WorldWideScience

Sample records for reef ecosystems benefit

  1. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  2. Coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.

    ), on submerged banks like Gave shani bank (13°24'N; 73°45'E) (Nair and Qasim 1978) andSidere~ko Bank (13°43.5' N; 73°42'E) (Rao 1972) and as stray individual units off Visakhapatnam (Bakus, G. personal communication) and Pondicherry (Ramesh, A. personal... communication). Fossil reefs, drowned as a result of the Holocene sea level rise, occur at 92, 85, 75 and 55 m depth along .. ~ !! ":2 0. ~ Figure 3.1 Graphical Representation of the SO-Box Model of a Caribbean Coral Reef Key: 1. Benthic producers. 2. Detritus...

  3. Linking Terrigenous Sediment Delivery to Declines in Coral Reef Ecosystem Services

    Science.gov (United States)

    Worldwide coral reef conditions continue to decline despite the valuable socioeconomic benefits of these ecosystems. There is growing recognition that quantifying reefs in terms reflecting what stakeholders value is vital for comparing inherent tradeoffs among coastal management ...

  4. Ecosystem function and biodiversity on coral reefs

    OpenAIRE

    Ogden, J.; Done, T.; Salvat, B.

    1994-01-01

    The article highlights a workshop held in Key West, Florida in November 1993 attended by a group of 35 international scientists where topics of ecosystem function and biodiversity on coral reefs were discussed.

  5. Cyanobacteria in Coral Reef Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    L. Charpy

    2012-01-01

    Full Text Available Cyanobacteria have dominated marine environments and have been reef builders on Earth for more than three million years (myr. Cyanobacteria still play an essential role in modern coral reef ecosystems by forming a major component of epiphytic, epilithic, and endolithic communities as well as of microbial mats. Cyanobacteria are grazed by reef organisms and also provide nitrogen to the coral reef ecosystems through nitrogen fixation. Recently, new unicellular cyanobacteria that express nitrogenase were found in the open ocean and in coral reef lagoons. Furthermore, cyanobacteria are important in calcification and decalcification. All limestone surfaces have a layer of boring algae in which cyanobacteria often play a dominant role. Cyanobacterial symbioses are abundant in coral reefs; the most common hosts are sponges and ascidians. Cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. Cyanobacteria can also form pathogenic microbial consortia in association with other microbes on living coral tissues, causing coral tissue lysis and death, and considerable declines in coral reefs. In deep lagoons, coccoid cyanobacteria are abundant and are grazed by ciliates, heteroflagellates, and the benthic coral reef community. Cyanobacteria produce metabolites that act as attractants for some species and deterrents for some grazers of the reef communities.

  6. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    NARCIS (Netherlands)

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, W.M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly

  7. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    NARCIS (Netherlands)

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, R.; Mooij, W.M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly

  8. Quantifying Coral Reef Ecosystem Services

    Science.gov (United States)

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  9. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    Science.gov (United States)

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  10. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  11. Benefits of investing in ecosystem restoration.

    Science.gov (United States)

    DE Groot, Rudolf S; Blignaut, James; VAN DER Ploeg, Sander; Aronson, James; Elmqvist, Thomas; Farley, Joshua

    2013-12-01

    Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit-cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst-case scenario) to as much as 35:1 (grasslands, best-case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high-yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas. © 2013 Society for Conservation Biology.

  12. Impacts of Artificial Reefs on Surrounding Ecosystems

    Science.gov (United States)

    Manoukian, Sarine

    addition, relative fish biomass estimates can be extrapolated. Results suggest that most of the fish aggregations are generally associated with the artificial modules showing a tendency for mid- and bottom-water depth distribution than for the surface waters. This study contributes to understanding the changes in artificial reefs over time in relation to coastal processes. Moreover, the preliminary results concerning the water column backscatter data represents progress in fisheries acoustics research as a result of three-dimensional acoustics. They demonstrate the benefits of multibeam sonar as a tool to investigate and quantify size distribution and geometry of fish aggregations associated with shallow marine habitats.

  13. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Science.gov (United States)

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  14. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    Science.gov (United States)

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  15. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Jamison M Gove

    Full Text Available Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km from 85% of our study locations

  16. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-11-06

    ... the Western Pacific; Special Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries... special coral reef ecosystem fishing permit. SUMMARY: NMFS issued a Special Coral Reef Ecosystem Fishing Permit that authorizes Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management unit...

  17. Trophodynamics as a Tool for Understanding Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Stacy L. Bierwagen

    2018-02-01

    Full Text Available The increased frequency of publications concerning trophic ecology of coral reefs suggests a degree of interest in the role species and functional groups play in energy flow within these systems. Coral reef ecosystems are particularly complex, however, and assignment of trophic positions requires precise knowledge of mechanisms driving food webs and population dynamics. Competent analytical tools and empirical analysis are integral to defining ecosystem processes and avoiding misinterpretation of results. Here we examine the contribution of trophodynamics to informing ecological roles and understanding of coral reef ecology. Applied trophic studies of coral reefs were used to identify recent trends in methodology and analysis. Although research is increasing, clear definitions and scaling of studies is lacking. Trophodynamic studies will require more precise spatial and temporal data collection and analysis using multiple methods to fully explore the complex interactions within coral reef ecosystems.

  18. Towards an ecosystem-based approach of Guam's coral reefs

    NARCIS (Netherlands)

    Weijerman, M.; Grace-McCaskey, Cynthia; Grafeld, Shanna L.; Kotowicz, Dawn M.; Oleson, Kirsten L.L.; Putten, van Ingrid E.

    2016-01-01

    Management of tropical reef ecosystems under pressure from terrestrial and extractive marine activities is not straightforward, especially when the interests of extractive and non-extractive marine resource sectors compete. Before implementing management actions, potential outcomes of alternative

  19. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Parrish, F.A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all

  20. Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change

    Science.gov (United States)

    Kikuchi, R. K.; Elliff, C. I.

    2014-12-01

    to increase resilience and guarantee the adaptation of this ecosystem to climate change. Thus, considering that the majority of the marine ecosystem services we benefit from are provided from coastal habitats, of which coral reefs play an important role, the challenge at hand is in fact the interaction between local factors and climate change

  1. 77 FR 12567 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Science.gov (United States)

    2012-03-01

    ... Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems Logbook and Reporting AGENCY... with, or any U.S. citizen issued with, a Special Coral Reef Ecosystem Fishing Permit (authorized under the Fishery Management Plan for Coral Reef Ecosystems of the Western Pacific Region), to complete...

  2. 78 FR 49258 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-08-13

    ... the Western Pacific; Special Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries... Reef Ecosystem Fishing Permit that would authorize Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management unit fish species in a floating pen moored about 5.5 nm off the west coast of...

  3. How models can support ecosystem-based management of coral reefs

    Science.gov (United States)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they

  4. Social interactions among grazing reef fish drive material flux in a coral reef ecosystem.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M

    2017-05-02

    In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.

  5. Model of a coral reef ecosystem

    Science.gov (United States)

    Atkinson, Marlin J.; Grigg, Richard W.

    1984-08-01

    The ECOPATH model for French Frigate Shoals estimates the benthic plant production (net primary production in kg wet weight) required to support the atoll food chain. In this section we estimate the benthic net primary production and net community production of the atoll based on metabolism studies of reef flat, knolls, and lagoon communities at French Frigate Shoals Hawaii. Community metabolism was measured during winter and summer. The reef communities at French Frigate Shoals exhibited patterns and rates of organic carbon production and calcification similar to other reefs in the world. The estimate of net primary production is 6.1·106 kg wet weight km-2 year-1±50%, a value remarkably close to the estimate by the ECOPATH model of 4.3·106 kg wet weight km-2 year-1. Our estimate of net community production or the amount of carbon not consumed by the benthos was high; approximately 15% of the net primary production. Model results indicate that about 5% of net primary production is passed up the food chain to mobile predators. This suggests about 10% of net primary production (˜6% of gross primary production) may be permanently lost to the system via sediment burial or export offshore.

  6. Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Ove Hoegh-Guldberg

    2017-05-01

    Full Text Available Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m, “mesophotic” (low light coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5 are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of

  7. 77 FR 12243 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Science.gov (United States)

    2012-02-29

    ... Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems Permit Form AGENCY: National... using a vessel to fish for Western Pacific coral reef ecosystem management unit species in the... allowed in the regulations; or (3) fishing for, taking, or retaining any Potentially Harvested Coral Reef...

  8. Fungi and their role in corals and coral reef ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Ravindran, J.

    fungal hyphae have on corals, their mechanism of penetration and the role their enzymes play in this process. 3.2. Fungi as pathogens in reef ecosystems Besides natural disasters and climate warming, diseases have contributed to coral decline... defence mechanisms against predation, biofouling, diseases, environmental perturbations and other stressors. These chemicals are either synthesized by the organisms themselves or their endobiontic microorganisms. If these valuable compounds...

  9. How models can support ecosystem-based management of coral reefs

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Janssen, A.B.G.; Kuiper, J.J.; Leemans, R.; Leemput, van de I.A.; Mooij, W.M.

    2015-01-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic

  10. Comparison of coral reef ecosystems along a fishing pressure gradient.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs-such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn's cycling index and mean path length-indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai'i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai'i, O'ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community were most robust (i.e., showed the clearest trend and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system's internal structure that can be used to support management in identification of approaches to reverse unfavorable states.

  11. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    Science.gov (United States)

    Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  12. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1 ratio of calcifying to non-calcifying benthic groups, 2 trophic level of the community, 3 biomass of apex predators, 4 biomass of herbivorous fishes, 5 total biomass of living groups and 6 the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations, climate change impacts have a slight positive interaction with

  13. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA coral reef ecosystem fisheries. [Reserved] 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Pacific Remote Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. [Reserved] ...

  14. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana coral reef ecosystem fisheries. [Reserved] 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. [Reserved] ...

  15. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...

  16. Microtopography recreation benefits ecosystem restoration

    Science.gov (United States)

    Wei Wei; Liding Chen; Lei Yang; F. Fred Samadani; Ge Sun

    2012-01-01

    Within the context of global warming and accelerated human activities, the surrounding environments of many terrestrial ecosystems worldwide have become increasingly deteriorated, such that finding suitable methods and effective environmental technology to confront climate change and prevent land degradation is critical to the health and sustainability of the earth. In...

  17. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    Science.gov (United States)

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene

  18. Benefits of investing in ecosystem restoration

    NARCIS (Netherlands)

    Groot, de R.S.; Blignaut, J.; Ploeg, van der S.; Aronson, J.; Elmqvist, T.; Farley, J.

    2013-01-01

    Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies)

  19. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  20. An integrated ecosystem model for coral reef management where oceanography, ecology and socio-economics meet

    NARCIS (Netherlands)

    Weijerman, M.

    2015-01-01

    Summary

    Widespread coral reef decline, including decline in reef fish populations upon which many coastal human populations depend, have led to phase-shifts from the coral-dominated systems, found desirable by humans, to algal-dominated systems that provide less ecosystem

  1. An integrated ecosystem model for coral reef management where oceanography, ecology and socio-economics meet

    NARCIS (Netherlands)

    Weijerman, Mariska

    2015-01-01

    Widespread coral reef decline, including decline in reef fish populations upon which many coastal human populations depend, have led to phase-shifts from the coral-dominated systems, found desirable by humans, to algal-dominated systems that provide less ecosystem services, and the loss of

  2. Atlantis Modeled Output Data for the Coral Reef Ecosystems of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A proof-of-concept Guam Atlantis Coral Reef Ecosystem Model has been developed and an added coral module to the Atlantis framework has been validated. The model is...

  3. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service.

    Science.gov (United States)

    Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav

    2017-12-01

    Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    Science.gov (United States)

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  5. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    KAUST Repository

    Feary, David A.

    2013-07-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter \\'Gulf\\') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. © 2013 Elsevier Ltd.

  6. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    KAUST Repository

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A R; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl L.; Baker, Andrew C.; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geó rgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David Glen; Grandcourt, Edwin Mark; Hill, Ross; John, David Michael; Jones, David Alan; Keshavmurthy, Shashank; Mahmoud, Huda M A; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood A.; Pichon, Michel; Purkis, Sam J.; Riegl, Bernhard M.; Samimi-Namin, Kaveh; Sheppard, Charles R C; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Jö rg

    2013-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. © 2013 Elsevier Ltd.

  7. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    Science.gov (United States)

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  8. Temporal variation in development of ecosystem services from oyster reef restoration

    Science.gov (United States)

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  9. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.; Hoey, Andrew; Hughes, Terence P.

    2011-01-01

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  10. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.

    2011-11-16

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  11. Using benefit indicators to evaluate ecosystem services resulting from restoration

    Science.gov (United States)

    Ecological restoration can reestablish ecosystem services that provide valuable social and environmental benefits. Final ecosystem goods and services (FEGS) are the goods and services that directly benefit people. Explicitly identifying the people who benefit and characterizing w...

  12. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation.

    Science.gov (United States)

    Thampi, Vivek A; Anand, Madhur; Bauch, Chris T

    2018-02-07

    The Caribbean coral reef ecosystem has experienced a long history of deterioration due to various stressors. For instance, over-fishing of parrotfish - an important grazer of macroalgae that can prevent destructive overgrowth of macroalgae - has threatened reef ecosystems in recent decades and stimulated conservation efforts such as the formation of marine protected areas. Here we develop a mathematical model of coupled socio-ecological interactions between reef dynamics and conservation opinion dynamics to better understand how natural and human factors interact individually and in combination to determine coral reef cover. We find that the coupling opinion and reef systems generates complex dynamics that are difficult to anticipate without use of a model. For instance, instead of converging to a stable state of constant coral cover and conservationist opinion, the system can oscillate between low and high live coral cover as human opinion oscillates in a boom-bust cycle between complacency and concern. Out of various possible parameter manipulations, we also find that raising awareness of coral reef endangerment best avoids counter-productive nonlinear feedbacks and always increases and stabilizes live coral reef cover. In conclusion, an improved understanding of coupled opinion-reef dynamics under anthrogenic stressors is possible using coupled socio-ecological models, and such models should be further researched.

  13. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  14. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    OpenAIRE

    Couce, Elena M; Ridgwell, Andy J; Hendy, Erica

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world’s tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches...

  15. Anticipative management for coral reef ecosystem services in the 21st century.

    Science.gov (United States)

    Rogers, Alice; Harborne, Alastair R; Brown, Christopher J; Bozec, Yves-Marie; Castro, Carolina; Chollett, Iliana; Hock, Karlo; Knowland, Cheryl A; Marshell, Alyssa; Ortiz, Juan C; Razak, Tries; Roff, George; Samper-Villarreal, Jimena; Saunders, Megan I; Wolff, Nicholas H; Mumby, Peter J

    2015-02-01

    Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century. © 2014 John Wiley & Sons Ltd.

  16. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  17. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  18. Coral Ecosystem Resilience, Conservation and Management on the Reefs of Jamaica in the Face of Anthropogenic Activities and Climate Change

    Directory of Open Access Journals (Sweden)

    M. James C. Crabbe

    2010-06-01

    Full Text Available Knowledge of factors that are important in reef resilience and integrity help us understand how reef ecosystems react following major anthropogenic and environmental disturbances. The North Jamaican fringing reefs have shown some recent resilience to acute disturbances from hurricanes and bleaching, in addition to the recurring chronic stressors of over-fishing and land development. Factors that can improve coral reef resilience are reviewed, and reef rugosity is shown to correlate with coral cover and growth, particularly for branching Acropora species. The biodiversity index for the Jamaican reefs was lowered after the 2005 mass bleaching event, as were the numbers of coral colonies, but both had recovered by 2009. The importance of coastal zone reef management strategies and the economic value of reefs are discussed, and a protocol is suggested for future management of Jamaican reefs.

  19. Resource-Fish surveys using timed-swims at 14 coral reef ecosystem sites of West Hawaii in 2005, (NODC Accession 0002627)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of coral reef ecosystems depends on adequate data on the status and trends of key ecosystem components. In spite of which, previous coral reef...

  20. Resource-Fish surveys using timed-swims at 14 coral reef ecosystem sites off West Hawaii and 39 sites off Maui in 2005 (NODC Accession 0002709)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of coral reef ecosystems depends on adequate data on the status and trends of key ecosystem components. In spite of which, previous coral reef...

  1. Resource-fish surveys using timed-swims at fourteen coral reef ecosystem sites of West Hawaii in 2005 (NODC Accession 0002627)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of coral reef ecosystems depends on adequate data on the status and trends of key ecosystem components. In spite of which, previous coral reef...

  2. Resource-fish surveys using timed-swims at 14 coral reef ecosystem sites off West Hawaii and 39 sites off Maui in 2005 (NCEI Accession 0002709)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of coral reef ecosystems depends on adequate data on the status and trends of key ecosystem components. In spite of which, previous coral reef...

  3. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    Science.gov (United States)

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  4. Possibility of high CO{sub 2} fixation rate by coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    K. Yamada; Y. Suzuki; B.E. Casareto; H. Komiyama [Shinshu University, Tokida (Japan). Dept. of Fine Materials Engineering

    2003-07-01

    Previous net rates of CO{sub 2} fixation by coral reef ecosystems have been said to be nearly zero due to a balance between CO{sub 2} fixed by organic carbon production and CO{sub 2} released by both organic carbon decomposition and inorganic carbon formation. But this study, conducted in Bora Bay, Miyako Island, Japan showed net rates of about 7 gC m{sup -2} d{sup -1} inside a coral reef and on a coral reef. It was found by experiment that the photosynthetic rate of coral increased with the increase of the flow rate of seawater. The authors tried to calculate net primary production (= net rates of CO{sub 2} fixation) outside a coral reef with flow rate. A flow rate on the coral reef of the open seaside is much higher than that in a lagoon. As an example, the CO{sub 2} fixation rates at the flow rates of 6 and 30 cm/s are compared. When it is assumed that the length of the whole coral reef facing the ocean is 50,000 km and its width is 100 m, and the flow rate is 30cm/s, the CO{sub 2} fixation rate is calculated to be 6.3 x 10{sup 6} t-C/y (3.5g-C/m{sup 2}d). This value is 2.2 times higher than that at the flow rate of 6 cm/s. This fixation rate is only by the coral itself. It means that the CO{sub 2} fixation rate by coral reef ecosystems can be much higher and the magnitude for worldwide ecosystems can be in the order of 10{sup 6}-10{sup 7} t-C/y. 14 refs., 5 tabs.

  5. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    Science.gov (United States)

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  6. Satellite Remote Sensing of Coral Reefs: By Learning about Coral Reefs, Students Gain an Understanding of Ecosystems and How Cutting-Edge Technology Can Be Used to Study Ecological Change

    Science.gov (United States)

    Palandro, David; Thoms, Kristin; Kusek, Kristen; Muller-Karger, Frank; Greely, Teresa

    2005-01-01

    Coral reefs are one of the most important ecosystems on the planet, providing sustenance to both marine organisms and humans. Yet they are also one of the most endangered ecosystems as coral reef coverage has declined dramatically in the past three decades. Researchers continually seek better ways to map coral reef coverage and monitor changes…

  7. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems.

    Science.gov (United States)

    Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D

    2014-08-01

    Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. © 2014 John Wiley & Sons Ltd.

  8. Artisanal fishing of spiny lobsters with gillnets — A significant anthropic impact on tropical reef ecosystem

    Directory of Open Access Journals (Sweden)

    Bruno Welter Giraldes

    2015-07-01

    Full Text Available Artisanal fishing activity with gillnets to capture the spiny lobster is a common practice along the coastal reefs of Brazil. This research aims to understand the impact that this artisanal fishing practice is having on the coastal reef systems analysing its associated fauna (bycatch and the stock of the target species Panulirus echinatus. The study compared an area which was subjected to intense gillnet fishing against one were the practice was absent. The analysis of target species using nocturnal visual census demonstrated a significantly higher number of P. echinatus at the site where gillnet use was virtually absent within three sampled habitats, fringe, cave and soft bottom. The analysis of bycatch species from artisanal fishermen’s gillnet landings recorded 4 lobster species and 10 crab species. These decapod species play an important ecological role as detritivores, herbivorous and first consumers within the reef ecosystem as well as being natural prey items for several reef fishes. The study concludes that this non-discriminatory fishing technique impacts directly on populations of P. echinatus, P. argus and P. laevicauda as well as other lobster and crab species which in-turn indirectly affects the ecological role of the tropical coastal reefs of Brazil.

  9. Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems

    Science.gov (United States)

    The module provides a link to an article that is part of a series of articles in Issues in Ecology. This article discusses the many services an ecosystem provides in order to sustain and fulfill human needs.

  10. An assessment of global warming stress on Caribbean coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, D.K.; Hendec, J.C.; Mendez, A. (NOAA, Miami, FL (USA). Atlantic Oceanography and Meteorology Laboratory)

    1992-07-01

    There is evidence that stress on coral reef ecosystems in the Caribbean region is increasing. Recently numerous authors have stated that the major stress results from 'abnormally high' seasonal sea surface temperatures (SST) and have implicated global warming as a cause, stating that recent episodes of coral bleaching result therefrom. However, an analysis of available SST data sets shows no discernible warming trend that could cause an increase in coral bleaching. Given the lack of long-term records synoptic with observations of coral ecosystem health, there is insufficient evidence available to label temperatures observed in coincidence with recent regional bleaching events as 'abnormally' high.

  11. An assessment of global warming stress on Caribbean coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, D K; Hendec, J C; Mendez, A [NOAA, Miami, FL (USA). Atlantic Oceanography and Meteorology Laboratory

    1992-07-01

    There is evidence that stress on coral reef ecosystems in the Caribbean region is increasing. Recently numerous authors have stated that the major stress results from 'abnormally high' seasonal sea surface temperatures (SST) and have implicated global warming as a cause, stating that recent episodes of coral bleaching result therefrom. However, an analysis of available SST data sets shows no discernible warming trend that could cause an increase in coral bleaching. Given the lack of long-term records synoptic with observations of coral ecosystem health, there is insufficient evidence available to label temperatures observed in coincidence with recent regional bleaching events as 'abnormally' high.

  12. The role of benefit transfer in ecosystem service valuation

    Science.gov (United States)

    Richardson, Leslie A.; Loomis, John; Kroeger, Timm; Casey, Frank

    2015-01-01

    The demand for timely monetary estimates of the economic value of nonmarket ecosystem goods and services has steadily increased over the last few decades. This article describes the use of benefit transfer to generate monetary value estimates of ecosystem services specifically. The article provides guidance for conducting such benefit transfers and summarizes advancements in benefit transfer methods, databases and analysis tools designed to facilitate its application.

  13. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification

    Science.gov (United States)

    DeCarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Shiah, Fuh-Kwo; Lentz, Steven J.; Davis, Kristen A.; Shamberger, Kathryn E. F.; Lohmann, Pat

    2017-01-01

    Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ˜8.5, significantly elevated above that of the surrounding open ocean (˜8.0-8.1) as a consequence of daytime NEP (up to 112 mmol C m-2 h-1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m-2 d-1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m-2 h-1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.

  14. Baseline data for evaluating development trajectory and provision of ecosystem services of created fringing oyster reefs in Vermilion Bay, Louisiana

    Science.gov (United States)

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Understanding the time frame in which ecosystem services (that is, water quality maintenance, shoreline protection, habitat provision) are expected to be provided is important when restoration projects are being designed and implemented. Restoration of three-dimensional shell habitats in coastal Louisiana and elsewhere presents a valuable and potentially self-sustaining approach to providing shoreline protection, enhancing nekton habitat, and providing water quality maintenance. As with most restoration projects, the development of expected different ecosystem services often occurs over varying time frames, with some services provided immediately and others taking longer to develop. This project was designed initially to compare the provision and development of ecosystem services by created fringing shoreline reefs in subtidal and intertidal environments in Vermilion Bay, Louisiana. Specifically, the goal was to test the null hypothesis that over time, the oyster recruitment and development of a sustainable oyster reef community would be similar at both intertidal and subtidal reef bases, and these sustainable reefs would in time provide similar shoreline stabilization, nekton habitat, and water quality services over similar time frames. Because the ecosystem services hypothesized to be provided by oyster reefs reflect long-term processes, fully testing the above-stated null hypothesis requires a longer-time frame than this project allowed. As such, this project was designed to provide the initial data on reef development and provision of ecosystem services, to identify services that may develop immediately, and to provide baseline data to allow for longer-term follow up studies tracking reef development over time. Unfortunately, these initially created reef bases (subtidal, intertidal) were not constructed as planned because of the Deepwater Horizon oil spill in April 2010, which resulted in reef duplicates being created 6 months apart. Further confounding the

  15. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

    Science.gov (United States)

    Brodie, Jon; Pearson, Richard G.

    2016-12-01

    The Great Barrier Reef (GBR) is a World Heritage site off the north-eastern coast of Australia. The GBR is worth A 15-20 billion/year to the Australian economy and provides approximately 64,000 full time jobs. Many of the species and ecosystems of the GBR are in poor condition and continue to decline. The principal causes of the decline are catchment pollutant runoff associated with agricultural and urban land uses, climate change impacts and the effects of fishing. Many important ecosystems of the GBR region are not included inside the boundaries of the World Heritage Area. The current management regime for catchment pollutant runoff and climate change is clearly inadequate to prevent further decline. We propose a refocus of management on a "Greater GBR" (containing not only the major ecosystems and species of the GBR, but also its catchment) and on a set of management actions to halt the decline of the GBR. Proposed actions include: (1) Strengthen management in the areas of the Greater GBR where ecosystems are in good condition, with Torres Strait, northern Cape York and Hervey Bay being the systems with highest current integrity; (2) Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR; (3) Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR; (4) Use the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act to regulate catchment activities that lead to damage to the Greater GBR, in conjunction with the relevant Queensland legislation; (5) Fund catchment and coastal management to the required level to solve pollution issues for the Greater GBR by 2025, before climate change impacts on Greater GBR ecosystems become overwhelming; (6) Continue enforcement of the zoning plan; (7) Australia to show commitment to protecting the Greater GBR through greenhouse gas emissions

  16. The ecosystem service value of living versus dead biogenic reef

    Science.gov (United States)

    Sheehan, E. V.; Bridger, D.; Attrill, M. J.

    2015-03-01

    Mixed maerl beds (corralline red algae) comprise dead thalli with varying amounts of live maerl fragments, but previously it was not known whether the presence of the live maerl increases the ecosystem service 'habitat provision' of the dead maerl for the associated epibenthos. A 'flying array' towed sled with high definition video was used to film transects of the epibenthos in dead maerl and mixed maerl beds in two locations to the north and south of the English Channel (Falmouth and Jersey). Mixed maerl beds supported greater number of taxa and abundance than dead beds in Falmouth, while in Jersey, mixed and dead beds supported similar number of taxa and dead beds had a greater abundance of epifauna. Scallops tended to be more abundant on mixed beds than dead beds. Tube worms were more abundant on mixed beds in Falmouth and dead beds in Jersey. An increasing percentage occurrence of live maerl thalli correlated with increasing number of taxa in Falmouth but not Jersey. It was concluded that while live thalli can increase the functional role of dead maerl beds for the epibenthos, this is dependent on location and response variable. As a result of this work, maerl habitat in SE Jersey has been protected from towed demersal fishing gear.

  17. Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    Lemoine, N. P.; Valentine, J. F.

    2012-09-01

    The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.

  18. Consequences of a government-controlled agricultural price increase on fishing and the coral reef ecosystem in the republic of kiribati.

    Science.gov (United States)

    Reddy, Sheila M W; Groves, Theodore; Nagavarapu, Sriniketh

    2014-01-01

    Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by sustainable livelihood and ecosystem-based management frameworks.

  19. Consequences of a Government-Controlled Agricultural Price Increase on Fishing and the Coral Reef Ecosystem in the Republic of Kiribati

    Science.gov (United States)

    Reddy, Sheila M. W.; Groves, Theodore; Nagavarapu, Sriniketh

    2014-01-01

    Background Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. Methods/Principal Findings We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. Conclusions/Significance We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by

  20. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    Science.gov (United States)

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. Valuing Recreational Benefits of Coral Reefs: The Case of Mombasa Marine National Park and Reserve, Kenya

    Science.gov (United States)

    Ransom, Kevin P.; Mangi, Stephen C.

    2010-01-01

    A contingent valuation study was conducted with adult Kenyan citizens and foreign tourists to estimate the value of recreational benefits arising from coral reefs at Mombasa Marine National Park and Reserve (MMNPR), and to assess the implications for local reef management. Citizen and foreign visitors to MMNPR were willing to pay an extra 2.2 (median = 1.6) and 8 (median = 6.7) per visit respectively, in addition to current park entrance fees, to support reef quality improvements. By aggregating visitors’ willingness to pay bids over the number of visitors to MMNPR in 2006-2007 the value of benefits was estimated at 346,733, which was more than twice the total annual operational expenditure of 152,383 for MMNPR. The findings indicate that annual revenues from citizen and foreign visitors may be increased by 60% to 261,932 through the implementation of proposed higher park fees of 3.10 for citizens and 15 for foreign visitors. However, any fee increase would serve to intensify concerns among citizens that only relatively affluent Kenyans can afford to visit MMNPR. Park managers need to demonstrate that the extra revenue would be used to fund the proposed conservation activities. This valuation study demonstrates that visitors are prepared to pay higher user fees for access to the marine protected area revealing considerable untapped resource to finance reef quality improvements.

