Brazil.

  13. The ecology, behaviour and physiology of fishes on coral reef flats, and the potential impacts of climate change.

    Science.gov (United States)

    Harborne, A R

    2013-09-01

    Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.

  14. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    Directory of Open Access Journals (Sweden)

    Avery B Paxton

    Full Text Available Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH, special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of

  15. Fishing degrades size structure of coral reef fish communities.

    Science.gov (United States)

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016

  16. Individual-based analyses reveal limited functional overlap in a coral reef fish community.

    Science.gov (United States)

    Brandl, Simon J; Bellwood, David R

    2014-05-01

    Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on

  17. Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data.

    Directory of Open Access Journals (Sweden)

    Thiago Bruce

    Full Text Available The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic was characterized with a holistic approach using measurements of four ecosystem components: (i inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef. The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic

  18. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use.

    Science.gov (United States)

    Brandl, Simon J; Robbins, William D; Bellwood, David R

    2015-09-22

    Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant-pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats. © 2015 The Author(s).

  19. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    Science.gov (United States)

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  20. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    Directory of Open Access Journals (Sweden)

    Serena Hackerott

    2017-05-01

    Full Text Available Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  1. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and

  2. Challenges of transferring models of fish abundance between coral reefs.

    Science.gov (United States)

    Sequeira, Ana M M; Mellin, Camille; Lozano-Montes, Hector M; Meeuwig, Jessica J; Vanderklift, Mathew A; Haywood, Michael D E; Babcock, Russell C; Caley, M Julian

    2018-01-01

    Reliable abundance estimates for species are fundamental in ecology, fisheries, and conservation. Consequently, predictive models able to provide reliable estimates for un- or poorly-surveyed locations would prove a valuable tool for management. Based on commonly used environmental and physical predictors, we developed predictive models of total fish abundance and of abundance by fish family for ten representative taxonomic families for the Great Barrier Reef (GBR) using multiple temporal scenarios. We then tested if models developed for the GBR (reference system) could predict fish abundances at Ningaloo Reef (NR; target system), i.e., if these GBR models could be successfully transferred to NR. Models of abundance by fish family resulted in improved performance (e.g., 44.1% fish abundance (9% fish species richness from the GBR to NR, transferability for these fish abundance models was poor. When compared with observations of fish abundance collected in NR, our transferability results had low validation scores ( R 2   0.05). High spatio-temporal variability of patterns in fish abundance at the family and population levels in both reef systems likely affected the transferability of these models. Inclusion of additional predictors with potential direct effects on abundance, such as local fishing effort or topographic complexity, may improve transferability of fish abundance models. However, observations of these local-scale predictors are often not available, and might thereby hinder studies on model transferability and its usefulness for conservation planning and management.

  3. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Directory of Open Access Journals (Sweden)

    Shaun K Wilson

    2010-12-01

    Full Text Available Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and

  4. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    Science.gov (United States)

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  5. DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

    Directory of Open Access Journals (Sweden)

    Isa Nagib edrus

    2017-01-01

    Full Text Available Infrastructure development in the particular sites of  Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands.  Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resiliences naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controling algae growth to recolonize coral juveniles. The  aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual cencus. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reed based on Obura and Grimsditch (2009 techniques. The results succesfully identified several fish functional groups such as harbivores (21 species, carnivores (13 species and fish indicator (5 species occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resiliences. Resilience indices ranged from 1 (low level to 3 (moderate level and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

  6. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea

    Directory of Open Access Journals (Sweden)

    Takaomi Arai

    2015-01-01

    Full Text Available BACKGROUND: In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. RESULTS: Proportions of saturated fatty acids (SAFA ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. CONCLUSIONS: Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  7. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    Science.gov (United States)

    Fidler, Robert Young, III

    Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted

  8. Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

    Directory of Open Access Journals (Sweden)

    Joshua E Cinner

    Full Text Available There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1 environmental exposure; 2 ecological sensitivity; 3 ecological recovery potential; 4 social sensitivity; and 5 social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.

  9. Comparative visual ecophysiology of mid-Atlantic temperate reef fishes

    Directory of Open Access Journals (Sweden)

    Andrij Z. Horodysky

    2013-11-01

    The absolute light sensitivities, temporal properties, and spectral sensitivities of the visual systems of three mid-Atlantic temperate reef fishes (Atlantic spadefish [Ephippidae: Chaetodipterus faber], tautog [Labridae: Tautoga onitis], and black sea bass [Serranidae: Centropristis striata] were studied via electroretinography (ERG. Pelagic Atlantic spadefish exhibited higher temporal resolution but a narrower dynamic range than the two more demersal foragers. The higher luminous sensitivities of tautog and black sea bass were similar to other benthic and demersal coastal mid-Atlantic fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of the three species spanned 400–610 nm, with high likelihood of cone dichromacy providing the basis for color and contrast discrimination. Significant day-night differences in spectral responses were evident in spadefish and black sea bass but not tautog, a labrid with characteristic structure-associated nocturnal torpor. Atlantic spadefish responded to a wider range of wavelengths than did deeper-dwelling tautog or black sea bass. Collectively, these results suggest that temperate reef-associated fishes are well-adapted to their gradient of brighter to dimmer photoclimates, representative of their unique ecologies and life histories. Continuing anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may however impede visual foraging and reproductive signaling in temperate reef fishes.

  10. Mass coral bleaching causes biotic homogenization of reef fish assemblages.

    Science.gov (United States)

    Richardson, Laura E; Graham, Nicholas A J; Pratchett, Morgan S; Eurich, Jacob G; Hoey, Andrew S

    2018-04-06

    Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances. © 2018 John Wiley & Sons Ltd.

  11. Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light?

    Science.gov (United States)

    Siebeck, U E; Marshall, N J

    2001-01-15

    Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N. (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible.

  12. Effect of Recreational Fish Feeding on Reef Fish Community ...

    African Journals Online (AJOL)

    ... that the reaction to bread at feeding sites was quicker than at control sites, which indicates that some species learn to feed on this novel source of food. Keywords:human-animal interactions, reef fish, recreational fish feeding, tourism impacts, MPAs, coral reefs, Kenya West Indian Ocean Journal of Marine Science Vol.

  13. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  14. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-01-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  15. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  16. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation.

    Science.gov (United States)

    Thampi, Vivek A; Anand, Madhur; Bauch, Chris T

    2018-02-07

    The Caribbean coral reef ecosystem has experienced a long history of deterioration due to various stressors. For instance, over-fishing of parrotfish - an important grazer of macroalgae that can prevent destructive overgrowth of macroalgae - has threatened reef ecosystems in recent decades and stimulated conservation efforts such as the formation of marine protected areas. Here we develop a mathematical model of coupled socio-ecological interactions between reef dynamics and conservation opinion dynamics to better understand how natural and human factors interact individually and in combination to determine coral reef cover. We find that the coupling opinion and reef systems generates complex dynamics that are difficult to anticipate without use of a model. For instance, instead of converging to a stable state of constant coral cover and conservationist opinion, the system can oscillate between low and high live coral cover as human opinion oscillates in a boom-bust cycle between complacency and concern. Out of various possible parameter manipulations, we also find that raising awareness of coral reef endangerment best avoids counter-productive nonlinear feedbacks and always increases and stabilizes live coral reef cover. In conclusion, an improved understanding of coupled opinion-reef dynamics under anthrogenic stressors is possible using coupled socio-ecological models, and such models should be further researched.

  17. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs

    Directory of Open Access Journals (Sweden)

    Adam Suchley

    2016-05-01

    Full Text Available Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend.

  18. ReefLink Database: A decision support tool for Linking Coral Reefs and Society Through Systems Thinking

    Science.gov (United States)

    Coral reefs provide the ecological foundation for productive and diverse fish and invertebrate communities that support multibillion dollar reef fishing and tourism industries. Yet reefs are threatened by growing coastal development, climate change, and over-exploitation. A key i...

  19. Consequences of a government-controlled agricultural price increase on fishing and the coral reef ecosystem in the republic of kiribati.

    Science.gov (United States)

    Reddy, Sheila M W; Groves, Theodore; Nagavarapu, Sriniketh

    2014-01-01

    Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by sustainable livelihood and ecosystem-based management frameworks.

  20. Consequences of a Government-Controlled Agricultural Price Increase on Fishing and the Coral Reef Ecosystem in the Republic of Kiribati

    Science.gov (United States)

    Reddy, Sheila M. W.; Groves, Theodore; Nagavarapu, Sriniketh

    2014-01-01

    Background Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. Methods/Principal Findings We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. Conclusions/Significance We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by

  1. Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae.

    Science.gov (United States)

    Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L

    2005-05-22

    The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.

  2. Red fluorescence in reef fish: A novel signalling mechanism?

    Directory of Open Access Journals (Sweden)

    Siebeck Ulrike E

    2008-09-01

    Full Text Available Abstract Background At depths below 10 m, reefs are dominated by blue-green light because seawater selectively absorbs the longer, 'red' wavelengths beyond 600 nm from the downwelling sunlight. Consequently, the visual pigments of many reef fish are matched to shorter wavelengths, which are transmitted better by water. Combining the typically poor long-wavelength sensitivity of fish eyes with the presumed lack of ambient red light, red light is currently considered irrelevant for reef fish. However, previous studies ignore the fact that several marine organisms, including deep sea fish, produce their own red luminescence and are capable of seeing it. Results We here report that at least 32 reef fishes from 16 genera and 5 families show pronounced red fluorescence under natural, daytime conditions at depths where downwelling red light is virtually absent. Fluorescence was confirmed by extensive spectrometry in the laboratory. In most cases peak emission was around 600 nm and fluorescence was associated with guanine crystals, which thus far were known for their light reflecting properties only. Our data indicate that red fluorescence may function in a context of intraspecific communication. Fluorescence patterns were typically associated with the eyes or the head, varying substantially even between species of the same genus. Moreover red fluorescence was particularly strong in fins that are involved in intraspecific signalling. Finally, microspectrometry in one fluorescent goby, Eviota pellucida, showed a long-wave sensitivity that overlapped with its own red fluorescence, indicating that this species is capable of seeing its own fluorescence. Conclusion We show that red fluorescence is widespread among marine fishes. Many features indicate that it is used as a private communication mechanism in small, benthic, pair- or group-living fishes. Many of these species show quite cryptic colouration in other parts of the visible spectrum. High inter

  3. Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure

    KAUST Repository

    Kattan, Alexander; Coker, Darren James; Berumen, Michael L.

    2017-01-01

    In order to assess human impacts and develop rational restoration goals for corals reefs, baseline estimates of fish communities are required. In Saudi Arabian waters of the Red Sea, widespread unregulated fishing is thought to have been ongoing for decades, but there is little direct evidence of the impact on reef communities. To contextualize this human influence, reef-associated fish assemblages on offshore reefs in Saudi Arabia and Sudan in the central Red Sea were investigated. These reefs have comparable benthic environments, experience similar oceanographic influences, and are separated by less than 300 km, offering an ideal comparison for identifying potential anthropogenic impacts such as fishing pressure. This is the first study to assess reef fish biomass in both these regions, providing important baselines estimates. We found that biomass of top predators on offshore Sudanese reefs was on average almost three times that measured on comparable reefs in Saudi Arabia. Biomass values from some of the most remote reefs surveyed in Sudan’s far southern region even approach those previously reported in the Northwestern Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other isolated Pacific islands and atolls. The findings suggest that fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs, most conspicuously in the form of top predator removal. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia, while making a strong case for protection in the form of no-take marine protected areas to maintain preservation of the relatively intact southern Sudanese Red Sea.

  4. Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure

    KAUST Repository

    Kattan, Alexander

    2017-03-09

    In order to assess human impacts and develop rational restoration goals for corals reefs, baseline estimates of fish communities are required. In Saudi Arabian waters of the Red Sea, widespread unregulated fishing is thought to have been ongoing for decades, but there is little direct evidence of the impact on reef communities. To contextualize this human influence, reef-associated fish assemblages on offshore reefs in Saudi Arabia and Sudan in the central Red Sea were investigated. These reefs have comparable benthic environments, experience similar oceanographic influences, and are separated by less than 300 km, offering an ideal comparison for identifying potential anthropogenic impacts such as fishing pressure. This is the first study to assess reef fish biomass in both these regions, providing important baselines estimates. We found that biomass of top predators on offshore Sudanese reefs was on average almost three times that measured on comparable reefs in Saudi Arabia. Biomass values from some of the most remote reefs surveyed in Sudan’s far southern region even approach those previously reported in the Northwestern Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other isolated Pacific islands and atolls. The findings suggest that fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs, most conspicuously in the form of top predator removal. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia, while making a strong case for protection in the form of no-take marine protected areas to maintain preservation of the relatively intact southern Sudanese Red Sea.

  5. Transport of Calcareous Fragments by Reef Fishes.

    Science.gov (United States)

    Bardach, J E

    1961-01-13

    The weight of sand, coral scrapings, algal fragments, and other calcareous materials which pass through the intestines of reef fishes was calculated on a hectare-per-year basis. It was found that browsing omnivorous reef fishes which rely, in part, on a plant diet ingested and redeposited at least 2300 kg of such material on a 1-hectare study reef near Bermuda. Reasons are presented why this estimate, certainly in order of magnitude, should be applicable to coral reefs in general.

  6. Biogeographic Patterns of Reef Fish Communities in the Saudi Arabian Red Sea

    KAUST Repository

    Roberts, May B.

    2014-12-01

    As a region renowned for high biodiversity, endemism and extreme temperature and salinity levels, the Red Sea is of high ecological interest. Despite this, there is relatively little literature on basic broad scale characteristics of the biodiversity or overall reef fish communities and how they change across latitude. We conducted visual transects recording the abundance of over 200 species of fish from 45 reefs spanning over 1000 km of Saudi Arabian coastline and used hierarchical cluster analysis to find that for combined depths from 0m-10m across this geographical range, the reef fish communities are relatively similar. However we find some interesting patterns both at the community level across depth and latitude as well as in endemic community distributions. We find that the communities, much like the environmental factors, shift gradually along latitude but do not show distinct clusters within the range we surveyed (from Al-Wajh in the north to the Farasan Banks in the south). Numbers of endemic species tend to be higher in the Thuwal region and further south. This type of baseline data on reef fish distribution and possible factors that may influence their ranges in the Red Sea are critical for future scientific studies as well as effective monitoring and in the face of the persistent anthropogenic influences such as coastal development, overfishing and climate change.

  7. Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish

    KAUST Repository

    Harrison, Hugo B.

    2017-10-28

    Coral reefs are highly diverse ecosystems, where numerous closely related species often coexist. How new species arise and are maintained in these high geneflow environments have been long-standing conundrums. Hybridization and patterns of introgression between sympatric species provide a unique insight into the mechanisms of speciation and the maintenance of species boundaries. In this study, we investigate the extent of hybridization between two closely related species of coral reef fish: the common coral trout (Plectropomus leopardus) and the bar-cheek coral trout (Plectropomus maculatus). Using a complementary set of 25 microsatellite loci, we distinguish pure genotype classes from first- and later-generation hybrids, identifying 124 interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary processes are acting to maintain species barriers. We elaborate on these finding to investigate the extent of genomic introgression and admixture from 2,271 SNP loci recovered from a ddRAD library of pure and hybrid individuals. An analysis of genomic clines on recovered loci indicates that 261 SNP loci deviate from a model of neutral introgression, of which 132 indicate a pattern of introgression consistent with selection favouring both hybrid and parental genotypes. Our findings indicate genome-wide, bidirectional introgression between two sympatric species of coral reef fishes and provide further support to a growing body of evidence for the role of hybridization in the evolution of coral reef fishes.

  8. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Science.gov (United States)

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  9. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Directory of Open Access Journals (Sweden)

    Ivan Nagelkerken

    Full Text Available No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas for small nursery fish (≤ 25 cm total length. For large-bodied individuals of nursery species (>25 cm total length, an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass than from proximity to nurseries (139% higher. The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  10. Relative and combined effects of habitat and fishing on reef fish communities across a limited fishing gradient at Ningaloo.

    Science.gov (United States)

    Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P

    2012-10-01

    Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Bomb-cratered coral reefs in Puerto Rico, the untold story about a novel habitat: from reef destruction to community-based ecological rehabilitation

    Directory of Open Access Journals (Sweden)

    Edwin A. Hernández-Delgado

    2014-09-01

    Full Text Available Ecological impacts of military bombing activities in Puerto Rico have often been described as minimal, with recurrent allegations of confounding effects by hurricanes, coral diseases and local anthropogenic stressors. Reef craters, though isolated, are associated with major colony fragmentation and framework pulverization, with a net permanent loss of reef bio-construction. In contrast, adjacent non-bombarded reef sections have significantly higher benthic spatial relief and biodiversity. We compared benthic communities on 35-50 year-old bomb-cratered coral reefs at Culebra and Vieques Islands, with adjacent non-impacted sites; 2 coral recruit density and fish community structure within and outside craters; and 3 early effects of a rehabilitation effort using low-tech Staghorn coral Acropora cervicornis farming. Reef craters ranged in size from approximately 50 to 400m² and were largely dominated by heavily fragmented, flattened benthos, with coral cover usually below 2% and dominance by non-reef building taxa (i.e., filamentous algal turfs, macroalgae. Benthic spatial heterogeneity was lower within craters which also resulted in a lowered functional value as fish nursery ground. Fish species richness, abundance and biomass, and coral recruit density were lower within craters. Low-tech, community-based approaches to culture, harvest and transplant A. cervicornis into formerly bombarded grounds have proved successful in increasing percent coral cover, benthic spatial heterogeneity, and helping rehabilitate nursery ground functions.

  12. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea

    Directory of Open Access Journals (Sweden)

    Maha T. Khalil

    2017-06-01

    Full Text Available Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3–24 km from shore in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

  13. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea.

    Science.gov (United States)

    Khalil, Maha T; Bouwmeester, Jessica; Berumen, Michael L

    2017-01-01

    Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3-24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals . All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

  14. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea

    KAUST Repository

    Khalil, Maha T.

    2017-06-06

    Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3–24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

  15. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea

    KAUST Repository

    Khalil, Maha T.; Bouwmeester, Jessica; Berumen, Michael L.

    2017-01-01

    Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3–24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

  16. Relationships between structural complexity, coral traits, and reef fish assemblages

    Science.gov (United States)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  17. Can partnerships and community-based conservation reverse the decline of coral reef social-ecological systems?

    Directory of Open Access Journals (Sweden)

    James Barclay Frey

    2014-03-01

    Full Text Available The marine aquarium trade has played an important role in shaping the ecological state of coral reefs in Indonesia and much of the Asia-Pacific. The use of cyanide by ornamental fishers in Buleleng District, Bali, in the 1980s and 1990s has resulted in a precipitous decline in the ecological health of reefs. Cyanide-free harvesting techniques were introduced after 2000, along with reef restoration measures. This paper examines social and ecological processes in the fishing village of Les, Bali, in ending the use of cyanide and the resulting ecological restoration. An emphasis on conservation-development (with livelihood objectives was important in securing interest and cooperation across stakeholder groups. Adaptive approaches to governance and knowledge co-production were also important. The strategy used at Les is now being exported to other communities across Indonesia, and provides a promising example of a marine resources-based conservation-development initiative that may be implemented at other, similar communities.

  18. Length-weight relationships of coral reef fishes from the Alacran Reef, Yucatan, Mexico

    OpenAIRE

    Gonzalez-Gandara, C.; Perez-Diaz, E.; Santos-Rodriguez, L.; Arias-Gonzalez, J.E.

    2003-01-01

    Length-weight relationships were computed for 42 species of coral reef fishes from 14 families from the Alacran Reef (Yucatan, Mexico). A total of 1 892 individuals was used for this purpose. The fish species were caught by different fishing techniques such as fishhooks, harpoons, gill and trawl nets. The sampling period was from March 1998 to January 2000.

  19. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.

    Science.gov (United States)

    Dingeldein, Andrea L; White, J Wilson

    2016-07-01

    Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post

  20. Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes.

    Science.gov (United States)

    Kelly, Emily L A; Eynaud, Yoan; Clements, Samantha M; Gleason, Molly; Sparks, Russell T; Williams, Ivor D; Smith, Jennifer E

    2016-12-01

    Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.

  1. Does herbivorous fish protection really improve coral reef resilience? A case study from new caledonia (South Pacific).

    Science.gov (United States)

    Carassou, Laure; Léopold, Marc; Guillemot, Nicolas; Wantiez, Laurent; Kulbicki, Michel

    2013-01-01

    Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.

  2. Linking social and ecological systems to sustain coral reef fisheries.

    Science.gov (United States)

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  3. Correlation Between Existence of Reef Sharks with Abundance of Reef Fishes in South Waters of Morotai Island (North Moluccas)

    Science.gov (United States)

    Mukharror, Darmawan Ahmad; Tiara Baiti, Isnaini; Ichsan, Muhammad; Pridina, Niomi; Triutami, Sanny

    2017-10-01

    Despite increasing academic research citation on biology, abundance, and the behavior of the blacktip reef sharks, the influence of reef fish population on the density of reef sharks: Carcharhinus melanopterus and Triaenodon obesus population in its habitat were largely unassessed. This present study examined the correlation between abundance of reef fishes family/species with the population of reef sharks in Southern Waters of Morotai Island. The existence of reef sharks was measured with the Audible Stationary Count (ASC) methods and the abundance of reef fishes was surveyed using Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The coefficient of Determination (R2) was used to investigate the degree of relationships between sharks and the specific reef fishes species. The research from 8th April to 4th June 2015 showed the strong positive correlations between the existence of reef sharks with abundance of reef fishes. The correlation values between Carcharhinus melanopterus/Triaenodon obesus with Chaetodon auriga was 0.9405, blacktip/whitetip reef sharks versus Ctenochaetus striatus was 0.9146, and Carcharhinus melanopterus/Triaenodon obesus to Chaetodon kleinii was 0.8440. As the shark can be worth more alive for shark diving tourism than dead in a fish market, the abundance of these reef fishes was important as an early indication parameter of shark existence in South Water of Morotai Island. In the long term, this highlights the importance of reef fishes abundance management in Morotai Island’s Waters to enable the establishment of appropriate and effective reef sharks conservation.

  4. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Science.gov (United States)

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  5. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Directory of Open Access Journals (Sweden)

    Joseph E Serafy

    Full Text Available Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1 Are reef fish abundances limited by mangrove forest area?; and (2 Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1 focus analyses on species that use mangroves as nurseries, (2 consider more than the mean fish abundance response to mangrove forest extent; and/or (3 quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i

  6. Patterns in reef fish assemblages: Insights from the Chagos Archipelago.

    Science.gov (United States)

    Samoilys, Melita; Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of 'bottom-up' control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts.

  7. Patterns in reef fish assemblages: Insights from the Chagos Archipelago

    Science.gov (United States)

    Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of ‘bottom-up’ control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts. PMID:29351566

  8. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  9. Differential response of fish assemblages to coral reef-based seaweed farming.

    Directory of Open Access Journals (Sweden)

    E James Hehre

    Full Text Available As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1 marine protected areas (MPAs were established, (2 neither MPAs nor blast fishing was present (hence "unprotected", and (3 blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.

  10. Differential response of fish assemblages to coral reef-based seaweed farming.

    Science.gov (United States)

    Hehre, E James; Meeuwig, J J

    2015-01-01

    As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence "unprotected"), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.

  11. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas.

    Science.gov (United States)

    Campbell, Stuart J; Edgar, Graham J; Stuart-Smith, Rick D; Soler, German; Bates, Amanda E

    2018-04-01

    Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing-gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no-take, hook-and-line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no-take zones) most benefited community- and family-level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community-level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing-gear types that affect biomass of a diverse set of reef fish families. © 2017 Society for Conservation Biology.

  12. The influence of coral reef benthic condition on associated fish assemblages.

    Directory of Open Access Journals (Sweden)

    Karen M Chong-Seng

    Full Text Available Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58% and high structural complexity to high macroalgae cover (up to 95% and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.

  13. Community Structure Of Reef Fish In Eastern Luwu Water Territory

    Directory of Open Access Journals (Sweden)

    Henny Tribuana Cinnawara

    2015-01-01

    Full Text Available Abstract One bio-indicators the condition of coral reefs is a presence of reef fish. The purpose of research is to determine species composition abundance distribution and structure of reef fish communities in these waters. Data collection was conducted in April at six locations in the north and the south eastern Luwu. Mechanical Underwater Visual Cencus UVC and transect method Line intercept Transec LIT with SCUBA equipment used for research data collection. Total reef fish species collected as many as 366 species belonging to 31 families consisting of 150 species of fish target fish consumption 10 species of indicator fish indicator species 206 types of major fissh. The most dominant indicator type of fish is Chaetodon octofasciatus while the major dominant family Pomacentridae Labridae and Apogonidae. Diversity index values ranged from 2.145 to 3.408. Dominance index C is in the range of 0.056 to 0.298. The result is expected to be a reference literature as basic data for the management of reef fish especially in the waters of eastern Luwu.

  14. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean.

    Science.gov (United States)

    McClanahan, Timothy R; Maina, Joseph M; Graham, Nicholas A J; Jones, Kendall R

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.

  15. Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress.

    Science.gov (United States)

    Mumby, Peter J; van Woesik, Robert

    2014-05-19

    Coral reefs are highly sensitive to the stress associated with greenhouse gas emissions, in particular ocean warming and acidification. While experiments show negative responses of most reef organisms to ocean warming, some autotrophs benefit from ocean acidification. Yet, we are uncertain of the response of coral reefs as systems. We begin by reviewing sources of uncertainty and complexity including the translation of physiological effects into demographic processes, indirect ecological interactions among species, the ability of coral reefs to modify their own chemistry, adaptation and trans-generational plasticity. We then incorporate these uncertainties into two simple qualitative models of a coral reef system under climate change. Some sources of uncertainty are far more problematic than others. Climate change is predicted to have an unambiguous negative effect on corals that is robust to several sources of uncertainty but sensitive to the degree of biogeochemical coupling between benthos and seawater. Macroalgal, zoanthid, and herbivorous fish populations are generally predicted to increase, but the ambiguity (confidence) of such predictions are sensitive to the source of uncertainty. For example, reversing the effect of climate-related stress on macroalgae from being positive to negative had no influence on system behaviour. By contrast, the system was highly sensitive to a change in the stress upon herbivorous fishes. Minor changes in competitive interactions had profound impacts on system behaviour, implying that the outcomes of mesocosm studies could be highly sensitive to the choice of taxa. We use our analysis to identify new hypotheses and suggest that the effects of climatic stress on coral reefs provide an exceptional opportunity to test emerging theories of ecological inheritance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Conservation and management applications of the REEF volunteer fish monitoring program.

    Science.gov (United States)

    Pattengill-Semmens, Christy V; Semmens, Brice X

    2003-01-01

    The REEF Fish Survey Project is a volunteer fish monitoring program developed by the Reef Environmental Education Foundation (REEF). REEF volunteers collect fish distribution and abundance data using a standardized visual method during regular diving and snorkeling activities. Survey data are recorded on preprinted data sheets that are returned to REEF and optically digitized. Data are housed in a publicly accessible database on REEF's Web site (http://www.reef.org). Since the project's inception in 1993, over 40,000 surveys have been conducted in the coastal waters of North America, tropical western Atlantic, Gulf of California and Hawaii. The Fish Survey Project has been incorporated into existing monitoring programs through partnerships with government agencies, scientists, conservation organizations, and private institutions. REEF's partners benefit from the educational value and increased stewardship resulting from volunteer data collection. Applications of the data include an evaluation of fish/habitat interactions in the Florida Keys National Marine Sanctuary, the development of a multi-species trend analysis method to identify sites of management concern, assessment of the current distribution of species, status reports on fish assemblages of marine parks, and the evaluation of no-take zones in the Florida Keys. REEF's collaboration with a variety of partners, combined with the Fish Survey Project's standardized census method and database management system, has resulted in a successful citizen science monitoring program.

  17. Biomass and Abundance of Herbivorous Fishes on Coral Reefs off ...

    African Journals Online (AJOL)

    effects of fishing intensity, reef geomorphology and benthic cover. Distance from the .... on herbivorous fish communities relevant to the proposed ... fragments, nearshore coastal fringing reefs ..... Over-fishing and coral bleaching pose the most ...

  18. SEAMAP Caribbean Reef Fish Survey (PC1202, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate...

  19. SEAMAP Caribbean Reef Fish Survey (PC1202, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate...

  20. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    Science.gov (United States)

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  1. 2015 Carbbean Reef Fish Survey (PC1505, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2015 Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate length-frequency...

  2. 2015 Carbbean Reef Fish Survey (PC1505, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2015 Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate length-frequency...

  3. 2013 SEAMAP Reef Fish Survey (PC1302, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2013 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  4. 2013 SEAMAP Reef Fish Survey (PC1302, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2013 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  5. 2016 SEAMAP Reef Fish Survey (PC1601, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2016 SEAMAP Reef Fish Survey were to assess relative abundance of reef fish species on continental shelf-edge banks of the Gulf of Mexico, estimate...

  6. 2012 SEAMAP Reef Fish Survey (PC1201, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  7. 2012 SEAMAP Reef Fish Survey (PC1201, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  8. Fish assemblage of the Mamanguape Environmental Protection Area, NE Brazil: abundance, composition and microhabitat availability along the mangrove-reef gradient

    Directory of Open Access Journals (Sweden)

    Josias Henrique de Amorim Xavier

    Full Text Available Reefs, mangroves and seagrass biotopes often occur in close association, forming a complex and highly productive ecosystem that provide significant ecologic and economic goods and services. Different anthropogenic disturbances are increasingly affecting these tropical coastal habitats leading to growing conservation concern. In this field-based study, we used a visual census technique (belt transects 50 m x 2 m to investigate the interactions between fishes and microhabitats at the Mamanguape Mangrove-Reef system, NE Brazil. Overall, 144 belt transects were performed from October 2007 to September 2008 to assess the structure of the fish assemblage. Fish trophic groups and life stage (juveniles and adults were recorded according to literature, the percent cover of the substrate was estimated using the point contact method. Our results revealed that fish composition gradually changed from the Estuarine to the Reef zone, and that fish assemblage was strongly related to the microhabitat availability, as suggested by the predominance of carnivores at the Estuarine zone and presence of herbivores at the Reef zone. Fish abundance and diversity were higher in the Reef zone and estuary margins, highlighting the importance of structural complexity. A pattern of nursery area utilization, with larger specimens at the Transition and Reef Zone and smaller individuals at the Estuarine zone, was recorded for Abudefduf saxatilis, Anisotremus surinamensis, Lutjanus alexandrei, and Lutjanus jocu. Our findings clearly suggests ecosystem connectivity between mangrove, seagrass and reef biotopes, and highlighted the importance of Mamanguape Mangrove-Reef System as a priority area for conservation and research, whose habitat mosaics should be further studied and protected.

  9. 77 FR 56168 - Reef Fish Fishery of the Gulf of Mexico; Gulf of Mexico Individual Fishing Quota Programs

    Science.gov (United States)

    2012-09-12

    .... 090206140-91081-03] RIN 0648-XC227 Reef Fish Fishery of the Gulf of Mexico; Gulf of Mexico Individual... red snapper and grouper/tilefish components of the reef fish fishery in the Gulf of Mexico (Gulf), the... INFORMATION: The reef fish fishery of the Gulf of Mexico is managed under the Fishery Management Plan for Reef...

  10. Spatial patterns of fish standing biomass across Brazilian reefs.

    Science.gov (United States)

    Morais, R A; Ferreira, C E L; Floeter, S R

    2017-12-01

    A large fish-count dataset from the Brazilian province was used to describe spatial patterns in standing biomass and test if total biomass, taxonomic and functional trophic structure vary across nested spatial scales. Taxonomic and functional structure varied more among localities and sites than among regions. Total biomass was generally higher at oceanic islands and remote or protected localities along the coast. Lower level carnivores comprised a large part of the biomass at almost all localities (mean of 44%), zooplanktivores never attained more than 14% and omnivores were more representative of subtropical reefs and oceanic islands (up to 66% of total biomass). Small and large herbivores and detritivores varied greatly in their contribution to total biomass, with no clear geographical patterns. Macrocarnivores comprised less than 12% of the biomass anywhere, except for two remote localities. Top predators, such as sharks and very large groupers, were rare and restricted to a few reefs, suggesting that their ecological function might have already been lost in many Brazilian reefs. © 2017 The Fisheries Society of the British Isles.

  11. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagress-reef continuum: stable isotope and gut-content analysis

    NARCIS (Netherlands)

    Cocheret de la Morinière, E.; Pollux, B.J.A.; Nagelkerken, I.; Hemminga, M.A.; Huiskes, A.H.L.; Van der Velde, G.

