WorldWideScience

Sample records for reed marsh phragmites

  1. CO2 and CH4 fluxes in a Spartina salt marsh and brackish Phragmites marsh in Massachusetts

    Science.gov (United States)

    Tang, J.; Wang, F.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    Coastal salt marshes play an important role in global and regional carbon cycling. Tidally restricted marshes reduce salinity and provide a habitat suitable for Phragmites invasion. We measured greenhouse gas (GHG) emissions (CO2 and CH4) continuously with the eddy covariance method and biweekly with the static chamber method in a Spartina salt marsh and a Phragmites marsh on Cape Cod, Massachusetts, USA. We did not find significant difference in CO2 fluxes between the two sites, but the CH4 fluxes were much higher in the Phragmites site than the Spartina marsh. Temporally, tidal cycles influence the CO2 and CH4 fluxes in both sites. We found that the salt marsh was a significant carbon sink when CO2 and CH4 fluxes were combined. Restoring tidally restricted marshes will significantly reduce CH4 emissions and provide a strong ecosystem carbon service.

  2. Mapping the change of Phragmites australis live biomass in the lower Mississippi River Delta marshes

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina

    2017-07-28

    Multiyear remote sensing mapping of the normalized difference vegetation index (NDVI) was carried out as an indicator of live biomass composition of the Phragmites australis (hereafter Phragmites) marsh in the lower Mississippi River Delta (hereafter delta) from 2014 to 2017. Maps of NDVI change showed that the Phragmites condition was fairly stable between May 2014 and July 2015. From July 2015 to April 2016 NDVI change indicated Phragmites suffered a widespread decline in the live biomass proportion.  Between April and September 2016, most marsh remained unchanged from the earlier period or showed improvement; although there were pockets of continued decline scattered throughout the lower delta. From September 2016 to May 2017 a pronounced and widely exhibited decline in the condition of Phragmites marsh again occurred throughout the lower delta. This final NDVI change mapping supported field observations of Phragmites decline during the same period.

  3. Large-scale management of common reed, Phragmites australis, for paper production: A case study from the Liaohe Delta, China

    DEFF Research Database (Denmark)

    Brix, Hans; Ye, Siyuan; Laws, Edward A.

    2014-01-01

    The largest Phragmites reed field in the world, with a historical area of approximately 1000 km2, is located in the Liaohe Delta in northeastern China. The Phragmites wetlands are extensively managed to maximize the production of reed biomass for the paper industry. Based on satellite remote sens...

  4. An exploration of common reed (Phragmites australis bioenergy potential in North America

    Directory of Open Access Journals (Sweden)

    R. Vaičekonytė

    2014-10-01

    Full Text Available In North America, reed (Phragmites australis is typically considered to be a weed although it provides important ecosystem services. Small, sparse, patchy or mixed reedbeds are more suitable as habitat for many species than extensive dense reedbeds, whose habitat functions can be enhanced by the selective removal of biomass. We propose that above-ground reed biomass could be harvested for bioenergy, at the same time improving habitat for biodiversity by thinning or fragmenting the more extensive reedbeds. Biofuel pellets manufactured from reeds harvested at Montréal (Canada had moisture content 6.4 %, energy content 16.9 kJ g-1 (dry mass, ash content 3.44 %, and chloride content 1962 ppm. Thus, reed as a material for fuel pellet manufacture is similar to switchgrass (Panicum virgatum, which is commonly cultivated for that purpose and requires higher inputs than harvested wild reed. We discuss these findings in the context of environmental considerations and conclude that the bioenergy potential of reed could most expediently be realised in North America by combining material harvested from the widespread spontaneously occurring reedbeds with organic waste from other sources to create mixed biofuels. However, reeds with high levels of chlorine, sulphur or metals should not be burned to avoid air pollution or equipment damage unless these problems are mitigated by means of appropriate season of harvest, equipment, combustion regime, or use of a mixed feedstock.