  2. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    Science.gov (United States)

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral

  3. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    Science.gov (United States)

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. © 2015 Society for Conservation Biology.

  4. Avoiding conflicts and protecting coral reefs: Customary management benefits marine habitats and fish biomass

    KAUST Repository

    Campbell, Stuart J.

    2012-10-01

    Abstract One of the major goals of coral reef conservation is to determine the most effective means of managing marine resources in regions where economic conditions often limit the options available. For example, no-take fishing areas can be impractical in regions where people rely heavily on reef fish for food. In this study we test whether coral reef health differed among areas with varying management practices and socio-economic conditions on Pulau Weh in the Indonesian province of Aceh. Our results show that gear restrictions, in particular prohibiting the use of nets, were successful in minimizing habitat degradation and maintaining fish biomass despite ongoing access to the fishery. Reef fish biomass and hard-coral cover were two- to eight-fold higher at sites where fishing nets were prohibited. The guiding principle of the local customary management system, Panglima Laot, is to reduce conflict among community members over access to marine resources. Consequently, conservation benefits in Aceh have arisen from a customary system that lacks a specific environmental ethic or the means for strong resource-based management. Panglima Laot includes many of the features of successful institutions, such as clearly defined membership rights and the opportunity for resource users to be involved in making, enforcing and changing the rules. Such mechanisms to reduce conflict are the key to the success of marine resource management, particularly in settings that lack resources for enforcement. © 2012 Fauna & Flora International.

  5. Commercially important species associated with horse mussel (Modiolus modiolus) biogenic reefs: A priority habitat for nature conservation and fisheries benefits

    International Nuclear Information System (INIS)

    Kent, Flora E.A.; Mair, James M.; Newton, Jason; Lindenbaum, Charles; Porter, Joanne S.; Sanderson, William G.

    2017-01-01

    Horse mussel reefs (Modiolus modiolus) are biodiversity hotspots afforded protection by Marine Protected Areas (MPAs) in the NE Atlantic. In this study, horse mussel reefs, cobble habitats and sandy habitats were assessed using underwater visual census and drop-down video techniques in three UK regions. Megafauna were enumerated, differences in community composition and individual species abundances were analysed. Samples of conspicuous megafauna were also collected from horse mussel reefs in Orkney for stable isotope analysis. Communities of conspicuous megafauna were different between horse mussel habitats and other habitats throughout their range. Three commercially important species: whelks (Buccinum undatum), queen scallops (Aequipecten opercularis) and spider crabs (Maja brachydactyla) were significantly more abundant (by as much as 20 times) on horse mussel reefs than elsewhere. Isotopic analysis provided insights into their trophic relationship with the horse mussel reef. Protection of M. modiolus habitat can achieve biodiversity conservation objectives whilst benefiting fisheries also. - Highlights: • Communities of conspicuous megafauna were assessed on Modiolus modiolus reefs, sand and cobble habitats. • Tissue samples from reef fauna were subject to stable isotope analysis to investigate trophic structure. • Reef associated species included Aequipecten opercularis, Buccinum undatum and Maja brachydactyla. • Evidence of the commercial value of M. modiolus reefs in the UK.

  6. Willingness to pay for ecosystem benefits of Agroforestry driven ...

    African Journals Online (AJOL)

    This paper investigates the Willingness To Pay (WTP) for ecosystem benefits derivable from Agroforestry (AF) driven green growth practice in Ogun state, Nigeria. The environmental service functions of AF were valued. Multi-stage sampling procedure involving purposive and simple random sampling was adopted in ...

  7. Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems

    KAUST Repository

    Ziegler, Maren; Qué ré , Gaë lle; Ghiglione, Jean-Franç ois; Iwankow, Guillaume; Barbe, Valé rie; Boissin, Emilie; Wincker, Patrick; Planes, Serge; Voolstra, Christian R.

    2018-01-01

    Coral reef ecosystems worldwide are immediately threatened by the impacts of climate change. Here we report on the condition of coral reefs over 83 km of coastline at the island of Upolu, Samoa in the remote South West Pacific in 2016 during the Tara Pacific Expedition. Despite the distance to large urban centers, coral cover was extremely low (<1%) at approximately half of the sites and below 10% at 78% of sites. Two reef fish species, Acanthurus triostegus and Zanclus cornutus, were 10% smaller at Upolu than at neighboring islands. Importantly, coral cover was higher within marine protected areas, indicating that local management action remains a useful tool to support the resilience of local reef ecosystems to anthropogenic impacts. This study may be interpreted as cautionary sign for reef ecosystem health in remote locations on this planet, reinforcing the need to immediately reduce anthropogenic impacts on a global scale.

  8. Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems

    KAUST Repository

    Ziegler, Maren

    2018-03-23

    Coral reef ecosystems worldwide are immediately threatened by the impacts of climate change. Here we report on the condition of coral reefs over 83 km of coastline at the island of Upolu, Samoa in the remote South West Pacific in 2016 during the Tara Pacific Expedition. Despite the distance to large urban centers, coral cover was extremely low (<1%) at approximately half of the sites and below 10% at 78% of sites. Two reef fish species, Acanthurus triostegus and Zanclus cornutus, were 10% smaller at Upolu than at neighboring islands. Importantly, coral cover was higher within marine protected areas, indicating that local management action remains a useful tool to support the resilience of local reef ecosystems to anthropogenic impacts. This study may be interpreted as cautionary sign for reef ecosystem health in remote locations on this planet, reinforcing the need to immediately reduce anthropogenic impacts on a global scale.

  9. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    Science.gov (United States)

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the

  10. FEGS at the inflection point: How linking Ecosystem Services to Human Benefit improves management of coastal ecosystems.

    Science.gov (United States)

    Final ecosystem goods and services (FEGS) are the connection between the ecosystem resources and human stakeholders that benefit from natural capital. The FEGS concept is an extension of the ecosystem services (ES) concept (e.g., Millennium Ecosystem Assessment) and results from...

  11. Monitoring of Coral Reef Ecosystems on Maui, Hawaii during 1989-1998 (NODC Accession 9900242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In an effort to detect spatial and temporal changes in the structure of the coral reef community, coral coverage and reef fish density and diversity were documented...

  12. Test of the Capability of Laser Line Scan Technology to Support Benthic Habitat Mapping in Coral Reef Ecosystems, Maui Island, November 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The utility of Laser Line Scan (LLS) Technology for optical validation of benthic habitat map data from coral reef ecosystems was tested with a deployment of a...

  13. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; Van Oevelen, D.

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and

  14. Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-color observations in the Red Sea

    KAUST Repository

    Racault, Marie-Fanny

    2015-02-18

    Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplankton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data coverage, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phytoplankton growth during the winter period (relative to the summer

  15. The Paradoxical Roles of Climate Stressors on Disturbance and Recovery of Coral Reef Ecosystems

    Science.gov (United States)

    Manfrino, C.; Foster, G.; Camp, E.

    2013-05-01

    The geographic isolation, absence of significant anthropogenic impacts, compressed spatial scale, and habitat diversity of Little Cayman combine to make it a natural laboratory for elucidating the dualistic impacts of various climatic events. These events both impart ecosystem disturbances and aid in the subsequent recovery of coral reef habitats. Within the isolated microcosm of Little Cayman the environmental factors commonly associated with coral stress, mortality, resilience and recovery hinted at by regional-scale observations can be more clearly observed. The primary thrust of this study is to reveal the under-pinning biophysical and hydrologic factors pertinent to reef resilience and to better understand the various roles played by climatic disturbances that have led to the rapid recovery of corals at Little Cayman following a spate of high temperature anomalies. Six closely-spaced high-temperature events were recorded in the Caribbean between the years of 1987 and 2009. Of these, only the 1998 global ENSO event, with well-documented levels of elevated SST, reduced cloud cover and surface water texture with concomittant increases in UV and irradiance and reduced water velocity, resulted in significant mortality at Little Cayman. Following this event, island-wide live coral cover decreased by 40%, from 26% to 14%. Annual monitoring of live coral cover following the 1998 ENSO event revealed no significant recovery of live coral cover until 2009, at which point there was a rapid rebound to pre-disturbance levels by 2011. Such a protracted step-change in coral recovery is indicative of one or more episodic events. The proposed scenario is that the numerous thermal stress events damaged the photo-system of the zooxanthellae, limiting the scope for growth and recovery as the metabolic budgets of corals were diverted to cellular repair. It is posited that the rapid cooling effect of frequent Tropical Storms and Hurricanes between 2002 - 2008, coupled with the

  16. δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    International Nuclear Information System (INIS)

    Yamamuro, M.; Kayanne, H.; Yamano, H.

    2003-01-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;≥1.0 μM) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and δ 15 N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical δ 15 N values were found in seagrass leaves of several species at each site. The correlations between δ 15 N and nutrient concentrations and between δ 15 N and molar ratios of nutrients suggested that nutrient availability did not affect the δ 15 N value of seagrass leaves by altering the physiological condition of the plants. Increases in δ 15 N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that δ 15 N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water

  17. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem

    DEFF Research Database (Denmark)

    Wild, C.; Huettel, M.; Klueter, A.

    2004-01-01

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs(1), but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus(2,3). Here we show that released coral mucus efficiently traps organic...... matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56......% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders...

  18. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Juan Ling

    2018-01-01

    Full Text Available Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA and bacteria (AOB, yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA were used to prepare clone libraries and DNA and cDNA quantitative PCR (qPCR assays, targeting the ammonia monooxygenase-subunit (amoA genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amoA gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the qPCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amoA gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root at the DNA level (P < 0.05. Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle

  19. CORAL CONDITION: HOW TO FATHOM THE DECLINE OF CORAL REEF ECOSYSTEMS

    Science.gov (United States)

    Coral reefs have experienced unprecedented levels of bleaching, disease and mortality during the last three decades. The goal of EPA-ORD research is to identify the culpable stressors in different species, reefs and regions using integrated field and laboratory studies.

  20. Proceedings of the INCO-DEV International Workshop on Policy Options for the Sustainable Use of Coral Reefs and Associated Ecosystems

    OpenAIRE

    2001-01-01

    The present report contains the proceedings of the INCO-DEV International Workshop on “Policy Options for the Sustainable Use of Coral Reefs and Associated Ecosystems” convened in Mombasa, Kenya, 19-22 June 2000. It was convened to address issues associated with the ongoing degradation of coral reefs and associated ecosystems. This degradation takes place inspite of an impressing body of research results and and increasing number of technical solutions becoming available. Policy ...

  1. Acoustic Tracking of Fish Movements in Coral Reef Ecosystems in St John (USVI), 2006-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic Tracking of Reef Fishes to Elucidate Habitat Utilization Patterns and Residence Times Inside and Outside Marine Protected Areas Around the Island of St....

  2. Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys

    Science.gov (United States)

    Turk, Daniela; Yates, Kimberly K.; Vega-Rodriguez, Maria; Toro-Farmer, Gerardo; L'Esperance, Chris; Melo, Nelson; Ramsewak, Deanesch; Estrada, S. Cerdeira; Muller-Karger, Frank E.; Herwitz, Stan R.; McGillis, Wade

    2016-01-01

    Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC, with positive values at near-seafloor light levels >100–300 µEinstein m-2 s-1. During daylight hours, we detected an average NEP of 12.3 and 8.6 mmol O2 m-2 h-1 at the seagrass and coral reef site, respectively. At night, NEP at the seagrass site was relatively constant, while on the coral reef, net respiration was highest immediately after dusk and decreased during the rest of the night. At the seagrass site, NEC values ranged from 0.20 g CaCO3 m-2 h-1 during daylight to -0.15 g CaCO3 m-2 h-1 at night, and from 0.17 to -0.10 g CaCO3 m-2 h-1 at the coral reef site. There were no significant differences in pH and aragonite saturation states (Ωar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic.

  3. Roles played by coral reef ecosystems in mitigating global warming. Ondanka taisaku ni okeru sangosho no igi

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, H [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1993-05-01

    This Paper describes briefly a question of whether growing coral reefs could be an effective means to fix CO2 in sea water in order to mitigate global warming: Growing coral reefs could be a promising method from the following three views: Photosynthesis performed by diverse ecosystems that constitute coral reefs is thought to excel calcification (accompanying CO2 discharge from sea to the atmosphere); corals all over the world would fix CO2 at an annual rate of several hundred million tons; and no much energies are consumed to fix CO2. However, these favorable views depend upon another condition that a time period for the CO2 fixation is not too short (a measure for the time being is 100 years or longer). Elucidating where organic matters generated by the photosynthesis would go is an important question to meet this requirement. The paper indicates that measuring nitrogen and phosphor balances in addition to carbon balance is effective for measuring ratio of a net photosynthesis rate to the calcification rate. 4 refs., 1 fig., 4 tabs.

  4. Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016.

    Science.gov (United States)

    Karati, Kusum Komal; Vineetha, G; Madhu, N V; Anil, P; Dayana, M; Shihab, B K; Muhsin, A I; Riyas, C; Raveendran, T V

    2017-11-29

    El Niño, an interannual climate event characterized by elevated oceanic temperature, is a prime threat for coral reef ecosystems worldwide, owing to their thermal threshold sensitivity. Phytoplankton plays a crucial role in the sustenance of reef trophodynamics. The cell size of the phytoplankton forms the "master morphological trait" with implications for growth, resource acquisition, and adaptability to nutrients. In the context of a strong El Niño prediction for 2015-2016, the present study was undertaken to evaluate the variations in the size-structured phytoplankton of Kavaratti reef waters, a major coral atoll along the southeast coast of India. The present study witnessed a remarkable change in the physicochemical environment of the reef water and massive coral bleaching with the progression of El Niño 2015-2016 from its peak to waning phase. The fluctuations observed in sea surface temperature, pH, and nutrient concentration of the reef water with the El Niño progression resulted in a remarkable shift in phytoplankton size structure, abundance, and community composition of the reef waters. Though low nutrient concentration of the waning phase resulted in lower phytoplankton biomass and abundance, the diazotroph Trichodesmium erythraeum predominated the reef waters, owing to its capability of the atmospheric nitrogen fixation and dissolved organic phosphate utilization.

  5. Economic Values Associated With Construction of Oyster Reefs by the Corps of Engineers

    National Research Council Canada - National Science Library

    Henderson, Jim

    2003-01-01

    .... That template includes a community model for the American oyster (Crassostrea virginica) which can be used to quantify the ecological benefits of an oyster reef in an ecosystem restoration project...

  6. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Mary J.; Sramek, Carolyn M.; Antonelis, George A. [National Oceanic and Atmospheric Administration Commissioned Corps, National Marine Fisheries Service Honolulu Lab., Honolulu, HI (United States); Boland, Raymond C. [Hawaii Univ. Research Corp., Joint Inst. for Marine and Atmospheric Research, Honolulu, HI (United States)

    2001-07-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km{sup 2}. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago. (Author)

  7. Derelict fishing gear in the northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems.

    Science.gov (United States)

    Donohue, M J; Boland, R C; Sramek, C M; Antonelis, G A

    2001-12-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km2. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago.

  8. From ridge to reef—linking erosion and changing watersheds to impacts on the coral reef ecosystems of Hawai‘i and the Pacific Ocean

    Science.gov (United States)

    Stock, Jonathan D.; Cochran, Susan A.; Field, Michael E.; Jacobi, James D.; Tribble, Gordon

    2011-01-01

    Coral reef ecosystems are threatened by unprecedented watershed changes in the United States and worldwide. These ecosystems sustain fishing and tourism industries essential to the economic survival of many communities. Sediment, nutrients, and pollutants from watersheds are increasingly transported to coastal waters, where these contaminants damage corals. Although pollution from watersheds is one of many factors threatening coral survival, it is one that local people can have a profound influence on. U.S. Geological Survey scientists are using mapping, monitoring, and computer modeling to better forecast the effects of watershed changes on reef health. Working with communities in Hawai‘i and on other U.S. islands in the Pacific, they are helping to provide the science needed to make informed decisions on watershed and coral reef management.

  9. Phylogenetic relationships among NE Atlantic Plocamionida Topsent (Porifera, Poecilosclerida): under-estimated diversity in reef ecosystems

    NARCIS (Netherlands)

    Reveillaud, J.; van Soest, R.; Derycke, S.; Picton, B.; Rigaux, A.; Vanreusel, A.

    2011-01-01

    Background: Small and cryptic sponges associated with cold-water coral reefs are particularly numerous and challenging to identify, but their ecological and biochemical importance is likely to compete with megabenthic specimens. Methodology/Principal Findings: Here we use a combination of the

  10. Climate change impacts on freshwater fish, coral reefs, and related ecosystem services in the United States

    Science.gov (United States)

    We analyzed the potential physical and economic impacts of climate change on freshwater fisheries and coral reefs in the United States, examining a reference scenario and two policy scenarios that limit global greenhouse gas (GHG) emissions. We modeled shifts in suitable habitat ...

  11. Avoiding conflicts and protecting coral reefs: Customary management benefits marine habitats and fish biomass

    KAUST Repository

    Campbell, Stuart J.; Cinner, Joshua E.; Ardiwijaya, Rizya L.; Pardede, Shinta T.; Kartawijaya, Tasrif; Mukmunin, Ahmad; Herdiana, Yudi; Hoey, Andrew; Pratchett, Morgan S.; Baird, Andrew Hamilton

    2012-01-01

    Abstract One of the major goals of coral reef conservation is to determine the most effective means of managing marine resources in regions where economic conditions often limit the options available. For example, no-take fishing areas can

  12. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    Science.gov (United States)

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  13. Spatial analyses of benthic habitats to define coral reef ecosystem regions and potential biogeographic boundaries along a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Brian K Walker

    Full Text Available Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0-30 m benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework

  14. Biodiversity and spatial patterns of benthic habitat and associated demersal fish communities at two tropical submerged reef ecosystems

    Science.gov (United States)

    Abdul Wahab, Muhammad Azmi; Radford, Ben; Cappo, Mike; Colquhoun, Jamie; Stowar, Marcus; Depczynski, Martial; Miller, Karen; Heyward, Andrew

    2018-06-01

    Submerged reef ecosystems can be very diverse and may serve as important refugia for shallow-water conspecifics. This study quantified the benthic and fish communities of two proximate, predominantly mesophotic coral ecosystems (MCEs), Glomar Shoal and Rankin Bank, which are geographically isolated from other similar features in the region. Glomar Shoal is identified as a key ecological feature (KEF) in the North West Marine Region of Australia. Multibeam surveys were performed to characterise the seafloor and to derive secondary environmental variables, used to explain patterns in benthic and fish communities. Towed video surveys quantified benthic cover, and stereo baited remote underwater stations were used to survey fish abundance and diversity. Surveys were completed in depths of 20-115 m. The two MCEs exhibited distinct communities; Rankin Bank consistently had higher cover (up to 30×) of benthic taxa across depths, and fish communities that were twice as abundant and 1.5× more diverse than Glomar Shoal. The location of the MCEs, depth and rugosity were most influential in structuring benthic communities. Phototrophic taxa, specifically macroalgae and hard corals, had up to 22 × higher cover at Rankin Bank than at Glomar Shoal and were dominant to 80 m (compared to 60 m at Glomar Shoal), presumably due to greater light penetration (lower turbidity) and lower sand cover at greater depths. The 20% coral cover at Rankin Bank was comparable to that reported for shallow reefs. The cover of sand, hard corals and sponges influenced fish communities, with higher abundance and diversity of fish associated with shallow hard coral habitats. This study demonstrated that the two MCEs were unique within the local context, and when coupled with their geographical isolation and biodiversity, presents compelling support for the additional recognition of Rankin Bank as a KEF.

  15. Marine ecosystem appropriation in the Indo-Pacific: a case study of the live reef fish food trade

    Science.gov (United States)

    Warren-Rhodes, Kimberley; Sadovy, Yvonne; Cesar, Herman

    2003-01-01

    Our ecological footprint analyses of coral reef fish fisheries and, in particular, the live reef fish food trade (FT), indicate many countries' current consumption exceeds estimated sustainable per capita global, regional and local coral reef production levels. Hong Kong appropriates 25% of SE Asia's annual reef fish production of 135 260-286 560 tonnes (t) through its FT demand, exceeding regional biocapacity by 8.3 times; reef fish fisheries demand out-paces sustainable production in the Indo-Pacific and SE Asia by 2.5 and 6 times. In contrast, most Pacific islands live within their own reef fisheries means with local demand at Indo-Pacific.

  16. The Web-Driven Learning Ecosystem: Its Structure and Benefits

    Science.gov (United States)

    Raska, David; Shaw, Doris; Keller, Eileen Weisenbach

    2012-01-01

    We have devised a Web-based learning ecosystem (LECOS) that aligns marketing curriculum, course design, technology, instructors, students, as well as external stakeholders--a system that integrates traditional teaching methods with technological advancements in an attempt to enhance marketing students' motivation, engagement, and performance. A…

  17. Benefits of restoring ecosystem services in urban areas

    Science.gov (United States)

    T. Elmqvist; H. Setala; S.N. Handel; S. van der Ploeg; J. Aronson; J.N. Blignaut; E. Gomez-Baggethun; D.J. Nowak; J. Kronenberg; R. de Groot

    2015-01-01

    Cities are a key nexus of the relationship between people and nature and are huge centers of demand for ecosystem services and also generate extremely large environmental impacts. Current projections of rapid expansion of urban areas present fundamental challenges and also opportunities to design more livable, healthy and resilient cities (e.g. adaptation to climate...

  18. Linking Ecosystem Services Benefit Transfer Databases and Ecosystem Services Production Function Libraries

    Science.gov (United States)

    The quantification or estimation of the economic and non-economic values of ecosystem services can be done from a number of distinct approaches. For example, practitioners may use ecosystem services production function models (ESPFMs) for a particular location, or alternatively, ...

  19. Connecting Ecosystem Service Production to Users as a Measure of Realized Benefits in Coastal Communities

    Science.gov (United States)

    Ecosystem goods and services are often produced in locations far away from where humans benefit from them. Human beneficiaries also use specific spatial pathways to access the Final Ecosystem Goods and Services (FEGS), the ecological endpoints directly beneficial to human well-b...

  20. Impact of Point and Non-point Source Pollution on Coral Reef Ecosystems In Mamala Bay, Oahu, Hawaii based on Water Quality Measurements and Benthic Surveys in 1993-1994 (NODC Accession 0001172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of both point and non-point sources of pollution on coral reef ecosystems in Mamala Bay were studied at three levels of biological organization; the...

  1. Reefs for the future: Resilience of coral reefs in the main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declining health of coral reef ecosystems led scientists to search for factors that support reef resilience: the ability of reefs to resist and recover from...

  2. Coral Reef Ecosystem Data from the 2010-2011 Kahekili Herbivore Fisheries Management Area, West Maui, Herbivore Enhancement as a Tool for Reef Restoration Project (NODC Accession 0082869)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This research targets the Hawaii Coral Reef Initiative (HCRI) Priority Area A: Kahekili, Maui: Herbivore Fisheries Management Area (KHFMA). The project goal was to...

  3. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    Science.gov (United States)

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  4. Investigating Approaches to Achieve Modularity Benefits in the Acquisition Ecosystem

    Science.gov (United States)

    2017-06-09

    accounts , the workshop was a success and had 31 highly-engaged attendees [13 Government, 6 industry, 12 academia]. A list of the attendees of the...and openness. • Establish the long-term business strategy, drivers and objectives for each stakeholder, and their time horizons for MOSA-generated...or inspired) benefits o Keep into account polarities, e.g. data rights, competing interests (why would a program want to provide benefits to another

  5. Hawaii Institute for Marine Biology and NOAA National Ocean Service, Marine Sanctuary Program Partnership, in affiliation with the Coral Reef Assessment and Monitoring Program, 2007 Survey of the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve: Digital Still Images (NODC Accession 0052882)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rapid Assessment Transects were conducted in 2007 in the Papahanaumokuakea Marine National Monument of the Northwest Hawaiian Islands Coral Reef Ecosystem Reserve....

  6. Hawaii Institute for Marine Biology and NOAA National Ocean Service, Marine Sanctuary Program Partnership, in affiliation with the Coral Reef Assessment and Monitoring Program, 2007 Survey of the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve: Benthic Data from Digital Still Images (NODC Accession 0000881)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rapid Assessment Transects were conducted in 2007 in the Papahanaumokuakea Marine National Monument of the Northwest Hawaiian Islands Coral Reef Ecosystem Reserve....

  7. Who Benefits from Ecosystem Services? A Case Study for Central Kalimantan, Indonesia

    Science.gov (United States)

    Suwarno, Aritta; Hein, Lars; Sumarga, Elham

    2016-02-01

    There is increasing experience with the valuation of ecosystem services. However, to date, less attention has been devoted to who is actually benefiting from ecosystem services. This nevertheless is a key issue, in particular, if ecosystem services analysis and valuation is used to support environmental management. This study assesses and analyzes how the monetary benefits of seven ecosystem services are generated in Central Kalimantan Province, Indonesia, are distributed to different types of beneficiaries. We analyze the following ecosystem services: (1) timber production; (2) rattan collection; (3) jelutong resin collection; (4) rubber production (based on permanent agroforestry systems); (5) oil palm production on three management scales (company, plasma farmer, and independent smallholder); (6) paddy production; and (7) carbon sequestration. Our study shows that the benefits generated from these services differ markedly between the stakeholders, which we grouped into private, public, and household entities. The distribution of these benefits is strongly influenced by government policies and in particular benefit sharing mechanisms. Hence, land-use change and policies influencing land-use change can be expected to have different impacts on different stakeholders. Our study also shows that the benefits generated by oil palm conversion, a main driver for land-use change in the province, are almost exclusively accrued by companies and at this point in time are shared unequally with local stakeholders.

  8. Who Benefits from Ecosystem Services? A Case Study for Central Kalimantan, Indonesia.

    Science.gov (United States)

    Suwarno, Aritta; Hein, Lars; Sumarga, Elham

    2016-02-01

    There is increasing experience with the valuation of ecosystem services. However, to date, less attention has been devoted to who is actually benefiting from ecosystem services. This nevertheless is a key issue, in particular, if ecosystem services analysis and valuation is used to support environmental management. This study assesses and analyzes how the monetary benefits of seven ecosystem services are generated in Central Kalimantan Province, Indonesia, are distributed to different types of beneficiaries. We analyze the following ecosystem services: (1) timber production; (2) rattan collection; (3) jelutong resin collection; (4) rubber production (based on permanent agroforestry systems); (5) oil palm production on three management scales (company, plasma farmer, and independent smallholder); (6) paddy production; and (7) carbon sequestration. Our study shows that the benefits generated from these services differ markedly between the stakeholders, which we grouped into private, public, and household entities. The distribution of these benefits is strongly influenced by government policies and in particular benefit sharing mechanisms. Hence, land-use change and policies influencing land-use change can be expected to have different impacts on different stakeholders. Our study also shows that the benefits generated by oil palm conversion, a main driver for land-use change in the province, are almost exclusively accrued by companies and at this point in time are shared unequally with local stakeholders.

  9. The big squeeze: ecosystem change and contraction of habitat for newly discovered deep-water reefs off the U.S. West Coast

    Science.gov (United States)

    Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.

    2016-02-01

    Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.

  10. Linking the benefits of ecosystem services to sustainable spatial planning of ecological conservation strategies.

    Science.gov (United States)

    Huang, Lin; Cao, Wei; Xu, Xinliang; Fan, Jiangwen; Wang, Junbang

    2018-09-15

    The maintenance and improvement of ecosystem services on the Tibet Plateau are critical for national ecological security in China and are core objectives of ecological conservation in this region. In this paper, ecosystem service benefits of the Tibet Ecological Conservation Project were comprehensively assessed by estimating and mapping the spatiotemporal variation patterns of critical ecosystem services on the Tibet Plateau from 2000 to 2015. Furthermore, we linked the benefit assessment to the sustainable spatial planning of future ecological conservation strategies. Comparing the 8 years before and after the project, the water retention and carbon sink services of the forest, grassland and wetland ecosystems were slightly increased after the project, and the ecosystem sand fixation service has been steadily enhanced. The increasing forage supply service of grassland significantly reduced the grassland carrying pressure and eased the conflict between grassland and livestock. However, enhanced rainfall erosivity occurred due to increased rainfall, and root-layer soils could not recover in a short period of time, both factors have led to a decline in soil conservation service. The warm and humid climate is beneficial for the restoration of ecosystems on the Tibet Plateau, and the implementation of the Tibet Ecological Conservation Project has had a positive effect on the local improvement of ecosystem services. A new spatial planning strategy for ecological conservation was introduced and aims to establish a comprehensive, nationwide system to protect important natural ecosystems and wildlife, and to promote the sustainable use of natural resources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. {delta}{sup 15}N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M.; Kayanne, H.; Yamano, H

    2003-04-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;{>=}1.0 {mu}M) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and {delta}{sup 15}N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical {delta}{sup 15}N values were found in seagrass leaves of several species at each site. The correlations between {delta}{sup 15}N and nutrient concentrations and between {delta}{sup 15}N and molar ratios of nutrients suggested that nutrient availability did not affect the {delta}{sup 15}N value of seagrass leaves by altering the physiological condition of the plants. Increases in {delta}{sup 15}N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that {delta}{sup 15}N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water.