    2003-01-01

    Juveniles of a number of reef fish species develop in shallow-water 'nursery' habitats such as mangroves and seagrass beds, and then migrate to the coral reef. This implies that some reef fish species are distributed over the mangrove-seagrass-reef continuum in subpopulations with different size

  12. A role for partially protected areas on coral reefs: Maintaining fish diversity?

    KAUST Repository

    Tyler, Elizabeth

    2011-04-15

    1. Completely banning fishing from coral reefs is now accepted to have significant benefits for marine biodiversity and in many cases, fisheries. However, the benefits of regulating fishing on coral reefs, by restricting the methods used, or the total amount of fishing, are less well understood, even though such regulations are much more likely to be supported by fishermen. 2. This study assesses whether banning illegal, destructive fishing methods and reducing the numbers of fishermen visiting from outside an area benefits a coral reef fishery, despite unregulated fishing by local fishermen using non-destructive methods. 3. The abundance, biomass, mean length, and species richness of nine commercially important fish families are compared across ten independent patch reefs inside and outside the 470km2 Menai Bay Conservation Area in Zanzibar, Tanzania. 4. Even after taking into account the effect of differences in habitat and the distance between reefs, 61% (±19.7%) more fish species were found in regulated than unregulated reefs. Fish abundance, biomass, and length were not affected, suggesting that banning destructive fishing may improve biodiversity, but that further regulations may be required to improve fish stocks. © 2011 John Wiley and Sons, Ltd.

  13. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    Science.gov (United States)

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Non-Random Variability in Functional Composition of Coral Reef Fish Communities along an Environmental Gradient.

    Science.gov (United States)

    Plass-Johnson, Jeremiah G; Taylor, Marc H; Husain, Aidah A A; Teichberg, Mirta C; Ferse, Sebastian C A

    2016-01-01

    Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased

  15. Digital reef rugosity estimates coral reef habitat complexity.

    Science.gov (United States)

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.

  16. Fish-derived nutrient hotspots shape coral reef benthic communities.

    Science.gov (United States)

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  17. Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae

    OpenAIRE

    Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L

    2005-01-01

    The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to t...

  18. Stable isotope analysis indicates a lack of inter- and intra-specific dietary redundancy among ecologically important coral reef fishes

    Science.gov (United States)

    Plass-Johnson, J. G.; McQuaid, C. D.; Hill, J. M.

    2013-06-01

    Parrotfish are critical consumers on coral reefs, mediating the balance between algae and corals, and are often categorised into three functional groups based on adult morphology and feeding behaviour. We used stable isotope analysis (δ13C, δ15N) to investigate size-related ontogenetic dietary changes in multiple species of parrotfish on coral reefs around Zanzibar. We compared signatures among species and functional groups (scrapers, excavators and browsers) as well as ontogenetic stages (immature, initial and terminal phase) within species. Stable isotope analysis suggests that ontogenetic dietary shifts occurred in seven of the nine species examined; larger individuals had enriched δ13C values, with no relationship between size and δ15N. The relationship between fish length and δ13C signature was maintained when species were categorised as scrapers and excavators, but was more pronounced for scrapers than excavators, indicating stronger ontogenetic changes. Isotopic mixing models classified the initial phase of both the most abundant excavator ( Chlorurus sordidus) as a scraper and the immature stage of the scraper Scarus ghobban (the largest species) as an excavator, indicating that diet relates to size rather than taxonomy. The results indicate that parrotfish may show similar intra-group changes in diet with length, but that their trophic ecology is more complex than suggested by morphology alone. Stable isotope analyses indicate that feeding ecology may differ among species within functional groups, and according to ontogenetic stage within a species.

  19. Energy profiling of demersal fish: a case-study in wind farm artificial reefs.

    Science.gov (United States)

    De Troch, Marleen; Reubens, Jan T; Heirman, Elke; Degraer, Steven; Vincx, Magda

    2013-12-01

    The construction of wind farms introduces artificial hard substrates in sandy sediments. As Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) tend to aggregate in order to feed around these reefs, energy profiling and trophic markers were applied to study their feeding ecology in a wind farm in the Belgian part of the North Sea. The proximate composition (carbohydrates, proteins and lipids) differed significantly between liver and muscle tissue but not between fish species or between their potential prey species. Atlantic cod showed to consume more energy than pouting. The latter had a higher overall energy reserve and can theoretically survive twice as long on the available energy than cod. In autumn, both fish species could survive longer on their energy than in spring. Polyunsaturated fatty acids were found in high concentrations in fish liver. The prey species Jassa and Pisidia were both rich in EPA while Jassa had a higher DHA content than Pisidia. Energy profiling supported the statement that wind farm artificial reefs are suitable feeding ground for both fish species. Sufficient energy levels were recorded and there is no indication of competition.

  20. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    Science.gov (United States)

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  1. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-11-06

    ... the Western Pacific; Special Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries... special coral reef ecosystem fishing permit. SUMMARY: NMFS issued a Special Coral Reef Ecosystem Fishing Permit that authorizes Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management unit...

  2. Microhabitat Association of Cryptobenthic Reef Fishes (Teleostei: Gobiidae) in the Central Red Sea

    KAUST Repository

    Troyer, Emily

    2018-05-01

    Knowledge of biodiversity within an ecosystem is essential when trying to understand the function and importance of that ecosystem. A challenge when assessing biodiversity of reef habitats is cryptobenthic fishes, which encompass many groups that have close associations with the substrate. These fishes can be behaviorally cryptic, by seeking refuge within the reef matrix, or visually cryptic, using cryptic coloration to match the surrounding habitat. These factors make visual surveys inadequate for sampling these fishes. One such group of cryptobenthic fishes are the gobies, family Gobiidae, which currently represent over 1600 species, although new species are continually being discovered. Gobies are often small (less than 5 cm), and many species will be associated with a very specific microhabitat type. Due to the understudied nature of the Red Sea, little is known about habitat preferences of gobies within the region. In order to determine the differences in goby community structure within the central Red Sea, fishes were sampled at one reef using 1 m² enclosed rotenone stations from three distinct microhabitats: hard coral, rubble, and sand. Following collection, specimens were photographed and sequenced using COI, to aid in species identification. 232 individuals were collected representing 31 species of goby. Rubble microhabitats were found to host the majority of collected gobies (69%), followed by hard coral (20.6%), then sand (9.9%). Goby assemblages in the three microhabitats were significantly different from each other, and evidence of habitat-specialists was found. These results provide essential baseline information about the ecology of understudied cryptobenthic fishes that can be used in future large-scale studies in the Red Sea region.

  3. Fish attraction to artificial reefs not always harmful: a simulation study.

    Science.gov (United States)

    Smith, James A; Lowry, Michael B; Suthers, Iain M

    2015-10-01

    The debate on whether artificial reefs produce new fish or simply attract existing fish biomass continues due to the difficulty in distinguishing these processes, and there remains considerable doubt as to whether artificial reefs are a harmful form of habitat modification. The harm typically associated with attraction is that fish will be easier to harvest due to the existing biomass aggregating at a newly deployed reef. This outcome of fish attraction has not progressed past an anecdotal form, however, and is always perceived as a harmful process. We present a numerical model that simulates the effect that a redistributed fish biomass, due to an artificial reef, has on fishing catch per unit effort (CPUE). This model can be used to identify the scenarios (in terms of reef, fish, and harvest characteristics) that pose the most risk of exploitation due to fish attraction. The properties of this model were compared to the long-standing predictions by Bohnsack (1989) on the factors that increase the risk or the harm of attraction. Simulations revealed that attraction is not always harmful because it does not always increase maximum fish density. Rather, attraction sometimes disperses existing fish biomass making them harder to catch. Some attraction can be ideal, with CPUE lowest when attraction leads to an equal distribution of biomass between natural and artificial reefs. Simulations also showed that the outcomes from attraction depend on the characteristics of the target fish species, such that transient or pelagic species are often at more risk of harmful attraction than resident species. Our findings generally agree with Bohnsack's predictions, although we recommend distinguishing "mobility" and "fidelity" when identifying species most at risk from attraction, as these traits had great influence on patterns of harvest of attracted fish biomass.

  4. Interoceanic differences in the reproduction of coral-reef fishes.

    Science.gov (United States)

    Thresher, R E

    1982-10-01

    Eggs of demersal spawning coral-reef fishes of the tropical western Atlantic are smaller than those of related species in the western Pacific. Decreased egg volume may result in increased fecundity per unit body weight of Atlantic species, a factor that may underlie apparent differences in the stability of the respective coral-reef fish communities.

  5. Potential of Pigeon Creek, San Salvador, Bahamas, as Nursery Habitat for Juvenile Reef Fish

    Directory of Open Access Journals (Sweden)

    Conboy, Ian Christopher

    2011-10-01

    Full Text Available This project assessed the significance of Pigeon Creek, San Salvador, Bahamas as a nursery habitat for coral reef fishes. Pigeon Creek’s perimeter is lined with mangrove and limestone bedrock. The bottom is sand or seagrass and ranges in depth from exposed at low tide to a 3-m deep, tide-scoured channel. In June 2006 and January 2007, fish were counted and their maturity was recorded while sampling 112 of 309 possible 50-m transects along the perimeter of the Pigeon Creek. Excluding silversides (Atherinidae, 52% of fish counted, six families each comprised >1% of the total abundance (Scaridae/parrotfishes, 35.3%; Lutjanidae/snappers, 23.9%; Haemulidae/grunts, 21.0%; Gerreidae/mojarras, 8.5%; Pomacentridae/damselfishes, 6.1%; Labridae/wrasses, 2.4%. There were few differences in effort-adjusted counts among habitats (mangrove, bedrock, mixed, sections (north, middle, southwest and seasons (summer 2006 and winter 2007. Red Mangrove (Rhizophora mangle, covering 68% of the perimeter was where 62% of the fish were counted. Snappers, grunts and parrotfishes are important food fishes and significant families in terms of reef ecology around San Salvador. Mangrove was the most important habitat for snappers and grunts; bedrock was most important for parrotfishes. The southwest section was important for snappers, grunts and parrotfishes, the north section for grunts and parrotfishes, and the middle section for snappers. Among the non-silverside fish counted, 91.2% were juveniles. These results suggest that Pigeon Creek is an important nursery for the coral reefs surrounding San Salvador and should be protected from potential disturbances.

  6. Fish assemblages on fringing reefs in the southern Caribbean: biodiversity, biomass and feeding types

    Directory of Open Access Journals (Sweden)

    Jahson B. Alemu I.

    2014-09-01

    Full Text Available Reef fish assemblages in the Caribbean are under increasing pressure from human activities. Inadequate enforcement of legislation coupled with unreliable and data-poor landings in Tobago have led to the unregulated exploitation of reef fish for decades. This study addresses the lack of data on major reefs. Visual observations of fish fauna were conducted from November 2011-May 2013 at open access reef sites (Speyside, Charlotteville, Culloden, Arnos Vale, Mt. Irvine, La Guira, Kilgwyn, Plymouth and Black Rock and one protected area (Buccoo Reef Marine Park. Belt transects surveys were used to determine fish density, species diversity and abundance at the 10-15m depth contour. Fish sizes were converted to biomass using the length-weight relationship of fish W=aLb. Most fish assemblages were dominated by small herbivores (40cm e.g. Serranidae, were noted, which is indicative of fishing pressure. MDS ordination identified three fish assemblages: i northeastern, ii southwestern and iii intermediate. The northwestern cluster (Speyside and Charlotteville were most representative of reef fish assemblages across the entire island, and exhibited the highest species richness, diversity and biomass. However, the southwestern cluster the highest numerical abundance. The marine protected area contained higher fish biomass, abundance, diversity and richness, but it was only representative of reef fish assemblages on the southwest of the island and not the entire Tobago. Research on the reef fishery, particularly spear fishing, is recommended to determine impact.

  7. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Science.gov (United States)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  8. Human Dimensions of Coral Reef Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    John N. Kittinger

    2012-12-01

    Full Text Available Coral reefs are among the most diverse ecosystems on the planet but are declining because of human activities. Despite general recognition of the human role in the plight of coral reefs, the vast majority of research focuses on the ecological rather than the human dimensions of reef ecosystems, limiting our understanding of social relationships with these environments as well as potential solutions for reef recovery. General frameworks for social-ecological systems (SESs have been advanced, but system-specific approaches are needed to develop a more nuanced view of human-environmental interactions for specific contexts and resource systems, and at specific scales. We synthesize existing concepts related to SESs and present a human dimensions framework that explores the linkages between social system structural traits, human activities, ecosystem services, and human well-being in coral reef SESs. Key features of the framework include social-ecological reciprocity, proximate and underlying dimensions, and the directionality of key relationships and feedback loops. Such frameworks are needed if human dimensions research is to be more fully integrated into studies of ecosystem change and the sustainability of linked SESs.

  9. Prediction of reef fish spawning aggregations using remote sensing: A review

    International Nuclear Information System (INIS)

    Rosli, M R; Ibrahim, A L; Masron, T

    2014-01-01

    Spawning aggregation is a very important occurrence to particular reef fish species as they use this opportunity to reproduce. However, due to their predictable nature, these aggregations have always been vulnerable to overexploitation. This problem leads to the importance of identifying the exact time and location for reef fish spawning aggregation. Thus, this paper review a little bit about spawning aggregation of reef fish as well as their characteristics, and problems regarding this phenomena. The use of remote sensing in marine applications is also described here in order to discuss how remote sensing can be utilize to predict reef fish spawning aggregation. Based on the unique geomorphological characteristics of the spawning aggregation, remote sensing seems to be a powerful tool to determine their exact times and locations. It has been proved that satellite imagery was able to delineate specific reef geomorphologies such as shelf edges and reef promontories. Despite of the widely use of remote sensing in marine applications, in fact there are still lack of studies had been carried out regarding spawning aggregations of reef fish due to the skeptical point-of-view by certain researchers over the capability of this technique. However, there is actually no doubt that the use of remote sensing will provide a better hand to the authorities in order to establish a more effective monitoring and conservation plan for these spawning aggregations

  10. Invasive lionfish preying on critically endangered reef fish

    Science.gov (United States)

    Rocha, Luiz A.; Rocha, Claudia R.; Baldwin, Carole C.; Weigt, Lee A.; McField, Melanie

    2015-09-01

    Caribbean coral reef ecosystems are at the forefront of a global decline and are now facing a new threat: elimination of vulnerable species by the invasive lionfish ( Pterois spp.). In addition to being threatened by habitat destruction and pollution, the critically endangered social wrasse ( Halichoeres socialis), endemic to Belize's inner barrier reef, has a combination of biological traits (small size, schooling, and hovering behavior) that makes it a target for the invasive lionfish. Based on stomach content analyses, this small fish comprises almost half of the lionfish diet at the inner barrier reef in Belize. The combination of lionfish predation, limited range, and ongoing habitat destruction makes the social wrasse the most threatened coral reef fish in the world. Other species with small range and similar traits occur elsewhere in the Caribbean and face similar risks.

  11. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    Science.gov (United States)

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  12. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish.

    Science.gov (United States)

    van der Meer, Martin H; Horne, John B; Gardner, Michael G; Hobbs, Jean-Paul A; Pratchett, Morgan; van Herwerden, Lynne

    2013-06-01

    Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long-term persistence of these species following local extinction. This study explored population connectivity in the ecologically-specialized endemic three-striped butterflyfish (Chaetodon tricinctus) using mt and msatDNA (nuclear microsatellites) to distinguish evolutionary versus contemporary gene flow, estimate self-replenishment and measure genetic diversity among locations at the remote Australian offshore coral reefs of Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI), and Norfolk Island (NI). Mt and msatDNA suggested genetic differentiation of the most peripheral location (NI) from the remaining three locations (MR, ER, LHI). Despite high levels of mtDNA gene flow, there is limited msatDNA gene flow with evidence of high levels of self-replenishment (≥76%) at all four locations. Taken together, this suggests prolonged population recovery times following population declines. The peripheral population (NI) is most vulnerable to local extinction due to its relative isolation, extreme levels of self-replenishment (95%), and low contemporary abundance.

  13. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.; Harrison, Hugo B.; Almany, Glenn R.; Berumen, Michael L.; Bode, Michael; Bonin, Mary C.; Choukroun, Severine; Doherty, Peter J.; Frisch, Ashley J.; Saenz-Agudelo, Pablo; Jones, Geoffrey P.

    2016-01-01

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  14. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  15. Extraordinary aggressive behavior from the giant coral reef fish, Bolbometopon muricatum, in a remote marine reserve.

    Directory of Open Access Journals (Sweden)

    Roldan C Muñoz

    Full Text Available Human impacts to terrestrial and marine communities are widespread and typically begin with the local extirpation of large-bodied animals. In the marine environment, few pristine areas relatively free of human impact remain to provide baselines of ecosystem function and goals for restoration efforts. Recent comparisons of remote and/or protected coral reefs versus impacted sites suggest remote systems are dominated by apex predators, yet in these systems the ecological role of non-predatory, large-bodied, highly vulnerable species such as the giant bumphead parrotfish (Bolbometopon muricatum has received less attention. Overfishing of Bolbometopon has lead to precipitous declines in population density and avoidance of humans throughout its range, contributing to its status as a candidate species under the U. S. Endangered Species Act and limiting opportunities to study unexploited populations. Here we show that extraordinary ecological processes, such as violent headbutting contests by the world's largest parrotfish, can be revealed by studying unexploited ecosystems, such as the coral reefs of Wake Atoll where we studied an abundant population of Bolbometopon. Bolbometopon is among the largest of coral reef fishes and is a well known, charismatic species, yet to our knowledge, no scientific documentation of ritualized headbutting exists for marine fishes. Our observations of aggressive headbutting by Bolbometopon underscore that remote locations and marine reserves, by inhibiting negative responses to human observers and by allowing the persistence of historical conditions, can provide valuable opportunities to study ecosystems in their natural state, thereby facilitating the discovery, conservation, and interpretation of a range of sometimes remarkable behavioral and ecological processes.

  16. Extraordinary aggressive behavior from the giant coral reef fish, Bolbometopon muricatum, in a remote marine reserve.

    Science.gov (United States)

    Muñoz, Roldan C; Zgliczynski, Brian J; Laughlin, Joseph L; Teer, Bradford Z

    2012-01-01

    Human impacts to terrestrial and marine communities are widespread and typically begin with the local extirpation of large-bodied animals. In the marine environment, few pristine areas relatively free of human impact remain to provide baselines of ecosystem function and goals for restoration efforts. Recent comparisons of remote and/or protected coral reefs versus impacted sites suggest remote systems are dominated by apex predators, yet in these systems the ecological role of non-predatory, large-bodied, highly vulnerable species such as the giant bumphead parrotfish (Bolbometopon muricatum) has received less attention. Overfishing of Bolbometopon has lead to precipitous declines in population density and avoidance of humans throughout its range, contributing to its status as a candidate species under the U. S. Endangered Species Act and limiting opportunities to study unexploited populations. Here we show that extraordinary ecological processes, such as violent headbutting contests by the world's largest parrotfish, can be revealed by studying unexploited ecosystems, such as the coral reefs of Wake Atoll where we studied an abundant population of Bolbometopon. Bolbometopon is among the largest of coral reef fishes and is a well known, charismatic species, yet to our knowledge, no scientific documentation of ritualized headbutting exists for marine fishes. Our observations of aggressive headbutting by Bolbometopon underscore that remote locations and marine reserves, by inhibiting negative responses to human observers and by allowing the persistence of historical conditions, can provide valuable opportunities to study ecosystems in their natural state, thereby facilitating the discovery, conservation, and interpretation of a range of sometimes remarkable behavioral and ecological processes.

  17. Body Size Shifts in Philippine Reef Fishes: Interfamilial Variation in Responses to Protection

    Directory of Open Access Journals (Sweden)

    Robert Y. Fidler

    2014-03-01

    Full Text Available As a consequence of intense fishing pressure, fished populations experience reduced population sizes and shifts in body size toward the predominance of smaller and early maturing individuals. Small, early-maturing fish exhibit significantly reduced reproductive output and, ultimately, reduced fitness. As part of resource management and biodiversity conservation programs worldwide, no-take marine protected areas (MPAs are expected to ameliorate the adverse effects of fishing pressure. In an attempt to advance our understanding of how coral reef MPAs meet their long-term goals, this study used visual census data from 23 MPAs and fished reefs in the Philippines to address three questions: (1 Do MPAs promote shifts in fish body size frequency distribution towards larger body sizes when compared to fished reefs? (2 Do MPA size and (3 age contribute to the efficacy of MPAs in promoting such shifts? This study revealed that across all MPAs surveyed, the distribution of fishes between MPAs and fished reefs were similar; however, large-bodied fish were more abundant within MPAs, along with small, young-of-the-year individuals. Additionally, there was a significant shift in body size frequency distribution towards larger body sizes in 12 of 23 individual reef sites surveyed. Of 22 fish families, eleven demonstrated significantly different body size frequency distributions between MPAs and fished reefs, indicating that shifts in the size spectrum of fishes in response to protection are family-specific. Family-level shifts demonstrated a significant, positive correlation with MPA age, indicating that MPAs become more effective at increasing the density of large-bodied fish within their boundaries over time.

  18. 78 FR 49258 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-08-13

    ... the Western Pacific; Special Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries... Reef Ecosystem Fishing Permit that would authorize Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management unit fish species in a floating pen moored about 5.5 nm off the west coast of...

  19. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes.

    Science.gov (United States)

    Gordon, Timothy A C; Harding, Harry R; Wong, Kathryn E; Merchant, Nathan D; Meekan, Mark G; McCormick, Mark I; Radford, Andrew N; Simpson, Stephen D

    2018-05-15

    Coral reefs are increasingly degraded by climate-induced bleaching and storm damage. Reef recovery relies on recruitment of young fishes for the replenishment of functionally important taxa. Acoustic cues guide the orientation, habitat selection, and settlement of many fishes, but these processes may be impaired if degradation alters reef soundscapes. Here, we report spatiotemporally matched evidence of soundscapes altered by degradation from recordings taken before and after recent severe damage on Australia's Great Barrier Reef. Postdegradation soundscapes were an average of 15 dB re 1 µPa quieter and had significantly reduced acoustic complexity, richness, and rates of invertebrate snaps compared with their predegradation equivalents. We then used these matched recordings in complementary light-trap and patch-reef experiments to assess responses of wild fish larvae under natural conditions. We show that postdegradation soundscapes were 8% less attractive to presettlement larvae and resulted in 40% less settlement of juvenile fishes than predegradation soundscapes; postdegradation soundscapes were no more attractive than open-ocean sound. However, our experimental design does not allow an estimate of how much attraction and settlement to isolated postdegradation soundscapes might change compared with isolated predegradation soundscapes. Reductions in attraction and settlement were qualitatively similar across and within all trophic guilds and taxonomic groups analyzed. These patterns may lead to declines in fish populations, exacerbating degradation. Acoustic changes might therefore trigger a feedback loop that could impair reef resilience. To understand fully the recovery potential of coral reefs, we must learn to listen. Copyright © 2018 the Author(s). Published by PNAS.

  20. Restoration of a temperate reef: Effects on the fish community

    DEFF Research Database (Denmark)

    Støttrup, Josianne; Stenberg, Claus; Dahl, Karsten

    2014-01-01

    Trindel in Kattegat, Denmark, has now been re-established with the aim of restoring the reef’s historical structure and function. The effects of the restoration on the local fish community are reported here. Fishing surveys using gillnets and fyke nets were conducted before the restoration (2007) and four...... years after the restoration of the reef (2012). Species of the family Labridae, which have a high affinity for rocky reefs, dominated both before and after the restoration. Commercially important species such as cod Gadus morhua, and saithe Pollachius virens, occurred infrequently in the catches in 2007....... The findings highlight the importance of reef habitats for fish communities and the need for their protection...

  1. Structure of Caribbean coral reef communities across a large gradient of fish biomass.

    Science.gov (United States)

    Newman, Marah J H; Paredes, Gustavo A; Sala, Enric; Jackson, Jeremy B C

    2006-11-01

    The collapse of Caribbean coral reefs has been attributed in part to historic overfishing, but whether fish assemblages can recover and how such recovery might affect the benthic reef community has not been tested across appropriate scales. We surveyed the biomass of reef communities across a range in fish abundance from 14 to 593 g m(-2), a gradient exceeding that of any previously reported for coral reefs. Increased fish biomass was correlated with an increased proportion of apex predators, which were abundant only inside large marine reserves. Increased herbivorous fish biomass was correlated with a decrease in fleshy algal biomass but corals have not yet recovered.

  2. Reef fishes of Saba Bank, Netherlands Antilles: assemblage structure across a gradient of habitat types.

    Directory of Open Access Journals (Sweden)

    Wes Toller

    Full Text Available Saba Bank is a 2,200 km(2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km(2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5% and outer reef flat habitat (2.4% and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5--48.1% but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats ranged between 52 and 83 g/m(2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks, which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank.

  3. High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation.

    Science.gov (United States)

    Rogers, Alice; Blanchard, Julia L; Newman, Steven P; Dryden, Charlie S; Mumby, Peter J

    2018-02-01

    Refuge availability and fishing alter predator-prey interactions on coral reefs, but our understanding of how they interact to drive food web dynamics, community structure and vulnerability of different trophic groups is unclear. Here, we apply a size-based ecosystem model of coral reefs, parameterized with empirical measures of structural complexity, to predict fish biomass, productivity and community structure in reef ecosystems under a broad range of refuge availability and fishing regimes. In unfished ecosystems, the expected positive correlation between reef structural complexity and biomass emerges, but a non-linear effect of predation refuges is observed for the productivity of predatory fish. Reefs with intermediate complexity have the highest predator productivity, but when refuge availability is high and prey are less available, predator growth rates decrease, with significant implications for fisheries. Specifically, as fishing intensity increases, predators in habitats with high refuge availability exhibit vulnerability to over-exploitation, resulting in communities dominated by herbivores. Our study reveals mechanisms for threshold dynamics in predators living in complex habitats and elucidates how predators can be food-limited when most of their prey are able to hide. We also highlight the importance of nutrient recycling via the detrital pathway, to support high predator biomasses on coral reefs. © 2018 by the Ecological Society of America.

  4. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Reef Fish of Navassa Island 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This record refers to reef fish data collected on the 2004 cruise to Navassa Island National Wildlife Refuge. The random point count method (Bohnsack-Bannerot 1986)...

  6. ENERGETIC EXTREMES IN A HOSTILE HABITAT: FISH LOCOMOTION ON WAVE-SWEPT CORAL REEFS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    , and wing-like fins that generate lift-based thrust at high speed. Literally flying underwater, Stethojulis and other winged-fin species are the most abundant fish in wave-swept coral reef habitats. We discuss the extreme swimming performance of these reef fishes within the context of other non......-scombrid and scombrid fishes, and illustrate how such performance has contributed to their domination of shallow coral reef habitats worldwide....

  7. A role for partially protected areas on coral reefs: Maintaining fish diversity?

    KAUST Repository

    Tyler, Elizabeth; Manica, Andrea; Jiddawi, Narriman S.; Speight, Martin R.

    2011-01-01

    1. Completely banning fishing from coral reefs is now accepted to have significant benefits for marine biodiversity and in many cases, fisheries. However, the benefits of regulating fishing on coral reefs, by restricting the methods used

  8. Timing and locations of reef fish spawning off the southeastern United States.

    Directory of Open Access Journals (Sweden)

    Nicholas A Farmer

    Full Text Available Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features. We quantified the size of spawning areas used by reef fish across many years and identified several multispecies spawning locations. We quantitatively identified cues for peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus, White Grunt (Haemulon plumierii, Red Snapper (Lutjanus campechanus, Vermilion Snapper (Rhomboplites aurorubens, Black Sea Bass (Centropristis striata, and Scamp (Mycteroperca phenax. For example, Red Snapper peak spawning was predicted in 24.7-29.0°C water prior to the new moon at locations with high curvature in the 24-30 m depth range off northeast Florida during June and July. External validation using scientific and fishery-dependent data collections strongly supported the predictive utility of our models. We identified locations where reconfiguration or expansion of existing marine protected areas would protect spawning reef fish. We recommend increased sampling off southern Florida (south of 27° N, during winter months, and in high-relief, high current habitats to improve our understanding of timing and location of reef fish spawning off the southeastern United States.

  9. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Science.gov (United States)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  10. Spatial Distribution of Reef Fish Species along the Southeast US Atlantic Coast Inferred from Underwater Video Survey Data.

    Directory of Open Access Journals (Sweden)

    Nathan M Bacheler

    Full Text Available Marine fish abundance and distribution often varies across spatial scales for a variety of reasons, and this variability has significant ecological and management consequences. We quantified the distribution of reef-associated fish species along the southeast United States Atlantic coast using underwater video survey samples (N = 4,855 in 2011-2014 to elucidate variability within species across space, depths, and habitats, as well as describe broad-scale patterns in species richness. Thirty-two species were seen at least 10 times on video, and the most commonly observed species were red porgy (Pagrus pagrus; 41.4% of videos, gray triggerfish (Balistes capriscus; 31.0%, black sea bass (Centropristis striata; 29.1%, vermilion snapper (Rhomboplites aurorubens; 27.7%, and red snapper (Lutjanus campechanus; 22.6%. Using generalized additive models, we found that most species were non-randomly distributed across space, depths, and habitats. Most rare species were observed along the continental shelf break, except for goliath grouper (Epinephelus itajara, which was found on the continental shelf in Florida and Georgia. We also observed higher numbers of species in shelf-break habitats from southern North Carolina to Georgia, and fewer in shallower water and at the northern and southern ends of the southeast United States Atlantic coast. Our study provides the first broad-scale description of the spatial distribution of reef fish in the region to be based on fishery-independent data, reinforces the utility of underwater video to survey reef fish, and can help improve the management of reef fish in the SEUS, for example, by improving indices of abundance.

  11. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    Directory of Open Access Journals (Sweden)

    Elena L.E.S. Wagner

    2015-12-01

    Full Text Available Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes, live coral cover and patch size (volume. The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  12. Variability in abundance of temperate reef fishes estimated by visual census.

    Directory of Open Access Journals (Sweden)

    Alejo J Irigoyen

    Full Text Available Identifying sources of sampling variation and quantifying their magnitude is critical to the interpretation of ecological field data. Yet, most monitoring programs of reef fish populations based on underwater visual censuses (UVC consider only a few of the factors that may influence fish counts, such as the diver or census methodology. Recent studies, however, have drawn attention to a broader range of processes that introduce variability at different temporal scales. This study analyzes the magnitude of different sources of variation in UVCs of temperate reef fishes off Patagonia (Argentina. The variability associated with time-of-day, tidal state, and time elapsed between censuses (minutes, days, weeks and months was quantified for censuses conducted on the five most conspicuous and common species: Pinguipes brasilianus, Pseudopercis semifasciata, Sebastes oculatus, Acanthistius patachonicus and Nemadactylus bergi. Variance components corresponding to spatial heterogeneity and to the different temporal scales were estimated using nested random models. The levels of variability estimated for the different species were related to their life history attributes and behavior. Neither time-of-day nor tidal state had a significant effect on counts, except for the influence of tide on P. brasilianus. Spatial heterogeneity was the dominant source of variance in all but one species. Among the temporal scales, the intra-annual variation was the highest component for most species due to marked seasonal fluctuations in abundance, followed by the weekly and the instantaneous variation; the daily component was not significant. The variability between censuses conducted at different tidal levels and time-of-day was similar in magnitude to the instantaneous variation, reinforcing the conclusion that stochastic variation at very short time scales is non-negligible and should be taken into account in the design of monitoring programs and experiments. The present

  13. A Citizen Science Approach: A Detailed Ecological Assessment of Subtropical Reefs at Point Lookout, Australia.

    Science.gov (United States)

    Roelfsema, Chris; Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana

    2016-01-01

    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.

  14. Physiology can contribute to better understanding, management, and conservation of coral reef fishes.

    Science.gov (United States)

    Illing, Björn; Rummer, Jodie L

    2017-01-01

    Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more

  15. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    Directory of Open Access Journals (Sweden)

    Schmitz Lars

    2011-11-01

    Full Text Available Abstract Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal fish active in well-illuminated conditions, whereas night-active (nocturnal fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  16. National Coral Reef Monitoring Program: Coral Reef Fish collected in Fl Keys Reef Tract (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Divers conducted reef visual census (RVC) fish surveys and habitat assessments at 433 sites in the Florida Keys, 436 sites in the Dry Tortugas and 320 sites in the...

  17. Do reef fish habituate to diver presence? Evidence from two reef sites with contrasting historical levels of SCUBA intensity in the Bay Islands, Honduras.

    Science.gov (United States)

    Titus, Benjamin M; Daly, Marymegan; Exton, Dan A

    2015-01-01

    Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.