  5. Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on Reed Die-Back and Progression (1993-1994)

    NARCIS (Netherlands)

    Van der Putten, W.H.

    1997-01-01

    Reed (Phragmites australis (Cav.) Trin. ex Steudel) is one of the dominant plant species in European land-water ecotones. During the past decades reed belts have died back, especially in central and eastern Europe. The aim of the European Research Programme on Reed Die-back and Progression (EUREED),

  6. Early successional stages of reed Phragmites australis vegetations and its importance for the Bearded Reedling Panurus biarmicus in Oostvaardersplassen, The Netherlands

    NARCIS (Netherlands)

    Beemster, Nico; Troost, Els; Platteeuw, Maarten

    2010-01-01

    A study on Bearded Reed ling Panurus biarmicus feeding habits in combination with a sample-wise breeding bird survey of the marshland zones of the Dutch wetland Oostvaardersplassen shows clear-cut spatial differences in densities and habitat use. The more mature stands of Reed Phragmites australis

  7. Resistance strategies of Phragmites australis (common reed to Pb pollution in flood and drought conditions

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2018-01-01

    Full Text Available Resistance strategies of clonal organs, and parent and offspring shoots of Phragmites australis (common reed to heavy metal pollution in soils are not well known. To clarify the tolerance or resistance strategies in reeds, we conducted a pot experiment with five levels of Pb concentration (0∼4,500 mg kg−1 in flood and drought conditions. Lead toxicity had no inhibitory effect on the number of offspring shoots in flood environment; however, biomass accumulation, and photosynthetic and clonal growth parameters were inhibited in both water environment. At each treatment of Pb concentration, offspring shoots had greater biomass and higher photosynthesis indicators than parent shoots. The lowest Pb allocation was found in rhizomes. More of the Pb transported to above-ground parts tended to accumulate in parent shoots rather than in offspring shoots. Biomass and photosynthesis of offspring shoots, rhizome length, and the number of buds, rhizomes and offspring shoots in the flooded treatment were significantly greater than those in the drought treatment. Our results indicated that the tolerance strategies used by reeds, including higher biomass accumulation and photosynthesis in offspring shoots, low allocation of Pb in rhizomes and offspring shoots, and stable clonal growth, maintained the stability of population propagation and productivity, improving the resistance of reeds to Pb pollution in flood environment. However, the resistance or tolerance was significantly reduced by the synergistic effect of Pb and drought, which significantly inhibited biomass accumulation, photosynthesis, and clonal growth of reeds.

  8. Isolation, cloning, and characterization of a partial novel aro A gene in common reed (Phragmites australis).

    Science.gov (United States)

    Taravat, Elham; Zebarjadi, Alireza; Kahrizi, Danial; Yari, Kheirollah

    2015-05-01

    Among the essential amino acids, phenylalanine, tryptophan, and tyrosine are aromatic amino acids which are synthesized by the shikimate pathway in plants and bacteria. Herbicide glyphosate can inhibit the biosynthesis of these amino acids. So, identification of the gene tolerant to glyphosate is very important. It has been shown that the common reed or Phragmites australis Cav. (Poaceae) is relatively tolerant to glyphosate. The aim of the current research is identification, cloning, sequencing, and registering of partial aro A gene of the common reed P. australis. The partial aro A gene of common reed (P. australis) was cloned in Escherichia coli and the amino acid sequence was identified/determined for the first time. This is the first report for isolation, cloning, and sequencing of a part of aro A gene from the common reed. A 670 bp fragment including two introns (86 bp and 289 bp) was obtained. The open reading frame (ORF) region in part of gene was encoded for 98 amino acids. Alignment showed high similarity among this region with Zea mays (L.) (Poaceae) (94.6%), Eleusine indica L. Gaertn (Poaceae) (94.2%), and Zoysia japonica Steud. (Poaceae) (94.2%). The alignment of amino acid sequence of the investigated part of the gene showed a homology with aro A from several other plants. This conserved region forms the enzyme active site. The alignment results of nucleotide and amino acid residues with related sequences showed that there are some differences among them. The relative glyphosate tolerance in the common reed may be related to these differences.