  12. Valuing ecosystem services using benefit transfer: separating credible and incredible approaches: chapter 3

    Science.gov (United States)

    Loomis, John H.; Richardson, Leslie; Kroeger, Timm; Casey, Frank

    2014-01-01

    Ecosystem goods and services are now widely recognized as the benefits that humans derive from the natural environment around them including abiotic (e.g. atmosphere) and biotic components. The work by Costanza et al. (1997) to value the world’s ecosystem services brought the concept of ecosystem service valuation to the attention of the world press and environmental economists working in the area of non-market valuation. The article’s US$33 trillion estimate of these services, despite world GDP being only US$18 trillion, was definitely headline grabbing. This ambitious effort was undertaken with reliance on transferring existing values per unit from other (often site specific) valuation studies. Benefit transfer (see Boyle and Bergstrom, 1992; Rosenberger and Loomis, 2000, 2001) involves transfers of values per unit from an area that has been valued using primary valuation methods such as contingent valuation, travel cost or hedonic property methods (Champ et al., 2003) to areas for which values are needed. Benefit transfer often provides a reasonable approximation of the benefit of unstudied ecosystem services based on transfer of benefits estimates per unit (per visitor day, per acre) from existing studies. An appropriate benefit transfer should be performed on the same spatial scale of analysis (e.g. reservoir to reservoir, city to city) as the original study. However, the reasonableness of benefit transfer may be strained when applying locally derived per acre values from studies of several thousand acres of a resource such as wetlands to hundreds of millions of acres of wetlands.

  13. Flood Protection Through Landscape Scale Ecosystem Restoration- Quantifying the Benefits

    Science.gov (United States)

    Pinero, E.

    2017-12-01

    Hurricane Harvey illustrated the risks associated with storm surges on coastal areas, especially during severe storms. One way to address storm surges is to utilize the natural ability of offshore coastal land to dampen their severity. In addition to helping reduce storm surge intensity and related damage, restoring the land will generate numerous co-benefits such as carbon sequestration and water quality improvement. The session will discuss the analytical methodology that helps define what is the most resilient species to take root, and to calculate quantified benefits. It will also address the quantification and monetization of benefits to make the business case for restoration. In 2005, Hurricanes Katrina and Rita damaged levees along the Gulf of Mexico, leading to major forest degradation, habitat deterioration and reduced wildlife use. As a result, this area lost an extensive amount of land, with contiguous sections of wetlands being converted to open water. The Restore the Earth Foundation's North American Amazon project intends to restore one million acres of forests and forested wetlands in the lower Mississippi River Valley. The proposed area for the first phase of this project was once an historic bald cypress forested wetland, which was degraded due to increased salinity levels and extreme fluctuations in hydrology. The Terrebonne and Lafourche Parishes, the "bayou parishes", communities with a combined population of over 200,000, sit on thin fingers of land that are protected by surrounding wetland swamps and wetlands, beyond which is the Gulf of Mexico. The Parishes depend on fishing, hunting, trapping, boat building, off-shore oil and gas production and support activities. Yet these communities are highly vulnerable to risks from natural hazards and future land loss. The ground is at or near sea level and therefore easily inundated by storm surges if not protected by wetlands. While some communities are protected by a levee system, the Terrebonne and

  14. Hydrology, plankton, and corals of the Maracajaú reefs (Northeastern Brazil: an ecosystem under severe thermal stress

    Directory of Open Access Journals (Sweden)

    Elga Miranda Mayal

    2009-06-01

    Full Text Available This study provides baseline information on the hydrological conditions and on the coral and plankton communities at the Maracajaú reef ecosystem (Northeastern Brazil. Studies were performed from February to June 2000, covering the transition from dry to rainy season. In this area, there is an offshore coral reef formation, where corals were observed in loco; the water samples were collected to obtain the hydrological and plankton data. Six scleractinian species were identified. Stable isotope analysis on the carbonate fraction of Favia gravida fragments showed that these corals were under severe thermal stress. Chlorophyll-a varied from 1.1 to 9.3 mg m-3, with higher values during the rainy season. Average zooplankton wet weight biomass were 117.0 (microzooplankton and 15.7 mg m -3(mesozooplankton. A total of 136 Phytoplankton and 61 zooplankton taxa were identified. Seasonal forcing determined the phyto-micro-and mesozooplankton community structure, rather than the coastal-offshore gradient.Esta pesquisa apresenta informações básicas sobre as condições hidrológicas e sobre as comunidades de corais e do plâncton no ecossistema recifal de Maracajaú (Nordeste do Brasil. Estudos foram realizados de fevereiro a junho de 2000, cobrindo o período de transição das estações seca a chuvosa. Nesta area existe uma formação de recife de coral afastada da costa, onde os corais foram observados in loco e amostras de água foram coletadas para a obtenção de dados hidrológicos e planctônicos. Foram identificadas seis espécies de escleractíneos. Análises com isótopos estáveis em fragmentos de carbonato de Favia gravida mostraram que este coral está sob estresse termal severo. As concentrações de clorofila-a variaram de 1,1 mg m-3 a 9,3 mg m-3, com maiores valores durante o período chuvoso. A biomassa média em peso úmido do zooplâncton foi de 117,0 mg m-3 para o microzooplâncton e de 15,7 mg m-3 para o mesozooplâncton. Foram

  15. Determining preferences for ecosystem benefits in Great Lakes Areas of Concern from photographs posted to social media

    Science.gov (United States)

    Relative valuation of potentially affected ecosystem benefits can increase the legitimacy and social acceptance of ecosystem restoration projects. As an alternative or supplement to traditional methods of deriving beneficiary preference, we downloaded from social media and classi...

  16. Determining preferences for ecosystem benefits in Great Lakes Areas of Concern from photographs posted to social media (presentation)

    Science.gov (United States)

    Relative valuation of potentially affected ecosystem benefits can increase the legitimacy and social acceptance of ecosystem restoration projects. As an alternative or supplement to traditional methods of deriving beneficiary preference, we downloaded from social media and classi...

  17. Non-Monetary Benefits Without Apology: The Economic Theory and Practice of Ecosystem Service Benefit Indicators.

    Science.gov (United States)

    Values for changes in ecosystem services (ES) are required or desired in many policy and management decision contexts, although appropriate monetary values often are not available or are infeasible to estimate. Fortunately, in many contexts—e.g., cost-effectiveness analysis...

  18. Bacterial Diversity Associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the Coral Reef Ecosystem of Gulf of Mannar, Southeast Coast of India.

    Directory of Open Access Journals (Sweden)

    C Jasmin

    Full Text Available Sponges are abundant, diverse and functionally important organisms of coral reef ecosystems. Sponge-associated microorganisms have been receiving greater attention because of their significant contribution to sponge biomass, biogeochemical cycles and biotechnological potentials. However, our understanding of the sponge microbiome is limited to a few species of sponges from restricted geographical locations. Here, we report for the first time the bacterial diversity of two cohabiting sponges, viz. Cinachyra cavernosa and Haliclona pigmentifera, as well as that in the ambient water from the coral reef ecosystems of the Gulf of Mannar, located along the southeast coast of India. Two hundred and fifty two clones in the 16S rRNA gene library of these sponges were grouped into eight distinct phyla, of which four belonged to the core group that are associated only with sponges. Phylogenetic analysis of the core bacteria showed close affinity to other sponge-associated bacteria from different geographical locations. γ-Proteobacteria, Chloroflexi, Planctomycetes and Deferribacter were the core groups in C. cavernosa while β and δ-Proteobacteria performed this role in H. pigmentifera. We observed greater OTU diversity for C. cavernosa (Hǀ 2.07 compared to H. pigmentifera (Hǀ 1.97. UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water (p<0.001. The results of our study restate the existence of a host driven force in shaping the sponge microbiome.

  19. Artificial reefs and reef restoration in the Laurentian Great Lakes

    Science.gov (United States)

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  20. Coral reefs in the Anthropocene.

    Science.gov (United States)

    Hughes, Terry P; Barnes, Michele L; Bellwood, David R; Cinner, Joshua E; Cumming, Graeme S; Jackson, Jeremy B C; Kleypas, Joanie; van de Leemput, Ingrid A; Lough, Janice M; Morrison, Tiffany H; Palumbi, Stephen R; van Nes, Egbert H; Scheffer, Marten

    2017-05-31

    Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.

  1. Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel.

    Directory of Open Access Journals (Sweden)

    Katja Malmborg

    Full Text Available Most current approaches to landscape scale ecosystem service assessments rely on detailed secondary data. This type of data is seldom available in regions with high levels of poverty and strong local dependence on provisioning ecosystem services for livelihoods. We develop a method to extrapolate results from a previously published village scale ecosystem services assessment to a higher administrative level, relevant for land use decision making. The method combines remote sensing (using a hybrid classification method and interviews with community members. The resulting landscape scale maps show the spatial distribution of five different livelihood benefits (nutritional diversity, income, insurance/saving, material assets and energy, and crops for consumption that illustrate the strong multifunctionality of the Sahelian landscapes. The maps highlight the importance of a diverse set of sub-units of the landscape in supporting Sahelian livelihoods. We see a large potential in using the resulting type of livelihood benefit maps for guiding future land use decisions in the Sahel.

  2. Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel.

    Science.gov (United States)

    Malmborg, Katja; Sinare, Hanna; Enfors Kautsky, Elin; Ouedraogo, Issa; Gordon, Line J

    2018-01-01

    Most current approaches to landscape scale ecosystem service assessments rely on detailed secondary data. This type of data is seldom available in regions with high levels of poverty and strong local dependence on provisioning ecosystem services for livelihoods. We develop a method to extrapolate results from a previously published village scale ecosystem services assessment to a higher administrative level, relevant for land use decision making. The method combines remote sensing (using a hybrid classification method) and interviews with community members. The resulting landscape scale maps show the spatial distribution of five different livelihood benefits (nutritional diversity, income, insurance/saving, material assets and energy, and crops for consumption) that illustrate the strong multifunctionality of the Sahelian landscapes. The maps highlight the importance of a diverse set of sub-units of the landscape in supporting Sahelian livelihoods. We see a large potential in using the resulting type of livelihood benefit maps for guiding future land use decisions in the Sahel.

  3. Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel

    Science.gov (United States)

    Sinare, Hanna; Enfors Kautsky, Elin; Ouedraogo, Issa; Gordon, Line J.

    2018-01-01

    Most current approaches to landscape scale ecosystem service assessments rely on detailed secondary data. This type of data is seldom available in regions with high levels of poverty and strong local dependence on provisioning ecosystem services for livelihoods. We develop a method to extrapolate results from a previously published village scale ecosystem services assessment to a higher administrative level, relevant for land use decision making. The method combines remote sensing (using a hybrid classification method) and interviews with community members. The resulting landscape scale maps show the spatial distribution of five different livelihood benefits (nutritional diversity, income, insurance/saving, material assets and energy, and crops for consumption) that illustrate the strong multifunctionality of the Sahelian landscapes. The maps highlight the importance of a diverse set of sub-units of the landscape in supporting Sahelian livelihoods. We see a large potential in using the resulting type of livelihood benefit maps for guiding future land use decisions in the Sahel. PMID:29389965

  4. Potential stakeholders and perceived benefits of a Digital Health Innovation Ecosystem for the Namibian context

    CSIR Research Space (South Africa)

    Iyawa, GE

    2017-10-01

    Full Text Available This paper presents the result of a study which aimed at identifying the potential stakeholders and perceived benefits of a digital health innovation ecosystem for the Namibian context as part of a larger study. Combining semi-structured interviews...

  5. Extended benefit cost analysis as an instrument of economic valuated in Petungkriyono forest ecosystem services

    Science.gov (United States)

    Damayanti, Irma; Nur Bambang, Azis; Retnaningsih Soeprobowati, Tri

    2018-05-01

    Petungkriyono is the last tropical forest in Java and provides biodiversity including rare flora and fauna that must be maintained, managed and utilized in order to give meaning for humanity and sustainability. Services of Forest Ecosystem in Petungkriyono are included such as goods supply, soil-water conservation, climate regulation, purification environment and flora fauna habitats. The approach of this study is the literature review from various studies before perceiving the influenced of economic valuation in determining the measurement conservation strategies of Petungkriyono Natural Forest Ecosystem in Pekalongan Regency. The aims of this study are to analyzing an extended benefit cost of natural forest ecosystems and internalizing them in decision making. The method of quantification and valuation of forest ecosystem is Cost and Benefit Analysis (CBA) which is a standard economic appraisal tools government in development economics. CBA offers the possibility capturing impact of the project. By using productivity subtitution value and extended benefit cost analysis any comodity such as Backwoods,Pine Woods, Puspa woods and Pine Gum. Water value, preventive buildings of landslide and carbon sequestration have total economic value of IDR.163.065.858.080, and the value of Extended Benefit Cost Ratio in Petungkriyono is 281.35 %. However, from the result is expected the local government of Pekalongan to have high motivation in preserve the existence of Petungkriyono forest.

  6. Ecosystem regime shifts disrupt trophic structure.

    Science.gov (United States)

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological

  7. Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar.

    Directory of Open Access Journals (Sweden)

    Rachel A Neugarten

    Full Text Available The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES, the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower, regulating (climate mitigation, flood risk reduction and coastal protection, and cultural (nature tourism ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF. Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions.

  8. Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar

    Science.gov (United States)

    Andriamaro, Luciano; Cano, Carlos Andres; Grantham, Hedley S.; Hole, David; Juhn, Daniel; McKinnon, Madeleine; Rasolohery, Andriambolantsoa; Steininger, Marc; Wright, Timothy Max

    2016-01-01

    The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES), the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower), regulating (climate mitigation, flood risk reduction and coastal protection), and cultural (nature tourism) ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF). Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions. PMID:28006005

  9. Oman's coral reefs: A unique ecosystem challenged by natural and man-related stresses and in need of conservation.

    Science.gov (United States)

    Burt, J A; Coles, S; van Lavieren, H; Taylor, O; Looker, E; Samimi-Namin, K

    2016-04-30

    Oman contains diverse and abundant reef coral communities that extend along a coast that borders three environmentally distinct water bodies, with corals existing under unique and often stressful environmental conditions. In recent years Oman's reefs have undergone considerable change due to recurrent predatory starfish outbreaks, cyclone damage, harmful algal blooms, and other stressors. In this review we summarize current knowledge of the biology and status of corals in Oman, particularly in light of recent stressors and projected future threats, and examine current reef management practices. Oman's coral communities occur in marginal environmental conditions for reefs, and hence are quite vulnerable to anthropogenic effects. We recommend a focus on developing conservation-oriented coral research to guide proactive management and expansion of the number and size of designated protected areas in Oman, particularly those associated with critical coral habitat. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Community metabolism and air-sea CO[sub 2] fluxes in a coral reef ecosystem (Moorea, French Polynesia)

    Energy Technology Data Exchange (ETDEWEB)

    Gattuso, J P; Pichon, M; Delesalle, B; Frankignoulle, M [Observatory of European Oceanology (Monaco)

    1993-06-01

    Community metabolism (primary production, respiration and calcification) and air-sea CO[sub 2] fluxes of the 'Tiahura barrier reef' (Moorea, French Polynesia) were investigated in November and December 1991. Gross production and respiration were respectively 640.2 to 753 and 590.4 to 641.5 mmol (O[sub 2] or CO[sub 2]) m[sup 2] d[sup -1] (7.7 to 9.0 and 7.1 to 7.7 g C m)[sup 2] d[sup -1] and the reef displayed a slightly negative excess (net) production. The contribution of planktonic primary production to reef metabolism was negligible (0.15% of total gross production). Net calcification was positive both during the day and at night; its daily value was 243 mmol CaCO[sub 3] m[sup 2] d[sup -1] (24.3 g CaCO)[sub 3] m[sup -2] d[sup -1]. Reef metabolism decreased seawater total CO[sub 2] by 433.3 mmol m[sup 2] d[sup -1]. The air-sea CO[sub 2] fluxes were close to zero in the ocean but displayed a strong daily pattern at the reef front and the back reef. Fluxes were positive (CO[sub 2] evasion) at night, decreased as irradiance increased and were negative during the day (CO[sub 2] invasion). Integration of the fluxes measured during a 24 h experiment at the back reef showed that the reef was a source of CO[sub 2] to the atmosphere (1.5 mmol m[sup 2] d[sup -1]).

  11. How to evaluate the carbon cycle in coral-reef ecosystems. Sangosho ni okeru sanso junkan kenkyu no kadai

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M [Geological Survey of Japan, Tsukuba (Japan)

    1993-05-01

    This paper describes problems concerning carbon balance and nutrient salt in coral reefs. Coral reefs fix CO2 in two forms of organic matters and calcium carbonates. It is reported that 10% of organic matters fixed by photosynthesis may either be buried in deposits on coral reefs or flow out into open seas. Quantification of the carbon balance in coral reefs has a problem of handling organic matters in calcium carbonate skeletons as products, and a problem related to evaluation of organic matters flown out from ecological systems. Corals provide, through building foundations at shallow depths, living organisms carrying out photosynthesis with locations abundant in quantity of light. Coral reefs are thought to accumulate nutrients in their skeletons or in the foundations for deposits. They would hold nitrogen in them through nitrogen fixation, and maintain phosphor production at high levels by retaining nitrogen-to-phosphor ratio which is relatively lower than in other ecological systems. Coral reefs provide foundations to transparent sea water with extremely small amount of phytoplankton, and favorable environment for large-size animals and algae. 21 refs., 2 figs.

  12. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    Science.gov (United States)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  13. Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy.

    Science.gov (United States)

    Tedetti, Marc; Cuet, Pascale; Guigue, Catherine; Goutx, Madeleine

    2011-05-01

    La Saline fringing reef is the most important coral reef complex of La Réunion Island (southwestern Indian Ocean; 21°07'S, 55°32'E). This ecosystem is subjected to anthropogenic pressures through river inputs and submarine groundwater discharge (SGD). The goal of this study was to characterize the pool of fluorescent dissolved organic matter (FDOM) in different water bodies of La Saline fringing reef ecosystem using excitation-emission matrix (EEM) spectrofluorometry. From EEMs, we identified the different fluorophores by the peak picking technique and determined two fluorescence indices issued from the literature: the humification index (HIX) and the biological index (BIX). The main known fluorophores were present within the sample set: humic-like A, humic-like C, marine humic-like M, tryptophan-like T1 and T2, and tyrosine-like B1 and B2. In some samples, unknown fluorophores ("U") were also detected. The surface oceanic waters located beyond the reef front displayed a typical oligotrophic marine signature, with a dominance of autochthonous/biological material (presence of peaks: T1>B1>A>T2>M>C; HIX: 0.9±0.4; BIX: 2.3±1.1). In the reef waters, the autochthonous/biological fingerprint also dominated even though the content in humic substances was higher (same relative distribution of peaks; HIX: 1.6±0.6; BIX: 1.0±0.1). Sedimentary and volcanic SGD showed very different patterns with a strong terrestrial source for the former (A>T1>C>B1 and A>C>B1; HIX: 9.8±2.0; BIX: 0.8±0.0) and a weak terrestrial source for the latter (A>B1>U3>B2>C and A>U4>C; HIX: 2.4±0.3; BIX: 0.9±0.0). In the Hermitage River, both humic substances and protein-like material were abundant (T1>A>U5>B1>C>B2; HIX: 2.3; BIX: 1.4). We provide evidences for the presence of anthropogenic DOM in some of these water bodies. Some oceanic samples (presence of peaks U1 and U2) were likely contaminated by oil-derived PAHs from ships navigating around the reef front, whereas the Hermitage River was

  14. Organic Carbon Sources and their Transfer in a Gulf of Mexico Coral Reef Ecosystem under River Influence

    Science.gov (United States)

    Parrish, C.; Carreón-Palau, L.; del Ángel-Rodríguez, J.; Perez-Espana, H.; Aguiniga-Garcıa, S.

    2016-02-01

    To assess the degree to which coral reefs in a marine protected area have been influenced by terrestrial and anthropogenic organic carbon inputs we used C and N stable isotopes and lipid biomarkers in the Coral Reef System of Veracruz in the southwest Gulf of Mexico. A C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor revealed the primary producer sources that fuel the coral reef food web. Then lipid classes, FA and sterol biomarkers determined production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, coprostanol determined pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential FA for fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while sea grass non-essential FA are transferred to the entire food web. Sea urchins may be the main consumers of brown macroalgae, while surgeon fish prefer red algae. C and N isotopic values and the C:N ratio suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and sea grass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly. The nearest river to the Reef System was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. We would suggest monitoring δ15N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the Reef System.

  15. Mesopredator trophodynamics on thermally stressed coral reefs

    Science.gov (United States)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  16. Water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region

    Science.gov (United States)

    Smajgl, A.; Larson, S.; Hug, B.; De Freitas, D. M.

    2010-12-01

    SummaryThis paper presents a tool for documenting and monitoring water use benefits in the Great Barrier Reef catchments that allows temporal and spatial comparison along the region. Water, water use benefits and water allocations are currently receiving much attention from Australian policy makers and conservation practitioners. Because of the inherent complexity and variability in water quality, it is essential that scientific information is presented in a meaningful way to policy makers, managers and ultimately, to the general public who have to live with the consequences of the decisions. We developed an inexpensively populated and easily understandable water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region. The index is developed based on a comparative list of selected water-related indices integrating attributes across physico-chemical, economic, social, and ecological domains currently used in the assessment of water quality, water quantity and water use benefits in Australia. Our findings indicate that the proposed index allows the identification of water performance indicators by temporal and spatial comparisons. Benefits for decision makers and conservation practitioners include a flexible way of prioritization towards the domain with highest concern. The broader community benefits from a comprehensive and user-friendly tool, communicating changes in water quality trends more effectively.

  17. Comparison of methods for quantifying reef ecosystem services: a case study mapping services for St. Croix, USVI

    Science.gov (United States)

    In coastal communities, stresses derived from landuse changes, climate change, and serial over-exploitation can have major effects on coral reefs, which support multibillion dollar fishing and tourism industries vital to regional economies. A key challenge in evaluating coastal a...

  18. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program.

    Science.gov (United States)

    Zheng, Hua; Robinson, Brian E; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C

    2013-10-08

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers' livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China's capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit-cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants.

  19. Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data.

    Directory of Open Access Journals (Sweden)

    Thiago Bruce

    Full Text Available The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic was characterized with a holistic approach using measurements of four ecosystem components: (i inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef. The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic

  20. When ecosystem services interact: crop pollination benefits depend on the level of pest control

    Science.gov (United States)

    Lundin, Ola; Smith, Henrik G.; Rundlöf, Maj; Bommarco, Riccardo

    2013-01-01

    Pollination is a key ecosystem service which most often has been studied in isolation although effects of pollination on seed set might depend on, and interact with, other services important for crop production. We tested three competing hypotheses on how insect pollination and pest control might jointly affect seed set: independent, compensatory or synergistic effects. For this, we performed a cage experiment with two levels of insect pollination and simulated pest control in red clover (Trifolium pratense L.) grown for seed. There was a synergistic interaction between the two services: the gain in seed set obtained when simultaneously increasing pollination and pest control outweighed the sum of seed set gains obtained when increasing each service separately. This study shows that interactions can alter the benefits obtained from service-providing organisms, and this needs to be considered to properly manage multiple ecosystem services. PMID:23269852

  1. Assessing cryptic reef diversity of colonizing marine invertebrates using Autonomous Reef Monitoring Structures (ARMS) deployed at coral reef sites in Batangas, Philippines from 2012-03-12 to 2015-05-31 (NCEI Accession 0162829)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used by the NOAA Coral Reef Ecosystem Program (CREP) to assess and monitor cryptic reef diversity across the...

  2. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    Science.gov (United States)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  3. IMAGE FUSION APPLIED TO SATELLITE IMAGERY FOR THE IMPROVED MAPPING AND MONITORING OF CORAL REEFS: A PROPOSAL

    Directory of Open Access Journals (Sweden)

    M. Gholoum

    2012-07-01

    Full Text Available A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine

  4. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems.

    Science.gov (United States)

    Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P

    2017-09-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.

  5. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  6. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program

    Science.gov (United States)

    Zheng, Hua; Robinson, Brian E.; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C.

    2013-01-01

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers’ livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China’s capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit–cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants. PMID:24003160

  7. Fish-derived nutrient hotspots shape coral reef benthic communities.

    Science.gov (United States)

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  8. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    Science.gov (United States)

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States

    Science.gov (United States)

    Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.

    2012-12-01

    Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.

  10. Resilience of coral reefs in the main Hawaiian Islands from 2013 to 2014 (NCEI Accession 0128219)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declining health of coral reef ecosystems led scientists to search for factors that support reef resilience: the ability of reefs to resist and recover from...

  11. Marine protected areas increase resilience among coral reef communities.

    Science.gov (United States)

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Ecosystem microbiology of coral reefs: linking genomic, metabolomic, and biogeochemical dynamics from animal symbioses to reefscape processes

    NARCIS (Netherlands)

    Wegley Kelly, L.; Haas, A.F.; Nelson, C.E.

    2018-01-01

    Over the past 2 decades, molecular techniques have established the critical role of both free-living and host-associated microbial partnerships in the environment. Advancing research to link microbial community dynamics simultaneously to host physiology and ecosystem biogeochemistry is required to

  13. Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals

    Science.gov (United States)

    Pires, Mathias M.; Guimarães, Paulo Roberto; Hoey, Andrew S.; Hay, Mark E.

    2017-01-01

    The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5–0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3–6 times greater, and macroalgal browsing was 3–5 times greater in MPAs than in non-MPAs. On average, MPAs had 260–280% as much coral cover and only 5–25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs. PMID:28122006

  14. The Micronesia Challenge: Assessing the Relative Contribution of Stressors on Coral Reefs to Facilitate Science-to-Management Feedback.

    Science.gov (United States)

    Houk, Peter; Camacho, Rodney; Johnson, Steven; McLean, Matthew; Maxin, Selino; Anson, Jorg; Joseph, Eugene; Nedlic, Osamu; Luckymis, Marston; Adams, Katrina; Hess, Don; Kabua, Emma; Yalon, Anthony; Buthung, Eva; Graham, Curtis; Leberer, Trina; Taylor, Brett; van Woesik, Robert

    2015-01-01

    Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA) networks in statistical models did little to improve the models' predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i) grazing by large herbivores, (ii) high functional diversity of herbivores, and (iii) high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem services that coral

  15. The Micronesia Challenge: Assessing the Relative Contribution of Stressors on Coral Reefs to Facilitate Science-to-Management Feedback.

    Directory of Open Access Journals (Sweden)

    Peter Houk

    Full Text Available Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA networks in statistical models did little to improve the models' predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i grazing by large herbivores, (ii high functional diversity of herbivores, and (iii high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem

  16. Pacific Reef Assessment and Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structures (ARMS) Deployed at Coral Reef Sites across the U.S. Pacific from 2008 to 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term program for sustainable management and conservation of coral reef ecosystems, from 2008, Autonomous Reef Monitoring Structures (ARMS) have...

  17. Preliminary assessment of bioengineered fringing shoreline reefs in Grand Isle and Breton Sound, Louisiana

    Science.gov (United States)

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Restoration of three-dimensional shell habitats in coastal Louisiana presents a valuable and potentially self-sustaining approach to providing shoreline protection and critical nekton habitat and may contribute to water quality maintenance. The use of what has been called “living shorelines” is particularly promising because in addition to the hypothesized shoreline protection services, it is predicted that, if built and located in viable sites, these living shorelines may ultimately contribute to water quality maintenance through filtration of bivalves and may enhance nekton habitat. This approach, however, has not been tested extensively in different shallow water estuarine settings; understanding under what conditions a living shoreline must have to support a sustainable oyster population, and where these reefs may provide valuable shoreline protection, is key to ensuring that this approach provides an effective tool for coastal restoration. This project gathered preliminary data on the sustainability and shoreline stabilization of three large bioengineered fringing reefs located in Grand Isle, Lake Eloi, and Lake Fortuna, Louisiana. We collected preconstruction and postconstruction physiochemical and biological data by using a before-after-control-impact approach to evaluate the effectiveness of these living shoreline structures on reducing marsh erosion, enabling reef sustainability, and providing other ecosystem benefits. Although this project was originally designed to compare reef performance and impacts across three different locations over 2 years, delays in construction because of the Deepwater Horizon oil spill resulted in reefs being built from 12 to 18 months later than anticipated. As a result, monitoring postconstruction was severely limited. One reef, Grand Isle, was completed in March 2011 and monitored up to 18 months postcreation, whereas Lake Eloi and Lake Fortuna reefs were not completed until January 2012, and only 8 months of

  18. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  19. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    Science.gov (United States)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  20. Spatial and temporal behavior and acute ecotoxicological effects of Tributyltin (TBT) on coral reef and adjacent ecosystems around Okinawa Island, Japan.

    Science.gov (United States)

    Sheikh, M. A.; Higuchi, T.; Imo, T. S.; Fujimura, H.; Oomori, T.