  18. Parrotfish size: a simple yet useful alternative indicator of fishing effects on Caribbean reefs?

    Science.gov (United States)

    Vallès, Henri; Oxenford, Hazel A

    2014-01-01

    There is great need to identify simple yet reliable indicators of fishing effects within the multi-species, multi-gear, data-poor fisheries of the Caribbean. Here, we investigate links between fishing pressure and three simple fish metrics, i.e. average fish weight (an estimate of average individual fish size), fish density and fish biomass, derived from (1) the parrotfish family, a ubiquitous herbivore family across the Caribbean, and (2) three fish groups of "commercial" carnivores including snappers and groupers, which are widely-used as indicators of fishing effects. We hypothesize that, because most Caribbean reefs are being heavily fished, fish metrics derived from the less vulnerable parrotfish group would exhibit stronger relationships with fishing pressure on today's Caribbean reefs than those derived from the highly vulnerable commercial fish groups. We used data from 348 Atlantic and Gulf Rapid Reef Assessment (AGRRA) reef-surveys across the Caribbean to assess relationships between two independent indices of fishing pressure (one derived from human population density data, the other from open to fishing versus protected status) and the three fish metrics derived from the four aforementioned fish groups. We found that, although two fish metrics, average parrotfish weight and combined biomass of selected commercial species, were consistently negatively linked to the indices of fishing pressure across the Caribbean, the parrotfish metric consistently outranked the latter in the strength of the relationship, thus supporting our hypothesis. Overall, our study highlights that (assemblage-level) average parrotfish size might be a useful alternative indicator of fishing effects over the typical conditions of most Caribbean shallow reefs: moderate-to-heavy levels of fishing and low abundance of highly valued commercial species.

  19. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    Science.gov (United States)

    Acosta-González, Gilberto; Rodríguez-Zaragoza, Fabián A; Hernández-Landa, Roberto C; Arias-González, Jesús E

    2013-01-01

    Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.

  20. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    Directory of Open Access Journals (Sweden)

    Gilberto Acosta-González

    Full Text Available Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU in two GUs (reef slope and terrace over six years (2000, 2005, 2006, 2007, 2008, 2010. Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope and deeper (reef terrace GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity over time may imply the abetment of vulnerability in the face of local and global changes.

  1. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    Science.gov (United States)

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  2. Visual Census of the Reef Fishes in the Natural Reserve of the ...

    African Journals Online (AJOL)

    Keywords: visual census, reef fishes, natural reserve, Glorieuses Islands, western Indian Ocean This paper constitutes the first qualitative study of coral reef fish populations in the archipelago of the Glorieuses Islands (northern Mozambique Channel). Sampling by visual census techniques, at depths between 0 and 15 ...

  3. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape

    Science.gov (United States)

    Eggertsen, L.; Ferreira, C. E. L.; Fontoura, L.; Kautsky, N.; Gullström, M.; Berkström, C.

    2017-09-01

    Seascape connectivity is regarded essential for healthy reef fish communities in tropical shallow systems. A number of reef fish species use separate adult and nursery habitats, and hence contribute to nutrient and energy transfer between habitats. Seagrass beds and mangroves often constitute important nursery habitats, with high structural complexity and protection from predation. Here, we investigated if reef fish assemblages in the tropical south-western Atlantic demonstrate ontogenetic habitat connectivity and identify possible nurseries on three reef systems along the eastern Brazilian coast. Fish were surveyed in fore reef, back reef, Halodule wrightii seagrass beds and seaweed beds. Seagrass beds contained lower abundances and species richness of fish than expected, while Sargassum-dominated seaweed beds contained significantly more juveniles than all other habitats (average juvenile fish densities: 32.6 per 40 m2 in Sargassum beds, 11.2 per 40 m2 in back reef, 10.1 per 40 m2 in fore reef, and 5.04 per 40 m2 in seagrass beds), including several species that are found in the reef habitats as adults. Species that in other regions worldwide (e.g. the Caribbean) utilise seagrass beds as nursery habitats were here instead observed in Sargassum beds or back reef habitats. Coral cover was not correlated to adult fish distribution patterns; instead, type of turf was an important variable. Connectivity, and thus pathways of nutrient transfer, seems to function differently in east Brazil compared to many tropical regions. Sargassum-dominated beds might be more important as nurseries for a larger number of fish species than seagrass beds. Due to the low abundance of structurally complex seagrass beds we suggest that seaweed beds might influence adult reef fish abundances, being essential for several keystone species of reef fish in the tropical south-western Atlantic.

  4. Baselines and Comparison of Coral Reef Fish Assemblages in the Central Red Sea

    KAUST Repository

    Kattan, Alexander

    2014-12-01

    In order to properly assess human impacts and appropriate restoration goals, baselines of pristine conditions on coral reefs are required. In Saudi Arabian waters of the central Red Sea, widespread and heavy fishing pressure has been ongoing for decades. To evaluate this influence, we surveyed the assemblage of offshore reef fishes in both this region as well as those of remote and largely unfished southern Sudan. At comparable latitudes, of similar oceanographic influence, and hosting the same array of species, the offshore reefs of southern Sudan provided an ideal location for comparison. We found that top predators (jacks, large snappers, groupers, and others) dominated the reef fish community biomass in Sudan’s deep south region, resulting in an inverted (top-heavy) biomass pyramid. In contrast, the Red Sea reefs of central Saudi Arabia exhibited the typical bottom-heavy pyramid and show evidence for trophic cascades in the form of mesopredator release. Biomass values from Sudan’s deep south are quite similar to those previously reported in the remote and uninhabited Northwest Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other remote Pacific islands and atolls. The findings of this study suggest that heavy fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia while simultaneously making a strong case for protection in the form of marine protected areas in the southern Sudanese Red Sea.

  5. Pacific Reef Assessment and Monitoring Program: Rapid Ecological Assessments of Fish Belt Transect Surveys (BLT) at Coral Reef Sites across the Pacific Ocean from 2000 to 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Belt transects (BLT) is one of the non-invasive underwater-survey methods to enumerate the diverse components of diurnally active shallow-water reef fish...

  6. 78 FR 18273 - Draft Guidance for Industry on Purchasing Reef Fish Species Associated With the Hazard of...

    Science.gov (United States)

    2013-03-26

    .... FDA-2013-D-0269] Draft Guidance for Industry on Purchasing Reef Fish Species Associated With the... availability of a draft guidance entitled ``Guidance for Industry: Purchasing Reef Fish Species Associated With... seafood processors who purchase reef fish how to minimize the risk of ciguatera fish poisoning (CFP) from...

  7. Do reef fish habituate to diver presence? Evidence from two reef sites with contrasting historical levels of SCUBA intensity in the Bay Islands, Honduras.

    Directory of Open Access Journals (Sweden)

    Benjamin M Titus

    Full Text Available Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA. Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.

  8. Florida Reef Fish Visual Census 1999 - Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set of Excel files contain data from visual sampling of coral reef fish species in the National Marine Sanctuary along the Florida Keys. The dataset...

  9. Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Steven J Lindfield

    Full Text Available In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI, where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers dominated spearfishing catches, with parrotfish (scarines and surgeonfish/unicornfish (acanthurids the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries.

  10. Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes.

    Science.gov (United States)

    Lindfield, Steven J; McIlwain, Jennifer L; Harvey, Euan S

    2014-01-01

    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries.

  11. The Ecology of Coral Reef Top Predators in the Papahānaumokuākea Marine National Monument

    Directory of Open Access Journals (Sweden)

    Jonathan J. Dale

    2011-01-01

    Full Text Available Coral reef habitats in the Papahānaumokuākea Marine National Monument (PMNM are characterized by abundant top-level predators such as sharks and jacks. The predator assemblage is dominated both numerically and in biomass by giant trevally (Caranx ignobilis and Galapagos sharks (Carcharhinus galapagensis. A lower diversity of predatory teleosts, particularly groupers and snappers, distinguishes the PMNM from other remote, unfished atolls in the Pacific. Most coral reef top predators are site attached to a “home” atoll, but move extensively within these atolls. Abundances of the most common sharks and jacks are highest in atoll fore reef habitats. Top predators within the PMNM forage on a diverse range of prey and exert top-down control over shallow-water reef fish assemblages. Ecological models suggest ecosystem processes may be most impacted by top predators through indirect effects of predation. Knowledge gaps are identified to guide future studies of top predators in the PMNM.

  12. Local Biomass Baselines and the Recovery Potential for Hawaiian Coral Reef Fish Communities

    Directory of Open Access Journals (Sweden)

    Kelvin D. Gorospe

    2018-05-01

    Full Text Available Understanding the influence of multiple ecosystem drivers, both natural and anthropogenic, and how they vary across space is critical to the spatial management of coral reef fisheries. In Hawaii, as elsewhere, there is uncertainty with regards to how areas should be selected for protection, and management efforts prioritized. One strategy is to prioritize efforts based on an area's biomass baseline, or natural capacity to support reef fish populations. Another strategy is to prioritize areas based on their recovery potential, or in other words, the potential increase in fish biomass from present-day state, should management be effective at restoring assemblages to something more like their baseline state. We used data from 717 fisheries-independent reef fish monitoring surveys from 2012 to 2015 around the main Hawaiian Islands as well as site-level data on benthic habitat, oceanographic conditions, and human population density, to develop a hierarchical, linear Bayesian model that explains spatial variation in: (1 herbivorous and (2 total reef fish biomass. We found that while human population density negatively affected fish assemblages at all surveyed areas, there was considerable variation in the natural capacity of different areas to support reef fish biomass. For example, some areas were predicted to have the capacity to support ten times as much herbivorous fish biomass as other areas. Overall, the model found human population density to have negatively impacted fish biomass throughout Hawaii, however the magnitude and uncertainty of these impacts varied locally. Results provide part of the basis for marine spatial planning and/or MPA-network design within Hawaii.

  13. The evolution of fishes and corals on reefs: form, function and interdependence.

    Science.gov (United States)

    Bellwood, David R; Goatley, Christopher H R; Bellwood, Orpha

    2017-05-01

    Coral reefs are renowned for their spectacular biodiversity and the close links between fishes and corals. Despite extensive fossil records and common biogeographic histories, the evolution of these two key groups has rarely been considered together. We therefore examine recent advances in molecular phylogenetics and palaeoecology, and place the evolution of fishes and corals in a functional context. In critically reviewing the available fossil and phylogenetic evidence, we reveal a marked congruence in the evolution of the two groups. Despite one group consisting of swimming vertebrates and the other colonial symbiotic invertebrates, fishes and corals have remarkably similar evolutionary histories. In the Paleocene and Eocene [66-34 million years ago (Ma)] most modern fish and coral families were present, and both were represented by a wide range of functional morphotypes. However, there is little evidence of diversification at this time. By contrast, in the Oligocene and Miocene (34-5.3 Ma), both groups exhibited rapid lineage diversification. There is also evidence of increasing reef area, occupation of new habitats, increasing coral cover, and potentially, increasing fish abundance. Functionally, the Oligocene-Miocene is marked by the appearance of new fish and coral taxa associated with high-turnover fast-growth ecosystems and the colonization of reef flats. It is in this period that the functional characteristics of modern coral reefs were established. Most species, however, only arose in the last 5.3 million years (Myr; Plio-Pleistocene), with the average age of fish species being 5.3 Myr, and corals just 1.9 Myr. While these species are genetically distinct, phenotypic differences are often limited to variation in colour or minor morphological features. This suggests that the rapid increase in biodiversity during the last 5.3 Myr was not matched by changes in ecosystem function. For reef fishes, colour appears to be central to recent

  14. Invasive predator tips the balance of symmetrical competition between native coral-reef fishes.

    Science.gov (United States)

    Kindinger, Tye L

    2018-04-01

    The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in

  15. Retention of habitat complexity minimizes disassembly of reef fish communities following disturbance: a large-scale natural experiment.

    Directory of Open Access Journals (Sweden)

    Michael J Emslie

    Full Text Available High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year, spatially extensive (∼ 115,000 kms(2 dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.

  16. Non-reef environments impact the diversification of extant jacks, remoras and allies (Carangoidei, Percomorpha).

    Science.gov (United States)

    Frédérich, Bruno; Marramà, Giuseppe; Carnevale, Giorgio; Santini, Francesco

    2016-11-16

    Various factors may impact the processes of diversification of a clade. In the marine realm, it has been shown that coral reef environments have promoted diversification in various fish groups. With the exception of requiem sharks, all the groups showing a higher level of diversity in reefs than in non-reef habitats have diets based predominantly on plankton, algae or benthic invertebrates. Here we explore the pattern of diversification of carangoid fishes, a clade that includes numerous piscivorous species (e.g. trevallies, jacks and dolphinfishes), using time-calibrated phylogenies as well as ecological and morphological data from both extant and fossil species. The study of carangoid morphospace suggests that reef environments played a role in their early radiation during the Eocene. However, contrary to the hypothesis of a reef-association-promoting effect, we show that habitat shifts to non-reef environments have increased the rates of morphological diversification (i.e. size and body shape) in extant carangoids. Piscivory did not have a major impact on the tempo of diversification of this group. Through the ecological radiation of carangoid fishes, we demonstrate that non-reef environments may sustain and promote processes of diversification of different marine fish groups, at least those including a large proportion of piscivorous species. © 2016 The Author(s).

  17. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    Directory of Open Access Journals (Sweden)

    Simon J Pittman

    Full Text Available Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT and Maximum Entropy Species Distribution Modelling (MaxEnt. The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9 for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9. In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy than BRT (68% map accuracy. We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support

  18. Struktur Komunitas Ikan Karang di Perairan Kendari (Community Structure of Coral Reef Fishes at Kendari Waters

    Directory of Open Access Journals (Sweden)

    Muhammad Adrim

    2012-09-01

    July 2011 at five locations on the northern and southern part of Kendari waters. Data were gathered using SCUBA with underwater visual census (UVC and line transect (Line Intersept Transect, LIT methods. A total of 111 species of 24 families of coral reef fishes were gathered, consisted of  31 species of target fishes, 17 indicator species and 63 species of major group fishes. The target fishes were dominated by Caesio cuning, Siganus vulpinus and Ctenochaetus striatus. Indicator species was dominated by Chaetodon octofasciatus and major group fishes were dominated by Pomacentrus smithii, Chrysiptera rollandi, Chrysiptera springeri, and Pomacentrus alexandera.The Shannon-Wiener diversity indices were ranged between 1.36 and 3.23, the Margalefs index of richness ranged from 4.74 and 8,66 while Evenness indices of Pielou were ranged from 0.38 to 0.81. The cluster analysis of Bray Curtis index of simmilarity showed two groups on the dendogram at 37% similarity level, while the multidimensional similarity analysis (stress = 0 was also shown two different communities. The result of the study could be useful to baseline data to coastal management area to local government authority (PEMDA. Key words: coral reef fish, community structure, ecology index, Kendari waters

  19. Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish

    KAUST Repository

    Harrison, Hugo B.; Berumen, Michael L.; Saenz-Agudelo, Pablo; Salas, Eva; Williamson, David H.; Jones, Geoffrey P.

    2017-01-01

    interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary

  20. Predator-induced demographic shifts in coral reef fish assemblages

    Science.gov (United States)

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  1. Predator-induced demographic shifts in coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Benjamin I Ruttenberg

    Full Text Available In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.

  2. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    The ecological integrity of tropical habitats, including mangroves, seagrass beds and coral reefs, is coming under increasing pressure from human activities. Many coral reef fish species are thought to use mangroves and seagrass beds as juvenile nurseries before migrating to coral reefs as adults. Identifying essential habitats and preserving functional linkages among these habitats is likely necessary to promote ecosystem health and sustainable fisheries on coral reefs. This necessitates quantitative assessment of functional connectivity among essential habitats at the seascape level. This thesis presents the development and first application of a method for tracking fish migration using amino acid (AA) δ13C analysis in otoliths. In a controlled feeding experiment with fish reared on isotopically distinct diets, we showed that essential AAs exhibited minimal trophic fractionation between consumer and diet, providing a δ13C record of the baseline isoscape. We explored the potential for geochemical signatures in otoliths of snapper to act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean. The δ13C values of otolith essential AAs varied as a function of habitat type and provided a better tracer of residence in juvenile nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith AA SIA approach, we quantified the relative contribution of coastal wetlands and reef habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than 30 km from juvenile nurseries to coral reefs and across deep open water. Coastal wetlands were important nurseries for L. ehrenbergii; however, there was significant plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played an important role in determining the functional connectivity of L

  3. The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama.

    Science.gov (United States)

    Seemann, Janina; Yingst, Alexandra; Stuart-Smith, Rick D; Edgar, Graham J; Altieri, Andrew H

    2018-01-01

    Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems.

  4. The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama

    Directory of Open Access Journals (Sweden)

    Janina Seemann

    2018-03-01

    Full Text Available Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm, with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes and Gobiidae (gobies. Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems.

  5. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific and their relationship with coral cover

    Directory of Open Access Journals (Sweden)

    Aurora M. Ricart

    2016-11-01

    Full Text Available Clipperton Atoll, one of the most isolated coral reefs worldwide, is of great scientific interest due to its geomorphology and high levels of endemism. This study explored the reef fish assemblage structure of Clipperton Atoll and its relationship with live coral cover. Nine stations were sampled at three sites and three depths (6, 12 and 20 m around the reef, measuring fish species richness and biomass and hermatypic coral cover (at genus level. We evaluated variation in species richness, biomass and diversity of fish assemblages among sites and depths, as well as the relationship between the entire fish assemblage composition and live coral cover. The results showed that species richness and biomass were similar among sites, but differed across depths, increasing with depth. In contrast, diversity differed among sites but not among depths. Multivariate analyses indicated that fish assemblage composition differed among sites and depths in relation to changes in cover of coral of the genera Pocillopora, Porites, Pavona and Leptoseris, which dominate at different depths. The results showed that fish species richness and diversity were low at Clipperton Atoll and that, in isolated coral reefs with a low habitat heterogeneity and low human disturbance, live coral cover has a significant influence on the spatial variation of the reef fish assemblages. This study highlights the importance of coral habitat structure in shaping coral reef fish assemblages.

  6. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.

    Science.gov (United States)

    Green, Stephanie J; Côté, Isabelle M

    2014-11-01

    Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly

  7. Drivers of fishing at the household scale in Fiji

    Directory of Open Access Journals (Sweden)

    Rachel Dacks

    2018-03-01

    Full Text Available Coral reefs sustain millions of people worldwide, yet in recent years, social, environmental, and climate change have caused major declines in coral reef fisheries. Small-scale coral reef fisheries research has largely focused on community-level drivers of fishing, ignoring the heterogeneities that exist within communities. We used social-ecological indicators from 20 coastal villages in Fiji to identify potential fine-scale, context-appropriate drivers of estimated household fish catch. Indicators were developed based on a review of the literature, discussions with local experts, and a pilot study. Using structural equation models, we found that importance of fishing to income, household fish consumption, livelihood diversity, travel time to market, and coral reef area all positively affect estimated household-level fish catch. Our results contrast with findings from other larger scale studies by identifying that households further from markets had higher fishing frequency. We highlight the role of middlemen in these small-scale fisheries, who have been largely overlooked as drivers of fisheries catch. Our findings emphasize the need for household-level analyses to better understand the complexities in coral reef social-ecological systems to more effectively manage small-scale fisheries in communities.

  8. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.

    Science.gov (United States)

    Kimirei, Ismael A; Nagelkerken, Ivan; Mgaya, Yunus D; Huijbers, Chantal M

    2013-01-01

    Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13)C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72%) as opposed to inshore vegetated habitats (28-35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.

  9. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.

    Directory of Open Access Journals (Sweden)

    Ismael A Kimirei

    Full Text Available Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania. Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29% or seagrass (53% or reef (18% habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72% as opposed to inshore vegetated habitats (28-35%. This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.

  10. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

    KAUST Repository

    Wilson, S. K.

    2010-02-26

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.

  11. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean

    Directory of Open Access Journals (Sweden)

    Fabián Pina-Amargós

    2014-02-01

    Full Text Available Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope, inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  12. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean.

    Science.gov (United States)

    Pina-Amargós, Fabián; González-Sansón, Gaspar; Martín-Blanco, Félix; Valdivia, Abel

    2014-01-01

    Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope), inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  13. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.

    2011-11-16

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  14. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.; Hoey, Andrew; Hughes, Terence P.

    2011-01-01

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  15. Fish survey data from Uva Island reef, Panama

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project examines an eastern Pacific fish assemblage associated with a 2.5 hectare coral reef located within the boundaries of Coiba National Park, Panama. From...

  16. How life history characteristics and environmental forcing shape settlement success of coral reef fishes

    DEFF Research Database (Denmark)

    Wong-Ala, Jennifer; Comfort, Christina; Gove, Jamison

    2018-01-01

    Larval settlement is shaped by the interaction of biological processes (e.g., life history strategies, behavior etc.) and the environment (e.g., temperature, currents etc.). This is particularly true for many reef fishes where larval stages disperse offshore, often spending weeks to months...... in the pelagic realm before settling to shallow-water reefs. Our ability to predict reef fish settlement and subsequent recruitment and population dynamics depends on our ability to characterize how biological processes interact with the dynamic physical environment. Here we develop and apply an individual...... (PLD), body morphology, etc. We employ our biophysical model to examine how biology interacts with the physical environment to shape settlement predictions for reef fish off western and southern Hawai‘i Island. Linked to prevailing surface currents, we find increased probabilities of settling...

  17. Biodiversity enhances reef fish biomass and resistance to climate change.

    Science.gov (United States)

    Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J

    2016-05-31

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.

  18. Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement

    OpenAIRE

    Parris, Darren J.; Brooker, Rohan M.; Morgan, Michael A.; Dixson, Danielle L.; Stewart, Frank J.

    2016-01-01

    The Pomacentridae (damselfish) and Apogonidae (cardinalfish) are among the most common fish families on coral reefs and in the aquarium trade. Members of both families undergo a pelagic larvae phase prior to settlement on the reef, where adults play key roles in benthic habitat structuring and trophic interactions. Fish-associated microbial communities (microbiomes) significantly influence fish health and ecology, yet little is known of how microbiomes change with life stage. We quantified th...

  19. [Trophic webs of reef fishes in northwestern Cuba. I. Stomach contents].

    Science.gov (United States)

    Hernández, Ivet; Aguilar, Consuelo; González Sanón, Gaspar

    2008-06-01

    Trophic webs of reef fishes in northwestern Cuba. I. Stomach contents. Studies on the reef fishes of Cuba are not rare, but most have two basic limitations: small sample sizes and exclusion of small species. Our study sampled more species and larger samples in the sublitoral region of Havana city (23 degrees 7.587' N, 82 degrees 25.793' W), 2-18 m deep. We collected fish weekly from October 2004 through February 2006 with traps and harpoon. Overfishing has modified the fish communities. We used the relative importance index to describe the diets of carnivore and omnivore species, and a modification of the relative abundance method for the herbivores and sponge-eating species. The main food items are benthonic crustaceans (crabs, shrimp, copepods) and bony fish (mainly demersal species). Most species are eurifagous and thus, less affected by anthropic disturbance than specialist feeders.

  20. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  1. Length-weight relationship of fishes from coral reefs and lagoons of New Caledonia: an update

    OpenAIRE

    Letourneur, Y.; Kulbicki, M.; Labrosse, P.

    1998-01-01

    Length-weight relationships of 316 reef and lagoon fish from New Caledonia (SW Pacific Ocean) belonging to 68 families are computed. A total of 43,750 individuals was used for this purpose. Fish were sampled by different techniques such as rotenone poisoning, handline and bottom longline fishing, gill and trammel nets, and trawling in various isotopes (coral reefs, lagoon bottoms and mangroves).

  2. Pacific Reef Assessment and Monitoring Program: Rapid Ecological Assessments of Fish Large-Area Stationary Point Count Surveys (SPC) at Coral Reef Sites across the Pacific Ocean from 2000 to 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The large-area stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific...

  3. Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique

    Science.gov (United States)

    Nagelkerken, I.; van der Velde, G.; Gorissen, M. W.; Meijer, G. J.; Van't Hof, T.; den Hartog, C.

    2000-07-01

    The nursery function of various biotopes for coral reef fishes was investigated on Bonaire, Netherlands Antilles. Length and abundance of 16 commercially important reef fish species were determined by means of visual censuses during the day in six different biotopes: mangrove prop-roots ( Rhizophora mangle) and seagrass beds ( Thalassia testudinum) in Lac Bay, and four depth zones on the coral reef (0 to 3 m, 3 to 5 m, 10 to 15 m and 15 to 20 m). The mangroves, seagrass beds and shallow coral reef (0 to 3 m) appeared to be the main nursery biotopes for the juveniles of the selected species. Mutual comparison between biotopes showed that the seagrass beds were the most important nursery biotope for juvenile Haemulon flavolineatum, H. sciurus, Ocyurus chrysurus, Acanthurus chirurgus and Sparisoma viride, the mangroves for juvenile Lutjanus apodus, L. griseus, Sphyraena barracuda and Chaetodon capistratus, and the shallow coral reef for juvenile H. chrysargyreum, L. mahogoni , A. bahianus and Abudefduf saxatilis. Juvenile Acanthurus coeruleus utilized all six biotopes, while juvenile H. carbonarium and Anisotremus surinamensis were not observed in any of the six biotopes. Although fishes showed a clear preference for a specific nursery biotope, most fish species utilized multiple nursery biotopes simultaneously. The almost complete absence of juveniles on the deeper reef zones indicates the high dependence of juveniles on the shallow water biotopes as a nursery. For most fish species an (partial) ontogenetic shift was observed at a particular life stage from their (shallow) nursery biotopes to the (deeper) coral reef. Cluster analyses showed that closely related species within the families Haemulidae, Lutjanidae and Acanthuridae, and the different size classes within species in most cases had a spatial separation in biotope utilization.

  4. Depth Refuge and the Impacts of SCUBA Spearfishing on Coral Reef Fishes

    OpenAIRE

    Lindfield, Steven J.; McIlwain, Jennifer L.; Harvey, Euan S.

    2014-01-01

    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Gu...

  5. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    Science.gov (United States)

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Indices for assessing coral reef fish biodiversity: the need for a change in habits.

    Science.gov (United States)

    Loiseau, Nicolas; Gaertner, Jean-Claude

    2015-09-01

    We present the first representative and quantified overview of the indices used worldwide for assessing the biodiversity of coral reef fishes. On this basis, we discuss the suitability and drawbacks of the indices most widely used in the assessment of coral fish biodiversity. An extensive and systematic survey of the literature focused on coral reef fish biodiversity was conducted from 1990 up to the present. We found that the multicomponent aspect of biodiversity, which is considered as a key feature of biodiversity for numerous terrestrial and marine ecosystems, has been poorly taken into account in coral reef fish studies. Species richness is still strongly dominant while other diversity components, such as functional diversity, are underestimated even when functional information is available. We also demonstrate that the reason for choosing particular indices is often unclear, mainly based on empirical rationales and/or the reproduction of widespread habits, but generally with no clear relevance with regard to the aims of the studies. As a result, the most widely used indices (species richness, Shannon, etc.) would appear to be poorly suited to meeting the main challenges facing the monitoring of coral reef fish biodiversity in the future. Our results clearly show that coral reef scientists should rather take advantage of the multicomponent aspect of biodiversity. To facilitate this approach, we propose general guidelines to serve as a basis for the selection of indices that provide complementary and relevant information for monitoring the response of coral reef fish biodiversity in the face of structuring factors (natural or anthropic). The aim of these guidelines was to achieve a better match between the properties of the selected indices and the context of each study (e.g. expected effect of the main structuring factors, nature of data available).

  7. Artificial reefs and reef restoration in the Laurentian Great Lakes

    Science.gov (United States)

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  8. The status of coral reefs and associated fishes and invertebrates of commercial importance in Pedro Bank, Jamaica

    Directory of Open Access Journals (Sweden)

    Andrew W. Bruckner

    2014-09-01

    Full Text Available The coral reefs located off the north coast of the Jamaican mainland are some of the best and most studied reefs in the world. Coral reefs of Pedro Bank, Jamaica were assessed in March, 2012 as part of the KSLOF Global Reef Expedition using a modified Atlantic and Gulf Rapid Reef Assessment (AGRRA protocol. The main objectives were to: 1 characterize the distribution, structure and health of coral reefs; and 2 evaluate the population status of commercially important reef fishes and invertebrates. This work was conducted to assist in characterizing coral reef habitats within and outside a proposed fishery reserve, and identify other possible conservation zones. Within 20 reefs, live coral cover ranged from 4.9% to 19.2%. Coral communities were dominated by small corals (esp. Agaricia, Porites and Siderastrea although many sites had high abundances of large colonies of Montastraea annularis and M. faveolata, and these were generally in good condition. A single area, within the proposed fishery reserve, had extensive Acropora cervicornis thickets, and several shallow locations had small, but recovering A. palmata stands. Macroalgal cover at all sites was relatively low, with only three sites having greater than 30% cover; crustose coralline algae (CCA was high, with eight sites exceeding 20% cover. Fish biomass at all sites near the Cays was low, with a dominance of herbivores (parrotfish and surgeonfish and a near absence of groupers, snappers and other commercially important species. While parrotfish were the most abundant fish, these were all extremely small (mean size= 12cm; <4% over 29cm, and they were dominated by red band parrotfish (Sparisoma aurofrenatum followed by striped parrotfish (Scarus iseri. While coral communities remain in better condition than most coastal reefs in Jamaica, intense fishing pressure using fish traps (main target species: surgeonfish and hookah/spear fishing (main target: parrotfish is of grave concern to the

  9. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.; Hoey, A.S.; Wilson, S.K.; Messmer, V.; Graham, N.A.J.

    2011-01-01

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  10. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.

    2011-08-12

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  11. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    Science.gov (United States)

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  12. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    Science.gov (United States)

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  13. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Messmer, Vanessa; Brooks, Andrew J; Srinivasan, Maya; Munday, Philip L; Jones, Geoffrey P

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  14. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    Directory of Open Access Journals (Sweden)

    Sally J Holbrook

    Full Text Available Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia. Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  15. Coral reef fish populations can persist without immigration

    KAUST Repository

    Salles, Océ ane C.; Maynard, Jeffrey A.; Joannides, Marc; Barbu, Corentin M.; Saenz-Agudelo, Pablo; Almany, Glenn R.; Berumen, Michael L.; Thorrold, Simon R.; Jones, Geoffrey P.; Planes, Serge

    2015-01-01

    and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual

  16. Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals

    Science.gov (United States)

    Pires, Mathias M.; Guimarães, Paulo Roberto; Hoey, Andrew S.; Hay, Mark E.

    2017-01-01

    The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5–0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3–6 times greater, and macroalgal browsing was 3–5 times greater in MPAs than in non-MPAs. On average, MPAs had 260–280% as much coral cover and only 5–25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs. PMID:28122006

  17. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    Science.gov (United States)

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Assessing Caribbean Shallow and Mesophotic Reef Fish Communities Using Baited-Remote Underwater Video (BRUV) and Diver-Operated Video (DOV) Survey Techniques

    Science.gov (United States)

    Macaya-Solis, Consuelo; Exton, Dan A.; Gress, Erika; Wright, Georgina; Rogers, Alex D.

    2016-01-01

    Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30–150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth. PMID:27959907

  19. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish.

    Science.gov (United States)

    Justine, Jean-Lou; Beveridge, Ian; Boxshall, Geoffrey A; Bray, Rodney A; Miller, Terrence L; Moravec, František; Trilles, Jean-Paul; Whittington, Ian D

    2012-09-04

    Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific. Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20-25 per fish species, and the number of parasites identified at the species level is 9-13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species. Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that extinction of a coral reef fish species

  20. Local extinction of a coral reef fish explained by inflexible prey choice

    Science.gov (United States)

    Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.

    2014-12-01

    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.

  1. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas

    Science.gov (United States)

    Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.

    2015-01-01

    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104

  2. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas.

    Directory of Open Access Journals (Sweden)

    German A Soler

    Full Text Available Marine Protected Areas (MPAs offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores was significantly greater (by 40% - 200% in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.

  3. Individual consistency in the behaviors of newly-settled reef fish.

    Science.gov (United States)

    White, James R; Meekan, Mark G; McCormick, Mark I

    2015-01-01

    Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish.

  4. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    Science.gov (United States)

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  5. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish

    Science.gov (United States)

    Goldstein, E. D.; D'Alessandro, E. K.; Sponaugle, S.

    2017-09-01

    Environmental clines such as latitude and depth that limit species' distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems ( 30-150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish ( Stegastes partitus) ranging from shallow shelf (SS, restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  6. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Science.gov (United States)

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  7. CRED Rapid Ecological Assessment Reef Fish Survey at Aguijan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  8. CRED Rapid Ecological Assessment Reef Fish Survey at Guam, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110606 to 20110617,...

  9. CRED Rapid Ecological Assessment Reef Fish Survey at Rota, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  10. School is out on noisy reefs: the effect of boat noise on predator learning and survival of juvenile coral reef fishes.