  9. Environmental conditions in the Namskaket Marsh Area, Orleans, Massachusetts: A summary of studies by the U.S. Geological Survey, 1989–2011

    Science.gov (United States)

    Weiskel, Peter K.; Barbaro, Jeffrey R.; DeSimone, Leslie A.

    2016-09-23

    Namskaket Marsh and its tidal creek system are potential receptors for a treated wastewater plume originating from a septage treatment facility in the northwest part of Orleans, Massachusetts, on Cape Cod. From 1989 to 2011, the U.S. Geological Survey, in cooperation with State and local partners, conducted a series of studies in the Namskaket Marsh area to characterize the potential effects of the plume on the marsh and its tidal creek system. Studies included characterizing the baseline vegetation and salinity distribution in the marsh, monitoring the movement of the wastewater plume downgradient of the septage treatment facility, and sampling nutrient concentrations in the tidal creek system during a baseline period prior to the arrival of the plume at the marsh boundary. The Inner Namskaket Marsh baseline vegetation survey in 1995 found it to be dominated by Phragmites australis (common reed, 44 percent of vegetative cover), Spartina patens (salt marsh hay, 17 percent), and Spartina alterniflora (cordgrass, 9 percent). Phragmites occurrence was correlated with shallow pore-water salinity in the marsh peat and was largely confined to areas with salinities less than 4 parts per thousand. Baseline, ebb-tide nutrient concentrations at the tidal creek sampling stations during 1994–96 showed strong seasonal variations for ammonium, likely associated with the seasonal cycle of growth and senescence for the dominant salt marsh grasses (S. alterniflora and S. patens). The seasonal cycle for nitrate was generally less pronounced.

  10. Reeds as indicators of nutrient enrichment in a small temporarily ...

    African Journals Online (AJOL)

    Nutrient (NH4 and SRP) concentrations decreased from the bank towards the main estuary channel, suggesting that nutrients introduced into the estuary in groundwater and surface runoff were taken up by the fringe of reeds. The roots, rhizomes, stems and leaves of Phragmites at the site with the greatest Phragmites ...

  11. Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed from Lake Skadar, Montenegro

    Directory of Open Access Journals (Sweden)

    Kastratović Vlatko

    2013-01-01

    Full Text Available Due to its ability to accumulate metals, availability throughout the year and its large biomass, Phragmites australis (common reed is suitable for biomonitoring studies for the evaluation of load level of water ecosystem with trace metals. The heavy metals concentration in P.australis tissue can be several ten to several thousand times higher than those in the surrounding water. In this study we examined the content of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Sr and V in sediment, water and different organs of Phragmites australis collected from Lake Skadar, Montenegro, during different seasons of the year 2011. The highest concentrations of Sr were found in the leaves, while the other studied metals showed their highest concentrations in the roots. Thus, P. australis is considered a root bioaccumulation species. For most metals the concentration in roots and stems increases over time until the end of the growing season, and then decreases, while the concentration in leaves increases even after the growing season of the plant. If P. australis is used for phytoremediation purposes, then it should be harvested after the growing season because then the concentration of metals in the aboveground parts is maximal.

  12. Reeds as potential sources of alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Lodh, A B; Rao, P R

    1964-01-01

    Five species of reeds, Erianthus ravennae, Saccharum munja S. procerum, Phragmites communis, and Neyraudia reynaudiana yielded 25.02, 19.5, 24.11, 26.1, and 21.6% reducing sugars, repectively., when digested with 1% H/sub 2/SO/sub 4/ under 15lb/square inch for 3 hours. Fermentable sugars from hydrolyzates of the above reeds were 70.0, 34.5, 65.0, 28.0, and 67.5% respectively. This source can become important only in case of an acute demand for fermentation alcohol.