    2007-12-01

    Spatial and temporal behavior of the tributyl tin (TBT) were investigated in the coastal areas around Okinawa Island, Japan. A seasonal monitoring study was conducted between February and October 2006. The effects of TBT on the carbon metabolisms (net production and calcification) on the intact coral-alga association Galaxea fascicularis were also investigated. Mean concentration of TBT (2.45 ng/L) found in the Manko estuary waters have exceeded some international permissible targets of waters quality guideline for TBT (1ng/L). The sediments in Manko estuary sediments can be considered lightly contaminated (0-20 ng/g dw) and Okukubi estuary as uncontaminated (below 3ng/g dw) with TBT. The seasonal concentration pattern of TBT at the Manko estuary was autumn > spring > summer > winter. The acute ecotoxicological results show that the photosynthesis rate and calcification rate were significantly reduced by 78 % and 72 % relative to the control (ANOVA, p0.05) were observed when corals were exposed to 1000 ng/LTBT. The present study reports the occurrence and continuous input of TBT in the coastal areas around Okinawa Island, even 16 years after legal restriction of TBT usage in coastal waters was implemented by the Japanese Environmental Authorities. However, the nominal sensitive concentration of TBT that causes alteration of carbon metabolisms of coral within 96 hrs exposure are much higher than those recently found in the coral reef waters and adjacent ecosystems.

  1. Benthic reef primary production in response to large amplitude internal waves at the Similan Islands (Andaman Sea, Thailand)

    KAUST Repository

    Jantzen, Carin; Schmidt, Gertraud M.; Wild, Christian; Roder, Cornelia; Khokiattiwong, Somkiat; Richter, Claudio

    2013-01-01

    Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed

  2. 77 FR 48504 - Proposed Information Collection; Comment Request; Economic Value of Puerto Rico's Coral Reef...

    Science.gov (United States)

    2012-08-14

    ... Collection; Comment Request; Economic Value of Puerto Rico's Coral Reef Ecosystems for Recreation-Tourism... the market and non-market economic values of Puerto Rico's coral reef ecosystems. Estimates will be... Puerto Rico's coral reef ecosystems. The required information is to conduct focus groups to help in...

  3. Evidence of economic benefits for public investment in MPAs

    NARCIS (Netherlands)

    Pascal, Nicolas; Brathwaite, Angelique; Brander, Luke; Seidl, Andrew; Philip, Maxime; Clua, Eric

    2018-01-01

    MPAs enhance some of the Ecosystem Services (ES) provided by coral reefs and clear, robust valuations of these impacts may help to improve stakeholder support and better inform decision-makers. Pursuant to this goal, Cost-Benefit Analyses (CBA) of MPAs in 2 different contexts were analysed: a

  4. Community Change within a Caribbean Coral Reef Marine Protected Area following Two Decades of Local Management

    KAUST Repository

    Noble, Mae M.

    2013-01-14

    Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs). While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP). Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth) closed to fishing, this did not hold for deeper (15 m) habitats, and there was a widespread decline (38% decrease) in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management. © 2013 Noble et al.

  5. Community change within a Caribbean coral reef Marine Protected Area following two decades of local management.

    Directory of Open Access Journals (Sweden)

    Mae M Noble

    Full Text Available Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs. While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP. Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth closed to fishing, this did not hold for deeper (15 m habitats, and there was a widespread decline (38% decrease in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management.

  6. The impacts of tourism on coral reef conservation awareness and support in coastal communities in Belize

    Science.gov (United States)

    Diedrich, A.

    2007-12-01

    Marine recreational tourism is one of a number of threats to the Belize Barrier Reef but, conversely, represents both a motivation and source of resources for its conservation. The growth of tourism in Belize has resulted in the fact that many coastal communities are in varying stages of a socio-economic shift from dependence on fishing to dependence on tourism. In a nation becoming increasingly dependent on the health of its coral reef ecosystems for economic prosperity, a shift from extractive uses to their preservation is both necessary and logical. Through examining local perception data in five coastal communities in Belize, each attracting different levels of coral reef related tourism, this analysis is intended to explore the relationship between tourism development and local coral reef conservation awareness and support. The results of the analysis show a positive correlation between tourism development and coral reef conservation awareness and support in the study communities. The results also show a positive correlation between tourism development and local perceptions of quality of life, a trend that is most likely the source of the observed relationship between tourism and conservation. The study concludes that, because the observed relationship may be dependent on continued benefits from tourism as opposed to a perceived crisis in coral reef health, Belize must pay close attention to tourism impacts in the future. Failure to do this could result in a destructive feedback loop that would contribute to the degradation of the reef and, ultimately, Belize’s diminished competitiveness in the ecotourism market.

  7. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  8. Water Column Correction for Coral Reef Studies by Remote Sensing

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  9. Water Column Correction for Coral Reef Studies by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Maria Laura Zoffoli

    2014-09-01

    Full Text Available Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  10. Water column correction for coral reef studies by remote sensing.

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-09-11

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  11. Habitats as surrogates of taxonomic and functional fish assemblages in coral reef ecosystems: a critical analysis of factors driving effectiveness.

    Directory of Open Access Journals (Sweden)

    Simon Van Wynsberge

    Full Text Available Species check-lists are helpful to establish Marine Protected Areas (MPAs and protect local richness, endemicity, rarity, and biodiversity in general. However, such exhaustive taxonomic lists (i.e., true surrogate of biodiversity require extensive and expensive censuses, and the use of estimator surrogates (e.g., habitats is an appealing alternative. In truth, surrogate effectiveness appears from the literature highly variable both in marine and terrestrial ecosystems, making it difficult to provide practical recommendations for managers. Here, we evaluate how the biodiversity reference data set and its inherent bias can influence effectiveness. Specifically, we defined habitats by geomorphology, rugosity, and benthic cover and architecture criteria, and mapped them with satellite images for a New-Caledonian site. Fish taxonomic and functional lists were elaborated from Underwater Visual Censuses, stratified according to geomorphology and exposure. We then tested if MPA networks designed to maximize habitat richness, diversity and rarity could also effectively maximize fish richness, diversity, and rarity. Effectiveness appeared highly sensitive to the fish census design itself, in relation to the type of habitat map used and the scale of analysis. Spatial distribution of habitats (estimator surrogate's distribution, quantity and location of fish census stations (target surrogate's sampling, and random processes in the MPA design all affected effectiveness to the point that one small change in the data set could lead to opposite conclusions. We suggest that previous conclusions on surrogacy effectiveness, either positive or negative, marine or terrestrial, should be considered with caution, except in instances where very dense data sets were used without pseudo-replication. Although this does not rule out the validity of using surrogates of species lists for conservation planning, the critical joint examination of both target and estimator

  12. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss)

    Science.gov (United States)

    Bouwes, Nicolaas; Weber, Nicholas; Jordan, Chris E.; Saunders, W. Carl; Tattam, Ian A.; Volk, Carol; Wheaton, Joseph M.; Pollock, Michael M.

    2016-01-01

    Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations. PMID:27373190

  13. COLLABORATIVE GUIDE: A REEF MANAGER'S GUIDE TO ...

    Science.gov (United States)

    Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Referred to as A Reef Manager's Guide to Coral Bleaching, the guide will provide coral reef managers with the latest scientific information on the causes of coral bleaching and new management strategies for responding to this significant threat to coral reef ecosystems. Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Dr. Jordan West, of the National Center for Environmental Assessment, was a major contributor to the guide. Referred to as

  14. Assessing the societal benefits of river restoration using the ecosystem services approach

    NARCIS (Netherlands)

    Vermaat, Jan; Ansink, Erik

    2016-01-01

    The success of river restoration was estimated using the ecosystem services approach. In eight pairs of restored–unrestored reaches and floodplains across Europe, we quantified provisioning (agricultural products, wood, reed for thatching, infiltrated drinking water), regulating (flooding and

  15. Topographical features of physiographic unit borders on reef flat in fringing reefs

    OpenAIRE

    Nakai, Tatsuo

    2007-01-01

    In coral reef ecosystem spatial structure of 10^1-10^3m scale provide very important aspect in coral reef conservation. Nakai (2007) showed that physiographic unit (PGU) could be set as well as zonation on reef flat of fringing reef. The borders of PGUs delimiting it from the open sea or an adjacent PGU are constituted by landforms such as reef crest or channels. In this article the landforms becoming the borders of PGUs were discussed and the PGU property was clarified.

  16. Groundtruthing Notes and Miscellaneous Biological Datasets from Coral Ecosystems Surveys from the Northwestern Hawaiian Islands Rapid Reef Assessment and Monitoring Program of 2000-2002 (NODC Accession 0001448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northwestern Hawaiian Islands Coral Reef Assessment and Monitoring Program (NOWRAMP) began in 2000 with the mission to rapidly evaluate and map the shallow water...

  17. Enhancing the Economic Value of Large Investments in Sustainable Drainage Systems (SuDS through Inclusion of Ecosystems Services Benefits

    Directory of Open Access Journals (Sweden)

    Santiago Urrestarazu Vincent

    2017-10-01

    Full Text Available Although Sustainable Drainage Systems (SuDS are used in cities across the world as effective flood adaptation responses, their economic viability has frequently been questioned. Inclusion of the monetary value of ecosystem services (ES provided by SuDS can increase the rate of return on investments made. Hence, this paper aims at reviewing the enhancement of the economic value of large-scale investments in SuDS through inclusion of ecosystem services. This study focuses on the flood reduction capacity and the ES benefits of green roofs and rain barrels in the combined sewerage network of Montevideo Municipality in Uruguay. The methodology comprises a cost–benefit analysis—with and without monetised ES provided by SuDS—of two drainage network configurations comprising: (i SuDS; and (ii SuDS and detention storage. The optimal drainage design for both these drainage configurations have been determined using SWMM-EA, a tool which uses multi-objective optimisation based evolutionary algorithm (EA and the storm water management model (SWMM. In both design configurations, total benefits comprising both flood reduction and ES benefits are always higher than their costs. The use of storage along with SuDS provides greater benefits with a larger reduction in flooding, and thus is more cost-effective than using SuDS alone. The results show that, for both of the drainage configurations, the larger investments are not beneficial unless ES benefits are taken into account. Hence, it can be concluded that the inclusion of ES benefits is necessary to justify large-scale investments in SuDS.

  18. Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling

    Science.gov (United States)

    Jenerette, D.

    2011-12-01

    Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic

  19. Estimating the value of non-use benefits from small changes in the provision of ecosystem services.

    Science.gov (United States)

    Dutton, Adam; Edwards-Jones, Gareth; Macdonald, David W

    2010-12-01

    The unit of trade in ecosystem services is usually the use of a proportion of the parcels of land associated with a given service. Valuing small changes in the provision of an ecosystem service presents obstacles, particularly when the service provides non-use benefits, as is the case with conservation of most plants and animals. Quantifying non-use values requires stated-preference valuations. Stated-preference valuations can provide estimates of the public's willingness to pay for a broad conservation goal. Nevertheless, stated-preference valuations can be expensive and do not produce consistent measures for varying levels of provision of a service. Additionally, the unit of trade, land use, is not always linearly related to the level of ecosystem services the land might provide. To overcome these obstacles, we developed a method to estimate the value of a marginal change in the provision of a non-use ecosystem service--in this case conservation of plants or animals associated with a given land-cover type. Our method serves as a tool for calculating transferable valuations of small changes in the provision of ecosystem services relative to the existing provision. Valuation is achieved through stated-preference investigations, calculation of a unit value for a parcel of land, and the weighting of this parcel by its ability to provide the desired ecosystem service and its effect on the ability of the surrounding land parcels to provide the desired service. We used the water vole (Arvicola terrestris) as a case study to illustrate the method. The average present value of a meter of water vole habitat was estimated at UK £ 12, but the marginal value of a meter (based on our methods) could range between £ 0 and £ 40 or more. © 2010 Society for Conservation Biology.

  20. Advances in monitoring the human dimension of natural resource systems: an example from the Great Barrier Reef

    Science.gov (United States)

    Marshall, N. A.; Bohensky, E.; Curnock, M.; Goldberg, J.; Gooch, M.; Nicotra, B.; Pert, P.; Scherl, L. M.; Stone-Jovicich, S.; Tobin, R. C.

    2016-11-01

    The aim of this paper is to demonstrate the feasibility and potential utility of decision-centric social-economic monitoring using data collected from Great Barrier Reef (Reef) region. The social and economic long term monitoring program (SELTMP) for the Reef is a novel attempt to monitor the social and economic dimensions of social-ecological change in a globally and nationally important region. It represents the current status and condition of the major user groups of the Reef with the potential to simultaneously consider trends, interconnections, conflicts, dependencies and vulnerabilities. Our approach was to combine a well-established conceptual framework with a strong governance structure and partnership arrangement that enabled the co-production of knowledge. The framework is a modification of the Millennium Ecosystem Assessment and it was used to guide indicator choice. Indicators were categorised as; (i) resource use and dependency, (ii) ecosystem benefits and well-being, and (iii) drivers of change. Data were collected through secondary datasets where existing and new datasets were created where not, using standard survey techniques. Here we present an overview of baseline results of new survey data from commercial-fishers (n = 210), marine-based tourism operators (n = 119), tourists (n = 2877), local residents (n = 3181), and other Australians (n = 2002). The indicators chosen describe both social and economic components of the Reef system and represent an unprecedented insight into the ways in which people currently use and depend on the Reef, the benefits that they derive, and how they perceive, value and relate to the Reef and each other. However, the success of a program such as the SELTMP can only occur with well-translated cutting-edge data and knowledge that are collaboratively produced, adaptive, and directly feeds into current management processes. We discuss how data from the SELTMP have already been incorporated into Reef management decision

  1. Assessing Urban Forest Structure, Ecosystem Services, and Economic Benefits on Vacant Land

    Directory of Open Access Journals (Sweden)

    Gunwoo Kim

    2016-07-01

    Full Text Available An urban forest assessment is essential for developing a baseline from which to measure changes and trends. The most precise way to assess urban forests is to measure and record every tree on a site, but although this may work well for relatively small populations (e.g., street trees, small parks, it is prohibitively expensive for large tree populations. Thus, random sampling offers a cost-effective way to assess urban forest structure and the associated ecosystem services for large-scale assessments. The methodology applied to assess ecosystem services in this study can also be used to assess the ecosystem services provided by vacant land in other urban contexts and improve urban forest policies, planning, and the management of vacant land. The study’s findings support the inclusion of trees on vacant land and contribute to a new vision of vacant land as a valuable ecological resource by demonstrating how green infrastructure can be used to enhance ecosystem health and promote a better quality of life for city residents.

  2. A data assimilation tool for the Pagasitikos Gulf ecosystem dynamics: Methods and benefits

    KAUST Repository

    Korres, Gerasimos; Triantafyllou, George N.; Petihakis, George; Raitsos, Dionysios E.; Hoteit, Ibrahim; Pollani, A. I.; Colella, Simone; Tsiaras, Kostas P.

    2012-01-01

    color (chlorophyll-a) data with the predictions of a three-dimensional coupled physical-biochemical model of the Pagasitikos Gulf ecosystem presented in a companion paper. The hydrodynamics are solved with a very high resolution (1/100°) implementation

  3. A data assimilation tool for the Pagasitikos Gulf ecosystem dynamics: Methods and benefits

    KAUST Repository

    Korres, Gerasimos

    2012-06-01

    Within the framework of the European INSEA project, an advanced assimilation system has been implemented for the Pagasitikos Gulf ecosystem. The system is based on a multivariate sequential data assimilation scheme that combines satellite ocean sea color (chlorophyll-a) data with the predictions of a three-dimensional coupled physical-biochemical model of the Pagasitikos Gulf ecosystem presented in a companion paper. The hydrodynamics are solved with a very high resolution (1/100°) implementation of the Princeton Ocean Model (POM). This model is nested within a coarser resolution model of the Aegean Sea which is part of the Greek POSEIDON forecasting system. The forecast of the Aegean Sea model, itself nested and initialized from a Mediterranean implementation of POM, is also used to periodically re-initalize the Pagatisikos hydrodynamics model using variational initialization techniques. The ecosystem dynamics of Pagasitikos are tackled with a stand-alone implementation of the European Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter, in which the error statistics are parameterized by means of a suitable set of Empirical Orthogonal Functions (EOFs).The assimilation experiments were performed for year 2003 and additionally for a 9-month period over 2006 during which the physical model was forced with the POSEIDON-ETA 6-hour atmospheric fields. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical processes and the overall quality of the forecasts. Assimilation of either GlobColour in 2003 or SeaWiFS in 2006 chlorophyll-a data enhances the identification of the ecological state of the Pagasitikos Gulf. Results, however, suggest that subsurface ecological observations are needed to improve the controllability of the ecosystem in the deep layers. © 2011 Elsevier B.V.

  4. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  5. Coral identity underpins architectural complexity on Caribbean reefs.

    Science.gov (United States)

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A

    2011-09-01

    The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.

  6. Ecosystem-management-based Management Models of Fast-growing and High-yield Plantation and Its Eco-economic Benefits Analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper expounded the basic concept and principles of ecosystem management,and analyzed the state and trend of industrial plantation ecosystem management in other countries.Based on the analysis of typical case studies,the eco-economic benefits were evaluated for the management models of fast-growing and high-yield plantations.

  7. Remote Sensing of Coral Reefs for Monitoring and Management: A Review

    Directory of Open Access Journals (Sweden)

    John D. Hedley

    2016-02-01

    Full Text Available Coral reefs are in decline worldwide and monitoring activities are important for assessing the impact of disturbance on reefs and tracking subsequent recovery or decline. Monitoring by field surveys provides accurate data but at highly localised scales and so is not cost-effective for reef scale monitoring at frequent time points. Remote sensing from satellites is an alternative and complementary approach. While remote sensing cannot provide the level of detail and accuracy at a single point than a field survey, the statistical power for inferring large scale patterns benefits in having complete areal coverage. This review considers the state of the art of coral reef remote sensing for the diverse range of objectives relevant for management, ranging from the composition of the reef: physical extent, benthic cover, bathymetry, rugosity; to environmental parameters: sea surface temperature, exposure, light, carbonate chemistry. In addition to updating previous reviews, here we also consider the capability to go beyond basic maps of habitats or environmental variables, to discuss concepts highly relevant to stakeholders, policy makers and public communication: such as biodiversity, environmental threat and ecosystem services. A clear conclusion of the review is that advances in both sensor technology and processing algorithms continue to drive forward remote sensing capability for coral reef mapping, particularly with respect to spatial resolution of maps, and synthesis across multiple data products. Both trends can be expected to continue.

  8. Benefits and costs of ecological restoration: Rapid assessment of changing ecosystem service values at a U.K. wetland.

    Science.gov (United States)

    Peh, Kelvin S-H; Balmford, Andrew; Field, Rob H; Lamb, Anthony; Birch, Jennifer C; Bradbury, Richard B; Brown, Claire; Butchart, Stuart H M; Lester, Martin; Morrison, Ross; Sedgwick, Isabel; Soans, Chris; Stattersfield, Alison J; Stroh, Peter A; Swetnam, Ruth D; Thomas, David H L; Walpole, Matt; Warrington, Stuart; Hughes, Francine M R

    2014-10-01

    Restoration of degraded land is recognized by the international community as an important way of enhancing both biodiversity and ecosystem services, but more information is needed about its costs and benefits. In Cambridgeshire, U.K., a long-term initiative to convert drained, intensively farmed arable land to a wetland habitat mosaic is driven by a desire both to prevent biodiversity loss from the nationally important Wicken Fen National Nature Reserve (Wicken Fen NNR) and to increase the provision of ecosystem services. We evaluated the changes in ecosystem service delivery resulting from this land conversion, using a new Toolkit for Ecosystem Service Site-based Assessment (TESSA) to estimate biophysical and monetary values of ecosystem services provided by the restored wetland mosaic compared with the former arable land. Overall results suggest that restoration is associated with a net gain to society as a whole of $199 ha(-1)y(-1), for a one-off investment in restoration of $2320 ha(-1). Restoration has led to an estimated loss of arable production of $2040 ha(-1)y(-1), but estimated gains of $671 ha(-1)y(-1) in nature-based recreation, $120 ha(-1)y(-1) from grazing, $48 ha(-1)y(-1) from flood protection, and a reduction in greenhouse gas (GHG) emissions worth an estimated $72 ha(-1)y(-1). Management costs have also declined by an estimated $1325 ha(-1)y(-1). Despite uncertainties associated with all measured values and the conservative assumptions used, we conclude that there was a substantial gain to society as a whole from this land-use conversion. The beneficiaries also changed from local arable farmers under arable production to graziers, countryside users from towns and villages, and the global community, under restoration. We emphasize that the values reported here are not necessarily transferable to other sites.

  9. A review of ecosystem service benefits from wild bees across social contexts.

    Science.gov (United States)

    Matias, Denise Margaret S; Leventon, Julia; Rau, Anna-Lena; Borgemeister, Christian; von Wehrden, Henrik

    2017-05-01

    In order to understand the role of wild bees in both social and ecological systems, we conducted a quantitative and qualitative review of publications dealing with wild bees and the benefits they provide in social contexts. We classified publications according to several attributes such as services and benefits derived from wild bees, types of bee-human interactions, recipients of direct benefits, social contexts where wild bees are found, and sources of changes to the bee-human system. We found that most of the services and benefits from wild bees are related to food, medicine, and pollination. We also found that wild bees directly provide benefits to communities to a greater extent than individuals. In the social contexts where they are found, wild bees occupy a central role. Several drivers of change affect bee-human systems, ranging from environmental to political drivers. These are the areas where we recommend making interventions for conserving the bee-human system.

  10. Cryptic Coral Reef Diversity Across the Pacific Assessed using Autonomous Reef Monitoring Structures and Multi-omic Methods

    Science.gov (United States)

    Ransome, E. J.; Timmers, M.; Hartmann, A.; Collins, A.; Meyer, C.

    2016-02-01

    Coral reefs harbor diverse and distinct eukaryotic, bacterial and viral communities, which are critically important for their success. The lack of standardized measures for comprehensively assessing reef diversity has been a major obstacle in understanding the complexity of eukaryotic and microbial associations, and the processes that drive ecosystem shifts on reefs. ARMS, which mimic the structural complexity of the reef using artificial settlement plates, were used to systematically measure reef biodiversity across the Indo-Pacific. This device allows for standardized sampling of reef microbes to metazoans, providing the opportunity to investigate the fundamental links between these groups at an ecosystem level. We integrate the use of traditional ecology methods with metagenomics and metabolomics (metabolic predictors) to quantify the taxonomic composition of one of the planet's most diverse ecosystems and to assess the fundamental links between these cryptic communities and ecosystem function along geographical and anthropogenic stress gradients.

  11. Assessing the sensitivity of coral reef condition indicators to local and global stressors with Bayesian networks

    Science.gov (United States)

    Coral reefs are highly valued ecosystems that are currently imperiled. Although the value of coral reefs to human societies is only just being investigated and better understood, for many local and global economies coral reefs are important providers of ecosystem services that su...

  12. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs

    Directory of Open Access Journals (Sweden)

    Claire Kremen

    2012-12-01

    Full Text Available We hypothesize that biological diversification across ecological, spatial, and temporal scales maintains and regenerates the ecosystem services that provide critical inputs - such as maintenance of soil quality, nitrogen fixation, pollination, and pest control - to agriculture. Agrobiodiversity is sustained by diversified farming practices and it also supplies multiple ecosystem services to agriculture, thus reducing environmental externalities and the need for off-farm inputs. We reviewed the literature that compares biologically diversified farming systems with conventional farming systems, and we examined 12 ecosystem services: biodiversity; soil quality; nutrient management; water-holding capacity; control of weeds, diseases, and pests; pollination services; carbon sequestration; energy efficiency and reduction of warming potential; resistance and resilience to climate change; and crop productivity. We found that compared with conventional farming systems, diversified farming systems support substantially greater biodiversity, soil quality, carbon sequestration, and water-holding capacity in surface soils, energy-use efficiency, and resistance and resilience to climate change. Relative to conventional monocultures, diversified farming systems also enhance control of weeds, diseases, and arthropod pests and they increase pollination services; however, available evidence suggests that these practices may often be insufficient to control pests and diseases or provide sufficient pollination. Significantly less public funding has been applied to agroecological research and the improvement of diversified farming systems than to conventional systems. Despite this lack of support, diversified farming systems have only somewhat reduced mean crop productivity relative to conventional farming systems, but they produce far fewer environmental and social harms. We recommend that more research and crop breeding be conducted to improve diversified farming

  13. Sediments and herbivory as sensitive indicators of coral reef degradation

    Directory of Open Access Journals (Sweden)

    Christopher H. R. Goatley

    2016-03-01

    Full Text Available Around the world, the decreasing health of coral reef ecosystems has highlighted the need to better understand the processes of reef degradation. The development of more sensitive tools, which complement traditional methods of monitoring coral reefs, may reveal earlier signs of degradation and provide an opportunity for pre-emptive responses. We identify new, sensitive metrics of ecosystem processes and benthic composition that allow us to quantify subtle, yet destabilizing, changes in the ecosystem state of an inshore coral reef on the Great Barrier Reef. Following severe climatic disturbances over the period 2011-2012, the herbivorous reef fish community of the reef did not change in terms of biomass or functional groups present. However, fish-based ecosystem processes showed marked changes, with grazing by herbivorous fishes declining by over 90%. On the benthos, algal turf lengths in the epilithic algal matrix increased more than 50% while benthic sediment loads increased 37-fold. The profound changes in processes, despite no visible change in ecosystem state, i.e., no shift to macroalgal dominance, suggest that although the reef has not undergone a visible regime-shift, the ecosystem is highly unstable, and may sit on an ecological knife-edge. Sensitive, process-based metrics of ecosystem state, such as grazing or browsing rates thus appear to be effective in detecting subtle signs of degradation and may be critical in identifying ecosystems at risk for the future.

  14. Say what? Coral reef sounds as indicators of community assemblages and reef conditions

    Science.gov (United States)

    Mooney, T. A.; Kaplan, M. B.

    2016-02-01

    Coral reefs host some of the highest diversity of life on the planet. Unfortunately, reef health and biodiversity is declining or is threatened as a result of climate change and human influences. Tracking these changes is necessary for effective resource management, yet estimating marine biodiversity and tracking trends in ecosystem health is a challenging and expensive task, especially in many pristine reefs which are remote and difficult to access. Many fishes, mammals and invertebrates make sound. These sounds are reflective of a number of vital biological processes and are a cue for settling reef larvae. Biological sounds may be a means to quantify ecosystem health and biodiversity, however the relationship between coral reef soundscapes and the actual taxa present remains largely unknown. This study presents a comparative evaluation of the soundscape of multiple reefs, naturally differing in benthic cover and fish diversity, in the U.S. Virgin Islands National Park. Using multiple recorders per reef we characterized spacio-temporal variation in biological sound production within and among reefs. Analyses of sounds recorded over 4 summer months indicated diel trends in both fish and snapping shrimp acoustic frequency bands with crepuscular peaks at all reefs. There were small but statistically significant acoustic differences among sites on a given reef raising the possibility of potentially localized acoustic habitats. The strength of diel trends in lower, fish-frequency bands were correlated with coral cover and fish density, yet no such relationship was found with shrimp sounds suggesting that fish sounds may be of higher relevance to tracking certain coral reef conditions. These findings indicate that, in spite of considerable variability within reef soundscapes, diel trends in low-frequency sound production reflect reef community assemblages. Further, monitoring soundscapes may be an efficient means of establishing and monitoring reef conditions.

  15. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    Science.gov (United States)

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. © 2014 John Wiley & Sons Ltd.

  16. Mapping Oyster Reef Habitats in Mobile Bay

    Science.gov (United States)

    Bolte, Danielle

    2011-01-01

    Oyster reefs around the world are declining rapidly, and although they haven t received as much attention as coral reefs, they are just as important to their local ecosystems and economies. Oyster reefs provide habitats for many species of fish, invertebrates, and crustaceans, as well as the next generations of oysters. Oysters are also harvested from many of these reefs and are an important segment of many local economies, including that of Mobile Bay, where oysters rank in the top five commercial marine species both by landed weight and by dollar value. Although the remaining Mobile Bay oyster reefs are some of the least degraded in the world, projected climate change could have dramatic effects on the health of these important ecosystems. The viability of oyster reefs depends on water depth and temperature, appropriate pH and salinity levels, and the amount of dissolved oxygen in the water. Projected increases in sea level, changes in precipitation and runoff patterns, and changes in pH resulting from increases in the amount of carbon dioxide dissolved in the oceans could all affect the viability of oyster reefs in the future. Human activities such as dredging and unsustainable harvesting practices are also adversely impacting the oyster reefs. Fortunately, several projects are already under way to help rebuild or support existing or previously existing oyster reefs. The success of these projects will depend on the local effects of climate change on the current and potential habitats and man s ability to recognize and halt unsustainable harvesting practices. As the extent and health of the reefs changes, it will have impacts on the Mobile Bay ecosystem and economy, changing the resources available to the people who live there and to the rest of the country, since Mobile Bay is an important national source of seafood. This project identified potential climate change impacts on the oyster reefs of Mobile Bay, including the possible addition of newly viable

  17. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  18. Bacterial diversity associated with Cinachyra cavernosa and Haliclona pigmentifera, cohabiting sponges in the coral reef ecosystem of Gulf of Mannar, southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jasmin, C; Anas, A.; Nair, S.

    1.97). UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water(p<0.001). The results of our study restate the existence of a host driven force in shaping the sponge...

  19. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  20. Extinction vulnerability of coral reef fishes.

    Science.gov (United States)

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  1. CRED REA Reef Fish Assessment Survey at Niihau Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  2. CRED Rapid Ecological Assessment Reef Fish Survey at Howland, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  3. CRED Rapid Ecological Assessment Reef Fish Survey at Jarvis, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  4. CRED REA Reef Fish Assessment Survey at Pearl And Hermes Atoll, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  5. CRED REA Reef Fish Assessment Survey at Aguijan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  6. CRED Rapid Ecological Assessment Reef Fish Survey at Lanai, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130801 to 20130823,...