    Science.gov (United States)

    Ferrari, Maud C O; McCormick, Mark I; Meekan, Mark G; Simpson, Stephen D; Nedelec, Sophie L; Chivers, Douglas P

    2018-01-31

    Noise produced by anthropogenic activities is increasing in many marine ecosystems. We investigated the effect of playback of boat noise on fish cognition. We focused on noise from small motorboats, since its occurrence can dominate soundscapes in coastal communities, the number of noise-producing vessels is increasing rapidly and their proximity to marine life has the potential to cause deleterious effects. Cognition-or the ability of individuals to learn and remember information-is crucial, given that most species rely on learning to achieve fitness-promoting tasks, such as finding food, choosing mates and recognizing predators. The caveat with cognition is its latent effect: the individual that fails to learn an important piece of information will live normally until the moment where it needs the information to make a fitness-related decision. Such latent effects can easily be overlooked by traditional risk assessment methods. Here, we conducted three experiments to assess the effect of boat noise playbacks on the ability of fish to learn to recognize predation threats, using a common, conserved learning paradigm. We found that fish that were trained to recognize a novel predator while being exposed to 'reef + boat noise' playbacks failed to subsequently respond to the predator, while their 'reef noise' counterparts responded appropriately. We repeated the training, giving the fish three opportunities to learn three common reef predators, and released the fish in the wild. Those trained in the presence of 'reef + boat noise' playbacks survived 40% less than the 'reef noise' controls over our 72 h monitoring period, a performance equal to that of predator-naive fish. Our last experiment indicated that these results were likely due to failed learning, as opposed to stress effects from the sound exposure. Neither playbacks nor real boat noise affected survival in the absence of predator training. Our results indicate that boat noise has the potential to cause

  11. Evaluating the Potential for Marine and Hydrokinetic Devices to Act as Artificial Reefs or Fish Aggregating Devices. Based on Analysis of Surrogates in Tropical, Subtropical, and Temperate U.S. West Coast and Hawaiian Coastal Waters

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Sharon H. [H. T. Harvey & Associates, Honolulu, HI (United States); Hamilton, Christine D. [H. T. Harvey & Associates, Honolulu, HI (United States); Spencer, Gregory C. [H. T. Harvey & Associates, Honolulu, HI (United States); Ogston, Heather O. [H. T. Harvey & Associates, Honolulu, HI (United States)

    2015-05-12

    Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai‘i, and a better understanding of their ecological effects on fish, particularly on special-status fish (e.g., threatened and endangered) is needed to facilitate project design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef-associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs), forming the nuclei for groups of fishes. Little is known about the potential for WECs and TECs to function as artificial reefs and FADs in coastal waters of the U.S. West Coast and Hawai‘i. We evaluated these potential ecological interactions by reviewing relevant information about fish associations with surrogate structures, such as artificial reefs, natural reefs, kelps, floating debris, oil and gas platforms, marine debris, anchored FADs deployed to enhance fishing opportunities, net-cages used for mariculture, and piers and docks. Based on our review, we postulate that the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai‘i likely will function as small-scale artificial reefs and attract potentially high densities of reef-associated fishes (including special-status rockfish species [Sebastes spp.] along the mainland), and that the midwater and surface structures of WECs placed in the tropical waters of Hawai‘i likely will function as de facto FADs with species assemblages varying by distance from shore and deployment depth. Along the U.S. West Coast, frequent associations with midwater and surface structures may be less likely: juvenile, semipelagic, kelp-associated rockfishes may occur at midwater and surface structures of WECs in coastal waters of

  12. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.; Baird, Andrew Hamilton; Depczynski, Martial R.; Gonzá lez-Cabello, Alonso; Hoey, Andrew; Lefé vre, Carine D.; Tanner, Jennifer K.

    2012-01-01

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  13. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.

    2012-03-25

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  14. Inter-habitat variation in density and size composition of reef fishes from the Cuban Northwestern shelf.

    Science.gov (United States)

    Aguilar, Consuelo; González-Sansón, Gaspar; Cabrera, Yureidy; Ruiz, Alexei; Curry, R Allen

    2014-06-01

    Movement and exchange of individuals among habitats is critical for the dynamics and success of reef fish populations. Size segregation among habitats could be taken as evidence for habitat connectivity, and this would be a first step to formulate hypotheses about ontogenetic inter-habitat migrations. The primary goal of our research was to find evidence of inter-habitat differences in size distributions and density of reef fish species that can be classified a priori as habitat-shifters in an extensive (-600km2) Caribbean shelf area in NW Cuba. We sampled the fish assemblage of selected species using visual census (stationary and transect methods) in 20 stations (sites) located in mangrove roots, patch reefs, inner zone of the crest and fore reef (12-16m depth). In each site, we performed ten censuses for every habitat type in June and September 2009. A total of 11 507 individuals of 34 species were counted in a total of 400 censuses. We found significant differences in densities and size compositions among reef and mangrove habitats, supporting the species-specific use of coastal habitats. Adults were found in all habitats. Reef habitats, mainly patch reefs, seem to be most important for juvenile fish of most species. Mangroves were especially important for two species of snappers (Lutjanus apodus and L. griseus), providing habitat for juveniles. These species also displayed well defined gradients in length composition across the shelf.

  15. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    Science.gov (United States)

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2018-01-01

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  16. Species-specific profiles and risk assessment of perfluoroalkyl substances in coral reef fishes from the South China Sea.

    Science.gov (United States)

    Pan, Chang-Gui; Yu, Ke-Fu; Wang, Ying-Hui; Zhang, Rui-Jie; Huang, Xue-Yong; Wei, Chao-Shuai; Wang, Wei-Quan; Zeng, Wei-Bin; Qin, Zhen-Jun

    2018-01-01

    The contamination profiles of sixteen perfluoroalkyl substances (PFAS) were examined in coral reef fish samples collected from the South China Sea (SCS) where no information about this topic was available in the literature. The results revealed that six PFAS were found in coral reef fish samples from the SCS. Perfluorooctane sulfonate (PFOS) was the most predominant PFAS contaminant detected in most of the samples, with the highest concentration value of 27.05 ng/g wet weight (ww) observed in Cephalopholis urodelus. Perfluoroundecanoic acid (PFUnDA) and Perfluorotridecanoic acid (PFTrDA) were the second and third dominant PFAS, respectively. Mean PFOS concentrations in muscle of seven coral reef fish varied from 0.29 ng/g ww in Lethrinus olivaceus to 10.78 ng/g ww in Cephalopholis urodelus. No significant linear relationship was observed between PFOS levels and coral reef fish traits (length, weight) collected in this region. Average daily intake of PFOS for the seven coral reef fishes ranged from 0.79 ng/kg/d for Lethrinus olivaceus to 29.53 ng/kg/d for Cephalopholis urodelus. The hazard ratio (HR) values for human consumption of PFOS-contaminated coral reef fishes ranged from 0.04 to 1.48, with Cephalopholis urodelus having the highest HR value of 1.18 (higher than 1) among the species, indicating frequent consumption of Cephalopholis urodelus might pose potential health risk to local population. The present work have provided the first hand data of PFAS in coral reef fishes in the SCS and indirectly demonstrated the existence of low level PFAS pollution in the SCS in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Reef sharks: recent advances in ecological understanding to inform conservation.

    Science.gov (United States)

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions. © 2015 The Fisheries Society of the British Isles.

  18. Not finding Nemo: limited reef-scale retention in a coral reef fish

    KAUST Repository

    Nanninga, Gerrit B.

    2015-02-03

    The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.

  19. Coastal rocky reef fishes of Santa Catarina's northern islands, Brazil

    Directory of Open Access Journals (Sweden)

    Johnatas Adelir Alves

    2015-11-01

    Full Text Available The coast of the state of Santa Catarina only has non-biogenic reefs, i.e. rocky and artificial reefs, and is considered the geographic south limit for many reef fish species. At present the diversity of organisms associated with reef environments is threatened. This study aimed to record the number of families and species of reef fish fauna of the north coast of the state of Santa Catarina. The data were collected through underwater visual census performed on Graças archipelago (26°12'S /48º29'W, Tamboretes archipelago (26°22'S/48°31'W and Barra do Sul islands (26°27'S/48º35'W. A total of 166 species was observed (6 elasmobranchii and 160 actinopterygii belonging to 66 families. The families with more species richness were Carangidae (16, Epinephelidae (9, Blenidae (8, Serranidae (7, Haemulidae (6, Sparidae (6 Tetraodontidae (6, Labridae-Scarini (5, Labrisomidae (5 Pomacentridae (5, Lutjanidae (5 and Muraenidae (5. This study add to the current published list, new 115 species, including new occurrences (e.g. Chromis limbata, and some endemic (e.g. Sparisoma amplum, exotic (e.g. Omobranchus punctatus, endangered (e.g. Hippocampus erectus and overexploited (e.g. Lutjanus analis species. Twenty one species are present in the IUCN’s list, twelve in the IBAMA’s list and four in the local list. All elasmobranchii recorded here are considered threatened species, like the brazilian guitarfish (Rhinobatos horkelii, which appears in three red lists, and it is considered critically endangered. All species of Epinephelidae are mentioned in the list of risk categories of the IUCN and five are cited as overexploited or threatened with overexploitation by IBAMA. Among Epinephelidae, the goliath grouper (Epinephelus itajara, is present in all red lists and has specific protection rules in Brazil. The gathered information will allow to take appropriate conservation measures, such as the establishment of marine protected areas, monitoring of fishing

  20. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems.

    Science.gov (United States)

    Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D

    2014-08-01

    Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. © 2014 John Wiley & Sons Ltd.

  1. Coral reef fish assemblages along a disturbance gradient in the northern Persian Gulf: A seasonal perspective.

    Science.gov (United States)

    Ghazilou, Amir; Shokri, Mohammad Reza; Gladstone, William

    2016-04-30

    Seasonal dynamics of coral reef fish assemblages were assessed along a gradient of potential anthropogenic disturbance in the Northern Persian Gulf. Overall, the attributes of coral reef fish assemblages showed seasonality at two different levels: seasonal changes irrespective of the magnitude of disturbance level (e.g. species richness), and seasonal changes in response to disturbance level (e.g. total abundance and assemblage composition). The examined parameters mostly belonged to the second group, but the interpretation of the relationship between patterns of seasonal changes and the disturbance level was not straightforward. The abundance of carnivorous fishes did not vary among seasons. SIMPER identified the family Nemipteridae as the major contributor to the observed spatiotemporal variations in the composition of coral reef fish assemblages in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    Science.gov (United States)

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. © 2014 John Wiley & Sons Ltd.

  3. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  4. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    Science.gov (United States)

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  5. Challenges for Managing Fisheries on Diverse Coral Reefs

    Directory of Open Access Journals (Sweden)

    Douglas Fenner

    2012-03-01

    on the ecosystem, but also vice versa. Marine Protected Areas (MPAs have been a favorite management tool, since they require little information. MPAs are excellent conservation and precautionary tools, but address only fishing threats, and may be modest fisheries management tools, which are often chosen because they appear to be the only feasible alternative. “Dataless management” is based on qualitative information from traditional ecological knowledge and/or science, is sufficient for successful reef fisheries management, and is very inexpensive and practical, but requires either customary marine tenure or strong governmental leadership. Customary marine tenure has high social acceptance and compliance and may work fairly well for fisheries management and conservation where it is still strong.

  6. Avoiding conflicts and protecting coral reefs: Customary management benefits marine habitats and fish biomass

    KAUST Repository

    Campbell, Stuart J.

    2012-10-01

    Abstract One of the major goals of coral reef conservation is to determine the most effective means of managing marine resources in regions where economic conditions often limit the options available. For example, no-take fishing areas can be impractical in regions where people rely heavily on reef fish for food. In this study we test whether coral reef health differed among areas with varying management practices and socio-economic conditions on Pulau Weh in the Indonesian province of Aceh. Our results show that gear restrictions, in particular prohibiting the use of nets, were successful in minimizing habitat degradation and maintaining fish biomass despite ongoing access to the fishery. Reef fish biomass and hard-coral cover were two- to eight-fold higher at sites where fishing nets were prohibited. The guiding principle of the local customary management system, Panglima Laot, is to reduce conflict among community members over access to marine resources. Consequently, conservation benefits in Aceh have arisen from a customary system that lacks a specific environmental ethic or the means for strong resource-based management. Panglima Laot includes many of the features of successful institutions, such as clearly defined membership rights and the opportunity for resource users to be involved in making, enforcing and changing the rules. Such mechanisms to reduce conflict are the key to the success of marine resource management, particularly in settings that lack resources for enforcement. © 2012 Fauna & Flora International.

  7. Validation of microsatellite multiplexes for parentage analysis and species discrimination in two hybridizing species of coral reef fish (Plectropomus spp., Serranidae)

    KAUST Repository

    Harrison, H.B.

    2014-04-24

    Microsatellites are often considered ideal markers to investigate ecological processes in animal populations. They are regularly used as genetic barcodes to identify species, individuals, and infer familial relationships. However, such applications are highly sensitive the number and diversity of microsatellite markers, which are also prone to error. Here, we propose a novel framework to assess the suitability of microsatellite datasets for parentage analysis and species discrimination in two closely related species of coral reef fish, Plectropomus leopardus and P. maculatus (Serranidae). Coral trout are important fisheries species throughout the Indo-Pacific region and have been shown to hybridize in parts of the Great Barrier Reef, Australia. We first describe the development of 25 microsatellite loci and their integration to three multiplex PCRs that co-amplify in both species. Using simulations, we demonstrate that the complete suite of markers provides appropriate power to discriminate between species, detect hybrid individuals, and resolve parent-offspring relationships in natural populations, with over 99.6% accuracy in parent-offspring assignments. The markers were also tested on seven additional species within the Plectropomus genus with polymorphism in 28-96% of loci. The multiplex PCRs developed here provide a reliable and cost-effective strategy to investigate evolutionary and ecological dynamics and will be broadly applicable in studies of wild populations and aquaculture brood stocks for these closely related fish species. 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

  8. Validation of microsatellite multiplexes for parentage analysis and species discrimination in two hybridizing species of coral reef fish (Plectropomus spp., Serranidae)

    KAUST Repository

    Harrison, H.B.; Feldheim, K.A.; Jones, G.P.; Ma, K.; Mansour, H.; Perumal, S.; Williamson, D.H.; Berumen, Michael L.

    2014-01-01

    Microsatellites are often considered ideal markers to investigate ecological processes in animal populations. They are regularly used as genetic barcodes to identify species, individuals, and infer familial relationships. However, such applications are highly sensitive the number and diversity of microsatellite markers, which are also prone to error. Here, we propose a novel framework to assess the suitability of microsatellite datasets for parentage analysis and species discrimination in two closely related species of coral reef fish, Plectropomus leopardus and P. maculatus (Serranidae). Coral trout are important fisheries species throughout the Indo-Pacific region and have been shown to hybridize in parts of the Great Barrier Reef, Australia. We first describe the development of 25 microsatellite loci and their integration to three multiplex PCRs that co-amplify in both species. Using simulations, we demonstrate that the complete suite of markers provides appropriate power to discriminate between species, detect hybrid individuals, and resolve parent-offspring relationships in natural populations, with over 99.6% accuracy in parent-offspring assignments. The markers were also tested on seven additional species within the Plectropomus genus with polymorphism in 28-96% of loci. The multiplex PCRs developed here provide a reliable and cost-effective strategy to investigate evolutionary and ecological dynamics and will be broadly applicable in studies of wild populations and aquaculture brood stocks for these closely related fish species. 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

  9. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    Science.gov (United States)

    Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.

    2017-09-01

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population

  10. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    KAUST Repository

    Abesamis, Rene A.

    2017-03-24

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish (Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds (n = 35) far outnumbering those indicating self-recruitment (n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population

  11. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

    KAUST Repository

    Wilson, S. K.; Adjeroud, M.; Bellwood, D. R.; Berumen, Michael L.; Booth, D.; Bozec, Y.-M.; Chabanet, P.; Cheal, A.; Cinner, J.; Depczynski, M.; Feary, D. A.; Gagliano, M.; Graham, N. A. J.; Halford, A. R.; Halpern, B. S.; Harborne, A. R.; Hoey, A. S.; Holbrook, S. J.; Jones, G. P.; Kulbiki, M.; Letourneur, Y.; De Loma, T. L.; McClanahan, T.; McCormick, M. I.; Meekan, M. G.; Mumby, P. J.; Munday, P. L.; Ohman, M. C.; Pratchett, M. S.; Riegl, B.; Sano, M.; Schmitt, R. J.; Syms, C.

    2010-01-01

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef

  12. Coral reef fish biomass and benthic cover data from Timor-Leste in June 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reef fish and benthos were surveyed at 150 shallow-water coral reef sites across the north coast of Timor-Leste and around Atauro Island in June 2013 during a...

  13. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea

    KAUST Repository

    Coker, Darren James; DiBattista, Joseph; Sinclair-Taylor, Tane; Berumen, Michael L.

    2017-01-01

    Surveys to document coral-reef fish assemblages are often limited to visually conspicuous species, thus excluding a significant proportion of the biodiversity. Through standardized collections of cryptobenthic reef fishes in the central and southern Red Sea, a total of 238 species and operational taxonomic units (OTUs) from 35 families were collected. Abundance and species richness increased by 60 and 30%, respectively, from north to south, and fish community composition differed between the two regions and with proximity to shore in the central region. Models suggest regional influences in fish communities, with latitudinal patterns influenced by key coral groups (Acropora, Pocilloporidae) and variation in environmental parameters (chlorophyll a, sea surface temperature, salinity). This study illustrates the limited taxonomic resolution in this group and in this region, and the need to expand baseline data for this under-studied assemblage. To assist in advancing this initiative, we have produced a catalogue of specimens, archived photographs, and established a DNA sequence library based on cytochrome-c oxidase subunit-I barcodes for all OTUs.

  14. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea

    Science.gov (United States)

    Coker, Darren J.; DiBattista, Joseph D.; Sinclair-Taylor, Tane H.; Berumen, Michael L.

    2018-03-01

    Surveys to document coral-reef fish assemblages are often limited to visually conspicuous species, thus excluding a significant proportion of the biodiversity. Through standardized collections of cryptobenthic reef fishes in the central and southern Red Sea, a total of 238 species and operational taxonomic units (OTUs) from 35 families were collected. Abundance and species richness increased by 60 and 30%, respectively, from north to south, and fish community composition differed between the two regions and with proximity to shore in the central region. Models suggest regional influences in fish communities, with latitudinal patterns influenced by key coral groups ( Acropora, Pocilloporidae) and variation in environmental parameters (chlorophyll a, sea surface temperature, salinity). This study illustrates the limited taxonomic resolution in this group and in this region, and the need to expand baseline data for this under-studied assemblage. To assist in advancing this initiative, we have produced a catalogue of specimens, archived photographs, and established a DNA sequence library based on cytochrome-c oxidase subunit-I barcodes for all OTUs.

  15. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea

    KAUST Repository

    Coker, Darren James

    2017-11-23

    Surveys to document coral-reef fish assemblages are often limited to visually conspicuous species, thus excluding a significant proportion of the biodiversity. Through standardized collections of cryptobenthic reef fishes in the central and southern Red Sea, a total of 238 species and operational taxonomic units (OTUs) from 35 families were collected. Abundance and species richness increased by 60 and 30%, respectively, from north to south, and fish community composition differed between the two regions and with proximity to shore in the central region. Models suggest regional influences in fish communities, with latitudinal patterns influenced by key coral groups (Acropora, Pocilloporidae) and variation in environmental parameters (chlorophyll a, sea surface temperature, salinity). This study illustrates the limited taxonomic resolution in this group and in this region, and the need to expand baseline data for this under-studied assemblage. To assist in advancing this initiative, we have produced a catalogue of specimens, archived photographs, and established a DNA sequence library based on cytochrome-c oxidase subunit-I barcodes for all OTUs.

  16. Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement.

    Science.gov (United States)

    Parris, Darren J; Brooker, Rohan M; Morgan, Michael A; Dixson, Danielle L; Stewart, Frank J

    2016-01-01

    The Pomacentridae (damselfish) and Apogonidae (cardinalfish) are among the most common fish families on coral reefs and in the aquarium trade. Members of both families undergo a pelagic larvae phase prior to settlement on the reef, where adults play key roles in benthic habitat structuring and trophic interactions. Fish-associated microbial communities (microbiomes) significantly influence fish health and ecology, yet little is known of how microbiomes change with life stage. We quantified the taxonomic (16S rRNA gene) composition of whole gut microbiomes from ten species of damselfish and two species of cardinalfish from Lizard Island, Australia, focusing specifically on comparisons between pelagic larvae prior to settlement on the reef versus post-settlement juvenile and adult individuals. On average, microbiome phylogenetic diversity increased from pre- to post-settlement, and was unrelated to the microbial composition in the surrounding water column. However, this trend varied among species, suggesting stochasticity in fish microbiome assembly. Pre-settlement fish were enriched with bacteria of the Endozoicomonaceae, Shewanellaceae, and Fusobacteriaceae, whereas settled fish harbored higher abundances of Vibrionaceae and Pasteurellaceae. Several individual operational taxonomic units, including ones related to Vibrio harveyi, Shewanella sp., and uncultured Endozoicomonas bacteria, were shared between both pre and post-settlement stages and may be of central importance in the intestinal niche across development. Richness of the core microbiome shared among pre-settlement fish was comparable to that of settled individuals, suggesting that changes in diversity with adulthood are due to the acquisition or loss of host-specific microbes. These results identify a key transition in microbiome structure across host life stage, suggesting changes in the functional contribution of microbiomes over development in two ecologically dominant reef fish families.

  17. 78 FR 37208 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico...

    Science.gov (United States)

    2013-06-20

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands; Exempted Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National... implementing the Fishery Management Plan for the Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands...

  18. Multiple Stressors and Ecological Complexity Require A New Approach to Coral Reef Research

    Directory of Open Access Journals (Sweden)

    Linwood Hagan Pendleton

    2016-03-01

    Full Text Available Ocean acidification, climate change, and other environmental stressors threaten coral reef ecosystems and the people who depend upon them. New science reveals that these multiple stressors interact and may affect a multitude of physiological and ecological processes in complex ways. The interaction of multiple stressors and ecological complexity may mean that the negative effects on coral reef ecosystems will happen sooner and be more severe than previously thought. Yet, most research on the effects of global change on coral reefs focus on one or few stressors and pathways or outcomes (e.g. bleaching. Based on a critical review of the literature, we call for a regionally targeted strategy of mesocosm-level research that addresses this complexity and provides more realistic projections about coral reef impacts in the face of global environmental change. We believe similar approaches are needed for other ecosystems that face global environmental change.

  19. Linking Ecological and Perceptual Assessments for Environmental Management: a Coral Reef Case Study

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Dinsdale

    2009-12-01

    Full Text Available Integrating information from a range of community members in environmental management provides a more complete assessment of the problem and a diversification of management options, but is difficult to achieve. To investigate the relationship between different environmental interpretations, I compared three distinct measures of anchor damage on coral reefs: ecological measures, perceptual meanings, and subjective health judgments. The ecological measures identified an increase in the number of overturned corals and a reduction in coral cover, the perceptual meanings identified a loss of visual quality, and the health judgments identified a reduction in the health of the coral reef sites associated with high levels of anchoring. Combining the perceptual meanings and health judgments identified that the judgment of environmental health was a key feature that both scientific and lay participants used to describe the environment. Some participants in the survey were familiar with the coral reef environment, and others were not. However, they provided consistent judgment of a healthy coral reef, suggesting that these judgments were not linked to present-day experiences. By combining subjective judgments and ecological measures, the point at which the environment is deemed to lose visual quality was identified; for these coral reefs, if the level of damage rose above 10.3% and the cover of branching corals dropped below 17.1%, the reefs were described as unhealthy. Therefore, by combining the information, a management agency can involve the community in identifying when remedial action is required or when management policies are effectively maintaining a healthy ecosystem.

  20. The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages

    Science.gov (United States)

    Ahmadia, Gabby N.; Tornabene, Luke; Smith, David J.; Pezold, Frank L.

    2018-03-01

    Factors shaping coral-reef fish species assemblages can operate over a wide range of spatial scales (local versus regional) and across both proximate and evolutionary time. Niche theory and neutral theory provide frameworks for testing assumptions and generating insights about the importance of local versus regional processes. Niche theory postulates that species assemblages are an outcome of evolutionary processes at regional scales followed by local-scale interactions, whereas neutral theory presumes that species assemblages are formed by largely random processes drawing from regional species pools. Indo-Pacific cryptobenthic coral-reef fishes are highly evolved, ecologically diverse, temporally responsive, and situated on a natural longitudinal diversity gradient, making them an ideal group for testing predictions from niche and neutral theories and effects of regional and local processes on species assemblages. Using a combination of ecological metrics (fish density, diversity, assemblage composition) and evolutionary analyses (testing for phylogenetic niche conservatism), we demonstrate that the structure of cryptobenthic fish assemblages can be explained by a mixture of regional factors, such as the size of regional species pools and broad-scale barriers to gene flow/drivers of speciation, coupled with local-scale factors, such as the relative abundance of specific microhabitat types. Furthermore, species of cryptobenthic fishes have distinct microhabitat associations that drive significant differences in assemblage community structure between microhabitat types, and these distinct microhabitat associations are phylogenetically conserved over evolutionary timescales. The implied differential fitness of cryptobenthic fishes across varied microhabitats and the conserved nature of their ecology are consistent with predictions from niche theory. Neutral theory predictions may still hold true for early life-history stages, where stochastic factors may be more

  1. CRED Rapid Ecological Assessment Reef Fish Survey at Swains, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  2. CRED Rapid Ecological Assessment Reef Fish Survey at Pagan, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  3. CRED Rapid Ecological Assessment Reef Fish Survey at Alamagan, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  4. CRED Rapid Ecological Assessment Reef Fish Survey at Rota, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  5. CRED Rapid Ecological Assessment Reef Fish Survey at Tutuila, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  6. CRED Rapid Ecological Assessment Reef Fish Survey at Rose, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  7. CRED Rapid Ecological Assessment Reef Fish Survey at Tau, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  8. Ecology and ecological quality of fish in lakes and reservoirs

    Czech Academy of Sciences Publication Activity Database

    Kubečka, Jan; Boukal S., David; Čech, Martin; Hickley, P.; Kitchell, J. F.; Ricard, Daniel; Rudstam, L.; Soukalová, Kateřina; Welcomme, R.

    2016-01-01

    Roč. 173, January (2016), s. 1-3 ISSN 0165-7836 Institutional support: RVO:60077344 Keywords : fish ecological quality * ecological potential * distribution * migration * bioindicators * management monitoring * food webs Subject RIV: GL - Fishing Impact factor: 2.185, year: 2016

  9. Of reef fishes, overfishing and in situ observations of fish traps in St. John, U.S. Virgin Islands

    Science.gov (United States)

    Garrison, Virginia H.; Rogers, Caroline S.; Beets, J.

    1998-01-01

    Fishing with a variety of methods and gears, including traps, is allowed within the waters of Virgin Islands National Park (St. 10hn, U.S. Virgin Islands). Randall's 1 9 6 1 observation of the effects of overushing in nearshore waters off Sto John has been followed by three and a half decades of reports documenting the declining reef fish catch in the Virgin Islands and much of the Caribbean. To assess the state of the trap fishery in St. John waters, traps set by fishers were visually censused in situ in 1992, 1993 and 1994 both inside and outside park waters. Fifty-nine species of fishes representing 23 families and 1340 individuals were identified from 285 traps set in five habitat types (coral reef, octocoral hard-bottom, seagrass beds, algal plains and non-living substrate). The greatest number of observed traps were in algal plain (31%) and gorgonian habitat (27%), pointing to greater exploitation of deeper, non­ coral habitats. Coral habitat accounted for the most species trapped (41), whereas the mean number of fishes per trap was highest in algal plain (5.7, se=0.6). Six species made up 51% of all fish observed in traps. The Acanthuridae was the most abundant family. Species composition and number of fishes per trap were similar inside and outside park waters. Scarids and serranids were more frequently observed in traps inside the park. Between 1992 and 1994. patterns in the data emerged: smaller numbers of fish per trap; shifts to smaller size classes; fewer serranids, lutjanids, sparids, and balistids, and all feeding guilds except herbivores per trap; more acanthurids per trap. Compared with other trap data from the Virgin Islands and the Caribbean - Florida region, the mean number of fish and biomass per St. John trap are low, serranid numbers are low, and acanthurid and herbivore numbers are high. The reef-associated fishes of St. John appear to be overexploited.

  10. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Science.gov (United States)

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  11. The status of coral reef ecology research in the Red Sea

    KAUST Repository

    Berumen, Michael L.

    2013-06-21

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia\\'s Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically "young" sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world\\'s most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae

    Directory of Open Access Journals (Sweden)

    Vandewalle Pierre

    2011-03-01

    Full Text Available Abstract Background Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their post-settlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the

  13. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae)

    Science.gov (United States)

    2011-01-01

    Background Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their post-settlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide

  14. Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement

    Directory of Open Access Journals (Sweden)

    Darren J. Parris

    2016-08-01

    Full Text Available The Pomacentridae (damselfish and Apogonidae (cardinalfish are among the most common fish families on coral reefs and in the aquarium trade. Members of both families undergo a pelagic larvae phase prior to settlement on the reef, where adults play key roles in benthic habitat structuring and trophic interactions. Fish-associated microbial communities (microbiomes significantly influence fish health and ecology, yet little is known of how microbiomes change with life stage. We quantified the taxonomic (16S rRNA gene composition of whole gut microbiomes from ten species of damselfish and two species of cardinalfish from Lizard Island, Australia, focusing specifically on comparisons between pelagic larvae prior to settlement on the reef versus post-settlement juvenile and adult individuals. On average, microbiome phylogenetic diversity increased from pre- to post-settlement, and was unrelated to the microbial composition in the surrounding water column. However, this trend varied among species, suggesting stochasticity in fish microbiome assembly. Pre-settlement fish were enriched with bacteria of the Endozoicomonaceae, Shewanellaceae, and Fusobacteriaceae, whereas settled fish harbored higher abundances of Vibrionaceae and Pasteurellaceae. Several individual operational taxonomic units, including ones related to Vibrio harveyi, Shewanella sp., and uncultured Endozoicomonas bacteria, were shared between both pre and post-settlement stages and may be of central importance in the intestinal niche across development. Richness of the core microbiome shared among pre-settlement fish was comparable to that of settled individuals, suggesting that changes in diversity with adulthood are due to the acquisition or loss of host-specific microbes. These results identify a key transition in microbiome structure across host life stage, suggesting changes in the functional contribution of microbiomes over development in two ecologically dominant reef fish

  15. A clear human footprint in the coral reefs of the Caribbean.

    Science.gov (United States)

    Mora, Camilo

    2008-04-07

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs.

  16. Biscayne National Park study on reef fish community changes over time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish assemblage structure was assessed in 20062007 (recent period) in Biscayne National Park, Florida, USA , and compared with data collected from 1977 to 1981...

  17. Understanding spearfishing in a coral reef fishery: Fishers' opportunities, constraints, and decision-making.

    Science.gov (United States)

    Pavlowich, Tyler; Kapuscinski, Anne R

    2017-01-01

    Social and ecological systems come together during the act of fishing. However, we often lack a deep understanding of the fishing process, despite its importance for understanding and managing fisheries. A quantitative, mechanistic understanding of the opportunities fishers encounter, the constraints they face, and how they make decisions within the context of opportunities and constraints will enhance the design of fisheries management strategies to meet linked ecological and social objectives and will improve scientific capacity to predict impacts of different strategies. We examined the case of spearfishing in a Caribbean coral reef fishery. We mounted cameras on fishers' spearguns to observe the fish they encountered, what limited their ability to catch fish, and how they made decisions about which fish to target. We observed spearfishers who dove with and without the assistance of compressed air, and compared the fishing process of each method using content analysis of videos and decision models of fishers' targeting selections. Compressor divers encountered more fish, took less time to catch each fish, and had a higher rate of successful pursuits. We also analyzed differences among taxa in this multispecies fishery, because some taxa are known to be ecologically or economically more valuable than others. Parrotfish are ecologically indispensable for healthy coral reefs, and they were encountered and captured more frequently than any other taxon. Fishers made decisions about which fish to target based on a fish's market value, proximity to the fisher, and taxon. The information uncovered on fishers' opportunities, constraints, and decision making has implications for managing this fishery and others. Moreover, it demonstrates the value of pursuing an improved understanding of the fishing process from the perspective of the fishers.

  18. Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes.

    Science.gov (United States)

    Brandl, Simon J; Bellwood, David R

    2015-09-25

    Reciprocity is frequently assumed to require complex cognitive abilities. Therefore, it has been argued that reciprocity may be restricted to animals that can meet these demands. Here, we provide evidence for the potential presence of direct reciprocity in teleost fishes. We demonstrate that in pairs of coral reef rabbitfishes (f. Siganidae), one fish frequently assumes an upright vigilance position in the water column, while the partner forages in small crevices in the reef substratum. Both behaviours are strongly coordinated and partners regularly alternate their positions, resulting in a balanced distribution of foraging activity. Compared to solitary individuals, fishes in pairs exhibit longer vigilance bouts, suggesting that the help provided to the partner is costly. In turn, fishes in pairs take more consecutive bites and penetrate deeper into crevices than solitary individuals, suggesting that the safety provided by a vigilant partner may outweigh initial costs by increasing foraging efficiency. Thus, the described system appears to meet all of the requirements for direct reciprocity. We argue that the nature of rabbitfish pairs provides favourable conditions for the establishment of direct reciprocity, as continuous interaction with the same partner, simultaneous needs, interdependence, and communication relax the cognitive demands of reciprocal cooperation.