  13. Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis.

    Science.gov (United States)

    Rudrappa, Thimmaraju; Bais, Harsh P

    2008-01-01

    Chemical communication and perception strategies between plants are highly sophisticated but are only partly understood. Among the different interactions, the suppressive interaction of a class of chemicals released by one plant through root exudates against the neighbouring plants (allelopathy) have been implicated in the invasiveness of many exotic weedy species. Phragmites australis (common reed) is one of the dominant colonizers of the North American wetland marshes and exhibits invasive behavior by virtually replacing the entire native vegetation in its niche. Recently, by adopting a systematic bioassay driven approach we elucidated the role of root derived allelopathy as one of the important mechanisms by which P. australis exerts its invasive behavior. Additionally, our recent preliminary data indicates the involvement of rhizobacterial signaling in the invasive success of P. australis. A better understanding of biochemical weaponry used by P. australis will aid scientists and technologists in addressing the impact of root secretions in invasiveness of weedy species and thus promote a more informed environmental stewardship.

  14. Effects of invasive cordgrass on presence of Marsh Grassbird in an area where it is not native.

    Science.gov (United States)

    Ma, Zhijun; Gan, Xiaojing; Choi, Chi-Yeung; Li, Bo

    2014-02-01

    The threatened Marsh Grassbird (Locustella pryeri) first appeared in the salt marsh in east China after the salt marsh was invaded by cordgrass (Spartina alterniflora), a non-native invasive species. To understand the dependence of non-native Marsh Grassbird on the non-native cordgrass, we quantified habitat use, food source, and reproductive success of the Marsh Grassbird at the Chongming Dongtan (CMDT) salt marsh. In the breeding season, we used point counts and radio-tracking to determine habitat use by Marsh Grassbirds. We analyzed basal food sources of the Marsh Grassbirds by comparing the δ(13) C isotope signatures of feather and fecal samples of birds with those of local plants. We monitored the nests through the breeding season and determined the breeding success of the Marsh Grassbirds at CMDT. Density of Marsh Grassbirds was higher where cordgrass occurred than in areas of native reed (Phragmites australis) monoculture. The breeding territory of the Marsh Grassbird was composed mainly of cordgrass stands, and nests were built exclusively against cordgrass stems. Cordgrass was the major primary producer at the base of the Marsh Grassbird food chain. Breeding success of the Marsh Grassbird at CMDT was similar to breeding success within its native range. Our results suggest non-native cordgrass provides essential habitat and food for breeding Marsh Grassbirds at CMDT and that the increase in Marsh Grassbird abundance may reflect the rapid spread of cordgrass in the coastal regions of east China. Our study provides an example of how a primary invader (i.e., cordgrass) can alter an ecosystem and thus facilitate colonization by a second non-native species. © 2013 Society for Conservation Biology.

  15. Fate of xenobiotic compounds and plants activity in reed bed sludge treatment

    DEFF Research Database (Denmark)

    Chen, Xijuan; Pauli, Udo; Rehfus, Stefan

    different plants: bulrush (Typha), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea) were planted into 12 containers with a size of 1m Х 1m X 1m which were builded with 20cm gravel and 50cm sludge to study the plants activity in sludge degradation process, 4 containers were left...

  16. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)

    NARCIS (Netherlands)

    Struyf, E.; van Damme, S.; Gribsholt, B.; Middelburg, J.J.; Meire, P.