  7. CRED REA Reef Fish Assessment Survey at Maug Islands, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  8. CRED Rapid Ecological Assessment Reef Fish Survey at Kure, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  9. CRED Rapid Ecological Assessment Reef Fish Survey at Tutuila, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  10. CRED REA Reef Fish Assessment Survey at Rota Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  11. CRED REA Reef Fish Assessment Survey at Swains Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 18 February - 19 March...

  12. CRED REA Invertebrate Quantitative Assessments at Kingman Reef, Pacific Remote Island Areas, in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 March - 8 April...

  13. CRED REA Invertebrate Quantitative Assessments at Kingman Reef, Pacific Remote Island Areas, in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 23 March - 12 April...

  14. CRED REA Invertebrate Quantitative Assessments at Kingman Reef, Pacific Remote Island Areas, in 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 30 January - 28...

  15. CRED REA Invertebrate Quantitative Assessments at Kingman Reef, Pacific Remote Island Areas, in 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 11 March - 6 April...

  16. CRED Rapid Ecological Assessment Reef Fish Survey at Baker, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  17. CRED Rapid Ecological Assessment Reef Fish Survey at Alamagan, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  18. CRED Towed-Diver Benthic Characterization Surveys at Maro Reef, NW Hawaiian Islands in 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support NOAA Coral Reef Conservation Program (CRCP) long-term goals for sustainable management and conservation of coral reef ecosystems, towed-diver surveys...

  19. CRED Rapid Ecological Assessment Reef Fish Survey at Swains, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  20. CRED Rapid Ecological Assessment Reef Fish Survey at Farallon de Pajaros, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  1. CRED Rapid Ecological Assessment Reef Fish Survey at Palmyra, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  2. CRED REA Reef Fish Assessment Survey at Saipan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 7 May 2009,...

  3. CRED Rapid Ecological Assessment Reef Fish Survey at Jarvis, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  4. CRED Rapid Ecological Assessment Reef Fish Survey at Rose, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  5. Pacific Reef Assessment and Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structures (ARMS) Deployed at Coral Reef Sites across the U.S. Pacific from 2008-02-06 to 2012-05-18 (NCEI Accession 0162469)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term program for sustainable management and conservation of coral reef ecosystems, from 2008, Autonomous Reef Monitoring Structures (ARMS) have...

  6. CRED Rapid Ecological Assessment Reef Fish Survey at Aguijan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  7. CRED Rapid Ecological Assessment Reef Fish Survey at Oahu, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130818 to 20131031,...

  8. American Samoa: coral reef monitoring interactive map and information layers primarily from 2010 surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This interactive map displays American Samoa data collected by the NOAA Coral Reef Ecosystem Division (CRED) during the Pacific Reef Assessment and Monitoring...

  9. CRED Rapid Ecological Assessment Reef Fish Survey at Pagan, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  10. CRED Rapid Ecological Assessment Reef Fish Survey at Howland, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  11. CRED Rapid Ecological Assessment Reef Fish Survey at Ofu & Olosega, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  12. Community Change within a Caribbean Coral Reef Marine Protected Area following Two Decades of Local Management

    KAUST Repository

    Noble, Mae M.; van Laake, Gregoor; Berumen, Michael L.; Fulton, Christopher J.

    2013-01-01

    and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures

  13. CRED REA Reef Fish Assessment Survey at Palmyra Atoll, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 21 March - 12 April...

  14. CRED REA Reef Fish Assessment Survey at Farallon De Pajaros Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  15. CRED REA Reef Fish Assessment Survey at Tau Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 18 February - 19 March...

  16. CRED REA Invertebrate Quantitative Assessments at Maro Reef, NW Hawaiian Islands, in 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 08 September - 06...

  17. CRED REA Invertebrate Quantitative Assessments at Kingman Reef, Pacific Remote Island Areas, in 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 21 March- 9 April 2004,...

  18. CRED REA Reef Fish Assessment Survey at Ofu And Olosega Islands, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 18 February - 19 March...

  19. CRED REA Reef Fish Assessment Survey at Hawaii Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  20. CRED Rapid Ecological Assessment Reef Fish Survey at Wake, Pacific Remote Island Areas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110310 to 20110402,...

  1. CRED REA Reef Fish Assessment Survey at Asuncion Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  2. CRED REA Reef Fish Assessment Survey at Lanai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  3. CRED Rapid Ecological Assessment Reef Fish Survey at Oahu, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101107 to 20101208,...

  4. CRED Rapid Ecological Assessment Reef Fish Survey at Baker, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  5. CRED Towed-Diver Benthic Characterization Surveys at Maro Reef, NW Hawaiian Islands in 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support NOAA Coral Reef Conservation Program (CRCP) long-term goals for sustainable management and conservation of coral reef ecosystems, towed-diver surveys...

  6. CRED Towed-Diver Benthic Characterization Surveys at Maro Reef, NW Hawaiian Islands in 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support NOAA Coral Reef Conservation Program (CRCP) long-term goals for sustainable management and conservation of coral reef ecosystems, towed-diver surveys...

  7. CRED Rapid Ecological Assessment Reef Fish Survey at Guam, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110606 to 20110617,...

  8. CRED Rapid Ecological Assessment Reef Fish Survey at Rota, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  9. CRED Rapid Ecological Assessment Reef Fish Survey at Rota, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  10. CRED Towed-Diver Benthic Characterization Surveys at Kingman Reef, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support NOAA Coral Reef Conservation Program (CRCP) long-term goals for sustainable management and conservation of coral reef ecosystems, towed-diver surveys...

  11. CRED REA Invertebrate Quantitative Assessments at Maro Reef, NW Hawaiian Islands, in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  12. CRED REA Invertebrate Quantitative Assessments at Maro Reef, NW Hawaiian Islands, in 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 July - 17 August...

  13. CRED REA Invertebrate Quantitative Assessments at Kingman Reef, Pacific Remote Island Areas, in 2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 21 January - 25 March...

  14. CRED REA Invertebrate Quantitative Assessments at Maro Reef, NW Hawaiian Islands, in 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 13 September - 17...

  15. CRED REA Invertebrate Quantitative Assessments at Maro Reef, NW Hawaiian Islands, in 2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 8 September - 7 October...

  16. CRED Rapid Ecological Assessment Reef Fish Survey at Tau, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  17. Creating artificial reefs from decommissioned platforms in the North Sea: review of knowledge and proposed programme of research

    Energy Technology Data Exchange (ETDEWEB)

    Aabel, J.P.; Cripps, S.J.; Jensen, A.C.; Picken, G.

    1997-12-31

    This report relates to the case for research and development work on North Sea artificial reefs. There are potentially many benefits that can be derived from platform reefs, for example as an aid to increased fishing yield for commercial fishermen, a means of enhancing fish stocks and protecting habitat for physical damage. In addition there may be a reduction in decommissioning costs for the oil industry and in negative environmental impacts inherent with land-based decommissioning techniques. Negative impacts could be loss of fishing area and changes in the ecosystem. The report will be focused towards practically applicable results that will aid the decision making process. 129 refs., 13 figs., 18 tabs.

  18. Creating artificial reefs from decommissioned platforms in the North Sea: review of knowledge and proposed programme of research

    Energy Technology Data Exchange (ETDEWEB)

    Aabel, J P; Cripps, S J; Jensen, A C; Picken, G

    1998-12-31

    This report relates to the case for research and development work on North Sea artificial reefs. There are potentially many benefits that can be derived from platform reefs, for example as an aid to increased fishing yield for commercial fishermen, a means of enhancing fish stocks and protecting habitat for physical damage. In addition there may be a reduction in decommissioning costs for the oil industry and in negative environmental impacts inherent with land-based decommissioning techniques. Negative impacts could be loss of fishing area and changes in the ecosystem. The report will be focused towards practically applicable results that will aid the decision making process. 129 refs., 13 figs., 18 tabs.

  19. Valuing Community Benefits of Final Ecosystem Goods and Services: Human Health and Ethnographic Approaches

    Science.gov (United States)

    This report provides a summary of three of our research projects: 1) an evaluation of the quality of scientific evidence associating green spaces with health benefits, along with ensuing research in San Juan, Puerto Rico; 2) a Health Impact Assessment of a Long Island sewering pi...

  20. Benefits of the fire mitigation ecosystem service in the Great Dismal Swamp National Wildlife Refuge, Virginia, USA

    Science.gov (United States)

    Parthum, Bryan M.; Pindilli, Emily J.; Hogan, Dianna

    2017-01-01

     The Great Dismal Swamp (GDS) National Wildlife Refuge delivers multiple ecosystem services, including air quality and human health via fire mitigation. Our analysis estimates benefits of this service through its potential to reduce catastrophic wildfire related impacts on the health of nearby human populations. We used a combination of high-frequency satellite data, ground sensors, and air quality indices to determine periods of public exposure to dense emissions from a wildfire within the GDS. We examined emergency department (ED) visitation in seven Virginia counties during these periods, applied measures of cumulative Relative Risk to derive the effects of wildfire smoke exposure on ED visitation rates, and estimated economic losses using regional Cost of Illness values established within the US Environmental Protection Agency BenMAP framework. Our results estimated the value of one avoided catastrophic wildfire in the refuge to be \\$3.69 million (2015 USD), or \\$306 per hectare of burn. Reducing the frequency or severity of extensive, deep burning peatland wildfire events has additional benefits not included in this estimate, including avoided costs related to fire suppression during a burn, carbon dioxide emissions, impacts to wildlife, and negative outcomes associated with recreation and regional tourism. We suggest the societal value of the public health benefits alone provides a significant incentive for refuge mangers to implement strategies that will reduce the severity of catastrophic wildfires.

  1. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  2. Warm-water coral reefs and climate change.

    Science.gov (United States)

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. Copyright © 2015, American Association for the Advancement of Science.

  3. A role for partially protected areas on coral reefs: Maintaining fish diversity?

    KAUST Repository

    Tyler, Elizabeth; Manica, Andrea; Jiddawi, Narriman S.; Speight, Martin R.

    2011-01-01

    1. Completely banning fishing from coral reefs is now accepted to have significant benefits for marine biodiversity and in many cases, fisheries. However, the benefits of regulating fishing on coral reefs, by restricting the methods used

  4. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Ott, Jörg A.

    2008-01-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world’s most dived (>30,000dives y−1). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined...... to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance...... by the point intercept sampling method in the reef crest zone (3 m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject...

  5. Artificial reefs: “Attraction versus Production”

    Directory of Open Access Journals (Sweden)

    Eduardo Barros Fagundes Netto

    2011-04-01

    Full Text Available The production of fish is the most common reason for the construction and installation of an artificial reef. More recently, environmental concerns and conservation of biological resources have been instrumental to the formulation of new goals of the research. One of the issues to be resolved is the biological function of “attraction vs. production” as a result of the use of artificial reefs. The uncertainty as to the answer to the question whether the artificial reefs will or not benefit the development of fish stocks could be solved if the artificial reefs would be managed as marine protected areas.

  6. Climate Change Adaptation and Mitigation in Ecosystems - Benefits, Barriers and Decision‐Making

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde

    ) -Simulation of decision and reaction patterns in relation to the belief in future climate changes and trajectory of decisions when knowledge about future climate is gradually increased (Paper 4. Simulation of Optimal Decision‐Making under the Impacts of Climate Change) Overall, the PhD thesis concludes...... the uncertainty about the actual benefits of adaptation and mitigation of climate change and complicates the process of deciding how to act. Paper 3 provides a more in‐depth empirical analysis of actual decision‐making, considering rural Nepalese households dependent on agricultural production. Paper 3 finds...... to consider long‐term strategies. This underlines the importance of linking development with the fight against climate change in order to secure increased freedom of action for the world’s poorest, thereby increasing their ability to adapt and make optimal decisions for the future. Because climate change...

  7. Vaal Reefs

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Vaal Reefs Mine, the world's top gold producer with an output last quarter of 19,6 tons of gold, is to expand further with the building of an 120 000t/month run-of-mine mill at the new No 9 Shaft in the south area, linked with a carbon-in-pulp plant

  8. An Indicator Approach to Assessing Benefits of Carbon Sequestration and Other Ecosystem Services

    Science.gov (United States)

    Dale, V. H.; Kline, K. L.; Parish, E. S.

    2017-12-01

    While geoengineering offers one approach to carbon management, another tactic is providing land owners and managers with incentives to more efficiently and consistently increase carbon stocks and storage in soils and above ground. Growing bioenergy crops entails such an option. Landscape design can help identify where different strategies best fit into the larger framework of resource management to achieve desired stakeholder objectives. Our research goal is to develop means to assess management options and identify those that offer the highest degree of sustainability as measured by the provision to society of specific economic, environmental and social services with the least costs. Oak Ridge National Laboratory (ORNL) has worked with the US Department of Energy to develop an approach for assessing progress toward better management to improve sustainability. This approach involves six steps with decisions made at each step. First the scope of the assessment is established based on the particular context and options. Next indicators that pertain to the objective are selected and prioritized. Then, baselines and targets are determined for each indicator. Fourth, indicator values are measured, collected, and evaluated. Once the values are in hand, trends and tradeoffs in the indicator set are analyzed. The final step seeks to define and deploy good practices for the activity. ORNL's proposed checklist of environmental and socioeconomic indicators includes greenhouse gases and soil quality (including carbon) and emphasizes that changes in carbon stocks must be viewed in terms of their effects on other indicators, such as those for water quality and quantity, biodiversity, air quality, and productivity as well as on socioeconomic costs and benefits. The framework developed to select and evaluate indicators and assess progress toward sustainability goals is being encapsulated into a visualization tool. Visualization will inform stakeholders about potential effects of

  9. Monitoring of coral reef ecosystems on the Island of Hawaii from 22 May 1999 to 25 May 1999 through the Quantitative Underwater Ecological Surveying Techniques (QUEST) project (NODC Accession 0000264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In an effort to detect spatial and temporal changes in the structure of the coral reef community, coral coverage and reef fish density and diversity were documented...

  10. Assessing and monitoring cryptic reef diversity of colonizing marine invertebrates across the U.S.-affiliated islands and atolls in the Pacific since 2008 using the Autonomous Reef Monitoring Structure (ARMS) method

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term program for sustainable management and conservation of coral reef ecosystems, from 2008, Autonomous Reef Monitoring Structures (ARMS) have...

  11. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data at Jarvis Island from 2016-05-16 to 2016-05-22 (NCEI Accession 0157594)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surveys were conducted in the course of a reef fish survey cruise conducted by the NOAA Coral Reef Ecosystem Program (CREP) at the NOAA Pacific Islands Fisheries...

  12. Coral reefs as indicators of marine environmental health

    International Nuclear Information System (INIS)

    Kumaraguru, A.K.

    2007-01-01

    Coral reefs are one of the most productive and diverse of all ecosystems on the Earth. Although they occupy less than 0.25 percent of the marine environment, the reefs support more than a quarter of all known fish species. They serve as critical habitats for numerous tropical species including reef fishes of ornamental nature and edible fishes. They protect the shores from storms and wave actions

  13. The Decline of Coral Reefs: a Political Economy Approach

    OpenAIRE

    Samuel, Asumadu-Sarkodie

    2015-01-01

    Coral reefs provide economic services like job, food and tourism. Yet, within the past decades, there has been an overwhelming decline in the vitality of coral reefs and their ecosystem. Scientist have not be able to set the record straight regarding their scientific argument on biodiversity and ecological wealth of natural environment. Therefore, actions to recover coral reefs from destruction have proved futile. This paper will analyze the economical values, economic valuation, socioeconomi...

  14. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maro Reef, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  15. CRED REA Belt Surveys of Coral Population and Disease Assessments at Kingman Reef, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 14-19 April 2010, belt...

  16. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  17. Puako Ecosystem Model Output Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reefs provide a wide range of ecosystem services that are valued differently by different users. Managers are challenged to comprehensively address the full...

  18. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  19. Using virtual reality to estimate aesthetic values of coral reefs

    Science.gov (United States)

    Clifford, Sam; Caley, M. Julian; Pearse, Alan R.; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E.

    2018-01-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems. PMID:29765676

  20. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    Science.gov (United States)

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  1. 77 FR 39724 - U.S. Coral Reef Task Force Public Meeting and Public Comment

    Science.gov (United States)

    2012-07-05

    ...-DS61200000] U.S. Coral Reef Task Force Public Meeting and Public Comment AGENCY: Fish and Wildlife Service... Wildlife Service (Service), announce a public meeting of the U.S. Coral Reef Task Force (USCRTF) and a... strengthen U.S. government actions to better preserve and protect coral reef ecosystems. The Departments of...

  2. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    Science.gov (United States)

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  3. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Project O.R.B (Operation Reef Ball): Creating Artificial Reefs, Educating the Community

    Science.gov (United States)

    Phipps, A.

    2012-04-01

    of this artificial reef. Over 3,000 students have been reached through the educational outreach endeavors of Project O.R.B. This successful STEM project models the benefits of partnerships with universities, local K-12 public schools and community conservation organizations and provides students with authentic learning experiences. Students are able to have a positive impact on their local coral reef environment, their peers and their community through this comprehensive service-learning project.

  5. The Ecological Role of Sharks on Coral Reefs.

    Science.gov (United States)

    Roff, George; Doropoulos, Christopher; Rogers, Alice; Bozec, Yves-Marie; Krueck, Nils C; Aurellado, Eleanor; Priest, Mark; Birrell, Chico; Mumby, Peter J

    2016-05-01

    Sharks are considered the apex predator of coral reefs, but the consequences of their global depletion are uncertain. Here we explore the ecological roles of sharks on coral reefs and, conversely, the importance of reefs for sharks. We find that most reef-associated shark species do not act as apex predators but instead function as mesopredators along with a diverse group of reef fish. While sharks perform important direct and indirect ecological roles, the evidence to support hypothesised shark-driven trophic cascades that benefit corals is weak and equivocal. Coral reefs provide some functional benefits to sharks, but sharks do not appear to favour healthier reef environments. Restoring populations of sharks is important and can yet deliver ecological surprise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The contribution of microbial biotechnology to mitigating coral reef degradation.

    Science.gov (United States)

    Damjanovic, Katarina; Blackall, Linda L; Webster, Nicole S; van Oppen, Madeleine J H

    2017-09-01

    The decline of coral reefs due to anthropogenic disturbances is having devastating impacts on biodiversity and ecosystem services. Here we highlight the potential and challenges of microbial manipulation strategies to enhance coral tolerance to stress and contribute to coral reef restoration and protection. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  8. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    Science.gov (United States)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  9. New perspectives on ecological mechanisms affecting coral recruitment on reefs

    NARCIS (Netherlands)

    Ritson-Williams, R.; Arnold, S.N.; Fogarty, N.D.; Steneck, R.S.; Vermeij, M.J.A.; Paul, V.J.

    2009-01-01

    Coral mortality has increased in recent decades, making coral recruitment more important than ever in sustaining coral reef ecosystems and contributing to their resilience. This review summarizes existing information on ecological factors affecting scleractinian coral recruitment. Successful

  10. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery

    OpenAIRE

    Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki

    2017-01-01

    Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential cont...

  11. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in American Samoa from Water Samples collected since 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  12. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    Science.gov (United States)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  13. Characterization and sources of colored dissolved organic matter in a coral reef ecosystem subject to ultramafic erosion pressure (New Caledonia, Southwest Pacific).

    Science.gov (United States)

    Martias, Chloé; Tedetti, Marc; Lantoine, François; Jamet, Léocadie; Dupouy, Cécile

    2018-03-01

    The eastern lagoon of New Caledonia (NC, Southwest Pacific), listed as a UNESCO World Heritage site, hosts the world's second longest double-barrier coral reef. This lagoon receives river inputs, oceanic water arrivals, and erosion pressure from ultramafic rocks, enriched in nickel (Ni) and cobalt (Co). The aim of this study was to characterize colored dissolved organic matter (CDOM), as well as to determine its main sources and its possible relationships (through the use of Pearson correlation coefficients, r) with biogeochemical parameters, plankton communities and trace metals in the NC eastern lagoon. Water samples were collected in March 2016 along a series of river/lagoon/open-ocean transects. The absorption coefficient at 350nm (a 350 ) revealed the influence of river inputs on the CDOM distribution. The high values of spectral slope (S 275-295 , >0.03m -1 ) and the low values of specific ultraviolet absorbance (SUVA 254 , CDOM in surface waters. The application of parallel factor analysis (PARAFAC) on excitation-emission matrices (EEMs) allowed the identification of four CDOM components: (1) one humic- and one tyrosine-like fluorophores. They had terrestrial origin, exported through rivers and undergoing photo- and bio-degradation in the lagoon. These two fluorophores were linked to manganese (Mn) in southern rivers (r=0.46-0.50, n=21, pCDOM sources in the NC eastern lagoon. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  15. Current status and scope of coral reef research in India: A bio-ecological perspective

    Digital Repository Service at National Institute of Oceanography (India)

    De, K.; Venkataraman, K.; Ingole, B.S.

    and huge reefs India has, and all the benefits this country gets from its reefs; the efforts to manage and conserve appears poor. Review of research suggests that better management coupled with trained marine biologists, modern infrastructure facility...

  16. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    Science.gov (United States)

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation.

    Science.gov (United States)

    Rogers, Alice; Blanchard, Julia L; Newman, Steven P; Dryden, Charlie S; Mumby, Peter J

    2018-02-01

    Refuge availability and fishing alter predator-prey interactions on coral reefs, but our understanding of how they interact to drive food web dynamics, community structure and vulnerability of different trophic groups is unclear. Here, we apply a size-based ecosystem model of coral reefs, parameterized with empirical measures of structural complexity, to predict fish biomass, productivity and community structure in reef ecosystems under a broad range of refuge availability and fishing regimes. In unfished ecosystems, the expected positive correlation between reef structural complexity and biomass emerges, but a non-linear effect of predation refuges is observed for the productivity of predatory fish. Reefs with intermediate complexity have the highest predator productivity, but when refuge availability is high and prey are less available, predator growth rates decrease, with significant implications for fisheries. Specifically, as fishing intensity increases, predators in habitats with high refuge availability exhibit vulnerability to over-exploitation, resulting in communities dominated by herbivores. Our study reveals mechanisms for threshold dynamics in predators living in complex habitats and elucidates how predators can be food-limited when most of their prey are able to hide. We also highlight the importance of nutrient recycling via the detrital pathway, to support high predator biomasses on coral reefs. © 2018 by the Ecological Society of America.

  18. Integrating Ecosystem Engineering and Food Web Ecology: Testing the Effect of Biogenic Reefs on the Food Web of a Soft-Bottom Intertidal Area.

    Science.gov (United States)

    De Smet, Bart; Fournier, Jérôme; De Troch, Marleen; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae). The aggregations are known to have a considerable impact on the physical and biogeochemical characteristics of their environment and subsequently on the abundance and biomass of primary food sources and the macrofaunal (i.e. the macro-, hyper- and epibenthos) community. Therefore, we hypothesise that L. conchilega aggregations affect the structure, stability and isotopic niche of the consumer assemblage of a soft-bottom intertidal food web. Primary food sources and the bentho-pelagic consumer assemblage of a L. conchilega aggregation and a control area were sampled on two soft-bottom intertidal areas along the French coast and analysed for their stable isotopes. Despite the structural impacts of the ecosystem engineer on the associated macrofaunal community, the presence of L. conchilega aggregations only has a minor effect on the food web structure of soft-bottom intertidal areas. The isotopic niche width of the consumer communities of the L. conchilega aggregations and control areas are highly similar, implying that consumer taxa do not shift their diet when feeding in a L. conchilega aggregation. Besides, species packing and hence trophic redundancy were not affected, pointing to an unaltered stability of the food web in the presence of L. conchilega.

  19. The net return from animal activity in agro-ecosystems: trading off benefits from ecosystem services against costs from crop damage [v2; ref status: indexed, http://f1000r.es/3c4

    Directory of Open Access Journals (Sweden)

    Gary W Luck

    2014-04-01

    Full Text Available Animals provide benefits to agriculture through the provision of ecosystem services, but also inflict costs such as damaging crops. These benefits and costs are mostly examined independently, rather than comparing the trade-offs of animal activity in the same system and quantifying the net return from beneficial minus detrimental activities. Here, I examine the net return associated with the activity of seed-eating birds in almond orchards by quantifying the economic costs and benefits of bird consumption of almonds. Pre-harvest, the consumption of harvestable almonds by birds cost growers AUD$57.50 ha-1 when averaged across the entire plantation. Post-harvest, the same bird species provide an ecosystem service by removing mummified nuts from trees that growers otherwise need to remove to reduce threats from fungal infection or insect pest infestations. The value of this ecosystem service ranged from AUD$82.50 ha-1–$332.50 ha-1 based on the replacement costs of mechanical or manual removal of mummified nuts, respectively. Hence, bird consumption of almonds yielded a positive net return of AUD$25–$275 ha-1 averaged across the entire plantation. However, bird activity varied spatially resulting in positive net returns occurring primarily at the edges of crops where activity was higher, compared to negative net returns in crop interiors. Moreover, partial mummy nut removal by birds meant that bird activity may only reduce costs to growers rather than replace these costs completely. Similar cost-benefit trade-offs exist across nature, and quantifying net returns can better inform land management decisions such as when to control pests or promote ecosystem service provision.

  20. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Manikandan, B.; Ravindran, J.; Shrinivaasu, S.; Marimuthu, N.; Paramasivam, K.

    to the reefs (McClanahan et al. 2006). However, majority of the MPAs lack effective enforcement of laws leading to reef damage and over exploitation (Mora et al. 2006). Climate change and Ocean acidification are chronic processes that exert their effects at a... availability for macroalgal attachment and nutrient enrichment will enhance the algal population in the coral ecosystems (McManus and Polsenberg 2004). Algal domination in a coral ecosystem has severe ecological implications including coral bleaching (Hughes...

  1. Impacts of Artificial Reefs and Diving Tourism

    Directory of Open Access Journals (Sweden)

    Sandra Jakšić

    2013-10-01

    Full Text Available Coral reefs are currently endangered throughout the world. One of the main activities responsible for this is scuba-diving. Scuba-diving on coral reefs was not problematic in the begging, but due to popularization of the new sport, more and more tourists desired to participate in the activity. Mass tourism, direct contact of the tourists with the coral reefs and unprofessional behavior underwater has a negative effect on the coral reefs. The conflict between nature preservation and economy benefits related to scuba-diving tourism resulted in the creation of artificial reefs, used both to promote marine life and as tourists attractions, thereby taking the pressure off the natural coral reefs. Ships, vehicles and other large structures can be found on the coastal sea floor in North America, Australia, Japan and Europe. The concept of artificial reefs as a scuba-diving attraction was developed in Florida. The main goal was to promote aquaculture, with the popularization of scuba-diving attractions being a secondary effect. The aim of this paper is to determine the effects of artificial reefs on scuba-diving tourism, while taking into account the questionnaire carried out among 18 divers

  2. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    Science.gov (United States)

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  3. U.S. coral reefs; imperiled national treasures

    Science.gov (United States)

    Field, M.E.; Cochran, S.A.; Evans, K.R.

    2002-01-01

    Coral reefs are home to 25% of all marine species. However, the tiny colonial animals that build these intricate limestone masses are dying at alarming rates. If this trend continues, in 20 years the living corals on many of the world's reefs will be dead and the ecosystems that depend on them severely damaged. As part of the effort to protect our Nation's extensive reefs, U.S. Geological Survey (USGS) scientists are working to better understand the processes that affect the health of these ecologically and economically important ecosystems.

  4. Embracing a world of subtlety and nuance on coral reefs

    Science.gov (United States)

    Mumby, Peter J.

    2017-09-01

    Climate change will homogenise the environment and generate a preponderance of mediocre reefs. Managing seascapes of mediocrity will be challenging because our science is ill prepared to deal with the `shades of grey' of reef health; we tend to study natural processes in the healthiest reefs available. Yet much can be gained by examining the drivers and implications of even subtle changes in reef state. Where strong ecological interactions are discovered, even small changes in abundance can have profound impacts on coral resilience. Indeed, if we are to develop effective early warnings of critical losses of resilience, then monitoring must place greater emphasis on measuring and interpreting changes in reef recovery rates. In terms of mechanism, a more nuanced approach is needed to explore the generality of what might be considered `dogma'. A more nuanced approach to science will serve managers needs well and help minimise the rise of mediocrity in coral reef ecosystems.

  5. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  6. Linking social and ecological systems to sustain coral reef fisheries.

    Science.gov (United States)

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  7. Thermal Consolidation of Dredge Sand for Artificial Reef Formations

    Science.gov (United States)

    Trevino, Alexandro

    Coral Reef ecosystems have degraded over years due to a variety of environmental issues such as ocean acidification. The continuous stress has detrimental effects on coral reef ecosystems that can possibly lead to the loss of the ecosystem. Our research aims to construct a prototype of an artificial reef by consolidating dredge sand from the ship channels of South Texas. Consolidation is achieved through an aluminum polytetrafluoroethylene self-propagating high temperature process that yields a solid formation to mimic the physical properties of coral reef structures. Using thermodynamic calculations, the variation of initial components was determined that reached an adiabatic temperature with a maximum peak of 2000 K. The self-sustaining reaction front was obtained to rigidly consolidate the dredge sand only at composition concentrations exceeding a critical value of 24 wt.% Al, and 3 wt.% PTFE. The combustion synthesis produced a consolidated formation with a hardened and porous structure.