  19. Sediments and herbivory as sensitive indicators of coral reef degradation

    Directory of Open Access Journals (Sweden)

    Christopher H. R. Goatley

    2016-03-01

    Full Text Available Around the world, the decreasing health of coral reef ecosystems has highlighted the need to better understand the processes of reef degradation. The development of more sensitive tools, which complement traditional methods of monitoring coral reefs, may reveal earlier signs of degradation and provide an opportunity for pre-emptive responses. We identify new, sensitive metrics of ecosystem processes and benthic composition that allow us to quantify subtle, yet destabilizing, changes in the ecosystem state of an inshore coral reef on the Great Barrier Reef. Following severe climatic disturbances over the period 2011-2012, the herbivorous reef fish community of the reef did not change in terms of biomass or functional groups present. However, fish-based ecosystem processes showed marked changes, with grazing by herbivorous fishes declining by over 90%. On the benthos, algal turf lengths in the epilithic algal matrix increased more than 50% while benthic sediment loads increased 37-fold. The profound changes in processes, despite no visible change in ecosystem state, i.e., no shift to macroalgal dominance, suggest that although the reef has not undergone a visible regime-shift, the ecosystem is highly unstable, and may sit on an ecological knife-edge. Sensitive, process-based metrics of ecosystem state, such as grazing or browsing rates thus appear to be effective in detecting subtle signs of degradation and may be critical in identifying ecosystems at risk for the future.

  20. Fish4Knowledge collecting and analyzing massive coral reef fish video data

    CERN Document Server

    Chen-Burger, Yun-Heh; Giordano, Daniela; Hardman, Lynda; Lin, Fang-Pang

    2016-01-01

    This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and tracking, fish species recognition and analysis, a large SQL database to record the results and an efficient retrieval mechanism. Novel user interface mechanisms were developed to provide easy access for marine ecologists, who wanted to explore the dataset. The book is a useful resource for system builders, as it gives an overview of the many new methods that were created to build the Fish4Knowledge system in a manner that also allows readers to see ho...

  1. New perspectives on ecological mechanisms affecting coral recruitment on reefs

    NARCIS (Netherlands)

    Ritson-Williams, R.; Arnold, S.N.; Fogarty, N.D.; Steneck, R.S.; Vermeij, M.J.A.; Paul, V.J.

    2009-01-01

    Coral mortality has increased in recent decades, making coral recruitment more important than ever in sustaining coral reef ecosystems and contributing to their resilience. This review summarizes existing information on ecological factors affecting scleractinian coral recruitment. Successful

  2. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands

    Science.gov (United States)

    Zgliczynski, B. J.; Williams, I. D.; Schroeder, R. E.; Nadon, M. O.; Richards, B. L.; Sandin, S. A.

    2013-09-01

    Widespread declines among many coral reef fisheries have led scientists and managers to become increasingly concerned over the extinction risk facing some species. To aid in assessing the extinction risks facing coral reef fishes, large-scale censuses of the abundance and distribution of individual species are critically important. We use fisheries-independent data collected as part of the NOAA Pacific Reef Assessment and Monitoring Program from 2000 to 2009 to describe the range and density across the US Pacific of coral reef fishes included on The International Union for the Conservation of Nature's (IUCN) 2011 Red List of Threatened Species. Forty-five species, including sharks, rays, groupers, humphead wrasse ( Cheilinus undulatus), and bumphead parrotfish ( Bolbometopon muricatum), included on the IUCN List, were recorded in the US Pacific Islands. Most species were generally rare in the US Pacific with the exception of a few species, principally small groupers and reef sharks. The greatest diversity and densities of IUCN-listed fishes were recorded at remote and uninhabited islands of the Pacific Remote Island Areas; in general, lower densities were observed at reefs of inhabited islands. Our findings complement IUCN assessment efforts, emphasize the efficacy of large-scale assessment and monitoring efforts in providing quantitative data on reef fish assemblages, and highlight the importance of protecting populations at remote and uninhabited islands where some species included on the IUCN Red List of Threatened Species can be observed in abundance.

  3. Projecting the Effects of 21st Century Climate Change on the Distribution and Phenology of Reef Fish Spawning Aggregations

    Science.gov (United States)

    Asch, R. G.; Erisman, B.

    2016-02-01

    Spawning fishes often have a narrower window of thermal tolerance than other life history stages. As a result, spawning has been hypothesized to constrain how species will respond to climate change. We assess this hypothesis by combining a global database of fish spawning aggregations with earth system and ecological niche models to project shifts in the spawning distribution and phenology of reef fishes under the RCP 8.5 climate change scenario. Nassau grouper (Epinephelus striatus) was selected as the species for a proof-of-concept analysis since it is a top predator on Caribbean coral reefs and is listed by IUCN as endangered due to overfishing at its spawning grounds. The highest probability of encountering E. striatus aggregations occurred at sea surface temperatures (SSTs) of 24.5-26.5° C and seasonal SST gradients of 0 to -1° C. Based on a 1981-2000 climatology, our model projected that the highest probability of spawning would occur around Cuba, the Mesoamerican barrier reef, the Bahamas, and other areas of the Caribbean. This coincides with the observed distribution of E. striatus aggregations. By 2081-2100, a 50% decline is projected in the number of months and locations with adequate conditions for E. striatus spawning. Potential spawning habitat for E. striatus shifts northward and eastward, with slight increases in the probability of spawning around Aruba, Curacao, and Bonaire. At spawning sites, primary production is projected to increase by a mean of 14%. Higher planktonic production could benefit larval fish growth and survival by providing a greater availability of prey. The E. striatus spawning season is projected to contract and occur later in the year. Two-month delays in phenology are projected at 78% of the sites where E. striatus populations are managed through spawning season sales bans and time/area fishing closures. This implies that adaptive management in response to climate change will be needed for these measures to remain effective.

  4. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Manikandan, B.; Ravindran, J.; Shrinivaasu, S.; Marimuthu, N.; Paramasivam, K.

    to the reefs (McClanahan et al. 2006). However, majority of the MPAs lack effective enforcement of laws leading to reef damage and over exploitation (Mora et al. 2006). Climate change and Ocean acidification are chronic processes that exert their effects at a... availability for macroalgal attachment and nutrient enrichment will enhance the algal population in the coral ecosystems (McManus and Polsenberg 2004). Algal domination in a coral ecosystem has severe ecological implications including coral bleaching (Hughes...

  5. Biodiversity and spatial patterns of benthic habitat and associated demersal fish communities at two tropical submerged reef ecosystems

    Science.gov (United States)

    Abdul Wahab, Muhammad Azmi; Radford, Ben; Cappo, Mike; Colquhoun, Jamie; Stowar, Marcus; Depczynski, Martial; Miller, Karen; Heyward, Andrew

    2018-06-01

    Submerged reef ecosystems can be very diverse and may serve as important refugia for shallow-water conspecifics. This study quantified the benthic and fish communities of two proximate, predominantly mesophotic coral ecosystems (MCEs), Glomar Shoal and Rankin Bank, which are geographically isolated from other similar features in the region. Glomar Shoal is identified as a key ecological feature (KEF) in the North West Marine Region of Australia. Multibeam surveys were performed to characterise the seafloor and to derive secondary environmental variables, used to explain patterns in benthic and fish communities. Towed video surveys quantified benthic cover, and stereo baited remote underwater stations were used to survey fish abundance and diversity. Surveys were completed in depths of 20-115 m. The two MCEs exhibited distinct communities; Rankin Bank consistently had higher cover (up to 30×) of benthic taxa across depths, and fish communities that were twice as abundant and 1.5× more diverse than Glomar Shoal. The location of the MCEs, depth and rugosity were most influential in structuring benthic communities. Phototrophic taxa, specifically macroalgae and hard corals, had up to 22 × higher cover at Rankin Bank than at Glomar Shoal and were dominant to 80 m (compared to 60 m at Glomar Shoal), presumably due to greater light penetration (lower turbidity) and lower sand cover at greater depths. The 20% coral cover at Rankin Bank was comparable to that reported for shallow reefs. The cover of sand, hard corals and sponges influenced fish communities, with higher abundance and diversity of fish associated with shallow hard coral habitats. This study demonstrated that the two MCEs were unique within the local context, and when coupled with their geographical isolation and biodiversity, presents compelling support for the additional recognition of Rankin Bank as a KEF.

  6. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  7. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook

    Science.gov (United States)

    Baker, Andrew C.; Glynn, Peter W.; Riegl, Bernhard

    2008-12-01

    Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean-atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on

  8. Say what? Coral reef sounds as indicators of community assemblages and reef conditions

    Science.gov (United States)

    Mooney, T. A.; Kaplan, M. B.

    2016-02-01

    Coral reefs host some of the highest diversity of life on the planet. Unfortunately, reef health and biodiversity is declining or is threatened as a result of climate change and human influences. Tracking these changes is necessary for effective resource management, yet estimating marine biodiversity and tracking trends in ecosystem health is a challenging and expensive task, especially in many pristine reefs which are remote and difficult to access. Many fishes, mammals and invertebrates make sound. These sounds are reflective of a number of vital biological processes and are a cue for settling reef larvae. Biological sounds may be a means to quantify ecosystem health and biodiversity, however the relationship between coral reef soundscapes and the actual taxa present remains largely unknown. This study presents a comparative evaluation of the soundscape of multiple reefs, naturally differing in benthic cover and fish diversity, in the U.S. Virgin Islands National Park. Using multiple recorders per reef we characterized spacio-temporal variation in biological sound production within and among reefs. Analyses of sounds recorded over 4 summer months indicated diel trends in both fish and snapping shrimp acoustic frequency bands with crepuscular peaks at all reefs. There were small but statistically significant acoustic differences among sites on a given reef raising the possibility of potentially localized acoustic habitats. The strength of diel trends in lower, fish-frequency bands were correlated with coral cover and fish density, yet no such relationship was found with shrimp sounds suggesting that fish sounds may be of higher relevance to tracking certain coral reef conditions. These findings indicate that, in spite of considerable variability within reef soundscapes, diel trends in low-frequency sound production reflect reef community assemblages. Further, monitoring soundscapes may be an efficient means of establishing and monitoring reef conditions.

  9. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Parrish, F.A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all

  10. Do otolith increments allow correct inferences about age and growth of coral reef fishes?

    Science.gov (United States)

    Booth, D. J.

    2014-03-01

    Otolith increment structure is widely used to estimate age and growth of marine fishes. Here, I test the accuracy of the long-term otolith increment analysis of the lemon damselfish Pomacentrus moluccensis to describe age and growth characteristics. I compare the number of putative annual otolith increments (as a proxy for actual age) and widths of these increments (as proxies for somatic growth) with actual tagged fish-length data, based on a 6-year dataset, the longest time course for a coral reef fish. Estimated age from otoliths corresponded closely with actual age in all cases, confirming annual increment formation. However, otolith increment widths were poor proxies for actual growth in length [linear regression r 2 = 0.44-0.90, n = 6 fish] and were clearly of limited value in estimating annual growth. Up to 60 % of the annual growth variation was missed using otolith increments, suggesting the long-term back calculations of otolith growth characteristics of reef fish populations should be interpreted with caution.

  11. An integrated ecosystem model for coral reef management where oceanography, ecology and socio-economics meet

    NARCIS (Netherlands)

    Weijerman, M.

    2015-01-01

    Summary

    Widespread coral reef decline, including decline in reef fish populations upon which many coastal human populations depend, have led to phase-shifts from the coral-dominated systems, found desirable by humans, to algal-dominated systems that provide less ecosystem

  12. An integrated ecosystem model for coral reef management where oceanography, ecology and socio-economics meet

    NARCIS (Netherlands)

    Weijerman, Mariska

    2015-01-01

    Widespread coral reef decline, including decline in reef fish populations upon which many coastal human populations depend, have led to phase-shifts from the coral-dominated systems, found desirable by humans, to algal-dominated systems that provide less ecosystem services, and the loss of

  13. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Directory of Open Access Journals (Sweden)

    Nicole L Crane

    Full Text Available The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water and uninhabited (low human impact; cluster 2-oceanic and inhabited (high human impact; and cluster 3-lagoonal (facing the inside of the lagoon and inhabited (highest human impact. Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp. is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  14. MtDNA barcode identification of fish larvae in the southern Great Barrier Reef – Australia

    Directory of Open Access Journals (Sweden)

    Graham G. Pegg

    2006-10-01

    Full Text Available Planktonic larvae were captured above a shallow coral reef study site on the Great Barrier Reef (GBR around spring-summer new moon periods (October-February using light trap or net capture devices. Larvae were identified to the genus or species level by comparison with a phylogenetic tree of tropical marine fish species using mtDNA HVR1 sequence data. Further analysis showed that within-species HVR1 sequence variation was typically 1-3%, whereas between-species variation for the same genus ranged up to 50%, supporting the suitability of HVR1 for species identification. Given the current worldwide interest in DNA barcoding and species identification using an alternative mtDNA gene marker (cox1, we also explored the efficacy of different primer sets for amplification of cox1 in reef fish, and its suitability for species identification. Of those tested, the Fish-F1 and -R1 primer set recently reported by Ward et al. (2005 gave the best results.

  15. Feeding biology of the introduced fish roi, and its impact on Hawaiian reef fishes, January 2004 and January 2005, (NODC Accession 0002172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Feeding biology of the introduced fish roi (Cephalopholis argus), and its impact on Hawaiian reef fishes and fisheries between January 2004 and January 2005. Roi...

  16. Red fluorescence increases with depth in reef fishes, supporting a visual function, not UV protection

    Science.gov (United States)

    Meadows, Melissa G.; Anthes, Nils; Dangelmayer, Sandra; Alwany, Magdy A.; Gerlach, Tobias; Schulte, Gregor; Sprenger, Dennis; Theobald, Jennifer; Michiels, Nico K.

    2014-01-01

    Why do some marine fishes exhibit striking patterns of natural red fluorescence? In this study, we contrast two non-exclusive hypotheses: (i) that UV absorption by fluorescent pigments offers significant photoprotection in shallow water, where UV irradiance is strongest; and (ii) that red fluorescence enhances visual contrast at depths below −10 m, where most light in the ‘red’ 600–700 nm range has been absorbed. Whereas the photoprotection hypothesis predicts fluorescence to be stronger near the surface and weaker in deeper water, the visual contrast hypothesis predicts the opposite. We used fluorometry to measure red fluorescence brightness in vivo in individuals belonging to eight common small reef fish species with conspicuously red fluorescent eyes. Fluorescence was significantly brighter in specimens from the −20 m sites than in those from −5 m sites in six out of eight species. No difference was found in the remaining two. Our results support the visual contrast hypothesis. We discuss the possible roles fluorescence may play in fish visual ecology and highlight the possibility that fluorescent light emission from the eyes in particular may be used to detect cryptic prey. PMID:25030989

  17. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.

    Science.gov (United States)

    Johansen, J L; Jones, G P

    2013-09-01

    Sedimentation is a substantial threat to aquatic ecosystems and a primary cause of habitat degradation on near-shore coral reefs. Although numerous studies have demonstrated major impacts of sedimentation and turbidity on corals, virtually nothing is known of the sensitivity of reef fishes. Planktivorous fishes are an important trophic group that funnels pelagic energy sources into reef ecosystems. These fishes are visual predators whose foraging is likely to be impaired by turbidity, but the threshold for such effects and their magnitude are unknown. This study examined the effect of sediment-induced turbidity on foraging in four species of planktivorous damselfishes (Pomacentridae) of the Great Barrier Reef, including inshore and offshore species that potentially differ in tolerance for turbidity. An experimental flow tunnel was used to quantify their ability to catch mobile and immobile planktonic prey under different levels of turbidity and velocity in the range encountered on natural and disturbed reefs. Turbidity of just 4 NTU (nephelometric turbidity units) reduced average attack success by up to 56%, with higher effect sizes for species with offshore distributions. Only the inshore species (Neopomacentrus bankieri), which frequently encounters this turbidity on coastal reefs, could maintain high prey capture success. At elevated turbidity similar to that found on disturbed reefs (8 NTU), attack success was reduced in all species examined by up to 69%. These reductions in attack success led to a 21-24% decrease in foraging rates for all mid to outer-shelf species, in spite of increasing attack rates at high turbidity. Although effects of turbidity varied among species, it always depended heavily on prey mobility and ambient velocity. Attack success was up to 14 times lower on mobile prey, leaving species relatively incapable of foraging on anything but immobile prey at high turbidity. Effects of turbidity were particularly prominent at higher velocities, as

  18. CRED Rapid Ecological Assessment Reef Fish Survey at Lanai, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130801 to 20130823,...

  19. CRED Rapid Ecological Assessment Reef Fish Survey at Kure, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  20. CRED Rapid Ecological Assessment Reef Fish Survey at Oahu, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101107 to 20101208,...

  1. CRED Rapid Ecological Assessment Reef Fish Survey at Oahu, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130818 to 20131031,...

  2. CRED Rapid Ecological Assessment Reef Fish Survey at Ofu & Olosega, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  3. Temporal variation in development of ecosystem services from oyster reef restoration

    Science.gov (United States)

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  4. Invasive Lionfish Drive Atlantic Coral Reef Fish Declines

    OpenAIRE

    Green, Stephanie; Akins, John; Maljković, Aleksandra; Cote, Isabelle

    2012-01-01

    Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Isl...

  5. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish.

    Science.gov (United States)

    Fowler, Ashley M; Macreadie, Peter I; Bishop, David P; Booth, David J

    2015-05-01

    Over 7500 oil and gas structures (e.g. oil platforms) are installed in offshore waters worldwide and many will require decommissioning within the next two decades. The decision to remove such structures or turn them into reefs (i.e. 'rigs-to-reefs') hinges on the habitat value they provide, yet this can rarely be determined because the residency of mobile species is difficult to establish. Here, we test a novel solution to this problem for reef fishes; the use of otolith (earstone) properties to identify oil structures of residence. We compare the otolith microchemistry and otolith shape of a site-attached coral reef fish (Pseudanthias rubrizonatus) among four oil structures (depth 82-135 m, separated by 9.7-84.2 km) on Australia's North West Shelf to determine if populations developed distinct otolith properties during their residency. Microchemical signatures obtained from the otolith edge using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) differed among oil structures, driven by elements Sr, Ba and Mn, and to a lesser extent Mg and Fe. A combination of microchemical data from the otolith edge and elliptical Fourier (shape) descriptors allowed allocation of individuals to their 'home' structure with moderate accuracy (overall allocation accuracy: 63.3%, range: 45.5-78.1%), despite lower allocation accuracies for each otolith property in isolation (microchemistry: 47.5%, otolith shape: 45%). Site-specific microchemical signatures were also stable enough through time to distinguish populations during 3 separate time periods, suggesting that residence histories could be recreated by targeting previous growth zones in the otolith. Our results indicate that reef fish can develop unique otolith properties during their residency on oil structures which may be useful for assessing the habitat value of individual structures. The approach outlined here may also be useful for determining the residency of reef fish on artificial reefs, which would

  6. High prevalence of homing behaviour among juvenile coral-reef fishes and the role of body size

    Science.gov (United States)

    Streit, Robert P.; Bellwood, David R.

    2017-12-01

    Adult coral-reef fishes display a remarkable ability to return home after being displaced. However, we know very little about homing behaviour in juvenile fishes. Homing behaviour in juvenile fishes is of interest because it will shape subsequent spatial distributions of adult fish communities. Comparing multiple species, families and functional groups allows us to distinguish between species-specific traits and more generalised, species-independent traits that may drive homing behaviour. Using displacement experiments of up to 150 m, we quantified homing behaviour of juvenile, newly recruited reef fishes of seven species in three families, including herbivorous parrotfishes and rabbitfishes, carnivorous wrasse and planktivorous damselfishes. All species showed the ability to home successfully, but success rates differed among species. Juvenile parrotfishes were the most successful (67% returning home), while return rates in the other species ranged from 10.5% ( Siganus doliatus) to 28.9% ( Coris batuensis). However, across all species body size appeared to be the main driver of homing success, rather than species-specific traits. With every cm increase in body size, odds of returning home almost tripled (170% increase) across all species. Interestingly, the probability of getting lost was not related to body size, which suggests that mortality was not a major driver of unsuccessful homing. Homing probability halved beyond displacement distances of 10 m and then remained stable. Higher likelihood of homing over short distances may suggest that different sensory cues are used to navigate. Overall, our results suggest that homing ability is a widespread trait among juvenile reef fishes. A `sense of home' and site attachment appear to develop early during ontogeny, especially above taxon-specific size thresholds. Hence, spatial flexibility exists only in a brief window after settlement, with direct implications for subsequent patterns of connectivity and ecosystem

  7. Excreted Thiocyanate Detects Live Reef Fishes Illegally Collected Using Cyanide—A Non-Invasive and Non-Destructive Testing Approach

    Science.gov (United States)

    Vaz, Marcela C. M.; Rocha-Santos, Teresa A. P.; Rocha, Rui J. M.; Lopes, Isabel; Pereira, Ruth; Duarte, Armando C.; Rubec, Peter J.; Calado, Ricardo

    2012-01-01

    Cyanide fishing is a method employed to capture marine fish alive on coral reefs. They are shipped to markets for human consumption in Southeast Asia, as well as to supply the marine aquarium trade worldwide. Although several techniques can be used to detect cyanide in reef fish, there is still no testing method that can be used to survey the whole supply chain. Most methods for cyanide detection are time-consuming and require the sacrifice of the sampled fish. Thiocyanate anion (SCN−) is a metabolite produced by the main metabolic pathway for cyanide anion (CN−) detoxification. Our study employed an optical fiber (OF) methodology (analytical time 3.16 µg L−1) of SCN− in seawater. Given that marine fish exposed to cyanide excrete SCN− in the urine, elevated levels of SCN− present in the seawater holding live reef fish indicate that the surveyed specimens were likely exposed to cyanide. In our study, captive-bred clownfish (Amphiprion clarkii) pulse exposed for 60 s to either 12.5 or 25 mg L−1 of CN− excreted up to 6.96±0.03 and 9.84±0.03 µg L−1 of SCN−, respectively, during the 28 days following exposure. No detectable levels of SCN− were recorded in the water holding control organisms not exposed to CN−, or in synthetic seawater lacking fish. While further research is necessary, our methodology can allow a rapid detection of SCN− in the holding water and can be used as a screening tool to indicate if live reef fish were collected with cyanide. PMID:22536375

  8. CRED REA Fish Team Belt Transect Survey at Tatsumi Reef, 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Belt transects along 3 consecutively-placed, 25m transect lines were surveyed as part of Rapid Ecological Assessments conducted at 2 sites at Tatsumi Reef in the...

  9. Effects of host injury on susceptibility of marine reef fishes to ectoparasitic gnathiid isopods

    Science.gov (United States)

    Jenkins, William G.; Demopoulos, Amanda W.J.; Sikkel, Paul C.

    2018-01-01

    The importance of the role that parasites play in ecological communities is becoming increasingly apparent. However much about their impact on hosts and thus populations and communities remains poorly understood. A common observation in wild populations is high variation in levels of parasite infestation among hosts. While high variation could be due to chance encounter, there is increasing evidence to suggest that such patterns are due to a combination of environmental, host, and parasite factors. In order to examine the role of host condition on parasite infection, rates of Gnathia marleyi infestation were compared between experimentally injured and uninjured fish hosts. Experimental injuries were similar to the minor wounds commonly observed in nature. The presence of the injury significantly increased the probability of infestation by gnathiids. However, the level of infestation (i.e., total number of gnathiid parasites) for individual hosts, appeared to be unaffected by the treatment. The results from this study indicate that injuries obtained by fish in nature may carry the additional cost of increased parasite burden along with the costs typically associated with physical injury. These results suggest that host condition may be an important factor in determining the likelihood of infestation by a common coral reef fish ectoparasite, G. marleyi.

  10. Trends in biomass of coral reef fishes, derived from shore-based creel surveys in Guam

    NARCIS (Netherlands)

    Weijerman, M.; Williams, Ivor; Gutierrez, Jay; Grafeld, Shanna; Tibbatts, Brent; Davis, Gerry

    2016-01-01

    Coral reef fisheries have a cultural, economic, and ecological importance and sustain the societal well-being of many coastal communities. However, the complexities of the multigear, multispecies fisheries that target coral reef species pose challenges for fisheries management. We focus on the

  11. A clear human footprint in the coral reefs of the Caribbean

    Science.gov (United States)

    Mora, Camilo

    2008-01-01

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs. PMID:18182370

  12. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish ( Cheilodipterus quinquelineatus)

    Science.gov (United States)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam; Steffensen, John F.; Rummer, Jodie L.

    2015-12-01

    As global temperatures increase, fish populations at low latitudes are thought to be at risk as they are adapted to narrow temperature ranges and live at temperatures close to their thermal tolerance limits. Behavioural movements, based on a preference for a specific temperature ( T pref), may provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish ( Cheilodipterus quinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. T pref was determined using a shuttlebox system, which allowed fish to behaviourally manipulate their thermal environment. Regardless of treatment temperature, fish preferred 29.5 ± 0.25 °C, approximating summer average temperatures in the wild. However, 32 °C fish moved more frequently to correct their thermal environment than 28 °C fish, and daytime movements were more frequent than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns.

  13. Comparison of coral reef ecosystems along a fishing pressure gradient.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs-such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn's cycling index and mean path length-indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai'i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai'i, O'ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community were most robust (i.e., showed the clearest trend and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system's internal structure that can be used to support management in identification of approaches to reverse unfavorable states.

  14. Spatial distribution of fifty ornamental fish species on coral reefs in the Red Sea and Gulf of Aden.

    Science.gov (United States)

    Khalaf, Maroof A; Abdallah, Mohamed

    2014-01-01

    The spatial distribution of 50 ornamental fish species from shallow water habitats on coral reefs were investigated using visual census techniques, between latitudes 11-29°N in the Red Sea, in Jordan, Egypt, Saudi Arabia, and Yemen, and in the adjacent Gulf of Aden in Djibouti. One hundred eighteen transects (each 100×5 m) were examined in 29 sites (3-8 sites per country). A total of 522,523 fish individuals were counted during this survey, with mean abundance of 4428.2 ± 87.26 individual per 500 m² transect. In terms of relative abundance (RA), the most abundant species were Blue green damselfish, Chromis viridis (RA=54.4%),followed bySea goldie, Pseudanthias squamipinnis (RA= 34.7), Whitetail dascyllus, Dascyllus aruanus (RA= 2.6%), Marginate dascyllus, Dascyllus marginatus (RA= 2.0),Red Sea eightline flasher Paracheilinus octotaenia (RA=1.0),andKlunzinger's wrasse, Thalassoma rueppellii (0.7%). The highest number of species (S) per 500 m² transect was found on reefs at the latitude 20° in Saudi Arabia (S=21.8), and the lowest number of species was found at the latitude 15° in Djibouti (S=11.11). The highest mean abundance (8565.8) was found on reefs at latitude 20° in Saudi Arabia and the lowest mean abundance (230) was found on reefs at latitude 22°, also in Saudi Arabia. Whereas, the highest Shannon-Wiener Diversity Index was found in reefs at the latitude 22° (H`=2.4) and the lowest was found in reefs at the latitude 20° (H`=0.6). This study revealed marked differences in the structure of ornamental fish assemblages with latitudinal distribution. The data support the presence of two major biogeographic groups of fishes in the Red Sea and Gulf of Aden: the southern Red Sea and Gulf of Aden group and the group in the northern and central Red Sea. Strong correlations were found between live coral cover and the number of fish species, abundance and Shannon-Wiener Diversity indices, and the strength of these correlations varied among the reefs. A

  15. Spatial distribution of fifty ornamental fish species on coral reefs in the Red Sea and Gulf of Aden

    Directory of Open Access Journals (Sweden)

    Maroof Khalaf

    2014-01-01

    Full Text Available The spatial distribution of 50 ornamental fish species from shallow water habitats on coral reefs were investigated using visual census techniques, between latitudes 11−29°N in the Red Sea, in Jordan, Egypt, Saudi Arabia, and Yemen, and in the adjacent Gulf of Aden in Djibouti. One hundred eighteen transects (each 100×5 m were examined in 29 sites (3−8 sites per country. A total of 522,523 fish individuals were counted during this survey, with mean abundance of 4428.2 ± 87.26 individual per 500 m² transect. In terms of relative abundance (RA, the most abundant species were Blue green damselfish, Chromis viridis (RA=54.4%, followed by Sea goldie, Pseudanthias squamipinnis (RA= 34.7, Whitetail dascyllus, Dascyllus aruanus (RA= 2.6%, Marginate dascyllus, Dascyllus marginatus (RA= 2.0, Red Sea eightline flasher Paracheilinus octotaenia (RA=1.0, and Klunzinger’s wrasse, Thalassoma rueppellii (0.7%. The highest number of species (S per 500 m² transect was found on reefs at the latitude 20° in Saudi Arabia (S=21.8, and the lowest number of species was found at the latitude 15° in Djibouti (S=11.11. The highest mean abundance (8565.8 was found on reefs at latitude 20° in Saudi Arabia and the lowest mean abundance (230 was found on reefs at latitude 22°, also in Saudi Arabia. Whereas, the highest Shannon-Wiener Diversity Index was found in reefs at the latitude 22° (H`=2.4 and the lowest was found in reefs at the latitude 20° (H`=0.6. This study revealed marked differences in the structure of ornamental fish assemblages with latitudinal distribution. The data support the presence of two major biogeographic groups of fishes in the Red Sea and Gulf of Aden: the southern Red Sea and Gulf of Aden group and the group in the northern and central Red Sea. Strong correlations were found between live coral cover and the number of fish species, abundance and Shannon-Wiener Diversity indices, and the strength of these correlations varied among the

  16. 76 FR 64248 - Gulf of Mexico Reef Fish Fishery; Closure of the 2011 Gulf of Mexico Commercial Sector for...

    Science.gov (United States)

    2011-10-18

    .... 040205043-4043-01] RIN 0648-XA766 Gulf of Mexico Reef Fish Fishery; Closure of the 2011 Gulf of Mexico... the commercial sector for greater amberjack in the exclusive economic zone (EEZ) of the Gulf of Mexico... Reef Fish Resources of the Gulf of Mexico (FMP). The FMP was prepared by the Gulf of Mexico Fishery...

  17. Influence of depth on sex-specific energy allocation patterns in a tropical reef fish

    Science.gov (United States)

    Hoey, J.; McCormick, M. I.; Hoey, A. S.

    2007-09-01

    The effect of depth on the distribution and sex-specific energy allocation patterns of a common coral reef fish, Chrysiptera rollandi (Pomacentridae), was investigated using depth-stratified collections over a broad depth range (5-39 m) and a translocation experiment. C. rollandi consistently selected rubble habitats at each depth, however abundance patterns did not reflect the availability of the preferred microhabitat suggesting a preference for depth as well as microhabitat. Reproductive investment (gonado-somatic index), energy stores (liver cell density and hepatocyte vacuolation), and overall body condition (hepato-somatic index and Fulton’s K) of female fish varied significantly among depths and among the three reefs sampled. Male conspecifics displayed no variation between depth or reef. Depth influenced growth dynamics, with faster initial growth rates and smaller mean asymptotic lengths with decreasing depth. In female fish, relative gonad weight and overall body condition (Fulton’s K and hepato-somatic index) were generally higher in shallower depths (≤10 m). Hepatic lipid storage was highest at the deepest sites sampled on each reef, whereas hepatic glycogen stores tended to decrease with depth. Depth was found to influence energy allocation dynamics in C. rollandi. While it is unclear what processes directly influenced the depth-related patterns in energy allocation, this study shows that individuals across a broad depth gradient are not all in the same physiological state and may contribute differentially to the population reproductive output.

  18. Florida Reef Fish Visual Census 1996 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  19. Florida Reef Fish Visual Census 1982 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  20. Florida Reef Fish Visual Census 1981 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  1. Florida Reef Fish Visual Census 1985 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  2. Florida Reef Fish Visual Census 1994 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  3. Florida Reef Fish Visual Census 1998 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  4. Florida Reef Fish Visual Census 1993 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  5. Florida Reef Fish Visual Census 1984 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  6. Florida Reef Fish Visual Census 1989 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  7. Florida Reef Fish Visual Census 1997 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  8. Florida Reef Fish Visual Census 1983 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  9. Florida Reef Fish Visual Census 1980 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  10. Florida Reef Fish Visual Census 1988 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  11. Florida Reef Fish Visual Census 1992 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  12. Florida Reef Fish Visual Census 1990 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  13. Florida Reef Fish Visual Census 1991 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  14. Florida Reef Fish Visual Census 1986 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  15. Florida Reef Fish Visual Census 1987 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  16. Florida Reef Fish Visual Census 1979 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  17. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.