    2005-01-01

    To date, estuarine ecosystem research has mostly neglected silica cycling in freshwater intertidal marshes. However, tidal marshes can store large amounts of biogenic silica (BSi) in vegetation and sediment. BSi content of the typical freshwater marsh plants Phragmites australis, Impatiens

  17. Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viktor R. Tóth

    2018-06-01

    Full Text Available Littoral zones of freshwater lakes are exposed to environmental impacts from both terrestrial and aquatic sides, while substantial anthropogenic pressure also affects the high spatial, and temporal variability of the ecotone. In this study, the possibility of monitoring seasonal and spatial changes in reed (Phragmites australis stands using an unmanned aerial vehicle (UAV based remote sensing technique was examined. Stands in eutrophic and mesotrophic parts of Lake Balaton including not deteriorating (stable and deteriorating (die-back patches, were tracked throughout the growing season using a UAV equipped with a Normalized Difference Vegetation Index (NDVI camera. Photophysiological parameters of P. australis were also measured with amplitude modulated fluorescence. Parameters characterizing the dynamics of seasonal changes in NDVI data were used for phenological comparison of eutrophic and mesotrophic, stable and die-back, terrestrial and aquatic, mowed and not-mowed patches of reed. It was shown that stable Phragmites plants from the eutrophic part of the lake reached specific phenological stages up to 3.5 days earlier than plants from the mesotrophic part of the lake. The phenological changes correlated with trophic (total and nitrate-nitrite nitrogen and physical (organic C and clay content properties of the sediment, while only minor relationships with air and water temperature were found. Phenological differences between the stable and die-back stands were even more pronounced, with ~34% higher rates of NDVI increase in stable than die-back patches, while the period of NDVI increase was 16 days longer. Aquatic and terrestrial parts of reed stands showed no phenological differences, although intermediate areas (shallow water parts of stands were found to be less vigorous. Winter mowing of dried Phragmites sped up sprouting and growth of reed in the spring. This study showed that remote sensing-derived photophysiological and phenological

  18. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China

    DEFF Research Database (Denmark)

    Olsson, L.; Ye, S.; Wei, M.

    2015-01-01

    temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda...

  19. Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis)

    Science.gov (United States)

    White, James F.; Kingsley, Katheryn I; Kowalski, Kurt P.; Irizarry, Ivelisse; Micci, April; Soares, Marcos Antonio; Bergen, Marshall S.

    2018-01-01

    Background and aimsNon-native Phragmites australis (haplotype M) is an invasive grass that decreases biodiversity and produces dense stands. We hypothesized that seeds of Phragmites carry microbes that improve seedling growth, defend against pathogens and maximize capacity of seedlings to compete with other plants.MethodsWe isolated bacteria from seeds of Phragmites, then evaluated representatives for their capacities to become intracellular in root cells, and their effects on: 1.) germination rates and seedling growth, 2.) susceptibility to damping-off disease, and 3.) mortality and growth of competitor plant seedlings (dandelion (Taraxacum officionale F. H. Wigg) and curly dock (Rumex crispus L.)).ResultsTen strains (of 23 total) were identified and characterized; seven were identified as Pseudomonas spp. Strains Sandy LB4 (Pseudomonas fluorescens) and West 9 (Pseudomonas sp.) entered root meristems and became intracellular. These bacteria improved seed germination in Phragmites and increased seedling root branching in Poa annua. They increased plant growth and protected plants from damping off disease. Sandy LB4 increased mortality and reduced growth rates in seedlings of dandelion and curly dock.ConclusionsPhragmites plants associate with endophytes to increase growth and disease resistance, and release bacteria into the soil to create an environment that is favorable to their seedlings and less favorable to competitor plants.

  20. Methane emission from tidal freshwater marshes

    NARCIS (Netherlands)

    Van der Nat, F.J.; Middelburg, J.J.