  8. Pacific Reef Assessment and Monitoring Program: Rapid Ecological Assessment Quadrat Surveys of Corals around the Marianas Islands from 2003 to 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pacific Reef Assessment and Monitoring Program (Pacific RAMP), established by the Coral Reef Ecosystem Program (CREP) of the NOAA Pacific Islands Fisheries...

  9. Land and Sea: Linking Ecosystem Services with Local Concerns in Guanica Bay Watershed, Puerto Rico

    Science.gov (United States)

    The United States Coral Reef Task Force—comprised of leaders from EPA and 11 other federal agencies along with select States, Territories, and Commonwealths—was established in 1998 to stem loses and preserve and protect coral reef ecosystems.

  10. The wicked problem of China's disappearing coral reefs.

    Science.gov (United States)

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. © 2012 Society for Conservation Biology.

  11. Re-creating missing population baselines for Pacific reef sharks.

    Science.gov (United States)

    Nadon, Marc O; Baum, Julia K; Williams, Ivor D; McPherson, Jana M; Zgliczynski, Brian J; Richards, Benjamin L; Schroeder, Robert E; Brainard, Russell E

    2012-06-01

    Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas. ©2012 Society for Conservation Biology No claim to original US government works.

  12. Coral reefs and the World Bank.

    Science.gov (United States)

    Hatziolos, M

    1997-01-01

    The World Bank¿s involvement in coral reef conservation is part of a larger effort to promote the sound management of coastal and marine resources. This involves three major thrusts: partnerships, investments, networks and knowledge. As an initial partner and early supporter of the International Coral Reef Initiative (ICRI), the Bank serves as the executive planning committee of ICRI. In partnership with the World Conservation Union and the Great Barrier Reef Marine Park Authority, the Bank promotes the efforts towards the establishment and maintenance of a globally representative system of marine protected areas. In addition, the Bank invested over $120 million in coral reef rehabilitation and protection programs in several countries. Furthermore, the Bank developed a ¿Knowledge Bank¿ that would market ideas and knowledge to its clients along with investment projects. This aimed to put the best global knowledge on environmentally sustainable development in the hands of its staff and clients. During the celebration of 1997, as the International Year of the Reef, the Bank planned to cosponsor an associated event that would highlight the significance of coral reefs and encourage immediate action to halt their degradation to conserve this unique ecosystem.

  13. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  14. The growth of coral reef science in the Gulf: a historical perspective.

    Science.gov (United States)

    Burt, John A

    2013-07-30

    Coral reef science has grown exponentially in recent decades in the Gulf. Analysis of literature from 1950 to 2012 identified 270 publications on coral reefs in the Gulf, half of which were published in just the past decade. This paper summarizes the growth and evolution of coral reef science in the Gulf by examining when, where and how research has been conducted on Gulf reefs, who conducted that research, and what themes and taxa have dominated scientific interest. The results demonstrate that there has been significant growth in our understanding of the valuable coral reefs of the Gulf, but also highlight the fact that we are documenting an increasingly degraded ecosystem. Reef scientists must make a concerted effort to improve dialogue with regional reef management and decision-makers if we are to stem the tide of decline in coral reefs in the Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems

    Science.gov (United States)

    McNally, Catherine G.; Uchida, Emi; Gold, Arthur J.

    2011-01-01

    Protected areas are used to sustain biodiversity and ecosystem services. However, protected areas can create tradeoffs spatially and temporally among ecosystem services, which can affect the welfare of dependent local communities. This study examines the effect of a protected area on the tradeoff between two extractive ecosystem services from mangrove forests: cutting mangroves (fuelwood) and harvesting the shrimp and fish that thrive if mangroves are not cut. We demonstrate the effect in the context of Saadani National Park (SANAPA) in Tanzania, where enforcement of prohibition of mangrove harvesting was strengthened to preserve biodiversity. Remote sensing data of mangrove cover over time are integrated with georeferenced household survey data in an econometric framework to identify the causal effect of mangrove protection on income components directly linked to mangrove ecosystem services. Our findings suggest that many households experienced an immediate loss in the consumption of mangrove firewood, with the loss most prevalent in richer households. However, all wealth classes appear to benefit from long-term sustainability gains in shrimping and fishing that result from mangrove protection. On average, we find that a 10% increase in the mangrove cover within SANAPA boundaries in a 5-km2 radius of the subvillage increases shrimping income by approximately twofold. The creation of SANAPA shifted the future trajectory of the area from one in which mangroves were experiencing uncontrolled cutting to one in which mangrove conservation is providing gains in income for the local villages as a result of the preservation of nursery habitat and biodiversity. PMID:21873182

  16. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems.

    Science.gov (United States)

    McNally, Catherine G; Uchida, Emi; Gold, Arthur J

    2011-08-23

    Protected areas are used to sustain biodiversity and ecosystem services. However, protected areas can create tradeoffs spatially and temporally among ecosystem services, which can affect the welfare of dependent local communities. This study examines the effect of a protected area on the tradeoff between two extractive ecosystem services from mangrove forests: cutting mangroves (fuelwood) and harvesting the shrimp and fish that thrive if mangroves are not cut. We demonstrate the effect in the context of Saadani National Park (SANAPA) in Tanzania, where enforcement of prohibition of mangrove harvesting was strengthened to preserve biodiversity. Remote sensing data of mangrove cover over time are integrated with georeferenced household survey data in an econometric framework to identify the causal effect of mangrove protection on income components directly linked to mangrove ecosystem services. Our findings suggest that many households experienced an immediate loss in the consumption of mangrove firewood, with the loss most prevalent in richer households. However, all wealth classes appear to benefit from long-term sustainability gains in shrimping and fishing that result from mangrove protection. On average, we find that a 10% increase in the mangrove cover within SANAPA boundaries in a 5-km(2) radius of the subvillage increases shrimping income by approximately twofold. The creation of SANAPA shifted the future trajectory of the area from one in which mangroves were experiencing uncontrolled cutting to one in which mangrove conservation is providing gains in income for the local villages as a result of the preservation of nursery habitat and biodiversity.

  17. Connectivity and systemic resilience of the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Karlo Hock

    2017-11-01

    Full Text Available Australia's iconic Great Barrier Reef (GBR continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS, losing much of its coral cover in the process. This raises the question of the ecosystem's systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1 are highly connected by ocean currents to the wider reef network, (2 have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3 have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these 'robust source reefs', which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change.

  18. Conservation genetics and the resilience of reef-building corals.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D

    2006-11-01

    Coral reefs have suffered long-term decline due to a range of anthropogenic disturbances and are now also under threat from climate change. For appropriate management of these vulnerable and valuable ecosystems it is important to understand the factors and processes that determine their resilience and that of the organisms inhabiting them, as well as those that have led to existing patterns of coral reef biodiversity. The scleractinian (stony) corals deposit the structural framework that supports and promotes the maintenance of biological diversity and complexity of coral reefs, and as such, are major components of these ecosystems. The success of reef-building corals is related to their obligate symbiotic association with dinoflagellates of the genus Symbiodinium. These one-celled algal symbionts (zooxanthellae) live in the endodermal tissues of their coral host, provide most of the host's energy budget and promote rapid calcification. Furthermore, zooxanthellae are the main primary producers on coral reefs due to the oligotrophic nature of the surrounding waters. In this review paper, we summarize and critically evaluate studies that have employed genetics and/or molecular biology in examining questions relating to the evolution and ecology of reef-building corals and their algal endosymbionts, and that bear relevance to coral reef conservation. We discuss how these studies can focus future efforts, and examine how these approaches enhance our understanding of the resilience of reef-building corals.

  19. Shifting paradigms in restoration of the world's coral reefs.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D; Blackall, Linda L; Cantin, Neal; Chakravarti, Leela J; Chan, Wing Y; Cormick, Craig; Crean, Angela; Damjanovic, Katarina; Epstein, Hannah; Harrison, Peter L; Jones, Thomas A; Miller, Margaret; Pears, Rachel J; Peplow, Lesa M; Raftos, David A; Schaffelke, Britta; Stewart, Kristen; Torda, Gergely; Wachenfeld, David; Weeks, Andrew R; Putnam, Hollie M

    2017-09-01

    Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine-protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014-2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs. © 2017 John Wiley & Sons Ltd.

  20. Lessons from native spruce forests in Alaska: managing Sitka spruce plantations worldwide to benefit biodiversity and ecosystem services

    Science.gov (United States)

    Robert L. Deal; Paul Hennon; Richard O' Hanlon; David D' Amore

    2014-01-01

    There is increasing interest worldwide in managing forests to maintain or improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An important goal of forest management is to increase stand diversity, provide wildlife habitat and improve forest species diversity. We synthesize results from natural spruce forests in...

  1. Biological impacts of oil pollution: coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Knap, A H [Bermuda Biological Station, Ferry Reach (Bermuda)

    1992-01-01

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals. This report summarises and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (author)

  2. Effects of macroalgae, with emphasis on Sargassum spp., on coral reef recruitment processes in Martinique (French West Indies)

    OpenAIRE

    Thabard, Marie

    2012-01-01

    Many coral reef ecosystems have undergone profound ecological changes over the past decades leading sometimes to a shift from coral to macroalgal-dominated areas. In Martinique (Caribbean region), the proliferation of macroalgae is an important phenomenon. Coral reef resilience, involving reef building species recruitment, might be modified by macroalgal presence. This work aimed at understanding reef recruitment processes in areas dominated either by macroalgae, coral or intermediate, based ...

  3. Northwest Hawaiian Islands Coral Reef Ecosystem Division Reef Fish Biomass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents island-scale mean and Standard Error of biomass for 4 trophic groups using all data from North West Hawaiian Islands gathered using NOAA's...

  4. Global warming transforms coral reef assemblages.

    Science.gov (United States)

    Hughes, Terry P; Kerry, James T; Baird, Andrew H; Connolly, Sean R; Dietzel, Andreas; Eakin, C Mark; Heron, Scott F; Hoey, Andrew S; Hoogenboom, Mia O; Liu, Gang; McWilliam, Michael J; Pears, Rachel J; Pratchett, Morgan S; Skirving, William J; Stella, Jessica S; Torda, Gergely

    2018-04-01

    Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.

  5. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Science.gov (United States)

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  6. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Directory of Open Access Journals (Sweden)

    Ivan Nagelkerken

    Full Text Available No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas for small nursery fish (≤ 25 cm total length. For large-bodied individuals of nursery species (>25 cm total length, an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass than from proximity to nurseries (139% higher. The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  7. Feedbacks Between Wave Energy And Declining Coral Reef Structure: Implications For Coastal Morphodynamics

    Science.gov (United States)

    Grady, A. E.; Jenkins, C. J.; Moore, L. J.; Potts, D. C.; Burgess, P. M.; Storlazzi, C. D.; Elias, E.; Reidenbach, M. A.

    2013-12-01

    The incident wave energy dissipated by the structural complexity and bottom roughness of coral reef ecosystems, and the carbonate sediment produced by framework-building corals, provide natural shoreline protection and nourishment, respectively. Globally, coral reef ecosystems are in decline as a result of ocean warming and acidification, which is exacerbated by chronic regional stressors such as pollution and disease. As a consequence of declining reef health, many reef ecosystems are experiencing reduced coral cover and shifts to dominance by macroalgae, resulting in a loss of rugosity and thus hydrodynamic roughness. As coral reef architecture is compromised and carbonate skeletons are eroded, wave energy dissipation and sediment transport patterns--along with the carbonate sediment budget of the coastal environment--may be altered. Using a Delft3D numerical model of the south-central Molokai, Hawaii, fringing reef, we simulate the effects of changing reef states on wave energy and sediment transport. To determine the temporally-varying effects of biotic and abiotic stressors such as storms and bleaching on the reef structure and carbonate production, we couple Delft3D with CarboLOT, a model that simulates growth and competition of carbonate-producing organisms. CarboLOT is driven by the Lotka-Volterra population ecology equations and niche suitability principles, and accesses the CarboKB database for region-specific, carbonate-producing species information on growth rates, reproduction patterns, habitat suitability, as well as organism geometries. Simulations assess how changing reef states--which alter carbonate sediment production and reef morphology and thus hydrodynamic roughness--impact wave attenuation and sediment transport gradients along reef-fronted beaches. Initial results suggest that along fringing reefs having characteristics similar to the Molokai fringing reef, projected sea level rise will likely outpace coral reef accretion, and the increased

  8. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    Science.gov (United States)

    Kuffner, Ilsa B.; Toth, Lauren T.

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  9. “Coral Dominance”: A Dangerous Ecosystem Misnomer?

    Directory of Open Access Journals (Sweden)

    Peter S. Vroom

    2011-01-01

    Full Text Available Over 100 years ago, before threats such as global climate change and ocean acidification were issues engrossing marine scientists, numerous tropical reef biologists began expressing concern that too much emphasis was being placed on coral dominance in reef systems. These researchers believed that the scientific community was beginning to lose sight of the overall mix of calcifying organisms necessary for the healthy function of reef ecosystems and demonstrated that some reefs were naturally coral dominated with corals being the main organisms responsible for reef accretion, yet other healthy reef ecosystems were found to rely almost entirely on calcified algae and foraminifera for calcium carbonate accumulation. Despite these historical cautionary messages, many agencies today have inherited a coral-centric approach to reef management, likely to the detriment of reef ecosystems worldwide. For example, recent research has shown that crustose coralline algae, a group of plants essential for building and cementing reef systems, are in greater danger of exhibiting decreased calcification rates and increased solubility than corals in warmer and more acidic ocean environments. A shift from coral-centric views to broader ecosystem views is imperative in order to protect endangered reef systems worldwide.

  10. Global change and the decline of coral reefs

    OpenAIRE

    Strasser, A.

    1999-01-01

    Ever since coral reefs exist, changing environmental conditions have periodically led to their decline. However, within the perspective of geological time-spans, corals have always managed to re-install themselves. Today, human activity has enhanced stress factors and added new ones that cause a rapid and (on the human time-scale) irreversible decline of many reef ecosystems. The reasons for the disturbance of these complex communities are multiple, but global warming is a k...

  11. Designing Climate-Resilient Marine Protected Area Networks by Combining Remotely Sensed Coral Reef Habitat with Coastal Multi-Use Maps

    Directory of Open Access Journals (Sweden)

    Joseph M. Maina

    2015-12-01

    Full Text Available Decision making for the conservation and management of coral reef biodiversity requires an understanding of spatial variability and distribution of reef habitat types. Despite the existence of very high-resolution remote sensing technology for nearly two decades, comprehensive assessment of coral reef habitats at national to regional spatial scales and at very high spatial resolution is still scarce. Here, we develop benthic habitat maps at a sub-national scale by analyzing large multispectral QuickBird imagery dataset covering ~686 km2 of the main shallow coral fringing reef along the southern border with Tanzania (4.68°S, 39.18°E to the reef end at Malindi, Kenya (3.2°S, 40.1°E. Mapping was conducted with a user approach constrained by ground-truth data, with detailed transect lines from the shore to the fore reef. First, maps were used to evaluate the present management system’s effectiveness at representing habitat diversity. Then, we developed three spatial prioritization scenarios based on differing objectives: (i minimize lost fishing opportunity; (ii redistribute fisheries away from currently overfished reefs; and (iii minimize resource use conflicts. We further constrained the priority area in each prioritization selection scenario based on optionally protecting the least or the most climate exposed locations using a model of exposure to climate stress. We discovered that spatial priorities were very different based on the different objectives and on whether the aim was to protect the least or most climate-exposed habitats. Our analyses provide a spatially explicit foundation for large-scale conservation and management strategies that can account for ecosystem service benefits.

  12. Ecosystem function and the net benefit of services provided by three land-use types under variable management in northwestern Virginia

    Science.gov (United States)

    Huelsman, K. S.; Epstein, H. E.

    2017-12-01

    The concept of Ecosystem Services (ES) has become more interdisciplinary and influential in policy decision-making, but there are two major shortcomings in recent ES conversations: the resource inputs required by highly managed systems in order to provide material goods are not widely considered, and the distinction between ecosystem function and service is not always made. Supporting and regulating ES were examined for three land-use types with variable human management within the same mesoclimate: farmland, native prairie, and non-native early successional field. In situ soil moisture readings and soil nitrogen (N) transformation incubations, biodiversity surveys, vegetation harvesting, and soil sampling in each land-use type were used to determine the following ES: habitat, productivity, soil fertility, nutrient cycling, and water retention. If the provision of a particular ES required human inputs or interference, its overall value was reduced by the environmental cost of management. Non-native early successional field is not valued for the provision of any particular ES, as native prairie and farmland are, but it provides supporting and regulating ES without the requirement of human intervention, making it valuable in different ways. Likewise, any ecosystem functions with negative ecological side effects were considered ecosystem disservices and reduced the overall value of ES provided by the system. For example, the function of net nitrogen mineralization, generally defined as a service, is a disservice under N-saturated conditions, as additional N could be lost via leaching or gaseous forms. This research is valuable in the context of the current trend of increasing farmland abandonment and land use conversions. By considering the cost of human management for the provision of certain ES, as well as potential disservices associated with function, the overall net benefits of these three land-use types can be compared to improve land-use decision-making.

  13. Linking habitat mosaics and connectivity in a coral reef seascape.

    Science.gov (United States)

    McMahon, Kelton W; Berumen, Michael L; Thorrold, Simon R

    2012-09-18

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  14. Linking habitat mosaics and connectivity in a coral reef seascape

    KAUST Repository

    McMahon, Kelton

    2012-09-04

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape con figuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  15. Linking habitat mosaics and connectivity in a coral reef seascape

    KAUST Repository

    McMahon, Kelton; Berumen, Michael L.; Thorrold, Simon R.

    2012-01-01

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape con figuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  16. Dredging in the Spratly Islands: Gaining Land but Losing Reefs.

    Science.gov (United States)

    Mora, Camilo; Caldwell, Iain R; Birkeland, Charles; McManus, John W

    2016-03-01

    Coral reefs on remote islands and atolls are less exposed to direct human stressors but are becoming increasingly vulnerable because of their development for geopolitical and military purposes. Here we document dredging and filling activities by countries in the South China Sea, where building new islands and channels on atolls is leading to considerable losses of, and perhaps irreversible damages to, unique coral reef ecosystems. Preventing similar damage across other reefs in the region necessitates the urgent development of cooperative management of disputed territories in the South China Sea. We suggest using the Antarctic Treaty as a positive precedent for such international cooperation.

  17. Hyperspectral remote sensing of wild oyster reefs

    Science.gov (United States)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  18. National Coral Reef Monitoring Program: Assessment of coral reef benthic communities in Puerto Rico from 2014-05-19 to 2014-12-03 (NCEI Accession 0151729)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic data collection for the National Coral Reef Ecosystem Monitoring Program (NCRMP) consists of two survey types: the Line Point-Intercept (LPI) method and the...

  19. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of the Mariana Archipelago in 2014 (NCEI Accession 0157596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data provided in this data set were collected as part of the NOAA Pacific Islands Fisheries Science Center (PIFSC), Coral Reef Ecosystem Program (CREP) led NCRMP...

  20. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Northwestern Hawaiian Islands from Water Samples collected in 2015 (NCEI Accession 0160330)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  1. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Hawaiian Archipelago from Water Samples collected since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  2. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Mariana Archipelago from Water Samples collected in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  3. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Pacific Remote Island Areas from Water Samples collected in 2015 (NCEI Accession 0159169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  4. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Pacific Remote Island Areas from Water Samples collected since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  5. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    Science.gov (United States)

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  6. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Science.gov (United States)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  7. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    Science.gov (United States)

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  8. NOAA's National Coral Reef Monitoring Program (NCRMP) Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reefs provide nearly $30 billion in net benefits in goods and services to world economies each year, including tourism, fisheries, and coastal protection, and...

  9. Virus-host interactions and their roles in coral reef health and disease.

    Science.gov (United States)

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  10. Spatial distribution of epibenthic molluscs on a sandstone reef in the Northeast of Brazil

    Directory of Open Access Journals (Sweden)

    AS. Martinez

    Full Text Available The present study investigated the distribution and abundance of epibenthic molluscs and their feeding habits associated to substrate features (coverage and rugosity in a sandstone reef system in the Northeast of Brazil. Rugosity, low coral cover and high coverage of zoanthids and fleshy alga were the variables that influenced a low richness and high abundance of a few molluscan species in the reef habitat. The most abundant species were generalist carnivores, probably associated to a lesser offer and variability of resources in this type of reef system, when compared to the coral reefs. The results found in this study could reflect a normal characteristic of the molluscan community distribution in sandstone reefs, with low coral cover, or could indicate a degradation state of this habitat if it is compared to coral reefs, once that the significantly high coverage of fleshy alga has been recognized as a negative indicator of reef ecosystems health.

  11. Spatial distribution of epibenthic molluscs on a sandstone reef in the Northeast of Brazil.

    Science.gov (United States)

    Martinez, A S; Mendes, L F; Leite, T S

    2012-05-01

    The present study investigated the distribution and abundance of epibenthic molluscs and their feeding habits associated to substrate features (coverage and rugosity) in a sandstone reef system in the Northeast of Brazil. Rugosity, low coral cover and high coverage of zoanthids and fleshy alga were the variables that influenced a low richness and high abundance of a few molluscan species in the reef habitat. The most abundant species were generalist carnivores, probably associated to a lesser offer and variability of resources in this type of reef system, when compared to the coral reefs. The results found in this study could reflect a normal characteristic of the molluscan community distribution in sandstone reefs, with low coral cover, or could indicate a degradation state of this habitat if it is compared to coral reefs, once that the significantly high coverage of fleshy alga has been recognized as a negative indicator of reef ecosystems health.

  12. Biomimetric sentinel reef structures for optical sensing and communications

    Science.gov (United States)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  13. Influence of landscape structure on reef fish assemblages

    Science.gov (United States)

    Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.

    2008-01-01

    Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.

  14. Pacific Reef Assessment and Monitoring Program Rapid Ecological Assessment Quadrat Surveys of Corals around the Marianas Islands from 2003-08-22 to 2007-06-08 (NCEI Accession 0129066)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pacific Reef Assessment and Monitoring Program (Pacific RAMP), established by the Coral Reef Ecosystem Division of the NOAA Pacific Islands Fisheries Science...

  15. Benthic Community Characterization on Shallow (<30m) Hardbottom Shelf Habitats in St. Croix, USVI. A preliminary field survey to assess operational and logistical approaches to implement the National Coral Reef Monitoring Program (NCRMP) in the USVI. (NODC Accession 0125237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish populations are a conspicuous and essential component of USVI coral reef ecosystems. Yet despite their importance, striking population and community level...

  16. Benthic Community Characterization on Shallow (less than 30m) Hardbottom Shelf Habitats in St. Croix, USVI. A preliminary field survey to assess operational and logistical approaches to implement the National Coral Reef Monitoring Program (NCRMP) in the USVI.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish populations are a conspicuous and essential component of USVI coral reef ecosystems. Yet despite their importance, striking population and community level...

  17. Fish Community Characterization on Shallow (less than 30m) Hardbottom Shelf Habitats in St. Croix, USVI. A preliminary field survey to assess operational and logistical approaches to implement the National Coral Reef Monitoring Program (NCRMP) in the USVI.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish populations are a conspicuous and essential component of USVI coral reef ecosystems. Yet despite their importance, striking population and community level...

  18. Fish Community Characterization on Shallow (<30m) Hardbottom Shelf Habitats in St. Croix, USVI. A preliminary field survey to assess operational and logistical approaches to implement the National Coral Reef Monitoring Program (NCRMP) in the USVI. (NODC Accession 0125237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish populations are a conspicuous and essential component of USVI coral reef ecosystems. Yet despite their importance, striking population and community level...

  19. The ecology of intertidal oyster reefs of the South Atlantic Coast: A community profile

    Science.gov (United States)

    Bahr, Leonard M.; Lanier, William P.

    1981-01-01

    The functional role of the intertidal oyster reef community in the southeastern Atlantic coastal zone is described. This description is based on a compilation of published data, as well as some unpublished information presented as hypotheses. The profile is organized in a hierarchical manner, such that relevant details of reef oyster biology (autecology) are presented, followed by a description of the reef community level of organization. Then the reef community is described as a subsystem of the coastal marsh-ecosystem (synecoloqy). This information is also synthesized in a series of nested conceptual models of oyster reefs at the regional level, the drainage basin level, and the individual reef level. The final chapter includes a summary overview and a section on management implications and guidelines. Intertidal oyster reefs are relatively persistent features of the salt marsh estuarine ecosystem in the southeastern Atlantic coastal zone. The average areal extent of the oyster reef subsystem in this larger ecosystem is relatively small (about 0.05%). This proportion does not reflect, however, the functional importance of the reef subsystem in stablizing the marsh, providing food for estuarine consumers, mineralizing organic matter, and providing firm substrates in this otherwise soft environment.

  20. Coral diseases and their research in Colombian reefs

    International Nuclear Information System (INIS)

    Gil A, Diego L; Navas C, Raul; RodrIguez, Alberto; Reyes, Maria C

    2009-01-01

    Coral reefs are one of the most beautiful and important ecosystems in the planet. These ecosystems have existed for over 200 million years and have survived extreme episodes such as glaciation and mass extinctions during their history. Nonetheless, during the last three decades, these ecosystems have registered sudden and dramatic changes that, according to some researchers, endanger their survival and persistence. One of the major problems coral reefs are facing nowadays is the outbreak of diseases that affect corals, which constitute the basic unit of this ecosystem. There is no consensus regarding whether these disease outbreaks are recent episodes; but what seems to be true is that some of these diseases have favored unprecedented changes in coral reefs. Coral reefs in Colombia have also been affected by disease events, and since the 1980, several coral diseases have been observed and studied, and even one of them was first described in Colombian reefs. This work presents a compendium of the main coral diseases registered around the world and is meant to serve as a guide for new studies in this topic. Similarly, a summary of coral disease research carried out in Colombia is presented as well as a discussion on current perspectives for the study of this field in the country.

  1. Human Dimensions of Coral Reef Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    John N. Kittinger

    2012-12-01

    Full Text Available Coral reefs are among the most diverse ecosystems on the planet but are declining because of human activities. Despite general recognition of the human role in the plight of coral reefs, the vast majority of research focuses on the ecological rather than the human dimensions of reef ecosystems, limiting our understanding of social relationships with these environments as well as potential solutions for reef recovery. General frameworks for social-ecological systems (SESs have been advanced, but system-specific approaches are needed to develop a more nuanced view of human-environmental interactions for specific contexts and resource systems, and at specific scales. We synthesize existing concepts related to SESs and present a human dimensions framework that explores the linkages between social system structural traits, human activities, ecosystem services, and human well-being in coral reef SESs. Key features of the framework include social-ecological reciprocity, proximate and underlying dimensions, and the directionality of key relationships and feedback loops. Such frameworks are needed if human dimensions research is to be more fully integrated into studies of ecosystem change and the sustainability of linked SESs.

  2. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    Science.gov (United States)

    Velásquez, Johanna; Sánchez, Juan A

    2015-01-01

    What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity

  3. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Johanna Velásquez

    Full Text Available What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs and oceanic (i.e., far off the continental shelf, usually on volcanic substratum; whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown.Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches.Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks. Additionally, atolls and barrier reefs had the highest species diversity (Shannon index whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape.There was strong octocoral community structure with opposite

  4. Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean

    Science.gov (United States)

    A. E. Lugo; C. S. Rogers; S. W Nixon

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...

  5. Surviving in a marine desert: The sponge loop retains resources within coral reefs

    NARCIS (Netherlands)

    de Goeij, J.M.; van Oevelen, D.; Vermeij, M.J.A.; Osinga , R.; Middelburg, J.J.; de Goeij, A.F.P.M.; Admiraal, W.

    2013-01-01

    Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is

  6. Surviving in a marine desert: the sponge loop retains resources within coral reefs

    NARCIS (Netherlands)

    de Goei, J.M.; van Oevelen, D.; Vermeij, M.J.A.; Osinga, R.; Middelburg, J.J.; de Goei, A.F.P.M.; Admiraal, W.

    2013-01-01

    Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is

  7. Developing a Biological Condition Gradient for the Protection of Puerto Rico's Coral Reefs

    Science.gov (United States)

    We introduce the application of the Biological Condition Gradient (BCG) to coral reefs: a conceptual model that describes how biological attributes of coral reef ecosystems might change along a gradient of increasing anthropogenic stress. Under authority of the Clean Water Act, t...

  8. A review of Computational Intelligence techniques in coral reef-related applications

    NARCIS (Netherlands)

    Salcedo-Sanz, S.; Cuadra, L.; Vermeij, M.J.A.

    Studies on coral reefs increasingly combine aspects of science and technology to understand the complex dynamics and processes that shape these benthic ecosystems. Recently, the use of advanced computational algorithms has entered coral reef science as new powerful tools that help solve complex

  9. Surviving in a Marine Desert: The Sponge Loop Retains Resources Within Coral Reefs

    NARCIS (Netherlands)

    de Goeij, J.M.; van Oevelen, D.; Vermeij, M.J.A.; Osinga, R.; Middelburg, J.J.; de Goeij, A.F.P.M.; Admiraal, W.