    Directory of Open Access Journals (Sweden)

    Steven B Scyphers

    Full Text Available Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus were the most clearly enhanced (+297% by the presence of breakwater reefs, while red drum (Sciaenops ocellatus (+108%, spotted seatrout (Cynoscion nebulosus (+88% and flounder (Paralichthys sp. (+79% also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study

  18. Linking removal targets to the ecological effects of invaders: a predictive model and field test.

    Science.gov (United States)

    Green, Stephanie J; Dulvy, Nicholas K; Brooks, Annabelle M L; Akins, John L; Cooper, Andrew B; Miller, Skylar; Côté, Isabelle M

    Species invasions have a range of negative effects on recipient ecosystems, and many occur at a scale and magnitude that preclude complete eradication. When complete extirpation is unlikely with available management resources, an effective strategy may be to suppress invasive populations below levels predicted to cause undesirable ecological change. We illustrated this approach by developing and testing targets for the control of invasive Indo-Pacific lionfish (Pterois volitans and P. miles) on Western Atlantic coral reefs. We first developed a size-structured simulation model of predation by lionfish on native fish communities, which we used to predict threshold densities of lionfish beyond which native fish biomass should decline. We then tested our predictions by experimentally manipulating lionfish densities above or below reef-specific thresholds, and monitoring the consequences for native fish populations on 24 Bahamian patch reefs over 18 months. We found that reducing lionfish below predicted threshold densities effectively protected native fish community biomass from predation-induced declines. Reductions in density of 25–92%, depending on the reef, were required to suppress lionfish below levels predicted to overconsume prey. On reefs where lionfish were kept below threshold densities, native prey fish biomass increased by 50–70%. Gains in small (15 cm total length), including ecologically important grazers and economically important fisheries species, had increased by 10–65% by the end of the experiment. Crucially, similar gains in prey fish biomass were realized on reefs subjected to partial and full removal of lionfish, but partial removals took 30% less time to implement. By contrast, the biomass of small native fishes declined by >50% on all reefs with lionfish densities exceeding reef-specific thresholds. Large inter-reef variation in the biomass of prey fishes at the outset of the study, which influences the threshold density of lionfish

  19. Biology and ecology of the vulnerable holothuroid, Stichopus herrmanni, on a high-latitude coral reef on the Great Barrier Reef

    Science.gov (United States)

    Wolfe, Kennedy; Byrne, Maria

    2017-12-01

    Tropical aspidochirotid holothuroids are among the largest coral reef invertebrates, but gaps remain in our understanding of their ecological roles in lagoon sediment habitats, a vast component of coral-reef ecosystems. Stichopus herrmanni, listed as vulnerable (IUCN), is currently a major fishery species on the Great Barrier Reef (GBR) and throughout the Indo-Pacific. It is critical to characterise how this species interacts with its environment to understand how its removal may impact ecosystem functionality. We investigated seasonal variation in movement, bioturbation, feeding and gonad development of S. herrmanni over 3 yr at One Tree Reef, which has been a no-take area for decades. We determined the direct influence of the deposit-feeding activity of S. herrmanni on sediment turnover and granulometry, and on the abundance of infauna and benthic productivity in a comprehensive in situ analysis of tropical holothuroid feeding ecology. This species is highly mobile with identifiable individuals exhibiting site fidelity over 3 yr. With the potential to turn over an estimated 64-250 kg individual-1 yr-1, S. herrmanni is a major bioturbator. Stichopus herrmanni is a generalist feeder and influences trophic interactions by altering the abundance of infauna and microalgae. Stichopus herrmanni exhibited decreased feeding activity and gonad development in winter, the first documentation of a seasonal disparity in the bioturbation activity of a tropical holothuroid. Sediment digestion and dissolution by S. herrmanni has the potential to influence seawater chemistry, a particularly important feature in a changing ocean. Our results provide essential baseline data on the functional roles of this ecologically important species to inform development of ecosystem-based bêche-de-mer fisheries management on the GBR.

  20. 75 FR 2469 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2010-01-15

    .... SUMMARY: NMFS issues this proposed rule to implement Amendment 31 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico Fishery Management... proposed rule is to balance the continued operation of the bottom longline component of the reef fish...

  1. Coral reef fish biomass and benthic cover data from Timor-Leste in June 2013 (NCEI Accession 0165354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reef fish and benthos were surveyed at 150 shallow-water coral reef sites across the north coast of Timor-Leste and around Atauro Island in June 2013 during a...

  2. Long-term monitoring of coral reef fish assemblages in the Western central pacific.

    Science.gov (United States)

    Heenan, Adel; Williams, Ivor D; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K; Kanemura, Troy; Nadon, Marc O; Brainard, Russell E

    2017-12-05

    Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010-2017, during which time, each region was visited at least every three years, and ~500-1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes.

  3. Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs

    Science.gov (United States)

    Hamilton, Scott L.; Caselle, Jennifer E.; Lantz, Coulson A.; Egloff, Tiana L.; Kondo, Emi; Newsome, Seth D.; Loke-Smith, Kerri; Pondella, Daniel J.; Young, Kelly A.; Lowe, Christopher G.

    2015-01-01

    Interactions between predator and prey act to shape the structure of ecological communities, and these interactions can differ across space. California sheephead Semicossyphus pulcher are common predators of benthic invertebrates in kelp beds and rocky reefs in southern California, USA. Through gut content and stable isotope (δ13C and †15N) analyses, we investigated geographic and ontogenetic variation in trophic ecology across 9 populations located at island and mainland sites throughout southern California. We found extensive geographic variation in California sheephead diet composition over small spatial scales. Populations differed in the proportion of sessile filter/suspension feeders or mobile invertebrates in the diet. Spatial variation in diet was highly correlated with other life history and demographic traits (e.g. growth, survivorship, reproductive condition, and energy storage), in addition to proxies of prey availability from community surveys. Multivariate descriptions of the diet from gut contents roughly agreed with the spatial groupings of sites based on stable isotope analysis of both California sheephead and their prey. Ontogenetic changes in diet occurred consistently across populations, despite spatial differences in size structure. As California sheephead increase in size, diets shift from small filter feeders, like bivalves, to larger mobile invertebrates, such as sea urchins. Our results indicate that locations with large California sheephead present, such as many marine reserves, may experience increased predation pressure on sea urchins, which could ultimately affect kelp persistence. PMID:26246648

  4. 75 FR 21512 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2010-04-26

    ...: NMFS issues this final rule to implement Amendment 31 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico Fishery Management Council (Council... operation of the bottom longline component of the reef fish fishery in the eastern Gulf while maintaining...

  5. Food selectivity and diet switch can explain the slow feeding of herbivorous coral-reef fishes during the morning.

    Directory of Open Access Journals (Sweden)

    Ruth Khait

    Full Text Available Most herbivorous coral-reef fishes feed slower in the morning than in the afternoon. Given the typical scarcity of algae in coral reefs, this behavior seems maladaptive. Here we suggest that the fishes' slow feeding during the morning is an outcome of highly selective feeding on scarcely found green algae. The rarity of the food requires longer search time and extended swimming tracks, resulting in lower bite rates. According to our findings by noon the fish seem to stop their search and switch to indiscriminative consumption of benthic algae, resulting in apparent higher feeding rates. The abundance of the rare preferable algae gradually declines from morning to noon and seems to reach its lowest levels around the switch time. Using in situ experiments we found that the feeding pattern is flexible, with the fish exhibiting fast feeding rates when presented with ample supply of preferable algae, regardless of the time of day. Analyses of the fish's esophagus content corroborated our conclusion that their feeding was highly selective in the morning and non-selective in the afternoon. Modeling of the fishes' behavior predicted that the fish should perform a diel diet shift when the preferred food is relatively rare, a situation common in most coral reefs found in a warm, oligotrophic ocean.

  6. Food selectivity and diet switch can explain the slow feeding of herbivorous coral-reef fishes during the morning.

    Science.gov (United States)

    Khait, Ruth; Obolski, Uri; Hadany, Lilach; Genin, Amatzia

    2013-01-01

    Most herbivorous coral-reef fishes feed slower in the morning than in the afternoon. Given the typical scarcity of algae in coral reefs, this behavior seems maladaptive. Here we suggest that the fishes' slow feeding during the morning is an outcome of highly selective feeding on scarcely found green algae. The rarity of the food requires longer search time and extended swimming tracks, resulting in lower bite rates. According to our findings by noon the fish seem to stop their search and switch to indiscriminative consumption of benthic algae, resulting in apparent higher feeding rates. The abundance of the rare preferable algae gradually declines from morning to noon and seems to reach its lowest levels around the switch time. Using in situ experiments we found that the feeding pattern is flexible, with the fish exhibiting fast feeding rates when presented with ample supply of preferable algae, regardless of the time of day. Analyses of the fish's esophagus content corroborated our conclusion that their feeding was highly selective in the morning and non-selective in the afternoon. Modeling of the fishes' behavior predicted that the fish should perform a diel diet shift when the preferred food is relatively rare, a situation common in most coral reefs found in a warm, oligotrophic ocean.

  7. The status of coral reef ecology research in the Red Sea

    KAUST Repository

    Berumen, Michael L.; Hoey, Andrew; Bass, William H.; Bouwmeester, Jessica; Catania, Daniela; Cochran, Jesse; Khalil, Maha T.; Miyake, Sou; Mughal, Mehreen; Spaet, Julia L.Y.; Saenz Agudelo, Pablo

    2013-01-01

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large

  8. Diurnal observations on the behavioral ecology of Gymnothorax moringa (Cuvier) and Muraena miliaris (Kaup) on a Caribbean coral reef

    Science.gov (United States)

    Abrams, R. W.; Abrams, M. D.; Schein, M. W.

    1983-09-01

    Activities of muraenids, primarily Gymnothorax moringa and Muraena miliaris, were observed on a Caribbean coral reef with a view to further understanding their role in the reef ecosystem. Other muraenid species included in the total of 198 sightings were Echidna catenata, Enchelycore nigricans, and an unidentified brown moray. The five species were unequally distributed among three basic habitats (sand, coral head, reef rock) available on the reef. Nine particular holes accounted for 52.5% of the total sightings, although hundreds of other seemingly appropriate sites were available. The eels (except M. miliaris) were transient with respect to given holes and particular sections of the reef. While some G. moringa were sighted in the same holes for several consecutive days, M. miliaris individuals remained in the same coral heads throughout the 6-week study period. Muraenids observed in this study showed high tolerances for and were tolerated by other fishes (including other morays) and invertebrates on the reef. They appeared to be opportunistic, roving predators and were not strictly nocturnal. Distinct behavioral interactions and displays between muraenids and reef fish were observed.

  9. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs.

    Science.gov (United States)

    Loh, Tse-Lynn; Pawlik, Joseph R

    2014-03-18

    Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6-7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R(2) values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals.

  10. Comparison of fishes taken by a sportfishing party vessel around oil platforms and adjacent natural reefs near Santa Barbara, California

    International Nuclear Information System (INIS)

    Love, M.S.; Westphal, W.

    1990-01-01

    Since 1958, 29 oil platforms have been sited in the southern California Bight of which 28 still remain in place. However, little is known of the fish populations surrounding these structures, particularly those sited in water deeper than 30 m. In the course of research on the Santa Barbara, California, party vessel sport fishery, it was noted that the platforms off Santa Barbara supported considerable sportfishing activity. Those platforms, located to the southeast of Santa Barbara in depths of 48-62 m, were particularly important and were fished intensively for various rockfishes (genus Sebastes). When fishing a platform, the vessel pulled up to within 5-10 m of a platform and drifts along one side, with the vessel operator using intermittent power to keep it near the structure. Most of the desirable species, particularly rockfishes, remained close to the platforms, rarely venturing more than perhaps 20 m from the structure. The party vessels also spent considerable time fishing over nearby natural reefs. In this survey, it was noted that there appeared to be differences in species catch composition and fish size between oil platforms and these natural reefs. Increased offshore oil drilling off California has raised interest in the role platforms play in marine systems. Questions have been raised regarding what fish live around platforms, how these structures influence populations over surrounding reefs, and whether the platforms act as fish enhancers (promoting recruitment) or only as aggregators. These questions are particularly relevant when the platforms are to be decommissioned and the possibility of allowing them to remain as artificial reefs is raised. This paper describes the results of the study on the fish populations around oil platforms and nearby natural reefs off Santa Barbara

  11. 76 FR 59377 - Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and...

    Science.gov (United States)

    2011-09-26

    ... lobster, and aquarium trade species identified by the Secretary as not undergoing overfishing; allocate... effect of the 2011 Caribbean ACL Amendment is prevent overfishing of reef fish, spiny lobster and... be subject to overfishing, ACLs must be established at a level that prevents overfishing and helps to...

  12. CRED Rapid Ecological Assessment Reef Fish Survey at Farallon de Pajaros, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  13. CRED Rapid Ecological Assessment Reef Fish Survey at Jarvis, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  14. CRED Rapid Ecological Assessment Reef Fish Survey at Howland, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  15. CRED Rapid Ecological Assessment Reef Fish Survey at Baker, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  16. CRED Rapid Ecological Assessment Reef Fish Survey at Wake, Pacific Remote Island Areas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110310 to 20110402,...

  17. Changes in Reef Fish Abundances Associated with the Introduction of Indo-Pacific Lionfish to the Florida Keys National Marine Sanctuary: a Twenty Year Time Series.

    Science.gov (United States)

    Hepner, M.; Muller-Karger, F. E.; Gittings, S.; Stallings, C.

    2016-02-01

    The Marine Biodiversity Observation Network (MBON) is a partnership between academic, private, and government researchers seeking to understand how marine biodiversity changes over long periods of time. In this context, a study of the multi-agency Reef Visual Census (RVC) data, collected over twenty years in the Florida Keys National Marine Sanctuary (FKNMS), was analyzed to measure possible changes in reef fish abundances as a result of possible predation by lionfish predation or due to related trophic cascading. Lionfish were first sighted in the FKNMS in January 2009, with abundances and frequency of occurrence increasing three to six fold throughout the sanctuary by 2011. Their high consumption rates of smaller fish, coupled with their rapidly increasing densities may be having a significant effect on coral reef fish communities. The study compares the natural variability in reef fish abundances from 1994-2009 in the FKNMS, 15 years prior to the first lionfish detected in the sanctuary, to changes in reef fish abundances 5 years after the invasion. The MBON project also aims to develop environmental DNA (eDNA) technology for conducting biodiversity assessments. eDNA is an emerging technique that seeks to quantify biodiversity in an area by obtaining genetic material directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biological source material. All marine organisms shed DNA into their surrounding habitat, leaving a "fingerprint." Similar to forensic science, the DNA can be collected from seawater and analyzed to determine what species were recently present. The MBON team is evaluating whether eDNA can be used to adequately monitor reef fish biodiversity in coral reef ecosystems. We will compare species detected in our samples to the taxonomic composition of reef fish communities at the sample site as recorded over the past twenty years in the Reef Visual Census data.

  18. [Changes in fish communities of coral reefs at Sabana-Camagüey Archipelago, Cuba].

    Science.gov (United States)

    Claro, Rodolfo; Cantelar, Karel; Amargós, Fabián Pina; García-Arteaga, Juan P

    2007-06-01

    A comparison of fish community structure in the Sabana-Camagüey Archipelago (1988-1989 and 2000) using visual census surveys (eight belt transects 2x50 m in each site) suggests a notable decrease on species richness, and a two thirds reduction in fish density and biomass on coral reefs. This decrease in fish populations may be related to the alarming decrease of scleractinian coral cover, and an enormous proliferation of algae, which currently covers 70-80% of the hard substrate, impeding the recovery of corals and other benthic organisms. High coral mortalities occurred between the study periods, which correlate with the high temperatures caused by the ENSO events of 1995, 1997 and 1998. These events caused massive bleaching of corals and subsequent algae overgrowth. Evidence of nutrient enrichment from the inner lagoons and overfishing are also present. Collectively, these effects have provoked a marked degradation of reef habitats. These changes appear to have affected the availability of refuges and food for fishes, and may be constraining individual growth potential and population size.

  19. CRED Rapid Ecological Assessment Reef Fish Survey at Howland, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  20. CRED Rapid Ecological Assessment Reef Fish Survey at Jarvis, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  1. CRED Rapid Ecological Assessment Reef Fish Survey at Palmyra, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  2. CRED Rapid Ecological Assessment Reef Fish Survey at Baker, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  3. Invasive lionfish drive Atlantic coral reef fish declines.

    Directory of Open Access Journals (Sweden)

    Stephanie J Green

    Full Text Available Indo-Pacific lionfish (Pterois volitans and P. miles have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.

  4. Invasive lionfish drive Atlantic coral reef fish declines.

    Science.gov (United States)

    Green, Stephanie J; Akins, John L; Maljković, Aleksandra; Côté, Isabelle M

    2012-01-01

    Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.

  5. Participatory boat tracking reveals spatial fishing patterns in an Indonesian artisanal fishery

    DEFF Research Database (Denmark)

    Forero, Gabriela Navarrete; Miñarro, Sara; Mildenberger, Tobias

    2017-01-01

    for the coral reef ecosystem, contributing to its overall degradation. Estimations on the ecological impacts of different levels of fishing pressure, as well as fisheries stock assessments and marine resource management require precise information of the spatial distribution of fishing effort, which involves...

  6. Complexities and uncertainties in transitioning small-scale coral reef fisheries

    Directory of Open Access Journals (Sweden)

    Pierre eLeenhardt

    2016-05-01

    Full Text Available Coral reef fisheries support the development of local and national economies and are the basis of important cultural practices and worldviews. Transitioning economies, human development and environmental stress can harm this livelihood. Here we focus on a transitioning social-ecological system as case study (Moorea, French Polynesia. We review fishing practices and three decades of effort and landing estimates with the broader goal of informing management. Fishery activities in Moorea are quite challenging to quantify because of the diversity of gears used, the lack of centralized access points or markets, the high participation rates of the population in the fishery, and the overlapping cultural and economic motivations to catch fish. Compounding this challenging diversity, we lack a basic understanding of the complex interplay between the cultural, subsistence, and commercial use of Moorea's reefs. In Moorea, we found an order of magnitude gap between estimates of fishery yield produced by catch monitoring methods (~2 t km-2 year-1 and estimates produced using consumption or participatory socioeconomic consumer surveys (~24 t km-2 year-1. Several lines of evidence suggest reef resources may be overexploited and stakeholders have a diversity of opinions as to whether trends in the stocks are a cause for concern. The reefs, however, remain ecologically resilient. The relative health of the reef is striking given the socio-economic context. Moorea has a relatively high population density, a modern economic system linked into global flows of trade and travel, and the fishery has little remaining traditional or customary management. Other islands in the Pacific that continue to develop economically may have small-scale fisheries that increasingly resemble Moorea. Therefore, understanding Moorea's reef fisheries may provide insight into their future.

  7. Microhabitat Association of Cryptobenthic Reef Fishes (Teleostei: Gobiidae) in the Central Red Sea

    KAUST Repository

    Troyer, Emily

    2018-01-01

    that have close associations with the substrate. These fishes can be behaviorally cryptic, by seeking refuge within the reef matrix, or visually cryptic, using cryptic coloration to match the surrounding habitat. These factors make visual surveys inadequate

  8. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of American Samoa since 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  9. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?

    Science.gov (United States)

    Munday, Philip L; McCormick, Mark I; Nilsson, Göran E

    2012-11-15

    Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental

  10. Three dimensional marine seismic survey has no measurable effect on species richness or abundance of a coral reef associated fish community

    International Nuclear Information System (INIS)

    Miller, Ian; Cripps, Edward

    2013-01-01

    Highlights: • A marine seismic survey was conducted at Scott Reef, North Western Australia. • Effects of the survey on demersal fish were gauged using underwater visual census. • There was no detectable impact of the seismic survey on species abundance. • There was no detectable impact of the seismic survey on species richness. -- Abstract: Underwater visual census was used to determine the effect of a three dimensional seismic survey on the shallow water coral reef slope associated fish community at Scott Reef. A census of the fish community was conducted on six locations at Scott Reef both before and after the survey. The census included small site attached demersal species belonging to the family Pomacentridae and larger roving demersal species belonging to the non-Pomacentridae families. These data were combined with a decade of historical data to assess the impact of the seismic survey. Taking into account spatial, temporal, spatio-temporal and observer variability, modelling showed no significant effect of the seismic survey on the overall abundance or species richness of Pomacentridae or non-Pomacentridae. The six most abundant species were also analysed individually. In all cases no detectable effect of the seismic survey was found on the abundance of these fish species at Scott Reef

  11. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Directory of Open Access Journals (Sweden)

    Igal Berenshtein

    Full Text Available Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients. We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC, which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23, but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze, which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  12. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Science.gov (United States)

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  13. Feeding ecology of Lutjanus analis (Teleostei: Lutjanidae from Abrolhos Bank, Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Matheus Oliveira Freitas

    Full Text Available Diet and feeding ecology of the mutton snapper Lutjanus analis were investigated in the Abrolhos Bank, Eastern Brazil, the largest and richest coral reefs in the South Atlantic, where about 270 species of reef and shore fishes occur. To evaluate seasonal and ontogenetic shifts in the diet, specimens of L. analis were obtained through a fish monitoring program in four cities in southern Bahia State, from June 2005 to March 2007. Stomachs from 85 mutton snappers that ranged in size from 18.1 to 74.0 cm TL were examined. Prey were identified to the lowest possible taxon and assessed by the frequency of occurrence and volumetric methods. Variations in volume prey consumption were evaluated using non-metric multi-dimensional scaling ordination, analysis of similarity, and similarity percentage methods. Significant differences in diet composition among size classes were registered, whereas non significant differences between seasons were observed. Considering size-classes, food items consumption showed important variations: juveniles (50.1 cm TL consumed basically fish, mostly Anguiliformes. Lutjanus analis is an important generalist reef predator, with a broad array of food resources and ontogenetic changes in the diet. This snapper species plays an important role on the trophic ecology of the Abrolhos Bank coral reefs.

  14. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data at Jarvis Island from 2016-05-16 to 2016-05-22 (NCEI Accession 0157594)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surveys were conducted in the course of a reef fish survey cruise conducted by the NOAA Coral Reef Ecosystem Program (CREP) at the NOAA Pacific Islands Fisheries...

  15. Extent of mangrove nursery habitats determines the geographic distribution of a coral reef fish in a South-Pacific archipelago.

    Directory of Open Access Journals (Sweden)

    Christelle Paillon

    Full Text Available Understanding the drivers of species' geographic distribution has fundamental implications for the management of biodiversity. For coral reef fishes, mangroves have long been recognized as important nursery habitats sustaining biodiversity in the Western Atlantic but there is still debate about their role in the Indo-Pacific. Here, we combined LA-ICP-MS otolith microchemistry, underwater visual censuses (UVC and mangrove cartography to estimate the importance of mangroves for the Indo-Pacific coral reef fish Lutjanus fulviflamma in the archipelago of New Caledonia. Otolith elemental compositions allowed high discrimination of mangroves and reefs with 83.8% and 98.7% correct classification, respectively. Reefs were characterized by higher concentrations of Rb and Sr and mangroves by higher concentrations of Ba, Cr, Mn and Sn. All adult L. fulviflamma collected on reefs presented a mangrove signature during their juvenile stage with 85% inhabiting mangrove for their entire juvenile life (about 1 year. The analysis of 2942 UVC revealed that the species was absent from isolated islands of the New Caledonian archipelago where mangroves were absent. Furthermore, strong positive correlations existed between the abundance of L. fulviflamma and the area of mangrove (r = 0.84 for occurrence, 0.93 for density and 0.89 for biomass. These results indicate that mangrove forest is an obligatory juvenile habitat for L. fulviflamma in New Caledonia and emphasize the potential importance of mangroves for Indo-Pacific coral reef fishes.

  16. Biomass-based targets and the management of multispecies coral reef fisheries.

    Science.gov (United States)

    McClanahan, T R; Graham, N A J; MacNeil, M A; Cinner, J E

    2015-04-01

    The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small-scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem-based management approaches. However, ecosystem-based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life-history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade-offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem-based fisheries management targets that can be easily applied even where research capacity and

  17. Spatio-temporal patterns in the coral reef communities of the Spermonde Archipelago, 2012–2014, II: Fish assemblages display structured variation related to benthic condition

    DEFF Research Database (Denmark)

    Plass-Johnson, Jeremiah Grahm; Teichberg, Mirta; Bednarz, Vanessa N.

    2018-01-01

    The Spermonde Archipelago is a complex of ~70 mostly populated islands off Southwest Sulawesi, Indonesia, in the center of the Coral Triangle. The reefs in this area are exposed to a high level of anthropogenic disturbances. Previous studies have shown that variation in the benthos is strongly...... with distance, while few species were present across the entire range of sites. Relating fish communities to benthic composition using a multivariate generalized linear model confirmed that fish groups relate to structural complexity (rugosity) or differing benthic groups; either algae, reef builders (coral...... and crustose coralline algae) or invertebrates and rubble. From these relationships we can identify sets of fish species that may be lost given continued degradation of the Spermonde reefs. Lastly, the incorporation of water quality, benthic and fish indices indicates that local coral reefs responded...

  18. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  19. Pacific Reef Assessment and Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data at Coral Reef Sites across the Pacific Ocean from 2008 to 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (nSPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  20. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  1. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of the Mariana Archipelago since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  2. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    Science.gov (United States)

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  3. Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): current status and its characteristics

    KAUST Repository

    DiBattista, Joseph

    2016-08-04

    Butterflyfish are among the most iconic of the coral reef fishes and represent a model system to study general questions of biogeography, evolution and population genetics. We assembled and annotated the genome sequence of the blacktail butterflyfish (Chaetodon austriacus), an Arabian region endemic species that is reliant on coral reefs for food and shelter. Using available bony fish (superclass Osteichthyes) genomes as a reference, a total of 28 926 high-quality protein-coding genes were predicted from 13 967 assembled scaffolds. The quality and completeness of the draft genome of C. austriacus suggest that it has the potential to serve as a resource for studies on the co-evolution of reef fish adaptations to the unique Red Sea environment, as well as a comparison of gene sequences between closely related congeneric species of butterflyfish distributed more broadly across the tropical Indo-Pacific. © 2016 John Wiley & Sons Ltd.

  4. Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): current status and its characteristics

    KAUST Repository

    DiBattista, Joseph; Wang, Xin; Saenz Agudelo, Pablo; Piatek, Marek J.; Aranda, Manuel; Berumen, Michael L.

    2016-01-01

    Butterflyfish are among the most iconic of the coral reef fishes and represent a model system to study general questions of biogeography, evolution and population genetics. We assembled and annotated the genome sequence of the blacktail butterflyfish (Chaetodon austriacus), an Arabian region endemic species that is reliant on coral reefs for food and shelter. Using available bony fish (superclass Osteichthyes) genomes as a reference, a total of 28 926 high-quality protein-coding genes were predicted from 13 967 assembled scaffolds. The quality and completeness of the draft genome of C. austriacus suggest that it has the potential to serve as a resource for studies on the co-evolution of reef fish adaptations to the unique Red Sea environment, as well as a comparison of gene sequences between closely related congeneric species of butterflyfish distributed more broadly across the tropical Indo-Pacific. © 2016 John Wiley & Sons Ltd.

  5. Geographic extent and variation of a coral reef trophic cascade.

    Science.gov (United States)

    McClanahan, T R; Muthiga, N A

    2016-07-01

    -lined triggerfish, an uncommon, slow-growing by-catch species with little monetary value drives the cascade and other predators appear unable to replace its ecological role in the presence of fishing. This suggests that restrictions on the catch of this species could increase the calcification service of coral reefs on a broad scale. © 2016 by the Ecological Society of America.

  6. Pacific Reef Assessment and Monitoring Program: Rapid Ecological Assessments of Fish Belt Transect Surveys (BLT) in the Pacific Ocean from 2000-09-09 to 2009-05-05 (NCEI Accession 0162462)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Belt transects (BLT) are a non-invasive underwater-survey method that enumerates the diverse components of diurnally active shallow-water reef fish assemblages. At...

  7. The abundance of herbivorous fish on an inshore Red Sea reef following a mass coral bleaching event

    KAUST Repository

    Khalil, Maha T.

    2013-01-08

    A healthy herbivore community is critical for the ability of a reef to resist and recover from severe disturbances and to regain lost coral cover (i.e., resilience). The densities of the two major herbivorous fish groups (the family Acanthuridae and scarine labrids) were comparatively studied for an inshore reef that was severely impacted by a mass coral bleaching event in 2010 and an unaffected reef within the same region. Densities were found to be significantly higher on the affected reef, most likely due to the high algal densities on that reef. However, densities of herbivores on both reefs were found to be on average about 1-2 orders of magnitude lower than previously published reports from some Pacific reefs and from Red Sea reefs in the Gulf of Aqaba and only slightly higher than Caribbean reefs. Thus, it is predicted that recovery for this reef and similarly affected reefs may be very slow. The protection of herbivores from overfishing and the introduction of other management strategies that maximize reef resilience in Saudi Arabian waters are highly recommended. © 2013 Springer Science+Business Media Dordrecht.

  8. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)

    DEFF Research Database (Denmark)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam

    2015-01-01

    provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish (Cheilodipterusquinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. Tpref was determined using a shuttlebox system, which allowed fish...... than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns....

  9. Reef fish and coral assemblages at Maptaput, Rayong Province

    Directory of Open Access Journals (Sweden)

    Voravit Cheevaporn

    2007-06-01

    Full Text Available This study describes the structure of coral and fish assemblages of a group of small islands and pinnacles in the vicinity of Maptaput deep sea port, Rayong Province, Thailand during 2002. The coral and fish assemblages at Saket Island and nearby pinnacle, Hin-Yai, which are located less than 1 km from the deep sea port, had changed. Living coral cover in 2002 was 8% at Hin-Yai and 4% at Saket Island which decreased from 33% and 64%, respectively in the previous report in 1992. Numbers of coral species at Saket Island decreased from 41 species to 13 species. Acropora spp. that previously dominated the area had nearly disappeared. For fishes, a total of 40 species were found in 2002 the numbers decreased to only 6 species at Saket Island and 36 species at Hin-Yai. Fishes that dominated the area are small pomacentrids. After 1997, the conditions of coral and fish assemblages at Saket Island and Hin-Yai had markedly changed, whereas, the conditions found in the nearby area are much better. Sediment load from port construction was the primary cause of the degradation. This should indicate the adverse effect of sedimentation on coral and reef fish assemblages at Maptaput. Coral communities developed on rock pinnacles west of Maptaput deep-sea port are reported and described herein for the first time.

  10. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    Science.gov (United States)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  11. Avoiding conflicts and protecting coral reefs: Customary management benefits marine habitats and fish biomass

    KAUST Repository

    Campbell, Stuart J.; Cinner, Joshua E.; Ardiwijaya, Rizya L.; Pardede, Shinta T.; Kartawijaya, Tasrif; Mukmunin, Ahmad; Herdiana, Yudi; Hoey, Andrew; Pratchett, Morgan S.; Baird, Andrew Hamilton

    2012-01-01

    Abstract One of the major goals of coral reef conservation is to determine the most effective means of managing marine resources in regions where economic conditions often limit the options available. For example, no-take fishing areas can

  12. Marine reserves and reproductive biomass: a case study of a heavily targeted reef fish.

    Directory of Open Access Journals (Sweden)

    Brett M Taylor

    Full Text Available Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest. In this study, we explored empirically and through modeling, the role of marine reserves in maximizing spawner biomass of a heavily exploited reef fish, Lethrinus harak around Guam, Micronesia. On average, spawner biomass was 16 times higher inside the reserves compared with adjacent fished sites. Adult density and habitat-specific mean fish size were also significantly greater. We used these data in an age-structured population model to explore the effect of several management scenarios on L. harak demography. Under minimum-size limits, unlimited extraction and all rotational-closure scenarios, the model predicts that preferential mortality of larger and older fish prompt dramatic declines in spawner biomass and the proportion of male fish, as well as considerable declines in total abundance. For rotational closures this occurred because of the mismatch between the scales of recovery and extraction. Our results highlight how alternative management scenarios fall short in comparison to marine reserves in preserving reproductively viable fish populations on coral reefs.

  13. Influence of Palythoa caribaeorum (Anthozoa, Cnidaria zonation on site-attached reef fishes

    Directory of Open Access Journals (Sweden)

    José P. Mendonça-Neto

    2008-09-01

    Full Text Available This work aimed to test the influence of Palythoa caribeorum, a widely distributed zoanthid in the Atlantic, on site-attached reef fish in a subtropical rocky shore. Density, richness and vertical distribution of reef fish inside (ID and outside (OD previously chosen P. caribaeorum dominance patches were compared through stationary visual censuses along three different periods. Fishes were grouped in different trophic guilds to evidence differences in resources uses in both treatments. A complexity index was estimated by the chain link method and percentage covering of benthic organisms was obtained analyzing random points from replicated photo-quadrats. We observed thirty-eight species of fishes, belonging to twenty-five families. Reef fish communities between studied patches were similar,both in terms of species composition and vertical distribution. Considering only the most site-attached fishes, which were the most frequent and abundant species, data showed that ID sustains higher diversity and abundance than OD. Results showed that benthic composition differ significantly among patches whereas complexity remained without differences. Otherwise, results indicated that these areas might play an important role in space limitation, structuring neighboring benthic community and consequently reef fish assemblages.Este estudo visou testar a influência de Palythoa caribeorum, um zoantídeo amplamente distribuído no Atlântico, na estruturação da comunidade de peixes recifais associados a um costão rochoso de uma região subtropical. A densidade, a riqueza e a distribuição vertical de peixes recifais em áreas previamente selecionadas com e sem a dominância de Palythoa caribaeorum foram comparadas através de censos visuais estacionários em três períodos distintos de tempo. Os peixes foram agrupados em guildas tróficas a fim de evidenciar diferenças nos usos dos recursos nas diferentes áreas analisadas. Foram analisados também

  14. Effects of fisheries closures and gear restrictions on fishing income in a Kenyan coral reef.

    Science.gov (United States)

    McClanahan, Timothy R

    2010-12-01

    The adoption of fisheries closures and gear restrictions in the conservation of coral reefs may be limited by poor understanding of the economic profitability of competing economic uses of marine resources. Over the past 12 years, I evaluated the effects of gear regulation and fisheries closures on per person and per area incomes from fishing in coral reefs of Kenya. In two of my study areas, the use of small-meshed beach seines was stopped after 6 years; one of these areas was next to a fishery closure. In my third study area, fishing was unregulated. Fishing yields on per capita daily wet weight basis were 20% higher after seine-net fishing was stopped. The per person daily fishing income adjacent to the closed areas was 14 and 22% higher than the fishing income at areas with only gear restrictions before and after the seine-net restriction, respectively. Incomes differed because larger fish were captured next to the closed area and the price per weight (kilograms) increased as fish size increased and because catches adjacent to the closure contained fish species of higher market value. Per capita incomes were 41 and 135% higher for those who fished in gear-restricted areas and near-closed areas, respectively, compared with those who fished areas with no restrictions. On a per unit area basis (square kilometers), differences in fishing income among the three areas were not large because fishing effort increased as the number of restrictions decreased. Changes in catch were, however, larger and often in the opposite direction expected from changes in effort alone. For example, effort declined 21% but nominal profits per square kilometer (not accounting for inflation) increased 29% near the area with gear restrictions. Gear restrictions also reduced the cost of fishing and increased the proportion of self-employed fishers. © 2010 Society for Conservation Biology.

  15. Periodic Closures as Adaptive Coral Reef Management in the Indo-Pacific

    Directory of Open Access Journals (Sweden)

    Josh Cinner

    2006-06-01

    Full Text Available This study explores the social, economic, and ecological context within which communities in Papua New Guinea and Indonesia use adaptive coral reef management. We tested whether periodic closures had positive effects on reef resources, and found that both the biomass and the average size of fishes commonly caught in Indo-Pacific subsistence fisheries were greater inside areas subject to periodic closures compared to sites with year-round open access. Surprisingly, both long-lived and short-lived species benefited from periodic closures. Our study sites were remote communities that shared many socioeconomic characteristics; these may be crucial to the effectiveness of adaptive management of reef resources through periodic closures. Some of these factors include exclusive tenure over marine resources, a body of traditional ecological knowledge that allows for the rapid assessment of resource conditions, social customs that facilitate compliance with closures, relatively small human populations, negligible migration, and a relatively low dependence on fisheries. This dynamic adaptive management system, in which communities manage their resources among multiple social and ecological baselines, contrasts with western fisheries management practices, centered on maintaining exploited populations at stable levels in which net production is maximized.

  16. Coexistence of low coral cover and high fish biomass at Farquhar Atoll, Seychelles.

    Science.gov (United States)

    Friedlander, Alan M; Obura, David; Aumeeruddy, Riaz; Ballesteros, Enric; Church, Julie; Cebrian, Emma; Sala, Enric

    2014-01-01

    We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha(-1)) reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m) potato cod (Epinephelus tukula) and marbled grouper (E. polyphekadion), commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum) are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized.

  17. Coexistence of low coral cover and high fish biomass at Farquhar Atoll, Seychelles.

    Directory of Open Access Journals (Sweden)

    Alan M Friedlander

    Full Text Available We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha(-1 reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m potato cod (Epinephelus tukula and marbled grouper (E. polyphekadion, commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus and bumphead parrotfish (Bolbometopon muricatum are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized.

  18. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  19. Acoustic Tracking of Fish Movements in Coral Reef Ecosystems in St John (USVI), 2006-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic Tracking of Reef Fishes to Elucidate Habitat Utilization Patterns and Residence Times Inside and Outside Marine Protected Areas Around the Island of St....

  20. 78 FR 27084 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2013-05-09

    ...Fish.htm . FOR FURTHER INFORMATION CONTACT: Rich Malinowski, Southeast Regional Office, telephone 727-824-5305, email rich.malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The reef fish fishery of the...

  1. Mesopredator trophodynamics on thermally stressed coral reefs

    Science.gov (United States)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  2. Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs.

    Science.gov (United States)

    Rizzari, Justin R; Bergseth, Brock J; Frisch, Ashley J

    2015-04-01

    Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top-down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large-bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no-take, and no-entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no-entry zones than in fished and no-take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no-entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top-down forces may not play a strong role in regulating large-bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. © 2014 Society for Conservation Biology.

  3. Selective predation for low body condition at the larval-juvenile transition of a coral reef fish.

    Science.gov (United States)

    Hoey, Andrew S; McCormick, Mark I

    2004-03-01

    Mortality is known to be high during the transition from larval to juvenile life stages in organisms that have complex life histories. We are only just beginning to understand the processes that influence which individuals survive this period of high mortality, and which traits may be beneficial. Here we document a field experiment that examines the selectivity of predation immediately following settlement to the juvenile population in a common tropical fish, Pomacentrus amboinensis (Pomacentridae). Newly metamorphosed fish were tagged and randomly placed onto replicated patches of natural habitat cleared of resident fishes. After exposure to transient predators for 3 days, fish were recollected and the attributes of survivors from patch reefs that sustained high mortality were compared to individuals from patch reefs that experienced low mortality. Seven characteristics of individuals, which were indicative of previous and present body condition, were compared between groups. Predation was found to be selective for fish that grew slowly in the latter third of their larval phase, were low in total lipids, and had a high standardized weight (Fulton's K). Traits developed in the larval phase can strongly influence the survival of individuals over this critical transition period for organisms with complex life cycles.

  4. Turtle cleaners: reef fishes foraging on epibionts of sea turtles in the tropical Southwestern Atlantic, with a summary of this association type

    Directory of Open Access Journals (Sweden)

    Cristina Sazima

    Full Text Available In the present study we record several instances of reef fish species foraging on epibionts of sea turtles (cleaning symbiosis at the oceanic islands of Fernando de Noronha Archipelago and near a shipwreck, both off the coast of Pernambuco State, northeast Brazil. Nine reef fish species and three turtle species involved in cleaning are herein recorded. Besides our records, a summary of the literature on this association type is presented. Postures adopted by turtles during the interaction are related to the habits of associated fishes. Feeding associations between fishes and turtles seem a localized, albeit common, phenomenon.

  5. The differentiation of common species in a coral-reef fish assemblage for recreational scuba diving

    OpenAIRE

    Chen, Tsen-Chien; Ho, Cheng-Tze; Jan, Rong-Quen

    2016-01-01

    Background Recreational scuba diving is a popular activity of the coral reef tourism industry. In practice, local diving centers recommend interesting sites to help visiting divers make their plans. Fish are among the major attractions, but they need to be listed with care because the temporal occurrence of a fish species is difficult to predict. To address this issue, we propose methods to categorize each fish species based on its long-term occurrence and likelihood of being seen. Methods We...

  6. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    KAUST Repository

    DiBattista, Joseph; Coker, Darren James; Sinclair-Taylor, Tane; Stat, Michael; Berumen, Michael L.; Bunce, Michael

    2017-01-01

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  7. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    Science.gov (United States)

    DiBattista, Joseph D.; Coker, Darren J.; Sinclair-Taylor, Tane H.; Stat, Michael; Berumen, Michael L.; Bunce, Michael

    2017-12-01

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  8. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    KAUST Repository

    DiBattista, Joseph D.

    2017-08-23

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  9. Phylogenetic relationships and evolutionary history of the reef fish family Labridae.

    Science.gov (United States)

    Westneat, Mark W; Alfaro, Michael E

    2005-08-01

    The family Labridae (including scarines and odacines) contains 82 genera and about 600 species of fishes that inhabit coastal and continental shelf waters in tropical and temperate oceans throughout the world. The Labridae (the wrasses) is the fifth largest fish family and second largest marine fish family, and is one of the most morphologically and ecologically diversified families of fishes in size, shape, and color. Labrid phylogeny is a long-standing problem in ichthyology that is part of the larger question of relationships within the suborder Labroidei. A phylogenetic analysis of labrids was conducted to investigate relationships among the six classical tribes of wrasses, the affinities of the wrasses to the parrotfishes (scarines), and the broad phylogenetic structure among labrid genera. Four gene fragments were sequenced from 98 fish species, including 84 labrid fishes and 14 outgroup taxa. Taxa were chosen from all major labrid clades and most major global ocean regions where labrid fishes exist, as well as cichlid, pomacentrid, and embiotocid outgroups. From the mitochondrial genome we sequenced portions of 12S rRNA (1000 bp) and 16S rRNA (585 bp), which were aligned by using a secondary structure model. From the nuclear genome, we sequenced part of the protein-coding genes RAG2 (846 bp) and Tmo4C4 (541 bp). Maximum likelihood, maximum parsimony, and Bayesian analyses on the resulting 2972 bp of DNA sequence produced similar topologies that confirm the monophyly of a family Labridae that includes the parrotfishes and butterfishes and strong support for many previously identified taxonomic subgroups. The tribe Hypsigenyini (hogfishes, tuskfishes) is the sister group to the remaining labrids and includes odacines and the chisel-tooth wrasse Pseudodax moluccanus, a species previously considered close to scarines. Cheilines and scarines are sister-groups, closely related to the temperate Labrini, and pseudocheilines and cheilines are split in all phylogenies

  10. Habitat Requirements and Foraging Ecology of the Madagascar Fish-Eagle

    OpenAIRE

    Berkelman, James

    1997-01-01

    With a population estimate of 99 pairs, the Madagascar fish-eagle (Haliaeetus vociferoides) is one of the rarest birds of prey in the world. I investigated the ecological requirements of the Madagascar fish-eagle in 1994 and 1995 to help determine management action to prevent its extinction. I investigated fish-eagle foraging ecology in 1996 to determine its prey preference and whether fish abundance and availabi...

  11. [Dietary composition and food competition of six main fish species in rocky reef habitat off Gouqi Island].

    Science.gov (United States)

    Wang, Kai; Zhang, Shou-Yu; Wang, Zhen-Hua; Zhao, Jing; Xu, Min; Lin, Jun

    2012-02-01

    Based on the monthly investigation data of fish resources in the rocky reef habitat off Gouqi Island from March 2009 to February 2010, this paper studied the dietary composition of three native fish species (Sebasticus marmoratus, Hexagrammos otakii and Hexagrammos agrammus) and three non-native fish species (Lateolabrax japonica, Nibea albiflora and Larimichthys polyactis). The analysis of gut content indicated that the main prey items of these six dominant fish species were Caprellidae, Gammaridea, juvenile S. marmoratus, Engraulis japonicas and Acetes chinensis and the dietary composition of each of the 6 fish species had obvious seasonal variation. There was an intense food competition between native species H. otakii and H. agrammus in autumn, between non-native species N. albiflora and L. polyactis in summer, between non-native species N. albiflora and native species S. marmoratus in autumn, and between non-native species N. albiflora and native species H. otakii in winter. It was suggested the non-native species N. albiflora was the key species in the food competition among the six dominant fish species in this rocky reef habitat, and thus the feeding behaviors of these six fish species could have definite effects on the resource capacity of juvenile S. marmoratus.

  12. Spatio-Temporal Patterns in the Coral Reef Communities of the Spermonde Archipelago, 2012–2014, II: Fish Assemblages Display Structured Variation Related to Benthic Condition

    Directory of Open Access Journals (Sweden)

    Jeremiah G. Plass-Johnson

    2018-02-01

    Full Text Available The Spermonde Archipelago is a complex of ~70 mostly populated islands off Southwest Sulawesi, Indonesia, in the center of the Coral Triangle. The reefs in this area are exposed to a high level of anthropogenic disturbances. Previous studies have shown that variation in the benthos is strongly linked to water quality and distance from the mainland. However, little is known about the fish assemblages of the region and if their community structure also follows a relationship with benthic structure and distance from shore. In this study, we used eight islands of the archipelago, varying in distance from 1 to 55 km relative to the mainland, and 3 years of surveys, to describe benthic and fish assemblages and to examine the spatial and temporal influence of benthic composition on the structure of the fish assemblages. Cluster analysis indicated that distinct groups of fish were associated with distance, while few species were present across the entire range of sites. Relating fish communities to benthic composition using a multivariate generalized linear model confirmed that fish groups relate to structural complexity (rugosity or differing benthic groups; either algae, reef builders (coral and crustose coralline algae or invertebrates and rubble. From these relationships we can identify sets of fish species that may be lost given continued degradation of the Spermonde reefs. Lastly, the incorporation of water quality, benthic and fish indices indicates that local coral reefs responded positively after an acute disturbance in 2013 with increases in reef builders and fish diversity over relatively short (1 year time frames. This study contributes an important, missing component (fish community structure to the growing literature on the Spermonde Archipelago, a system that features environmental pressures common in the greater Southeast Asian region.

  13. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    Science.gov (United States)

    Kuffner, Ilsa B.; Toth, Lauren T.

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  14. Using GIS mapping of the extent of nearshore rocky reefs to estimate the abundance and reproductive output of important fishery species.

    Directory of Open Access Journals (Sweden)

    Jeremy T Claisse

    Full Text Available Kelp Bass (Paralabrax clathratus and California Sheephead (Semicossyphus pulcher are economically and ecologically valuable rocky reef fishes in southern California, making them likely indicator species for evaluating resource management actions. Multiple spatial datasets, aerial and satellite photography, underwater observations and expert judgment were used to produce a comprehensive map of nearshore natural rocky reef habitat for the Santa Monica Bay region (California, USA. It was then used to examine the relative contribution of individual reefs to a regional estimate of abundance and reproductive potential of the focal species. For the reefs surveyed for fishes (i.e. 18 out of the 22 in the region, comprising 82% the natural rocky reef habitat 30% was produced from a relatively small proportion of the regional reef area (c. 10%. Natural nearshore rocky reefs make up only 11% of the area in the newly designated MPAs in this region, but results provide some optimism that regional fisheries could benefit through an increase in overall reproductive output, if adequate increases in size structure of targeted species are realized.

  15. CRED REA Fish Team Belt Transect Survey at Maro Reef, NW Hawaiian Islands, 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Belt transects along 3 consecutively-placed, 25m transect lines were surveyed as part of Rapid Ecological Assessments conducted at 9 sites at Maro Reef in the NW...

  16. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water

    Directory of Open Access Journals (Sweden)

    Philip L. Munday

    2016-10-01

    Full Text Available Pioneering studies into the effects of elevated CO2 on the behaviour of reef fishes often tested high-CO2 reared fish using control water in the test arena. While subsequent studies using rearing treatment water (control or high CO2 in the test arena have confirmed the effects of high CO2 on a range of reef fish behaviours, a further investigation into the use of different test water in the experimental arena is warranted. Here, we used a fully factorial design to test the effect of rearing treatment water (control or high CO2 and experimental test water (control or high CO2 on antipredator responses of larval reef fishes. We tested antipredator behaviour in larval clownfish Amphiprion percula and ambon damselfish Pomacentrus amboinensis, two species that have been used in previous high CO2 experiments. Specifically, we tested if: (1 using control or high CO2 water in a two channel flume influenced the response of larval clownfish to predator odour; and (2 using control or high CO2 water in the test arena influenced the escape response of larval damselfish to a startle stimulus. Finally, (3 because the effects of high CO2 on fish behaviour appear to be caused by altered function of the GABA-A neurotransmitter we tested if antipredator behaviours were restored in clownfish treated with a GABA antagonist (gabazine in high CO2 water. Larval clownfish reared from hatching in control water (496 µatm strongly avoided predator cue whereas larval clownfish reared from hatching in high CO2 (1,022 µatm were attracted to the predator cue, as has been reported in previous studies. There was no effect on fish responses of using either control or high CO2 water in the flume. Larval damselfish reared for four days in high CO2 (1,051 µatm exhibited a slower response to a startle stimulus and slower escape speed compared with fish reared in control conditions (464 µatm. There was no effect of test water on escape responses. Treatment of high-CO2 reared

  17. Individuality in Fish Behavior: Ecology and Comparative Psychology

    OpenAIRE

    Budaev, Dr. Sergey; Zworykin, Dr. Dmitry

    2002-01-01

    This work is a brief review of a series of studies of the phenotypic organization and ecological significance of individual differences in fish behavior. The following species were studied: guppy Poecilia retuculata, lion-headed cichlid Steatocranus cassuarius, and the convict cichlid Archocentrus nigrofasciatum. We developed methods for the analysis of individual differences in fish behavior and studied their structure, development, and ecological and evolutionary significance.

  18. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?

    DEFF Research Database (Denmark)

    Habary, Adam; Johansen, Jacob L.; Nay, Tiffany J.

    2017-01-01

    poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate...

  19. Reef fish community in presence of the lionfish (Pterois volitans in Santa Marta, Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Rocío García-Urueña

    2015-11-01

    Full Text Available Objective. Fish species community structure and benthic organisms coverage were studied in five localities in Santa Marta where the lionfish is present. Materials and methods. Abundance of fish species, including lion fish, was established using 30 m random visual censuses and video transects; trophic guilds were established according to available references. On the other hand benthic coverage was evaluated using the software Coral Point Count (CPCe 4.0. Results. Families with higher species numbers were Serranidae, Labridae, and Pomacentridae. Lionfish abundances were low (2.6±2.1 ind/120 m2, but in any case Pterois volitans was observed as the eleventh more abundant species, surpassing species of commercial value such as Cephalopholis cruentata. Species that were found in larger numbers (>100, Thalassoma bifasciatum, Haemulon aurolineatum, Canthigaster rostrata, Abudefduf saxatilis, Chromis cyanea, and Stegastes partitus were mainly invertebrate eaters, planctivores, and territorial herbivores. Coral coverage showed higher coral percentages in Chengue (69.9% and Cinto (27.4%, larger sponge percentages in Morro (32.7%; Isla Aguja and Remanso showed the larger figures for abiotic substrate (41.6 and 37%, respectively; corals, sponges, and gorgonians were the components best explaining fish community, but not for the lion fish, which inhabit all studied reef formations. Conclusions. Lion fish is ranked between the 20 more abundant species, with none commercially important species larger, hence no species may qualify as a natural control. Lion fish has as well become a relatively abundant species in Santa Marta reefs, independent of benthic coverage.

  20. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  1. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.; Hoey, Andrew; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  2. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  3. Coral reefs as indicators of marine environmental health

    International Nuclear Information System (INIS)

    Kumaraguru, A.K.

    2007-01-01

    Coral reefs are one of the most productive and diverse of all ecosystems on the Earth. Although they occupy less than 0.25 percent of the marine environment, the reefs support more than a quarter of all known fish species. They serve as critical habitats for numerous tropical species including reef fishes of ornamental nature and edible fishes. They protect the shores from storms and wave actions

  4. Extinction rate, historical population structure and ecological role of the Caribbean monk seal.

    Science.gov (United States)

    McClenachan, Loren; Cooper, Andrew B

    2008-06-22

    The productivity and biomass of pristine coral reef ecosystems is poorly understood, particularly in the Caribbean where communities have been impacted by overfishing and multiple other stressors over centuries. Using historical data on the spatial distribution and abundance of the extinct Caribbean monk seal (Monachus tropicalis), this study reconstructs the population size, structure and ecological role of this once common predator within coral reef communities, and provides evidence that historical reefs supported biomasses of fishes and invertebrates up to six times greater than those found on typical modern Caribbean reefs. An estimated 233,000-338,000 monk seals were distributed among 13 colonies across the Caribbean. The biomass of reef fishes and invertebrates required to support historical seal populations was 732-1018 gm(-2) of reefs, which exceeds that found on any Caribbean reef today and is comparable with those measured in remote Pacific reefs. Quantitative estimates of historically dense monk seal colonies and their consumption rates on pristine reefs provide concrete data on the magnitude of decline in animal biomass on Caribbean coral reefs. Realistic reconstruction of these past ecosystems is critical to understanding the profound and long-lasting effect of human hunting on the functioning of coral reef ecosystems.

  5. Species-specific impacts of a small marine reserve on reef fish production and fishing productivity in the Turks and Caicos Islands

    NARCIS (Netherlands)

    Tupper, M.H.; Rudd, M.A.

    2002-01-01

    Marine reserves are widely considered to potentially benefit reef fisheries through emigration, yet the empirical basis for predicting the extent of this for small reserves is weak. The effects of fishing pressure and habitat on biomass and catch per unit effort (CPUE) of three species of exploited

  6. Influence of coral cover and structural complexity on the accuracy of visual surveys of coral-reef fish communities

    KAUST Repository

    Coker, Darren James

    2017-04-20

    Using manipulated patch reefs with combinations of varying live-coral cover (low, medium and high) and structural complexity (low and high), common community metrics (abundance, diversity, richness and community composition) collected through standard underwater visual census techniques were compared with exhaustive collections using a fish anaesthetic (clove oil). This study showed that reef condition did not influence underwater visual census estimates at a community level, but reef condition can influence the detectability of some small and cryptic species and this may be exacerbated if surveys are conducted on a larger scale.

  7. Influence of coral cover and structural complexity on the accuracy of visual surveys of coral-reef fish communities

    KAUST Repository

    Coker, Darren James; Nowicki, J. P.; Graham, N. A. J.

    2017-01-01

    Using manipulated patch reefs with combinations of varying live-coral cover (low, medium and high) and structural complexity (low and high), common community metrics (abundance, diversity, richness and community composition) collected through standard underwater visual census techniques were compared with exhaustive collections using a fish anaesthetic (clove oil). This study showed that reef condition did not influence underwater visual census estimates at a community level, but reef condition can influence the detectability of some small and cryptic species and this may be exacerbated if surveys are conducted on a larger scale.

  8. National Coral Reef Monitoring Program: Assessment of fish communities in the Florida Reef Tract from 2014-05-01 to 2014-10-01 (NCEI Accession 0156445)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Divers conducted reef visual census (RVC) fish surveys and habitat assessments at 433 sites in the Florida Keys, 436 sites in the Dry Tortugas and 320 sites in the...

  9. Water flow and fin shape polymorphism in coral reef fishes.

    Science.gov (United States)

    Binning, Sandra A; Roche, Dominique G

    2015-03-01

    Water flow gradients have been linked to phenotypic differences and swimming performance across a variety of fish assemblages. However, the extent to which water motion shapes patterns of phenotypic divergence within species remains unknown. We tested the generality of the functional relationship between swimming morphology and water flow by exploring the extent of fin and body shape polymorphism in 12 widespread species from three families (Acanthuridae, Labridae, Pomacentridae) of pectoral-fin swimming (labriform) fishes living across localized wave exposure gradients. The pectoral fin shape of Labridae and Acanthuridae species was strongly related to wave exposure: individuals with more tapered, higher aspect ratio (AR) fins were found on windward reef crests, whereas individuals with rounder, lower AR fins were found on leeward, sheltered reefs. Three of seven Pomacentridae species showed similar trends, and pectoral fin shape was also strongly related to wave exposure in pomacentrids when fin aspect ratios of three species were compared across flow habitats at very small spatial scales (fish body fineless ratio across habitats or depths. Contrary to our predictions, there was no pattern relating species' abundances to polymorphism across habitats (i.e., abundance was not higher at sites where morphology is better adapted to the environment). This suggests that there are behavioral and/or physiological mechanisms enabling some species to persist across flow habitats in the absence of morphological differences. We suggest that functional relationships between swimming morphology and water flow not only structure species assemblages, but are yet another important variable contributing to phenotypic differences within species. The close links between fin shape polymorphism and local water flow conditions appear to be important for understanding species' distributions as well as patterns of diversification across environmental gradients.

  10. Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous underwater visual census, video, and trap sampling

    KAUST Repository

    Bacheler, NM; Geraldi, NR; Burton, ML; Muñ oz, RC; Kellison, GT

    2017-01-01

    of the reef fish community along the southeastern US Atlantic coast. In total, 117 taxa were observed by underwater visual census (UVC), stationary video, and chevron fish traps, with more taxa being observed by UVC (100) than video (82) or traps (20

  11. Fish survey data from Uva Island reef, Panama collected between 1980 and 2010 (NCEI Accession 0157563)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains an eastern Pacific fish assemblage associated with a 2.5 hectare coral reef located within the boundaries of Coiba National Park, Panama. From...

  12. Depth-variable settlement patterns and predation influence on newly settled reef fishes (Haemulon spp., Haemulidae.

    Directory of Open Access Journals (Sweden)

    Lance K B Jordan

    Full Text Available During early demersal ontogeny, many marine fishes display complex habitat-use patterns. Grunts of the speciose genus Haemulon are among the most abundant fishes on western North Atlantic coral reefs, with most species settling to shallow habitats (≤12 m. To gain understanding into cross-shelf distributional patterns exhibited by newly settled stages of grunts (<2 cm total length, we examined: 1 depth-specific distributions of congeners at settlement among sites at 8 m, 12 m, and 21 m, and 2 depth-variable predation pressure on newly settled individuals (species pooled. Of the six species identified from collections of newly settled specimens (n = 2125, Haemulon aurolineatum (tomtate, H. flavolineatum (French grunt, and H. striatum (striped grunt comprised 98% of the total abundance; with the first two species present at all sites. Prevalence of H. aurolineatum and H. flavolineatum decreased substantially from the 8-m site to the two deeper sites. In contrast, H. striatum was absent from the 8-m site and exhibited its highest frequency at the 21-m site. Comparison of newly settled grunt delta density for all species on caged (predator exclusion and control artificial reefs at the shallowest site (8-m revealed no difference, while the 12-m and 21-m sites exhibited significantly greater delta densities on the caged treatment. This result, along with significantly higher abundances of co-occurring piscivorous fishes at the deeper sites, indicated lower predation pressure at the 8-m site. This study suggests habitat-use patterns of newly settled stages of some coral reef fishes that undergo ontogenetic shifts are a function of depth-variable predation pressure while, for at least one deeper-water species, proximity to adult habitat appears to be an important factor affecting settlement distribution.

  13. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Mary J.; Sramek, Carolyn M.; Antonelis, George A. [National Oceanic and Atmospheric Administration Commissioned Corps, National Marine Fisheries Service Honolulu Lab., Honolulu, HI (United States); Boland, Raymond C. [Hawaii Univ. Research Corp., Joint Inst. for Marine and Atmospheric Research, Honolulu, HI (United States)

    2001-07-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km{sup 2}. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago. (Author)

  14. Derelict fishing gear in the northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems.

    Science.gov (United States)

    Donohue, M J; Boland, R C; Sramek, C M; Antonelis, G A

    2001-12-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km2. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago.

  15. Validation of microsatellite multiplexes for parentage analysis in a coral reef fish (Lutjanus carponotatus, Lutjanidae)

    KAUST Repository

    Harrison, Hugo B.

    2014-05-25

    Parentage analysis is an important tool for identifying connectivity patterns in coral reef fishes, but often requires numerous highly polymorphic markers. We isolated 21 polymorphic microsatellite markers from the stripey snapper, Lutjanus carponotatus and describe their integration into three multiplex PCRs. All markers were highly polymorphic with a mean of 24.9 ± 1.8 SE alleles per locus and an average observed heterozygosity of 0.797 ± 0.038 SE across 285 genotyped individuals. Using a simulated dataset, we conclude that the complete marker set provides sufficient resolution to resolve parent–offspring relationships in natural populations with 99.6 ± 0.1 % accuracy in parentage assignments. This multiplex assay provides an effective means of investigating larval dispersal and population connectivity in this fishery-targeted coral reef fish species and informing the design of marine protected area networks for biodiversity conservation and fisheries management.

  16. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    Science.gov (United States)

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. © 2015 Society for Conservation Biology.

  17. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    Science.gov (United States)

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  18. The differentiation of common species in a coral-reef fish assemblage for recreational scuba diving.

    Science.gov (United States)

    Chen, Tsen-Chien; Ho, Cheng-Tze; Jan, Rong-Quen

    2016-01-01

    Recreational scuba diving is a popular activity of the coral reef tourism industry. In practice, local diving centers recommend interesting sites to help visiting divers make their plans. Fish are among the major attractions, but they need to be listed with care because the temporal occurrence of a fish species is difficult to predict. To address this issue, we propose methods to categorize each fish species based on its long-term occurrence and likelihood of being seen. We assume that there are K categories of occurrence of a fish assemblage and propose two methods [an arithmetic-mean method (AM) and a geometric-mean method (GM)] to define the range of species in each category. Experiments based on long term datasets collected at three underwater stations (each having 51-53 surveys and totals of 262-284 fish species) on coral reefs in southern Taiwan showed that when K = 4 (rare, occasional, frequent and common categories), 11-14 species were concurrently assigned to the common category by AM for data sets based on surveys 10, 15, 20, 25, 30, 35, 40, 45, or 51-53 in contrast to the 18-26 species assigned as common by GM. If a similarity index of 0.7 (compared to the total pool of fish species) was the minimum threshold for diver satisfaction, then 20-25 surveys provide sufficient data for listing the common species at a given dive spot. Common fish species, are the most temporally stable, and thus are more appropriate for attracting divers. These can be effectively differentiated by either AM or GM with at least 25 surveys. We suggest regular updating of each fish's category through periodic surveys to assure the accuracy of information at a particular dive spot.

  19. Pacific Reef Assessment and Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of the U.S. Pacific Reefs from 2008-01-27 to 2012-09-13 (NCEI Accession 0162472)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (nSPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  20. Pacific Reef Assessment and Monitoring Program: Rapid Ecological Assessments of Fish Large-Area Stationary Point Count Surveys (SPC) in the Pacific Ocean from 2000-09-09 to 2007-06-08 (NCEI Accession 0162466)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The large-area stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific...

  1. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  2. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects

    Science.gov (United States)

    Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira

    2013-05-01

    The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.

  3. Human disturbances on coral reefs in Sri Lanka: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M C; Linden, O [Stockholm Univ. (Sweden). Dept. of Zoology; Rajasuriya, A [NARA, Crow Island, Colombo (Sri Lanka)

    1993-01-01

    The degradation of coral reefs in Sri Lanka has increased substantially over the last decades. Human activities causing this degradation include: mining for lime production, sewage discharges, discharges of oil and other pollutants in connection with shipping and port activities, destructive fishing practices, land and mangrove destruction, tourism and the collecting of fauna such as fish, shells and corals. In this study, three adjacent coral reefs; Bar Reef, Talawila Reef, and Kandakuliya Reef, which are widely scattered patch reefs off Kalpitiya Peninsula, northwestern Sri Lanka, were surveyed and compared in terms of their fish and coral diversity and abundance as well as human and natural disturbances. Information was gathered by snorkeling in visual overview surveys and by scuba diving in detailed transect surveys. When each reef was ranked according to the extent of live coral cover, and chaetodontid diversity, the results indicated that Bar Reef was in excellent condition, Talawila Reef was intermediate, and Kandakuliya Reef was in poor condition. The diversity of coral genera, the topographic relief and the proportion of coral rubble, did not follow the same pattern. The number of coral genera found was 49, while 283 fish species belonging to 51 families were recorded. Human disturbance factors on the reefs were found to be net fishing, boat anchoring and ornamental fish collection for the aquarium trade. Bottom.set nylon nets in particular were found to have a very destructive impact on the bottom fauna. 33 refs, 7 figs, 1 tab

  4. Artificial reefs: “Attraction versus Production”

    Directory of Open Access Journals (Sweden)

    Eduardo Barros Fagundes Netto

    2011-04-01

    Full Text Available The production of fish is the most common reason for the construction and installation of an artificial reef. More recently, environmental concerns and conservation of biological resources have been instrumental to the formulation of new goals of the research. One of the issues to be resolved is the biological function of “attraction vs. production” as a result of the use of artificial reefs. The uncertainty as to the answer to the question whether the artificial reefs will or not benefit the development of fish stocks could be solved if the artificial reefs would be managed as marine protected areas.