    2013-01-01

    Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is

  10. Rehabilitating mangrove ecosystem services: A case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines.

    Science.gov (United States)

    Duncan, Clare; Primavera, Jurgenne H; Pettorelli, Nathalie; Thompson, Julian R; Loma, Rona Joy A; Koldewey, Heather J

    2016-08-30

    Mangroves provide vital climate change mitigation and adaptation (CCMA) ecosystem services (ES), yet have suffered extensive tropics-wide declines. To mitigate losses, rehabilitation is high on the conservation agenda. However, the relative functionality and ES delivery of rehabilitated mangroves in different intertidal locations is rarely assessed. In a case study from Panay Island, Philippines, using field- and satellite-derived methods, we assess carbon stocks and coastal protection potential of rehabilitated low-intertidal seafront and mid- to upper-intertidal abandoned (leased) fishpond areas, against reference natural mangroves. Due to large sizes and appropriate site conditions, targeted abandoned fishpond reversion to former mangrove was found to be favourable for enhancing CCMA in the coastal zone. In a municipality-specific case study, 96.7% of abandoned fishponds with high potential for effective greenbelt rehabilitation had favourable tenure status for reversion. These findings have implications for coastal zone management in Asia in the face of climate change. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Coastal protection by coral reefs: a framework for spatial assessment and economic valuation

    NARCIS (Netherlands)

    Zanten, B.T.; van Beukering, P.J.H.; Wagtendonk, A.J.

    2014-01-01

    Coral reefs are highly productive ecosystems that provide various valuable ecosystem services. The worldwide decline in coral cover and the expected increase of hurricane frequencies and sea level rise have raised the attention to one ecosystem service in particular. This is the coastal protection

  12. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  13. Benthic images collected at coral reef sites in Timor-Leste from 2012-2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photographs of the seafloor were collected during benthic photo-quadrat surveys conducted by the NOAA Coral Reef Ecosystem Program (CREP) in hard bottom shallow...

  14. NOAA's Coral Reef Conservation Program: 2016 Projects Monitoring the Effects of Thermal Stress on Coral Bleaching

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate change impacts have been identified as one of the greatest global threats to coral reef ecosystems. As temperature rise, mass bleaching, and infectious...

  15. Benthic images collected at coral reef sites in Batangas, Philippines in 2012 and 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photographs of the seafloor were collected during benthic photo-quadrat surveys conducted by the NOAA Coral Reef Ecosystem Program (CREP) in 2012 and 2015 along...

  16. Coral reef remote sensing a guide for mapping, monitoring and management

    CERN Document Server

    Goodman, James A; Phinn, Stuart R

    2013-01-01

    This book offers a multi-level examination of remote-sensing technologies for mapping and monitoring coral reef ecosystems, ranging from satellite and airborne imagery to ship-based observation. Includes examples of practical applications of the technologies.

  17. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  18. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  19. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  20. Reproductive plasticity and landscape heterogeneity benefit a ground-nesting bird in a fire-prone ecosystem.

    Science.gov (United States)

    Carroll, J Matthew; Hovick, Torre J; Davis, Craig A; Elmore, Robert Dwayne; Fuhlendorf, Samuel D

    2017-10-01

    Disturbance is critical for the conservation of rangeland ecosystems worldwide and many of these systems are fire dependent. Although it is well established that restoring fire as an ecological process can lead to increased biodiversity in grasslands and shrublands, the underlying mechanisms driving community patterns are poorly understood for fauna in fire-prone landscapes. Much of this uncertainty stems from the paucity of studies that examine the effects of fire at scales relevant to organism life histories. We assessed the response of a non-migratory ground-dwelling bird to disturbance (i.e., prescribed fire) and environmental stochasticity over the course of a 4-yr period, which spanned years of historic drought and record rainfall. Specifically, we investigated the nesting ecology of Northern Bobwhite (Colinus virginianus; hereafter Bobwhite) to illuminate possible avenues by which individuals respond to dynamic landscape patterns during a critical reproductive stage (i.e., nesting) in a mixed-grass shrubland in western Oklahoma, USA. We found that Bobwhites exhibited extreme plasticity in nest substrate use among time since fire categories (TSF) and subsequently maintained high nest survival (e.g., 57-70%). Bobwhites were opportunistic in nest substrate use among TSF categories (i.e., 72% of nest sites in shrubs in 0-12 months post fire compared to 71% in herbaceous vegetation in >36 months post fire), yet nesting decisions were first filtered by similar structural components (i.e., vertical and horizontal cover) within the vicinity of nest sites regardless of TSF category. Despite being a non-migratory and comparatively less mobile ground-nesting bird species, Bobwhites adjusted to dynamic vegetation mosaics on a fire-prone landscape under stochastic climatic conditions that culminated in stable and high nest survival. Broadly, our findings provide a unique depiction of organism response strategies to fire at scales relevant to a critical life-stage, a

  1. The structure and composition of Holocene coral reefs in the Middle Florida Keys

    Science.gov (United States)

    Toth, Lauren T.; Stathakopoulos, Anastasios; Kuffner, Ilsa B.

    2016-07-21

    The Florida Keys reef tract (FKRT) is the largest coral-reef ecosystem in the continental United States. The modern FKRT extends for 362 kilometers along the coast of South Florida from Dry Tortugas National Park in the southwest, through the Florida Keys National Marine Sanctuary (FKNMS), to Fowey Rocks reef in Biscayne National Park in the northeast. Most reefs along the FKRT are sheltered by the exposed islands of the Florida Keys; however, large channels are located between the islands of the Middle Keys. These openings allow for tidal transport of water from Florida Bay onto reefs in the area. The characteristics of the water masses coming from Florida Bay, which can experience broad swings in temperature, salinity, nutrients, and turbidity over short periods of time, are generally unfavorable or “inimical” to coral growth and reef development.Although reef habitats are ubiquitous throughout most of the Upper and Lower Keys, relatively few modern reefs exist in the Middle Keys most likely because of the impacts of inimical waters from Florida Bay. The reefs that are present in the Middle Keys generally are poorly developed compared with reefs elsewhere in the region. For example, Acropora palmata has been the dominant coral on shallow-water reefs in the Caribbean over the last 1.5 million years until populations of the coral declined throughout the region in recent decades. Although A. palmata was historically abundant in the Florida Keys, it was conspicuously absent from reefs in the Middle Keys. Instead, contemporary reefs in the Middle Keys have been dominated by occasional massive (that is, boulder or head) corals and, more often, small, non-reef-building corals.Holocene reef cores have been collected from many locations along the FKRT; however, despite the potential importance of the history of reefs in the Middle Florida Keys to our understanding of the environmental controls on reef development throughout the FKRT, there are currently no published

  2. DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

    Directory of Open Access Journals (Sweden)

    Isa Nagib edrus

    2017-01-01

    Full Text Available Infrastructure development in the particular sites of  Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands.  Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resiliences naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controling algae growth to recolonize coral juveniles. The  aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual cencus. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reed based on Obura and Grimsditch (2009 techniques. The results succesfully identified several fish functional groups such as harbivores (21 species, carnivores (13 species and fish indicator (5 species occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resiliences. Resilience indices ranged from 1 (low level to 3 (moderate level and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

  3. Estimating the footprint of pollution on coral reefs with models of species turnover.

    Science.gov (United States)

    Brown, Christopher J; Hamilton, Richard J

    2018-01-15

    Ecological communities typically change along gradients of human impact, although it is difficult to estimate the footprint of impacts for diffuse threats such as pollution. We developed a joint model (i.e., one that includes multiple species and their interactions with each other and environmental covariates) of benthic habitats on lagoonal coral reefs and used it to infer change in benthic composition along a gradient of distance from logging operations. The model estimated both changes in abundances of benthic groups and their compositional turnover, a type of beta diversity. We used the model to predict the footprint of turbidity impacts from past and recent logging. Benthic communities far from logging were dominated by branching corals, whereas communities close to logging had higher cover of dead coral, massive corals, and soft sediment. Recent impacts were predicted to be small relative to the extensive impacts of past logging because recent logging has occurred far from lagoonal reefs. Our model can be used more generally to estimate the footprint of human impacts on ecosystems and evaluate the benefits of conservation actions for ecosystems. © 2018 Society for Conservation Biology.

  4. Microbial contributions to the persistence of coral reefs.

    Science.gov (United States)

    Webster, Nicole S; Reusch, Thorsten B H

    2017-10-01

    On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems.

  5. The diversity of coral reefs: what are we missing?

    Directory of Open Access Journals (Sweden)

    Laetitia Plaisance

    Full Text Available Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m(2. The high prevalence of rare species (38% encountered only once, the low level of spatial overlap (81% found in only one locality and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated.

  6. Coral Reefs Under Rapid Climate Change and Ocean Acidification

    Science.gov (United States)

    Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N.; Eakin, C. M.; Iglesias-Prieto, R.; Muthiga, N.; Bradbury, R. H.; Dubi, A.; Hatziolos, M. E.

    2007-12-01

    Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

  7. Review of the reef effects of offshore wind farm structures and potential for enhancement and mitigation.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-09

    The purpose of this report is to review the likely reef effects of offshore wind farm (OWF) structures focussing on two aspects of their physical presence: firstly, the likely reef effects on fish, shellfish and other marine biota and secondly, the potential to enhance the reef effect for commercially significant species.Turbine towers and their associated scour protection constitute surfaces readily colonised by a typical and broadly predictable assemblage of organisms, reflecting zonation patterns observed in adjacent intertidal and sub-tidal rocky shore communities. The physical impact and biological impact of OWFs will be proportional to the level (area/extent) of scour protection utilised and this will need to be assessed on a site specific basis. At sites where it is unnecessary or unworkable to exclude all fishing gears, some commercial species will probably benefit from the presence of turbine structures and their associated reefs as a result of the provision of enhanced habitat opportunities. Exploration of the potential for mussel culture appears to be one of the most straightforward economic opportunities which could be progressed within existing OWFs - although, development of appropriate technology for culture in water depths at OWFs will require some further investigation. The opportunities presented by seaweed culture in the UK have yet to be recognised and an appropriate strategic direction provided for the sector. At the present time there appears to be very little potential for fin fish culture within OWFs, as shallow water depths and current conditions are not ideal for cage culture of salmon or cod, and current market conditions and labour costs mean that culture of sea bass in UK waters could not compete favourably with Mediterranean mariculture. Evidence from a variety of sources indicates that one enhancement effect which requires further investigation, as it is potentially a valuable opportunity for restoration and management of commercially

  8. Are coral reefs victims of their own past success?

    Science.gov (United States)

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services.

  9. Invasive lionfish preying on critically endangered reef fish

    Science.gov (United States)

    Rocha, Luiz A.; Rocha, Claudia R.; Baldwin, Carole C.; Weigt, Lee A.; McField, Melanie

    2015-09-01

    Caribbean coral reef ecosystems are at the forefront of a global decline and are now facing a new threat: elimination of vulnerable species by the invasive lionfish ( Pterois spp.). In addition to being threatened by habitat destruction and pollution, the critically endangered social wrasse ( Halichoeres socialis), endemic to Belize's inner barrier reef, has a combination of biological traits (small size, schooling, and hovering behavior) that makes it a target for the invasive lionfish. Based on stomach content analyses, this small fish comprises almost half of the lionfish diet at the inner barrier reef in Belize. The combination of lionfish predation, limited range, and ongoing habitat destruction makes the social wrasse the most threatened coral reef fish in the world. Other species with small range and similar traits occur elsewhere in the Caribbean and face similar risks.

  10. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change

    Science.gov (United States)

    Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian

    2014-01-01

    Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086

  11. The influence of coral reef benthic condition on associated fish assemblages.

    Directory of Open Access Journals (Sweden)

    Karen M Chong-Seng

    Full Text Available Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58% and high structural complexity to high macroalgae cover (up to 95% and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.

  12. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.; Brewin, Robert J. W.; Zhan, Peng; Dreano, Denis; Pradhan, Yaswant; Nanninga, Gerrit B.; Hoteit, Ibrahim

    2017-01-01

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  13. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.

    2017-08-18

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  14. Rights to ecosystem services

    NARCIS (Netherlands)

    Davidson, M.

    2014-01-01

    Ecosystem services are the benefits people obtain from ecosystems. Many of these services are provided outside the borders of the land where they are produced; this article investigates who is entitled to these non-excludable ecosystem services from two libertarian perspectives. Taking a

  15. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2017-07-01

    Full Text Available Decision-makers focus on representing biodiversity pattern, maintaining connectivity, and strengthening resilience to global warming when designing marine protected area (MPA systems, especially in coral reef ecosystems. The achievement of these broad conservation objectives will likely require large areas, and stretch limited funds for MPA implementation. We undertook a spatial prioritisation of Brazilian coral reefs that considered two types of conservation zones (i.e. no-take and multiple use areas and integrated multiple conservation objectives into MPA planning, while assessing the potential impact of different sets of objectives on implementation costs. We devised objectives for biodiversity, connectivity, and resilience to global warming, determined the extent to which existing MPAs achieved them, and designed complementary zoning to achieve all objectives combined in expanded MPA systems. In doing so, we explored interactions between different sets of objectives, determined whether refinements to the existing spatial arrangement of MPAs were necessary, and tested the utility of existing MPAs by comparing their cost effectiveness with an MPA system designed from scratch. We found that MPAs in Brazil protect some aspects of coral reef biodiversity pattern (e.g. threatened fauna and ecosystem types more effectively than connectivity or resilience to global warming. Expanding the existing MPA system was as cost-effective as designing one from scratch only when multiple objectives were considered and management costs were accounted for. Our approach provides a comprehensive assessment of the benefits of integrating multiple objectives in the initial stages of conservation planning, and yields insights for planners of MPAs tackling multiple objectives in other regions.

  16. Coral reef structural complexity provides important coastal protection from waves under rising sea levels

    Science.gov (United States)

    Harris, Daniel L.; Rovere, Alessio; Casella, Elisa; Power, Hannah; Canavesio, Remy; Collin, Antoine; Pomeroy, Andrew; Webster, Jody M.; Parravicini, Valeriano

    2018-01-01

    Coral reefs are diverse ecosystems that support millions of people worldwide by providing coastal protection from waves. Climate change and human impacts are leading to degraded coral reefs and to rising sea levels, posing concerns for the protection of tropical coastal regions in the near future. We use a wave dissipation model calibrated with empirical wave data to calculate the future increase of back-reef wave height. We show that, in the near future, the structural complexity of coral reefs is more important than sea-level rise in determining the coastal protection provided by coral reefs from average waves. We also show that a significant increase in average wave heights could occur at present sea level if there is sustained degradation of benthic structural complexity. Our results highlight that maintaining the structural complexity of coral reefs is key to ensure coastal protection on tropical coastlines in the future. PMID:29503866

  17. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    Science.gov (United States)

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results.

  18. Effects of extreme natural events on the provision of ecosystem services in a mountain environment: The importance of trail design in delivering system resilience and ecosystem service co-benefits.

    Science.gov (United States)

    Tomczyk, Aleksandra M; White, Piran C L; Ewertowski, Marek W

    2016-01-15

    A continued supply of ecosystem services (ES) from a system depends on the resilience of that system to withstand shocks and perturbations. In many parts of the world, climate change is leading to an increased frequency of extreme weather events, potentially influencing ES provision. Our study of the effects of an intense rainfall event in Gorce National Park, Poland, shows: (1) the intense rainfall event impacted heavily on the supply of ES by limiting potential recreation opportunities and reducing erosion prevention; (2) these negative impacts were not only restricted to the period of the extreme event but persisted for up to several years, depending on the pre-event trail conditions and post-event management activities; (3) to restore the pre-event supply of ES, economic investments were required in the form of active repairs to trails, which, in Gorce National Park, were an order of magnitude higher than the costs of normal trail maintenance; and (4) when recreational trails were left to natural restoration, loss of biodiversity was observed, and recovery rates of ES (recreation opportunities and soil erosion prevention) were reduced in comparison to their pre-event state. We conclude that proper trail design and construction provides a good solution to avoid some of the negative impacts of extreme events on recreation, as well as offering co-benefits in terms of protecting biodiversity and enhancing the supply of regulating services such as erosion prevention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Acoustic and biological trends on coral reefs off Maui, Hawaii

    Science.gov (United States)

    Kaplan, Maxwell B.; Lammers, Marc O.; Zang, Eden; Aran Mooney, T.

    2018-03-01

    Coral reefs are characterized by high biodiversity, and evidence suggests that reef soundscapes reflect local species assemblages. To investigate how sounds produced on a given reef relate to abiotic and biotic parameters and how that relationship may change over time, an observational study was conducted between September 2014 and January 2016 at seven Hawaiian reefs that varied in coral cover, rugosity, and fish assemblages. The reefs were equipped with temperature loggers and acoustic recording devices that recorded on a 10% duty cycle. Benthic and fish visual survey data were collected four times over the course of the study. On average, reefs ranged from 0 to 80% live coral cover, although changes between surveys were noted, in particular during the major El Niño-related bleaching event of October 2015. Acoustic analyses focused on two frequency bands (50-1200 and 1.8-20.5 kHz) that corresponded to the dominant spectral features of the major sound-producing taxa on these reefs, fish, and snapping shrimp, respectively. In the low-frequency band, the presence of humpback whales (December-May) was a major contributor to sound level, whereas in the high-frequency band sound level closely tracked water temperature. On shorter timescales, the magnitude of the diel trend in sound production was greater than that of the lunar trend, but both varied in strength among reefs, which may reflect differences in the species assemblages present. Results indicated that the magnitude of the diel trend was related to fish densities at low frequencies and coral cover at high frequencies; however, the strength of these relationships varied by season. Thus, long-term acoustic recordings capture the substantial acoustic variability present in coral-reef ecosystems and provide insight into the presence and relative abundance of sound-producing organisms.

  20. A trait-based approach to advance coral reef science

    DEFF Research Database (Denmark)

    Madin, Joshua S.; Hoogenboom, Mia O.; Connolly, Sean R.

    2016-01-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been...... a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems....

  1. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)

    Science.gov (United States)

    Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.

    2018-04-01

    Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.

  2. Physics of coral reef systems in a shallow tidal embayment

    NARCIS (Netherlands)

    Hoitink, Antonius Johannes Franciscus

    2003-01-01

    Ongoing deforestation in the tropics involves higher river discharges and an increase of runoff, which has consequences to coastal ecosystems. The dispersal of fluvial sediment and freshwater by marine processes affects the environmental determinants of coral reefs near the coast, which include

  3. Implementing Biocriteria: Coral Reef Protection Using the Clean Water Act

    Science.gov (United States)

    Biological assessments (surveying the presence, number, size and condition of fish, coral and other biota) provide important information about the health and integrity of coral reef ecosystems. Biological criteria are one means under the Clean Water Act (CWA) that managers can us...

  4. Biological Criteria for Protection of U.S. Coral Reefs.

    Science.gov (United States)

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  5. Participatory assessment of the Toliara Bay reef fishery, southwest ...

    African Journals Online (AJOL)

    22 déc. 2011 ... In order to ensure the sustainable management of reef fisheries, it is necessary to ... on the status and evolution of the ecosystem upon which the fishery ... En effet, de part le nombre, la qualité, la variété et la pertinence des ...

  6. Coral Reef Guidance

    Science.gov (United States)

    Guidance prepared by EPA and Army Corps of Engineers concerning coral reef protection under the Clean Water Act, Marine Protection, Research, and Sanctuaries Act, Rivers and Harbors Act, and Federal Project Authorities.

  7. Managing bay and estuarine ecosystems for multiple services

    Science.gov (United States)

    Needles, Lisa A.; Lester, Sarah E.; Ambrose, Richard; Andren, Anders; Beyeler, Marc; Connor, Michael S.; Eckman, James E.; Costa-Pierce, Barry A.; Gaines, Steven D.; Lafferty, Kevin D.; Lenihan, Junter S.; Parrish, Julia; Peterson, Mark S.; Scaroni, Amy E.; Weis, Judith S.; Wendt, Dean E.

    2013-01-01

    Managers are moving from a model of managing individual sectors, human activities, or ecosystem services to an ecosystem-based management (EBM) approach which attempts to balance the range of services provided by ecosystems. Applying EBM is often difficult due to inherent tradeoffs in managing for different services. This challenge particularly holds for estuarine systems, which have been heavily altered in most regions and are often subject to intense management interventions. Estuarine managers can often choose among a range of management tactics to enhance a particular service; although some management actions will result in strong tradeoffs, others may enhance multiple services simultaneously. Management of estuarine ecosystems could be improved by distinguishing between optimal management actions for enhancing multiple services and those that have severe tradeoffs. This requires a framework that evaluates tradeoff scenarios and identifies management actions likely to benefit multiple services. We created a management action-services matrix as a first step towards assessing tradeoffs and providing managers with a decision support tool. We found that management actions that restored or enhanced natural vegetation (e.g., salt marsh and mangroves) and some shellfish (particularly oysters and oyster reef habitat) benefited multiple services. In contrast, management actions such as desalination, salt pond creation, sand mining, and large container shipping had large net negative effects on several of the other services considered in the matrix. Our framework provides resource managers a simple way to inform EBM decisions and can also be used as a first step in more sophisticated approaches that model service delivery.

  8. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    . An estimate of the density of nitrifying bacteria on living corals can be made by comparing the nitrifying rates of bacterial cells and the rate of production of NO,-. Kaplan (1983) summarized the growth con- stants of marine nitrifying bacteria... Reef Con=. 3: 395-399. -, C. R. WILKINSON, V. p. VICENTE, J. M. MORELL, AND E. OTERO. 1988. Nitrate release by Carib- bean reef sponges. Limnol. Oceanogr. 33: 114- 120. CROSSLAND, C. J., AND D. J. BARNES. 1983. Dissolved nutrients and organic...

  9. Performative Microforests: Investigating the potential benefits of integrating spatial vegetation environments into buildings, in regards to the performance of buildings, their occupants + local ecosystems

    Directory of Open Access Journals (Sweden)

    Giancarlo Mangone

    2015-09-01

    Full Text Available The design of office buildings can substantially improve the building, social, and ecological performance of office building projects. However, existing research on improving the performance of work environments has primarily focused on identifying and evaluating methods to make work environments less bad, rather than focusing on how to develop work environments that are positively performing. Moreover, the potential of building projects to perform positively, in terms of economic, social, and ecological performance, remains relatively unexplored in existing research and building projects. To this end, this PhD research project is focused on exploring the positive economic, social, and ecological performance potential of buildings. Specifically, this research project identifies and evaluates the potential economic, social, and ecological performance benefits of integrating microforests into office buildings. Microforests are defined in this book as dynamic, stimulating, cohesive spatial environments that are composed of vegetation and soil layers that mimic the structural, perceptual, and ecological composition of a forest ecosystem, yet are not large enough to reliably provide the myriad of functions of a robust, mature forest ecosystem. This design research focus is based on findings from existing literature that suggest that natural environments and stimuli can provide a diverse range of economic, social, and ecological performance benefits. The Design Research Methodology [DRM], an established research methodology that facilitates the use of diverse research methods in a rigorous, effective manner, is used in this research project to explore and evaluate the performance potential of microforests, by investigating the following sub research questions: • How can microforests improve the performance of office buildings? • How can microforests improve employee performance + comfort? • How can microforests improve the ecological performance

  10. Differential response of fish assemblages to coral reef-based seaweed farming.

    Directory of Open Access Journals (Sweden)

    E James Hehre

    Full Text Available As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1 marine protected areas (MPAs were established, (2 neither MPAs nor blast fishing was present (hence "unprotected", and (3 blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.

  11. Differential response of fish assemblages to coral reef-based seaweed farming.

    Science.gov (United States)

    Hehre, E James; Meeuwig, J J

    2015-01-01

    As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence "unprotected"), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.

  12. Multiple Stressors and Ecological Complexity Require A New Approach to Coral Reef Research

    Directory of Open Access Journals (Sweden)

    Linwood Hagan Pendleton

    2016-03-01

    Full Text Available Ocean acidification, climate change, and other environmental stressors threaten coral reef ecosystems and the people who depend upon them. New science reveals that these multiple stressors interact and may affect a multitude of physiological and ecological processes in complex ways. The interaction of multiple stressors and ecological complexity may mean that the negative effects on coral reef ecosystems will happen sooner and be more severe than previously thought. Yet, most research on the effects of global change on coral reefs focus on one or few stressors and pathways or outcomes (e.g. bleaching. Based on a critical review of the literature, we call for a regionally targeted strategy of mesocosm-level research that addresses this complexity and provides more realistic projections about coral reef impacts in the face of global environmental change. We believe similar approaches are needed for other ecosystems that face global environmental change.

  13. A dataset on the species composition of amphipods (Crustacea) in a Mexican marine national park: Alacranes Reef, Yucatan

    OpenAIRE

    Paz,Carlos; Simões,Nuno; Pech,Daniel

    2018-01-01

    Abstract Background Alacranes Reef was declared as a National Marine Park in 1994. Since then, many efforts have been made to inventory its biodiversity. However, groups such as amphipods have been underestimated or not considered when benthic invertebrates were inventoried. Here we present a dataset that contributes to the knowledge of benthic amphipods ( Crustacea , Peracarida ) from the inner lagoon habitats from the Alacranes Reef National Park, the largest coral reef ecosystem in the Gul...

  14. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-01-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  15. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-02-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  16. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  17. Analysis of integrated animal-fish production system under subtropical hill agro ecosystem in India: growth performance of animals, total biomass production and monetary benefit.

    Science.gov (United States)

    Kumaresan, A; Pathak, K A; Bujarbaruah, K M; Vinod, K

    2009-03-01

    The present study assessed the benefits of integration of animals with fish production in optimizing the bio mass production from unit land in subtropical hill agro ecosystem. Hampshire pigs and Khaki Campbell ducks were integrated with composite fish culture. The pig and duck excreta were directly allowed into the pond and no supplementary feed was given to fish during the period of study. The average levels of N, P and K in dried pig and duck manure were 0.9, 0.7 and 0.6 per cent and 1.3, 0.6 and 0.5 per cent, respectively. The average body weight of pig and duck at 11 months age was 90 and 1.74 kg with an average daily weight gain of 333.33 and 6.44 g, respectively. The fish production in pig-fish and duck-fish systems were 2209 and 2964 kg/ha, respectively while the fish productivity in control pond was only 820 kg/ha. The total biomass (animal and fish) production was higher (pfeeding system compared to the traditional system, however the input/output ratio was 1:1.2 and 1:1.55 for commercial and traditional systems, respectively. It was inferred that the total biomass production per unit land was high (pfish were integrated together.

  18. Community Structure Of Coral Reefs In Saebus Island, Sumenep District, East Java

    Science.gov (United States)

    Rizmaadi, Mada; Riter, Johannes; Fatimah, Siti; Rifaldi, Riyan; Yoga, Arditho; Ramadhan, Fikri; Ambariyanto, Ambariyanto

    2018-02-01

    Increasing degradation coral reefs ecosystem has created many concerns. Reduction of this damage can only be done with good and proper management of coral reef ecosystem based on existing condition. The condition of coral reef ecosystem can be determined by assessing its community structure. This study investigates community structure of coral reef ecosystems around Saebus Island, Sumenep District, East Java, by using satellite imagery analysis and field observations. Satellite imagery analysis by Lyzenga methods was used to determine the observation stations and substrate distribution. Field observations were done by using Line Intercept Transect method at 4 stations, at the depth of 3 and 10 meters. The results showed that the percentage of coral reef coverage at the depth of 3 and 10 meters were 64.36% and 59.29%, respectively, and included in fine coverage category. This study found in total 25 genera from 13 families of corals at all stations. The most common species found were Acropora, Porites, and Pocillopora, while the least common species were Favites and Montastrea. Average value of Diversity, Uniformity and Dominancy indices were 2.94, 0.8 and 0.18 which include as medium, high, and low category, respectively. These results suggest that coral reef ecosystems around Saebus Island is in a good condition.

  19. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. NOAA Coral Reef Watch Larval Connectivity, Florida Reef Tract

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate change threatens even the best-protected and most remote reefs. Reef recovery following catastrophic disturbance usually requires disturbed sites be reseeded...

  1. From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

    Directory of Open Access Journals (Sweden)

    John N Kittinger

    Full Text Available Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1 (mean ± SE of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery, and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

  2. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    Science.gov (United States)

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  3. Reef fishes of Saba Bank, Netherlands Antilles: assemblage structure across a gradient of habitat types.

    Directory of Open Access Journals (Sweden)

    Wes Toller

    Full Text Available Saba Bank is a 2,200 km(2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km(2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5% and outer reef flat habitat (2.4% and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5--48.1% but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats ranged between 52 and 83 g/m(2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks, which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank.

  4. Climate change and the Great Barrier Reef

    International Nuclear Information System (INIS)

    Johnson, Johanna; Marshall, Paul

    2007-01-01

    Full text: Full text: Climate change is now recognised as the greatest long-term threat to the Great Barrier Reef (GBR). Managers face a future in which the impacts of climate change on tropical marine ecosystems are becoming increasingly frequent and severe. Further degradation is inevitable as the climate continues to change but the extent of the decline will depend on the rate and magnitude of climate change and the resilience of the ecosystem. Changes to the ecosystem have implications for the industries and regional communities that depend on the GBR. Climate projections for the GBR region include increasing air and sea temperatures, ocean acidification, nutrient enrichment (via changes in rainfall), altered light levels, more extreme weather events, changes to ocean circulation and sea level rise. Impacts have already been observed, with severe coral bleaching events in 1998 and 2002, and mass mortalities of seabirds linked to anomalously warm summer conditions. Climate change also poses significant threats to the industries and communities that depend on the GBR ecosystem, both directly and indirectly through loss of natural resources; industries such as recreational and commercial fishing, and tourism, which contributes to a regional tourism industry worth $6.1 billion (Access Economics 2005). A vulnerability assessment undertaken by leading experts in climate and marine science identified climate sensitivities for GBR species, habitats, key processes, GBR industries and communities (Johnson and Marshall 2007). This information has been used to develop a Climate Change Action Plan for the GBR. The Action Plan is a five-year program aimed at facilitating targeted science, building a resilient ecosystem, assisting adaptation of industries and communities, and reducing climate footprints. The Action Plan identifies strategies to review current management arrangements and raise awareness of the issue in order to work towards a resilient ecosystem. Integral to

  5. Dampak Pemutihan Karang Tahun 2016 Terhadap Ekosistem Terumbu Karang: Studi Kasus Di TWP Gili Matra (Gili Air, Gili Meno dan Gili Trawangan Provinsi NTB Coral Bleaching Impact in 2016 Towards Coral Reef Ecosystem: Case Studies TWP Gili Matra (Gili Air,

    Directory of Open Access Journals (Sweden)

    Fakhrizal Setiawan

    2018-02-01

    Full Text Available ABSTRACTIncreased sea surface temperatures due to global warming that occurred from the early to mid 2016 caused of coral bleaching in several locations in TWP Gili Matra. Observations of coral bleaching  obtained from coral colonies compotition affected by bleaching (50%, white (18%, death (1% and was not affected (31%. These implications resulting decline in coral cover but not significant (F (1,013 = 0.333, p > 0.05 from 23,43% ± 2,61 SE in 2012 to 18,48% ± 4,14 SE in 2016 and a significant decrease (P (58,06 = 3,8e-06 recruitment of coral (coral Juvenil from 6,66 ind.m-1 ± 1,04 SE in 2012 to 1,41 ind.m-1 ± 0,16 SE in 2016. the other impact is a significant reduction (P(20.84 = 0,00053, p <0,001 the abundance of reef fish from 28.733,26 ind.ha-1 ± 3.757,89 SE in 2012 to 11.431,18 ind.ha-1 ± 702,53 SE in 2016 and a decline in the biomass of reef fish but not significant (F (0,58 = 0,46, P> 0.05 from 506,56 kg.ha-1 ± 99,05 SE in 2012 to 438,41 kg.ha-1 ± 45,69 SE in 2016. The decline of coral recruitment resulted in the recovery of the affected areas bleaching becomes slow because of the juvenile new coral mostly dead. The second impact of bleaching is an abundance of fish decrease, indicating that is available only fish big size (adult and very less of small fishes, including juvenile. Keywords: global warming, coral bleaching, coral cover, reef fishes

  6. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).

  7. Relating Landscape Development Intensity to Coral Reef Condition in the Watersheds of St. Croix, U.S. Virgin Islands

    Science.gov (United States)

    Diagnosing the degree to which local landscape activities impact coral reef ecosystems and their ecological services is critically important to coastal and watershed decision-makers. We report, for the first time, a study that relates coral reef condition metrics to metrics of h...

  8. Reef Visual Census (RVC) data.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide data on frequency of occurrence , density abundance, and length frequency of reef fish throughout Florida reef tract from 1978 forward.

  9. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems

    OpenAIRE

    McNally, Catherine G.; Uchida, Emi; Gold, Arthur J.

    2011-01-01

    Protected areas are used to sustain biodiversity and ecosystem services. However, protected areas can create tradeoffs spatially and temporally among ecosystem services, which can affect the welfare of dependent local communities. This study examines the effect of a protected area on the tradeoff between two extractive ecosystem services from mangrove forests: cutting mangroves (fuelwood) and harvesting the shrimp and fish that thrive if mangroves are not cut. We demonstrate the effect in the...

  10. Carbon dioxide addition to coral reef waters suppresses net community calcification

    Science.gov (United States)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  11. Fishing degrades size structure of coral reef fish communities.

    Science.gov (United States)

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016

  12. Prioritizing land and sea conservation investments to protect coral reefs.

    Directory of Open Access Journals (Sweden)

    Carissa J Klein

    Full Text Available BACKGROUND: Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming and in the sea (e.g. overfishing. Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification. Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. CONCLUSIONS/SIGNIFICANCE: Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.

  13. Prioritizing land and sea conservation investments to protect coral reefs.

    Science.gov (United States)

    Klein, Carissa J; Ban, Natalie C; Halpern, Benjamin S; Beger, Maria; Game, Edward T; Grantham, Hedley S; Green, Alison; Klein, Travis J; Kininmonth, Stuart; Treml, Eric; Wilson, Kerrie; Possingham, Hugh P

    2010-08-30

    Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.

  14. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in American Samoa from Water Samples collected between 2015-02-15 and 2015-03-28 (NCEI Accession 0157716)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  15. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Mariana Archipelago from Water Samples collected between 2014-03-24 and 2014-05-05 (NCEI Accession 0157715)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  16. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Hawaiian Archipelago from Water Samples collected between 2013-07-13 and 2013-10-30 (NCEI Accession 0157714)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  17. Operationalizing resilience for adaptive coral reef management under global environmental change.

    Science.gov (United States)

    Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on

  18. Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef?

    Science.gov (United States)

    Muir, Paul R; Marshall, Paul A; Abdulla, Ameer; Aguirre, J David

    2017-10-11

    Mass bleaching associated with unusually high sea temperatures represents one of the greatest threats to corals and coral reef ecosystems. Deeper reef areas are hypothesized as potential refugia, but the susceptibility of Scleractinian species over depth has not been quantified. During the most severe bleaching event on record, we found up to 83% of coral cover severely affected on Maldivian reefs at a depth of 3-5 m, but significantly reduced effects at 24-30 m. Analysis of 153 species' responses showed depth, shading and species identity had strong, significant effects on susceptibility. Overall, 73.3% of the shallow-reef assemblage had individuals at a depth of 24-30 m with reduced effects, potentially mitigating local extinction and providing a source of recruits for population recovery. Although susceptibility was phylogenetically constrained, species-level effects caused most lineages to contain some partially resistant species. Many genera showed wide variation between species, including Acropora, previously considered highly susceptible. Extinction risk estimates showed species and lineages of concern and those likely to dominate following repeated events. Our results show that deeper reef areas provide refuge for a large proportion of Scleractinian species during severe bleaching events and that the deepest occurring individuals of each population have the greatest potential to survive and drive reef recovery. © 2017 The Author(s).

  19. The importance of spatial fishing behavior for coral reef resilience

    Science.gov (United States)

    Rassweiler, A.; Lauer, M.; Holbrook, S. J.

    2016-02-01

    Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.

  20. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  1. Challenges for Managing Fisheries on Diverse Coral Reefs

    Directory of Open Access Journals (Sweden)

    Douglas Fenner

    2012-03-01

    Full Text Available Widespread coral reef decline has included the decline of reef fish populations, and the subsistence and artisanal fisheries that depend on them. Overfishing and destructive fishing have been identified as the greatest local threats to coral reefs, but the greatest future threats are acidification and increases in mass coral bleaching caused by global warming. Some reefs have shifted from dominance by corals to macroalgae, in what are called “phase shifts”. Depletion of herbivores including fishes has been identified as a contributor to such phase shifts, though nutrients are also involved in complex interactions with herbivory and competition. The depletion of herbivorous fishes implies a reduction of the resilience of coral reefs to the looming threat of mass coral mortality from bleaching, since mass coral deaths are likely to be followed by mass macroalgal blooms on the newly exposed dead substrates. Conventional stock assessment of each fish species would be the preferred option for understanding the status of the reef fishes, but this is far too expensive to be practical because of the high diversity of the fishery and poverty where most reefs are located. In addition, stock assessment models and fisheries in general assume density dependent populations, but a key prediction that stocks recover from fishing is not always confirmed. Catch Per Unit Effort (CPUE has far too many weaknesses to be a useful method. The ratio of catch to stock and the proportion of catch that is mature depend on fish catch data, and are heavily biased toward stocks that are in good condition and incapable of finding species that are in the worst condition. Near-pristine reefs give us a reality check about just how much we have lost. Common fisheries management tools that control effort or catch are often prohibitively difficult to enforce for most coral reefs except in developed countries. Ecosystem-based management requires management of impacts of fishing

  2. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. © 2016 The Authors.

  3. Understanding Coral Reef Fish Characteristics Using Videogrammetry in Hanauma and Maunalua Bays, Oahu, Hawaii during 2007 (NODC Accession 0042353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Videogrammetry data taken in 2007 are used for a study of fish within coral reef ecosystems. We attempted to generate or find information on abundance, growth,...

  4. Herbicides: A new threat to the Great Barrier Reef

    International Nuclear Information System (INIS)

    Lewis, Stephen E.; Brodie, Jon E.; Bainbridge, Zoe T.; Rohde, Ken W.; Davis, Aaron M.; Masters, Bronwyn L.; Maughan, Mirjam; Devlin, Michelle J.; Mueller, Jochen F.; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change. - Herbicide residues have been detected in Great Barrier Reef catchment waterways and river water plumes which may affect marine ecosystems.

  5. Biological impacts of oil pollution: coral reefs. V. 3

    International Nuclear Information System (INIS)

    1997-01-01

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals, but results are not entirely consistent. This report summarizes and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (UK)

  6. Testing the effect of habitat structure and complexity on nekton assemblages using experimental oyster reefs

    Science.gov (United States)

    Humphries, Austin T.; LaPeyre, Megan K.; Kimball, Matthew E.; Rozas, Lawrence P.

    2011-01-01

    Structurally complex habitats are often associated with more diverse and abundant species assemblages in both aquatic and terrestrial ecosystems. Biogenic reefs formed by the eastern oyster (Crassostrea virginica) are complex in nature and are recognized for their potential habitat value in estuarine systems along the US Atlantic and Gulf of Mexico coasts. Few studies, however, have examined the response of nekton to structural complexity within oyster reefs. We used a quantitative sampling technique to examine how the presence and complexity of experimental oyster reefs influence the abundance, biomass, and distribution of nekton by sampling reefs 4 months and 16 months post-construction. Experimental oyster reefs were colonized immediately by resident fishes and decapod crustaceans, and reefs supported a distinct nekton assemblage compared to mud-bottom habitat. Neither increased reef complexity, nor age of the experimental reef resulted in further changes in nekton assemblages or increases in nekton abundance or diversity. The presence of oyster reefs per se was the most important factor determining nekton usage.

  7. Science and management of coral reefs: problems and prospects

    Science.gov (United States)

    Wells, S. M.

    1995-11-01

    It should be recognised that many principles of reef management do not need further research, as they involve changing human behaviour and activities in order to remove or reduce impacts on reefs. Much of the time of a reef manager is taken up with social, economic and political issues: the integration of reef management into broad coastal zone management objectives; the development of community participation and co-management; and the organisation of training and education pro-grammes so that people in countries where reefs are located are able to take responsibility for their sustainable management. Perhaps the main obstacle to be overcome is poor communication (Harmon 1994). Many reef scientists are already strongly convinced of the need to communicate their results and the implications of these for management and conservation policy (Hatcher et al. 1989), but they may however need to understand that reef managers are not always able or willing to act on their advice because of political, economic or social factors. Pure research is increasingly being conducted within a framework of goals identified as important to society. Funding is invariably easier to obtain if it can be demonstrated that the research will have some ultimate benefit in management terms, and much research is being commissioned because of the need for practical solutions. As the complexity of management becomes more apparent and managers themselves call for more scientific support and advice, the role that science has to play in perceiving and defining problems, understanding the mechanisms involved and strategically assessing potential solutions, becomes more central. Often, only a slight adjustment to a project is required in order for data to be collected that is of direct value to a reef manager.Partnerships built between scientists and managers engaged in adaptive management efforts may lead to more rapid progress in managing reefs and may banish the `science and management' dichotomy

  8. Integrating societal perspectives and values for improved stewardship of a coastal ecosystem engineer

    Directory of Open Access Journals (Sweden)

    Steven B. Scyphers

    2014-09-01

    Full Text Available Oyster reefs provide coastal societies with a vast array of ecosystem services, but are also destructively harvested as an economically and culturally important fishery resource, exemplifying a complex social-ecological system (SES. Historically, societal demand for oysters has led to destructive and unsustainable levels of harvest, which coupled with multiple other stressors has placed oyster reefs among the most globally imperiled coastal habitats. However, more recent studies have demonstrated that large-scale restoration is possible and that healthy oyster populations can be sustained with effective governance and stewardship. However, both of these require significant societal support or financial investment. In our study, we explored relationships among how coastal societies (1 perceive and value oyster ecosystem services, (2 recognize and define problems associated with oyster decline, and (3 perceive or support stewardship initiatives. We specifically focused on the SES of eastern oysters (Crassostrea virginica and coastal societies in the northern Gulf of Mexico, a region identified as offering among the last and best opportunities to sustainably balance conservation objectives with a wild fishery. We found that, in addition to harvest-related benefits, oysters were highly valued for providing habitat, mitigating shoreline erosion, and improving water quality or clarity. Our results also showed that although most respondents recognized that oyster populations have declined, many respondents characterized the problem differently than most scientific literature does. Among a variety of initiatives for enhancing sustainability, spawning sanctuaries and reef restoration were well supported in all states, but support for harvest reductions was less consistent. Our study suggests that public support for maintaining both harvest and ecosystem services exists at societal levels and that enhancing public awareness regarding the extent and causes

  9. Does using the ecosystem services concept provoke the risk of assigning virtual prices instead of real values to nature? Some reflections on the benefit of ecosystem services for planning and policy consulting

    Directory of Open Access Journals (Sweden)

    Fürst Christine

    2015-12-01

    Full Text Available This forum article intends to discuss the question if using the ecosystem services concept in planning, management and decision-making can impair nature conservation objectives by hiding the intrinsic values of nature through overemphasizing monetary aspects in environmental assessments. The conclusion is drawn that using ecosystem services in a holistic social-ecological system understanding would help to overcome justified criticisms of a too narrow perspective on the real values of nature.

  10. Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea

    KAUST Repository

    Roik, Anna Krystyna; Roder, Cornelia; Rö thig, Till; Voolstra, Christian R.

    2015-01-01

    The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  11. Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea

    KAUST Repository

    Roik, Anna Krystyna

    2015-12-14

    The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  12. Coral reef assessment and monitoring made easy using Coral Point Count with Excel extensions (CPCe software in Calangahan, Lugait, Misamis Oriental, Philippines

    Directory of Open Access Journals (Sweden)

    S. R. M. Tabugo

    2016-03-01

    Full Text Available Coral reef communities are considered as the most diverse marine ecosystems that provide food, shelter and protection to marine organisms. It provides many important benefits to humans but often a subject to impairment through human activities. Cascading human influences and climate change appeared as a reason behind its decline. Thus, coral reef monitoring methods are substantial. This study utilized Coral Point Count with Excel extensions (CPCe software, as a means to increase efficiency of coral reef monitoring efforts because it automates, facilitates and speeds the process of random point count analysis and can perform image calibration, planar area and length calculations of benthic features. The method was used to estimate community statistics of benthos based on captured still images for every 1m marked across four 50m transect line (total 200 m at 4.6-5.6m depth. Transect images were assigned with 30 spatial random points for identification. Multiple image frames were combined for each transect length supplying datasheet containing header information, statistical parameters species / substrate type (relative abundance, mean and standard deviation and Shannon-Weaver and Simpson's Index calculation for species diversity. Generated transect datasets were statistically analyzed to give quantitative population estimates over the area of interest. Data from individual frames were combined per transect to allow both inter- and intra- site/transect comparisons. This study reports the current status of coral reefs across Calangahan, Lugait, Misamis Oriental, Philippines and proved the efficiency of CPCe as a tool in reef assessment and monitoring. Results showed that most common genera Porites and Acropora were dominant, with Porites lobata as the most abundant coral species in the area. Moreover, results also showed that there were various diseases present affecting corals leading to increased mortality.

  13. Understanding Reef Flat Sediment Regimes and Hydrodynamics can Inform Erosion Mitigation on Land

    Directory of Open Access Journals (Sweden)

    Lida Tenkova Teneva

    2016-01-01

    Full Text Available Coral reefs worldwide are affected by excessive sediment and nutrient delivery from adjacent watersheds. Land cover and land use changes contribute to reef ecosystem degradation, which in turn, diminish many ecosystem services, including coastal protection, recreation, and food provisioning. The objectives of this work were to understand the role of coastal oceanic and biophysical processes in mediating the effects of sedimentation in shallow reef environments, and to assess the efficacy of land-based sediment remediation in the coastal areas near Maunalei reef, Lāna’i Island, Hawai’i. To the best of our knowledge, this was the first study of sediment dynamics on an east-facing (i.e., facing the trade winds reef in the Hawaiian Islands. We developed ridge-to-reef monitoring systems at two paired stream bed-to-reef sites, where one of the reef sites was adjacent to a community stream sediment remediation project. We found that the two reef sites were characterized by different processes that affected the sediment removal rates; the two sites were also exposed to different amounts of sediment runoff. The community stream sediment remediation project appeared to keep at least 77 tonnes of sediment off the reef flat in one wet season. We found that resuspension of sediments on this reef was similar to that on north-facing and south-facing reefs that also are exposed to the trade winds. We posit that sites with slower sediment removal rates due to slower current velocities or high resuspension rates will require more-robust sediment capture systems on land to reduce sediment input rates and maximize potential for reef health recovery. This suggests that interventions such as local sediment remediation and watershed restoration may mitigate sediment delivery to coral reefs, but these interventions are more likely to be effective if they account for how adjacent coastal oceanographic processes distribute, accumulate, or advect sediment away from

  14. Linking ecosystem service supply to stakeholder concerns on ...

    Science.gov (United States)

    Policies to protect coastal resources may lead to greater social, economic, and ecological returns when they consider potential co-benefits and trade-offs on land. In Guánica Bay watershed, Puerto Rico, a watershed management plan is being implemented to restore declining quality of coral reefs due to sediment and nutrient runoff. However, recent stakeholder workshops indicated uncertainty about benefits for the local community. A total of 19 metrics were identified to capture stakeholder concerns, including 15 terrestrial ecosystem services in the watershed and 4 metrics in the coastal zone. Ecosystem service production functions were applied to quantify and map ecosystem service supply in 1) the Guánica Bay watershed and 2) a highly engineered upper multi-watershed area connected to the lower watershed via a series of reservoirs and tunnels. These two watersheds were compared to other watersheds in Puerto Rico. Relative to other watersheds, the Upper Guánica watershed had high air pollutant removal rates, forest habitat area, biodiversity of charismatic and endangered species, but low farmland quality and low sediment retention. The Lower Guánica watershed had high rates of denitrification and high levels of marine-based recreational and fishing opportunities compared to other watersheds, but moderate to low air pollutant removal, soil carbon content, sediment and nutrient retention, and terrestrial biodiversity. Our results suggest that actions in the wat

  15. Fishing for ecosystem services.

    Science.gov (United States)

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  16. A New Nonmonetary Metric for Indicating Environmental Benefits from Ecosystem Restoration Projects of the U.S. Army Corps of Engineers, Report 2

    Science.gov (United States)

    2010-07-01

    derives its authority for restoring ecosystems though the geophysical environment (hydrology and geomorphology of rivers and coastal zones ), whether or...McClain. 2005. Riparia : Ecology, conservation, and management of streamside communities. San Diego, CA: Elsevier Academic Press. National

  17. Coral Reef Biological Criteria

    Science.gov (United States)

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  18. Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing.

    Directory of Open Access Journals (Sweden)

    Emma V Sheehan

    Full Text Available Marine Protected Areas MPA have been widely used over the last 2 decades to address human impacts on marine habitats within an ecosystem management context. Few studies have quantified recovery of temperate rocky reef communities following the cessation of scallop dredging or demersal trawling. This is critical information for the future management of these habitats to contribute towards conservation and fisheries targets. The Lyme Bay MPA, in south west UK, has excluded towed demersal fishing gear from 206 km(2 of sensitive reef habitat using a Statutory Instrument since July 2008. To assess benthic recovery in this MPA we used a flying video array to survey macro epi-benthos annually from 2008 to 2011. 4 treatments (the New Closure, previously voluntarily Closed Controls and Near or Far Open to fishing Controls were sampled to test a recovery hypothesis that was defined as 'the New Closure becoming more similar to the Closed Controls and less similar to the Open Controls'. Following the cessation of towed demersal fishing, within three years positive responses were observed for species richness, total abundance, assemblage composition and seven of 13 indicator taxa. Definitive evidence of recovery was noted for species richness and three of the indicator taxa (Pentapora fascialis, Phallusia mammillata and Pecten maximus. While it is hoped that MPAs, which exclude anthropogenic disturbance, will allow functional restoration of goods and services provided by benthic communities, it is an unknown for temperate reef systems. Establishing the likely timescales for restoration is key to future marine management. We demonstrate the early stages of successful recruitment and link these to the potential wider ecosystem benefits including those to commercial fisheries.

  19. Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing.

    Science.gov (United States)

    Sheehan, Emma V; Stevens, Timothy F; Gall, Sarah C; Cousens, Sophie L; Attrill, Martin J

    2013-01-01

    Marine Protected Areas MPA have been widely used over the last 2 decades to address human impacts on marine habitats within an ecosystem management context. Few studies have quantified recovery of temperate rocky reef communities following the cessation of scallop dredging or demersal trawling. This is critical information for the future management of these habitats to contribute towards conservation and fisheries targets. The Lyme Bay MPA, in south west UK, has excluded towed demersal fishing gear from 206 km(2) of sensitive reef habitat using a Statutory Instrument since July 2008. To assess benthic recovery in this MPA we used a flying video array to survey macro epi-benthos annually from 2008 to 2011. 4 treatments (the New Closure, previously voluntarily Closed Controls and Near or Far Open to fishing Controls) were sampled to test a recovery hypothesis that was defined as 'the New Closure becoming more similar to the Closed Controls and less similar to the Open Controls'. Following the cessation of towed demersal fishing, within three years positive responses were observed for species richness, total abundance, assemblage composition and seven of 13 indicator taxa. Definitive evidence of recovery was noted for species richness and three of the indicator taxa (Pentapora fascialis, Phallusia mammillata and Pecten maximus). While it is hoped that MPAs, which exclude anthropogenic disturbance, will allow functional restoration of goods and services provided by benthic communities, it is an unknown for temperate reef systems. Establishing the likely timescales for restoration is key to future marine management. We demonstrate the early stages of successful recruitment and link these to the potential wider ecosystem benefits including those to commercial fisheries.

  20. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  1. Ocean Acidification Refugia of the Florida Reef Tract

    Science.gov (United States)

    Manzello, Derek P.; Enochs, Ian C.; Melo, Nelson; Gledhill, Dwight K.; Johns, Elizabeth M.

    2012-01-01

    Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO2 (TCO2) which increases aragonite saturation state (Ωarag) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ωarag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error) Ωarag-values in spring = 4.69 (±0.101). Conversely, Ωarag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA. PMID:22848575

  2. Ocean acidification refugia of the Florida Reef Tract.

    Directory of Open Access Journals (Sweden)

    Derek P Manzello

    Full Text Available Ocean acidification (OA is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO(2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT. During periods of heightened productivity, there is a net uptake of total CO(2 (TCO(2 which increases aragonite saturation state (Ω(arag values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ω(arag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error Ω(arag-values in spring = 4.69 (±0.101. Conversely, Ω(arag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO(2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.

  3. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  4. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    2016-10-01

    Full Text Available Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase. These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  5. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    Science.gov (United States)

    Dell, Claire L A; Longo, Guilherme O; Hay, Mark E

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.

  6. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Claire L A Dell

    Full Text Available Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.

  7. Patterns in reef fish assemblages: Insights from the Chagos Archipelago.

    Science.gov (United States)

    Samoilys, Melita; Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of 'bottom-up' control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts.

  8. Patterns in reef fish assemblages: Insights from the Chagos Archipelago

    Science.gov (United States)

    Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of ‘bottom-up’ control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts. PMID:29351566

  9. Payments for Ecosystem Services

    DEFF Research Database (Denmark)

    Chan, Kai M.A; Anderson, Emily K.; Chapman, Mollie

    2017-01-01

    Payments for ecosystem services (PES) programs are one prominent strategy to address economic externalities of resource extraction and commodity production, improving both social and ecological outcomes. But do PES and related incentive programs achieve that lofty goal? Along with considerable en...... sustainable relationships with nature, conserving and restoring ecosystems and their benefits for people now and in the future....

  10. Ecosystem Services : In Nordic Freshwater Management

    DEFF Research Database (Denmark)

    Magnussen, Kristin; Hasler, Berit; Zandersen, Marianne

    Human wellbeing is dependent upon and benefit from ecosystem services which are delivered by well-functioning ecosystems. Ecosystem services can be mapped and assessed consistently within an ecosystem service framework. This project aims to explore the use and usefulness of the ecosystem service ...

  11. Ecohydrodynamics of cold-water coral reefs: a case study of the Mingulay Reef Complex (western Scotland.

    Directory of Open Access Journals (Sweden)

    Juan Moreno Navas

    Full Text Available Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

  12. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  13. Bright spots among the world’s coral reefs

    Science.gov (United States)

    Cinner, Joshua E.; Huchery, Cindy; MacNeil, M. Aaron; Graham, Nicholas A. J.; McClanahan, Tim R.; Maina, Joseph; Maire, Eva; Kittinger, John N.; Hicks, Christina C.; Mora, Camilo; Allison, Edward H.; D'Agata, Stephanie; Hoey, Andrew; Feary, David A.; Crowder, Larry; Williams, Ivor D.; Kulbicki, Michel; Vigliola, Laurent; Wantiez, Laurent; Edgar, Graham; Stuart-Smith, Rick D.; Sandin, Stuart A.; Green, Alison L.; Hardt, Marah J.; Beger, Maria; Friedlander, Alan; Campbell, Stuart J.; Holmes, Katherine E.; Wilson, Shaun K.; Brokovich, Eran; Brooks, Andrew J.; Cruz-Motta, Juan J.; Booth, David J.; Chabanet, Pascale; Gough, Charlie; Tupper, Mark; Ferse, Sebastian C. A.; Sumaila, U. Rashid; Mouillot, David

    2016-07-01

    Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries

  14. Zooplankton diversity across three Red Sea reefs using pyrosequencing

    KAUST Repository

    Pearman, John K.

    2014-07-30

    Coral reefs are considered among the most diverse ecosystems on Earth, yet little is known about the diversity of plankton in the surrounding water column. Moreover, few studies have utilized genomic methods to investigate zooplankton diversity in any habitat. This study investigated the diversity of taxa by sampling 45 stations around three reef systems in the central/southern Red Sea. The diversity of metazoan plankton was investigated by targeting the 18S rRNA gene and clustering OTUs at 97% sequence similarity. A total of 754 and 854 metazoan OTUs were observed in the data set for the 1380F and 1389F primer sets respectively. The phylum Arthropoda dominated both primer sets accounting for ~60% of reads followed by Cnidaria (~20%). Only about 20% of OTUs were shared between all three reef systems and the relation between geographic distance and Jaccard Similarity measures was not significant. Cluster analysis showed that there was no distinct split between reefs and stations from different reefs clustered together both for metazoans as a whole and for the phyla Arthropoda, Cnidaria and Chordata separately. This suggests that distance may not be a determining factor in the taxonomic composition of stations.

  15. Plastic waste associated with disease on coral reefs.

    Science.gov (United States)

    Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew

    2018-01-26

    Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Potential effects of invasive Pterois volitans in coral reefs

    Directory of Open Access Journals (Sweden)

    Banamali Maji

    2016-01-01

    Full Text Available The invasion of predatory lionfish (Pterois volitans represents a major threat to the western Atlantic coral reef ecosystems. The proliferation of venomous, fast reproducing and aggressive P. volitans in coral reefs causes severe declines in the abundance and diversity of reef herbivores. There is also widespread cannibalism amongst P. volitans populations. A mathematical model is proposed to study the effects of predation on the biomass of herbivorous reef fishes by considering two life stages and intraguild predation of P. volitans population with harvesting of adult P. volitans. The system undergoes a supercritical Hopf bifurcation when the invasiveness of P. volitans crosses a certain critical value. It is observed that cannibalism of P. volitans induces stability in the system even with high invasiveness of adult P. volitans. The dynamic instability of the system due to higher invasiveness of P. volitans can be controlled by increasing the rate of harvesting of P. volitans. It is also proven that P. volitans goes extinct when the harvest rate is greater than some critical threshold value. These results indicate that the dynamical behaviour of the model is very sensitive to the harvesting of P. volitans, which in turn is useful in the conservation of reef herbivores.

  17. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Science.gov (United States)

    McLean, Matthew; Cuetos-Bueno, Javier; Nedlic, Osamu; Luckymiss, Marston; Houk, Peter

    2016-01-01

    Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  18. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Matthew McLean

    Full Text Available Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  19. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Science.gov (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  20. Oceanic forcing of coral reefs.

    Science.gov (United States)

    Lowe, Ryan J; Falter, James L

    2015-01-01

    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.