  5. Fish Biodiversity Patterns in Reef Communities of the Southeastern Coast of Brazil

    Directory of Open Access Journals (Sweden)

    Ralf Riedel

    2015-10-01

    Full Text Available Marine Protected Areas are increasingly becoming a tool of choice for conservation and management of marine resources and ecosystems. Data on biodiversity are necessary to assist in establishing protected areas for conservation objectives to be met. Toward that effect, we investigated reef biodiversity patterns in three large-scale coastal regions of Brazil. The study areas comprised of an upwelling region, an adjacent high impacted region, and a more distant marine park. We surveyed four reef sites in each study region. Fish species and abundance, substrate relief, and water temperature were recorded during the surveys. Biodiversity was estimated using Simpson’s and Shannon’s indices on species richness and abundance. Fish diversity was highest at the upwelling area. No difference in diversity was observed between the high impacted region and the marine park. No substrate relief patterns were found. Temperature readings showed higher frequency of low temperature episodic events at the upwelling region. Our results favor the upwelling region for establishment of a Marine Protected Area. Moreover, the similar diversity between the high impacted region and the marine park showed evidence of spillover effects from the upwelling into the high impacted region, further demonstrating the importance of the upwelling region for conservation.

  6. Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef.

    Science.gov (United States)

    Muñoz, Roldan C; Buckel, Christine A; Whitfield, Paula E; Viehman, Shay; Clark, Randy; Taylor, J Christopher; Degan, Brian P; Hickerson, Emma L

    2017-01-01

    The world's coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0'N; 93°50'W) from 2010-2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the

  7. Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef.

    Directory of Open Access Journals (Sweden)

    Roldan C Muñoz

    Full Text Available The world's coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0'N; 93°50'W from 2010-2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving

  8. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.

    Directory of Open Access Journals (Sweden)

    Thomas Claverie

    Full Text Available Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation and the main vector of shape variation (first principal component for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae, the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae. In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of

  9. A Morphospace for Reef Fishes: Elongation Is the Dominant Axis of Body Shape Evolution

    Science.gov (United States)

    Claverie, Thomas; Wainwright, Peter C.

    2014-01-01

    Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes

  10. Changing tides: ecological and historical perspectives on fish cognition.

    Science.gov (United States)

    Patton, B Wren; Braithwaite, Victoria A

    2015-01-01

    The capacity for specialization and radiation make fish an excellent group in which to investigate the depth and variety of animal cognition. Even though early observations of fish using tools predates the discovery of tool use in chimpanzees, fish cognition has historically been somewhat overlooked. However, a recent surge of interest is now providing a wealth of material on which to draw examples, and this has required a selective approach to choosing the research described below. Our goal is to illustrate the necessity for basing cognitive investigations on the ecological and evolutionary context of the species at hand. We also seek to illustrate the importance of ecology and the environment in honing a range of sensory systems that allow fish to glean information and support informed decision-making. The various environments and challenges with which fish interact require equally varied cognitive skills, and the solutions that fish have developed are truly impressive. Similarly, we illustrate how common ecological problems will frequently produce common cognitive solutions. Below, we focus on four topics: spatial learning and memory, avoiding predators and catching prey, communication, and innovation. These are used to illustrate how both simple and sophisticated cognitive processes underpin much of the adaptive behavioral flexibility exhibited throughout fish phylogeny. Never before has the field had such a wide array of interdisciplinary techniques available to access both cognitive and mechanistic processes underpinning fish behavior. This capacity comes at a critical time to predict and manage fish populations in an era of unprecedented global change. © 2015 John Wiley & Sons, Ltd.

  11. Effects of tourist visitation and supplementary feeding on fish assemblage composition on a tropical reef in the Southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Martina Di Iulio Ilarri

    Full Text Available The effects of tourist visitation and food provisioning on fish assemblages were assessed by visual censuses (stationary technique carried out in a tropical reef in Northeastern Brazil. Comparisons of species abundance, richness, equitability, and trophic structure in the presence (PT and absence (AT of tourists suggest that tourist visitation and supplementary food influenced the structure of the fish assemblage, as follows: (a diversity, equitability and species richness were significantly higher on the AT period, while the abundance of a particular species was significantly higher during PT; (b trophic structure differed between the AT and PT periods, omnivores being more abundant during the latter period, while mobile invertivores, piscivores, roving herbivores and territorial herbivores were significantly more abundant on AT. Reef tourism is increasingly being regarded as an alternative to generate income for human coastal communities in the tropics. Therefore, closer examination of the consequences of the various components of this activity to reef system is a necessary step to assist conservation and management initiatives.

  12. Seascape and life-history traits do not predict self-recruitment in a coral reef fish

    KAUST Repository

    Herrera Sarrias, Marcela

    2016-08-10

    The persistence and resilience of many coral reef species are dependent on rates of connectivity among sub-populations. However, despite increasing research efforts, the spatial scale of larval dispersal remains unpredictable for most marine metapopulations. Here, we assess patterns of larval dispersal in the angelfish Centropyge bicolor in Kimbe Bay, Papua New Guinea, using parentage and sibling reconstruction analyses based on 23 microsatellite DNA loci. We found that, contrary to previous findings in this system, self-recruitment (SR) was virtually absent at both the reef (0.4-0.5% at 0.15 km2) and the lagoon scale (0.6-0.8% at approx. 700 km2). While approximately 25%of the collected juveniles were identified as potential siblings, the majority of sibling pairs were sampled from separate reefs. Integrating our findings with earlier research from the same system suggests that geographical setting and life-history traits alone are not suitable predictors of SR and that high levels of localized recruitment are not universal in coral reef fishes. © 2016 The Authors.

  13. Coralline reefs classification in Banco Chinchorro, Mexico

    Science.gov (United States)

    Contreras-Silva, Ameris I.; López-Caloca, Alejandra A.

    2009-09-01

    The coralline reefs in Banco Chinchorro, Mexico, are part of the great reef belt of the western Atlantic. This reef complex is formed by an extensive coralline structure with great biological richness and diversity of species. These colonies are considered highly valuable ecologically, economically, socially and culturally, and they also inherently provide biological services. Fishing and scuba diving have been the main economic activities in this area for decades. However, in recent years, there has been a bleaching process and a decrease of the coral colonies in Quintana Roo, Mexico. This drop is caused mainly by the production activities performed in the oil platforms and the presence of hurricanes among other climatic events. The deterioration of the reef system can be analyzed synoptically using remote sensing. Thanks to this type of analysis, it is possible to have updated information of the reef conditions. In this paper, satellite imagery in Landsat TM and SPOT 5 is applied in the coralline reefs classification in the 1980- 2006 time period. Thus, an integral analysis of the optical components of the water surrounding the coralline reefs, such as on phytoplankton, sediments, yellow substance and even on the same water adjacent to the coral colonies, is performed. The use of a texture algorithm (Markov Random Field) was a key tool for their identification. This algorithm, does not limit itself to image segmentation, but also works on edge detection. In future work the multitemporal analysis of the results will determine the deterioration degree of these habitats and the conservation status of the coralline areas.

  14. Coral reef fish species survey data GIS from the Florida Keys National Marine Sanctuary (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida...

  15. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  16. Ecological assessment of fish biodiversity in relation to hydrological ...

    African Journals Online (AJOL)

    This research analysed the fish species diversity; ecological distribution and abundance in relation to hydrological variables of Ogun coastal water. Fish species were collected with the use of graded gillnet bimonthly for six-months. Correlation analysis between fish species richness with the hydrological attributes showed ...

  17. Reef Visual Census (RVC) data.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide data on frequency of occurrence , density abundance, and length frequency of reef fish throughout Florida reef tract from 1978 forward.

  18. A Global Estimate of the Number of Coral Reef Fishers.

    Directory of Open Access Journals (Sweden)

    Louise S L Teh

    Full Text Available Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  19. A Global Estimate of the Number of Coral Reef Fishers.

    Science.gov (United States)

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  20. On the methodology of feeding ecology in fish

    Directory of Open Access Journals (Sweden)

    Saikia Surjya Kumar

    2016-06-01

    Full Text Available Feeding ecology explains predator’s preference to some preys over others in their habitat and their competitions thereof. The subject, as a functional and applied biology, is highly neglected, and in case of fish, a uniform and consistent methodology is absent. The currently practiced methods are largely centred on mathematical indices and highly erroneous because of non-uniform outcomes. Therefore, it requires a relook into the subject to elucidate functional contributions and to make it more comparable and comprehensive science. In this article, approachable methodological strategies have been forwarded in three hierarchical steps, namely, food occurrence, feeding biology and interpretative ecology. All these steps involve wide ranges of techniques, within the scope of ecology but not limited to, and traverse from narrative to functional evolutionary ecology. The first step is an assumption-observation practice to assess food of fish, followed by feeding biology that links morphological, histological, cytological, bacteriological or enzymological correlations to preferred food in the environment. Interpretative ecology is the higher level of analysis in which the outcomes are tested and discussed against evolutionary theories. A description of possible pedagogics on the methods of feeding ecological studies has also been forwarded.

  1. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations

    KAUST Repository

    Veilleux, Heather D; Donelson, Jennifer M; Munday, Philip L

    2017-01-01

    Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus, step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression (Fshr and Lhcgr) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus. In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.

  2. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations.

    Science.gov (United States)

    Veilleux, Heather D; Donelson, Jennifer M; Munday, Philip L

    2018-01-01

    Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus , step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression ( Fshr and Lhcgr ) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus . In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.

  3. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations

    KAUST Repository

    Veilleux, Heather D

    2017-12-07

    Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus, step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression (Fshr and Lhcgr) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus. In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.

  4. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  5. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    Directory of Open Access Journals (Sweden)

    Amanda W.J. Demopoulos

    2015-04-01

    Full Text Available Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi and permanently parasitic cymothoids (Anilocra. To further track the transfer of fish-derived carbon (energy from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  6. The effects of natural disturbances, reef state, and herbivorous fish densities on ciguatera poisoning in Rarotonga, southern Cook Islands.

    Science.gov (United States)

    Rongo, Teina; van Woesik, Robert

    2013-03-15

    Ciguatera poisoning is a critical public-health issue among Pacific island nations. Accurately predicting ciguatera outbreaks has become a priority, particularly in Rarotonga in the southern Cook Islands, which has reported the highest incidence of ciguatera poisoning globally. Since 2006, however, cases of ciguatera poisoning have declined, and in 2011 ciguatera cases were the lowest in nearly 20 years. Here we examined the relationships between cases of ciguatera poisoning, from 1994 to 2011, and: (i) coral cover, used as a proxy of reef state, (ii) the densities of herbivorous fishes, and (iii) reef disturbances. We found that coral cover was not a good predictor of cases of ciguatera poisoning, but high densities of the herbivorous fish Ctenochaetus striatus and reef disturbances were both strong predictors of ciguatera poisoning. Yet these two predictors were correlated, because the densities of C. striatus increased only after major cyclones had disturbed the reefs. Since 2006, the number of cyclones has decreased considerably in Rarotonga, because of the climatic shift toward the negative phase of the Pacific Decadal Oscillation. We suggest that fewer cyclones have led to decreases in both the densities of C. striatus and of the number of reported cases of ciguatera poisoning in Rarotonga. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Trophic and reproductive ecology of Red Snapper, Lutjanus campechanus, on natural and artificial reefs in the western Gulf of Mexico

    Science.gov (United States)

    Ajemian, M. J.; Wetz, J. J.; Brewton, R. A.; Downey, C. H.; Stunz, G. W.

    2016-02-01

    Energy exploration in the Gulf of Mexico (Gulf) has resulted in the addition of numerous oil and gas production rigs that have added structurally complex habitat to an area otherwise dominated by bare bottom. The impact of these artificial structures on fish populations is largely unknown and there is ongoing debate about their functionality. Red Snapper (Lutjanus campechanus), an ecologically and economically important sportfish to the region, use natural as well as the artificial reefs created by standing and reefed (toppled or cutoff) oil and gas rigs. However, little is known about how trophic and reproductive characteristics of Red Snapper vary over these multiple habitat types. We analyzed stable isotopic composition (δ13C, δ 15N) of epaxial muscle and compared reproductive potential of Red Snapper (155-855 mm TL) from standing rigs, reefed rigs, and natural hard-bottom habitats off Texas. Red Snapper from standing rig sites were isotopically enriched in δ 15N compared to lower relief habitats, suggesting they were feeding at a higher trophic level on standing rigs. While gonadosomatic indices (GSI) and comparative histology implied a similar spawning season among structure types, GSI was highest for both sexes at standing rigs. These initial results suggest that while standing rigs appear to provide more enriched food resources leading to higher Red Snapper reproductive capacity, the productivity of this species is similar between currently permitted rig decommissioning options (i.e., cutoff and toppled rigs) and natural hard-bottom habitats in the Gulf of Mexico.

  8. Monitoring of the artificial reef fish assemblages of golfe juan marine protected area (France, North-Western Mediterranean

    Directory of Open Access Journals (Sweden)

    Bodilis Pascaline

    2011-01-01

    Full Text Available Artificial reefs were deployed within the Golfe-Juan marine protected area (Alpes-Maritimes coast, France, Northwestern Mediterranean created in 1981. This no-take area is fully protected since its establishment, except in 2004 when some anthropic activities were, exceptionally, authorized. Moreover, no park rangers to prevent poaching since 2002 occur. In order to carry out a long term monitoring of the artificial reef fish assemblages, underwater visual censuses (UVC were carried out in 1988, 1998 and 2008, according to a traditional standardized visual census method that taken into account all fish species. The complexification of some large reefs built with wide voide spaces called Bonna reefs appear to be a good solution to increase species richness and density. Species richness and density of the fish assemblages showed significant increase between 1988 and 1998. However the fast increasing was stopped from 1998 and 2008 probably due to a lack of law enforcement and poaching. Despite artificial reefs were deployed in MPA since at least 20 years, they did not show a real positive impact on fish assemblages. These results could be explained (i by a lack of law enforcement patrol within the protected areas during the last decade, and (ii by the one-year opening to fishing activities within MPA. The real effectiveness of the artificial reefs in sustaining fish assemblages is discussed and the necessity of a regular and efficient control by park rangers is highlighted.Recifes artificiais foram implantados na área protegida Golfe-Juan (costa dos Alpes-Maritimes, Noroeste do Mediterraneo criada em 1981. Esta área NTZ (Area de Restrição da Pesca é inteiramente protegida, desde seu estabelecimento, exceto em 2004, quando algumas atividades antropicas foram excepcionalmente autorizadas. Além disso, desde 2002, não houve nenhuma patrulha florestal para impedir a caça e pesca ilegais. . A fim realizar um monitoramento a longo prazo das assembl

  9. Unexpected high vulnerability of functions in wilderness areas: evidence from coral reef fishes

    Science.gov (United States)

    Vigliola, Laurent; Graham, Nicholas A. J.; Wantiez, Laurent; Parravicini, Valeriano; Villéger, Sébastien; Mou-Tham, Gerard; Frolla, Philippe; Friedlander, Alan M.; Kulbicki, Michel; Mouillot, David

    2016-01-01

    High species richness is thought to support the delivery of multiple ecosystem functions and services under changing environments. Yet, some species might perform unique functional roles while others are redundant. Thus, the benefits of high species richness in maintaining ecosystem functioning are uncertain if functions have little redundancy, potentially leading to high vulnerability of functions. We studied the natural propensity of assemblages to be functionally buffered against loss prior to fishing activities, using functional trait combinations, in coral reef fish assemblages across unfished wilderness areas of the Indo-Pacific: Chagos Archipelago, New Caledonia and French Polynesia. Fish functional diversity in these wilderness areas is highly vulnerable to fishing, explained by species- and abundance-based redundancy packed into a small combination of traits, leaving most other trait combinations (60%) sensitive to fishing, with no redundancy. Functional vulnerability peaks for mobile and sedentary top predators, and large species in general. Functional vulnerability decreases for certain functional entities in New Caledonia, where overall functional redundancy was higher. Uncovering these baseline patterns of functional vulnerability can offer early warning signals of the damaging effects from fishing, and may serve as baselines to guide precautionary and even proactive conservation actions. PMID:27928042

  10. 77 FR 2960 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-01-20

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Exempted... and retention. This study, to be conducted in the exclusive economic zone (EEZ) of the Gulf of Mexico (Gulf) off Louisiana, is intended to better document the age structure and life history of fish...

  11. 77 FR 30507 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-05-23

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Exempted... and retention. This study, to be conducted in the exclusive economic zone (EEZ) of the Gulf of Mexico (Gulf), is intended to better document the age structure and life history of fish associated with...

  12. Congruence in demersal fish, macroinvertebrate, and macroalgal community turnover on shallow temperate reefs.

    Science.gov (United States)

    Thomson, Russell J; Hill, Nicole A; Leaper, Rebecca; Ellis, Nick; Pitcher, C Roland; Barrett, Neville S; Edgar, Graham J

    2014-03-01

    To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for

  13. Global warming may disproportionately affect larger adults in a predatory coral reef fish

    KAUST Repository

    Messmer, Vanessa

    2016-11-03

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.

  14. Global warming may disproportionately affect larger adults in a predatory coral reef fish

    KAUST Repository

    Messmer, Vanessa; Pratchett, Morgan S.; Hoey, Andrew S.; Tobin, Andrew J.; Coker, Darren James; Cooke, Steven J.; Clark, Timothy D.

    2016-01-01

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.

  15. Global warming may disproportionately affect larger adults in a predatory coral reef fish.

    Science.gov (United States)

    Messmer, Vanessa; Pratchett, Morgan S; Hoey, Andrew S; Tobin, Andrew J; Coker, Darren J; Cooke, Steven J; Clark, Timothy D

    2017-06-01

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems. © 2016 John Wiley & Sons Ltd.

  16. NOAA's Coral Reef Conservation Program's 2016 Projects that Work Towards Stratefic Goals to Reduce Fishing Impacts on Coral

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to work towards CRCP's strategic goals to reduce fishing impacts on coral reefs Building GIS Long-term Capacity:...

  17. Demographic patterns in the peacock grouper (Cephalopholis argus), an introduced Hawaiian reef fish

    Science.gov (United States)

    Donovan, Mary K.; Friedlander, Alan M.; DeMartini, Edward E.; Donahue, Megan J.; Williams, Ivor D.

    2013-01-01

    This study took advantage of a unique opportunity to collect large sample sizes of a coral reef fish species across a range of physical and biological features of the Hawaiian Archipelago to investigate variability in the demography of an invasive predatory coral reef fish, Cephalopholis argus (Family: Epinephelidae). Age-based demographic analyses were conducted at 10 locations in the main Hawaiian Islands and estimates of weight-at-length, size-at-age, and longevity were compared among locations. Each metric differed among locations, although patterns were not consistent across metrics. Length-weight relationships for C. argus differed among locations and individuals weighed less at a given length at Hilo, the southernmost location studied. Longevity differed among and within islands and was greater at locations on Maui and Hawaii compared to the more northern locations on Oahu and Kauai. Within-island growth patterns differed at Kauai, Oahu, and Hawaii. This work provides a case study of fundamental life history information from distant and/or spatially limited locations that are critical for developing robust fishery models. The differences observed both among and within islands indicate that variability may be driven by cross-scale mechanisms that need to be considered in fisheries stock assessments and ecosystem-based management.

  18. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  19. Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota)

    KAUST Repository

    Tornabene, Luke; Ahmadia, Gabby N.; Berumen, Michael L.; Smith, David J.; Jompa, Jamaluddì n; Pezold, Frank L.

    2013-01-01

    Gobies (Teleostei: Gobiidae) are an extremely diverse and widely distributed group and are the second most species rich family of vertebrates. Ecological drivers are key to the evolutionary success of the Gobiidae. However, ecological and phylogenetic data are lacking for many diverse genera of gobies. Our study investigated the evolution of microhabitat association across the phylogeny of 18 species of dwarfgobies (genus Eviota), an abundant and diverse group of coral reef fishes. In addition, we also explore the evolution of pectoral fin-ray branching and sensory head pores to determine the relationship between morphological evolution and microhabitat shifts. Our results demonstrate that Eviota species switched multiple times from a facultative hard-coral association to inhabiting rubble or mixed sand/rubble habitat. We found no obvious relationship between microhabitat shifts and changes in pectoral fin-ray branching or reduction in sensory pores, with the latter character being highly homoplasious throughout the genus. The relative flexibility in coral-association in Eviota combined with the ability to move into non-coral habitats suggests a genetic capacity for ecological release in contrast to the strict obligate coral-dwelling relationship commonly observed in closely related coral gobies, thus promoting co-existence through fine scale niche partitioning. The variation in microhabitat association may facilitate opportunistic ecological speciation, and species persistence in the face of environmental change. This increased speciation opportunity, in concert with a high resilience to extinction, may explain the exceptionally high diversity seen in Eviota compared to related genera in the family. © 2012 Elsevier Inc.

  20. Impacts of Artificial Reefs on Surrounding Ecosystems

    Science.gov (United States)

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish

  1. Transuranic concentrations in reef and pelagic fish from the Marshall Islands

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Eagle, R.J.; Wong, K.M.; Jokela, T.A.

    1980-09-01

    Concentrations of /sup 239 + 240/Pu are reported in tissues of several species of reef and pelagic fish caught at 14 different atolls in the northern Marshall Islands. Several regularities that are species dependent are evident in the distribution of /sup 239 + 240/Pu among different body tissues. Concentrations in liver always exceeded those in bone and concentrations were lowest in the muscle of all fish analyzed. A progressive discrimination against /sup 239 + 240/Pu was observed at successive trophic levels at all atolls except Bikini and Enewetak, where it was difficult to conclude if any real difference exists between the average concentration factor for /sup 239 + 240/Pu among all fish, which include bottom feeding and grazing herbivores, bottom feeding carnivores, and pelagic carnivores from different atoll locations. The average concentration of /sup 239 + 240/Pu in the muscle of surgeonfish from Bikini and Enewetak was not significantly different from the average concentrations determined in these fish at the other, lesser contaminated atolls. Concentrations among all 3rd, 4th, and 5th trophic level species are highest at Bikini where higher environmental concentrations are found. The reasons for the anomalously low concentrations in herbivores from Bikini and Enewetak are not known

  2. Transuranic concentrations in reef and pelagic fish from the Marshall Islands

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Eagle, R.J.; Wong, K.M.; Jokela, T.A.

    1981-01-01

    Concentrations of sup(239+240)Pu are reported in tissues of several species of reef and pelagic fish caught at 14 different atolls in the northern Marshall Islands. Several regularities that are species dependent are evident in the distribution of sup(239+240)Pu among different body tissues. Concentrations in liver always exceeded those in bone and concentrations were lowest in the muscle of all fish analysed. A progressive discrimination against sup(239+240)Pu was observed at successive trophic levels at all atolls except Bikini and Enewetak, where it was difficult to conclude if any real difference exists between the average concentration factor for sup(239+240)Pu among all fish, which include bottom-feeding and grazing herbivores, bottom-feeding carnivores and pelagic carnivores from different atoll locations. The average concentration of sup(239+240)Pu in the muscle of surgeonfish from Bikini and Enewetak was not significantly different from the average concentrations determined in these fish at the other lesser contaminated atolls. Concentrations among all 3rd, 4th and 5th trophic level species are highest at Bikini where higher environmental concentrations are found. The reasons for the anomalously low concentrations in herbivores from Bikini and Enewetak are not known. (author)

  3. Benthic habitat and fish assemblage structure from shallow to mesophotic depths in a storm-impacted marine protected area

    Science.gov (United States)

    Abesamis, Rene A.; Langlois, Tim; Birt, Matthew; Thillainath, Emma; Bucol, Abner A.; Arceo, Hazel O.; Russ, Garry R.

    2018-03-01

    Baseline ecological studies of mesophotic coral ecosystems are lacking in the equatorial Indo-West Pacific region where coral reefs are highly threatened by anthropogenic and climate-induced disturbances. Here, we used baited remote underwater video to describe benthic habitat and fish assemblage structure from 10 to 80 m depth at Apo Island, a well-managed marine protected area in the Philippines. We conducted surveys 2 yr after two storms (in 2011 and 2012) caused severe damage to shallow coral communities within the no-take marine reserve (NTMR) of Apo Island, which led to declines in fish populations that had built up over three decades. We found that hard coral cover was restricted to the storm-impacted NTMR and a nearby fished area not impacted by storms. Benthic cover at mesophotic depths (> 30 m) was dominated by sand/rubble and rock (dead coral) with low cover of soft corals, sponges and macroalgae. Storm damage appeared to have reached the deepest limit of the fringing reef (40 m) and reduced variability in benthic structure within the NTMR. Species richness and/or abundance of most trophic groups of fish declined with increasing depth regardless of storm damage. There were differences in taxonomic and trophic structure and degree of targeting by fisheries between shallow and mesophotic fish assemblages. Threatened shark species and a fish species previously unreported in the Philippines were recorded at mesophotic depths. Our findings provide a first glimpse of the benthic and fish assemblage structure of Philippine coral reef ecosystems across a wide depth gradient. This work also underscores how a combination of limited coral reef development at mesophotic depths close to shallow reefs and severe habitat loss caused by storms would result in minimal depth refuge for reef fish populations.

  4. Fish mucus metabolome reveals fish life-history traits

    Science.gov (United States)

    Reverter, M.; Sasal, P.; Banaigs, B.; Lecchini, D.; Lecellier, G.; Tapissier-Bontemps, N.

    2017-06-01

    Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography-mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

  5. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of Guam from 2014-09-29 to 2014-10-31 (NCEI Accession 0157592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  6. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature.

    Science.gov (United States)

    McLeod, Ian M; Clark, Timothy D

    2016-01-01

    The prevalence of extreme, short-term temperature spikes in coastal regions during summer months is predicted to increase with ongoing climate change. In tropical systems, these changes are predicted to increase the metabolic demand of coral reef fish larvae while also altering the plankton communities upon which the larvae feed during their pelagic phase. The consequences of these predictions remain speculative in the absence of empirical data on the interactive effects of warm temperatures on the metabolism, postprandial processes and growth responses of coral reef fish larvae. Here, we tested the effect of increased temperature on the metabolism, postprandial performance and fine-scale growth patterns of a coral reef fish (Amphiprion percula) in the latter half of its ~11-d larval phase. First, we measured the length and weight of fed versus fasted larvae (N = 340; mean body mass 4.1±0.05 mg) across fine temporal scales at a typical current summer temperature (28.5°C) and a temperature that is likely be encountered during warm summer periods later this century (31.5°C). Second, we measured routine metabolic rate (Mo2 routine) and the energetics of the postprandial processes (i.e., digestion, absorption and assimilation of a meal; termed specific dynamic action (SDA)) at both temperatures. Larvae fed voraciously when provided with food for a 12-hour period and displayed a temperature-independent increase in mass of 40.1% (28.5°C) and 42.6% (31.5°C), which was largely associated with the mass of prey in the gut. A subsequent 12-h fasting period revealed that the larvae had grown 21.2±4.8% (28.5°C) and 22.8±8.8% (31.5°C) in mass and 10.3±2.0% (28.5°C) and 7.8±2.6% (31.5°C) in length compared with pre-feeding values (no significant temperature effect). Mo2 routine was 55±16% higher at 31.5°C and peak Mo2 during the postprandial period was 28±11% higher at 31.5°C, yet elevated temperature had no significant effect on SDA (0.51±0.06 J at 28.5°C vs

  7. Cephalopholis argus fish census and assemblage data from the West Hawaii Roi Removal Project 2010-2012 (NODC Accession 0099263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project examined the results of the field manipulative experiment that has been set up to test the ecological effects of introduced roi on reef fish...

  8. First report of scuticociliatosis caused by Uronema sp. in ornamental reef fish imported into Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Magalhães Cardoso

    Full Text Available Abstract Scuticociliatosis, which is caused by an opportunistic ciliate protozoan, is responsible for significant economic losses in marine ornamental fish. This study reports the occurrence of Uronema sp., which was found to be parasitizing three species of marine reef fish imported into Brazil and maintained in quarantine: Vanderbilt’s Chromis (Chromis vanderbilti, blue-green damselfish (Chromis viridis, and sea goldie (Pseudanthias squamipinnis. During the quarantine period, some fish presented with behavioral disorders and hemorrhages and ulcerative lesions on the body surface. Histopathological analysis showed hemorrhages, inflammation comprising mononuclear and granular cells in the skeletal muscle, and necrosis of the skin and the secondary lamellae of the gills, and parasites were also observed in the renal capsule. The absence of transboundary measures available to prevent the occurrence of ornamental fish diseases is also discussed.

  9. Coral reef fish reproduction, species, fish length and weight, and others within New Ireland Province, Papua New Guinea from 2015-03-12 to 2015-03-23 (NCEI Accession 0144344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Natural-resource professionals performed novel research on the reproductive biology of exploited reef fishes. Each participant produced reproductive data for a...

  10. Understanding Coral Reef Fish Characteristics Using Videogrammetry in Hanauma and Maunalua Bays, Oahu, Hawaii during 2007 (NODC Accession 0042353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Videogrammetry data taken in 2007 are used for a study of fish within coral reef ecosystems. We attempted to generate or find information on abundance, growth,...

  11. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  12. Bait effects in sampling coral reef fish assemblages with stereo-BRUVs.

    Science.gov (United States)

    Dorman, Stacey R; Harvey, Euan S; Newman, Stephen J

    2012-01-01

    Baited underwater video techniques are increasingly being utilised for assessing and monitoring demersal fishes because they are: 1) non extractive, 2) can be used to sample across multiple habitats and depths, 3) are cost effective, 4) sample a broader range of species than many other techniques, 5) and with greater statistical power. However, an examination of the literature demonstrates that a range of different bait types are being used. The use of different types of bait can create an additional source of variability in sampling programs. Coral reef fish assemblages at the Houtman Abrolhos Islands, Western Australia, were sampled using baited remote underwater stereo-video systems. One-hour stereo-video recordings were collected for four different bait treatments (pilchards, cat food, falafel mix and no bait (control)) from sites inside and outside a targeted fishery closure (TFC). In total, 5209 individuals from 132 fish species belonging to 41 families were recorded. There were significant differences in the fish assemblage structure and composition between baited and non-baited treatments (Pcat food and pilchards contained similar ingredients and were found to record similar components of the fish assemblage. There were no significant differences in the fish assemblages in areas open or closed to fishing, regardless of the bait used. Investigation of five targeted species indicated that the response to different types of bait was species-specific. For example, the relative abundance of Pagrus auratus was found to increase in areas protected from fishing, but only in samples baited with pilchards and cat food. The results indicate that the use of bait in conjunction with stereo-BRUVs is advantageous. On balance, the use of pilchards as a standardised bait for stereo-BRUVs deployments is justified for use along the mid-west coast of Western Australia.

  13. Bait effects in sampling coral reef fish assemblages with stereo-BRUVs.

    Directory of Open Access Journals (Sweden)

    Stacey R Dorman

    Full Text Available Baited underwater video techniques are increasingly being utilised for assessing and monitoring demersal fishes because they are: 1 non extractive, 2 can be used to sample across multiple habitats and depths, 3 are cost effective, 4 sample a broader range of species than many other techniques, 5 and with greater statistical power. However, an examination of the literature demonstrates that a range of different bait types are being used. The use of different types of bait can create an additional source of variability in sampling programs. Coral reef fish assemblages at the Houtman Abrolhos Islands, Western Australia, were sampled using baited remote underwater stereo-video systems. One-hour stereo-video recordings were collected for four different bait treatments (pilchards, cat food, falafel mix and no bait (control from sites inside and outside a targeted fishery closure (TFC. In total, 5209 individuals from 132 fish species belonging to 41 families were recorded. There were significant differences in the fish assemblage structure and composition between baited and non-baited treatments (P<0.001, while no difference was observed with species richness. Samples baited with cat food and pilchards contained similar ingredients and were found to record similar components of the fish assemblage. There were no significant differences in the fish assemblages in areas open or closed to fishing, regardless of the bait used. Investigation of five targeted species indicated that the response to different types of bait was species-specific. For example, the relative abundance of Pagrus auratus was found to increase in areas protected from fishing, but only in samples baited with pilchards and cat food. The results indicate that the use of bait in conjunction with stereo-BRUVs is advantageous. On balance, the use of pilchards as a standardised bait for stereo-BRUVs deployments is justified for use along the mid-west coast of Western Australia.

  14. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of American Samoa from 2016-04-15 to 2016-05-05 (NCEI Accession 0157597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  15. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of American Samoa from 2015-02-15 to 2015-03-30 (NCEI Accession 0157588)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  16. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data at Wake Island from 2014-03-16 to 2014-03-20 (NCEI Accession 0157572)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  17. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of the Hawaiian Archipelago from 2015-0614 to 2015-08-13 (NCEI Accession 0157591)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  18. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish

    KAUST Repository

    Schunter, Celia Marei

    2017-12-15

    The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.

  19. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish.

    Science.gov (United States)

    Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy

    2018-02-01

    The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO 2 , and to test how these responses are influenced by variations in tolerance to elevated CO 2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO 2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO 2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO 2 are crucial factors in determining the response of reef fish to changing ocean chemistry.

  20. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish

    KAUST Repository

    Schunter, Celia Marei; Welch, Megan J.; Nilsson, Gö ran E.; Rummer, Jodie L.; Munday, Philip L.; Ravasi, Timothy

    2017-01-01

    The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.