    2000-01-01

    In two tidal freshwater marshes, methane emission, production and accumulation in the pore-water have been studied. The two sites differ in their dominant vegetation, i.e., reed and bulrush, and in their heights above sea level. The reed site was elevated in relation to the bulrush site and had

  1. Nitrogen assimilation and short term retention in a nutrient-rich tidal freshwater marsh – a whole ecosystem 15N enrichment study

    Directory of Open Access Journals (Sweden)

    B. Gribsholt

    2007-01-01

    Full Text Available An intact tidal freshwater marsh system (3477 m2 was labelled by adding 15N-ammonium as a tracer to the flood water inundating the ecosystem. The appearance and retention of 15N-label in different marsh components (leaves, roots, sediment, leaf litter and invertebrate fauna was followed over 15 days. This allowed us to elucidate the direct assimilation and dependence on creek-water nitrogen on a relatively short term and provided an unbiased assessment of the relative importance of the various compartments within the ecosystem. Two separate experiments were conducted, one in spring/early summer (May 2002 when plants were young and building up biomass; the other in late summer (September 2003 when macrophytes were in a flowering or early senescent state. Nitrogen assimilation rate (per hour inundated was >3 times faster in May compared to September. On both occasions, however, the results clearly revealed that the less conspicuous compartments such as leaf litter and ruderal vegetations are more important in nitrogen uptake and retention than the prominent reed (Phragmites australis meadows. Moreover, short-term nitrogen retention in these nutrient rich marshes occurs mainly via microbial pathways associated with the litter and sediment. Rather than direct uptake by macrophytes, it is the large reactive surface area provided by the tidal freshwater marsh vegetation that is most crucial for nitrogen transformation, assimilation and short term retention in nutrient rich tidal freshwater marshes. Our results clearly revealed the dominant role of microbes in initial nitrogen retention in marsh ecosystems.

  2. Persistent Reductions in the Bioavailability of PCBs at a Tidally Inundated Phragmites australis Marsh Amended with Activated Carbon.

    Science.gov (United States)

    Sanders, James P; Andrade, Natasha A; Menzie, Charles A; Amos, C Bennett; Gilmour, Cynthia C; Henry, Elizabeth A; Brown, Steven S; Ghosh, Upal

    2018-06-05

    In situ amendment of sediments with highly sorbent materials like activated carbon (AC) is an increasingly viable strategy to reduce the bioavailability of persistent, sediment-associated contaminants to benthic communities. Because in situ sediment remediation is an emerging strategy, much remains to be learned about the field conditions under which amendments can be effective, the resilience of amendment materials toward extreme weather conditions, and the optimal design of engineered applications. Here we report the results of a multi-year, pilot-scale field investigation designed to measure the persistence and efficacy of AC amendments to reduce the bioavailability of polychlorinated biphenyls (PCBs) in an intertidal Phragmites marsh. The amendments tested were granular AC (GAC), GAC with a layer of sand, and a pelletized fine AC. Key metrics presented include vertically-resolved black carbon concentrations in sediment and PCB concentrations in sediment, porewater, and several invertebrate species. The results demonstrate that all three amendments withstood Hurricane Sandy and remained in place for the duration of the study, successfully reducing porewater PCB concentrations by 34-97%. Reductions in invertebrate bioaccumulation were observed in all amendment scenarios, with pelletized fine AC producing the most pronounced effect. Our findings support the use of engineered AC amendments in intertidal marshes, and can be used to inform amendment design, delivery, and monitoring at other contaminated sediment sites. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. The effects of litter on growth and plasticity of Phragmites australis clones originating from infertile, fertile or eutrophicated habitats

    NARCIS (Netherlands)

    Clevering, O.A.

    1999-01-01

    In many European countries a strong decline of Phragmites australis (Cav.) Trin. Ex Steudel (common reed) has been observed. In some instances this decline has been related to the accumulation of litter. A greenhouse experiment was conducted with P. australis cuttings from different stable and

  4. Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Zirovski vrh

    Energy Technology Data Exchange (ETDEWEB)

    Cerne, Marko, E-mail: marko.cerne@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Smodis, Borut, E-mail: borut.smodis@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Strok, Marko, E-mail: marko.strok@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    From uranium mining areas, in particular, the radionuclides are usually discharged to the environment during the mining and milling process. At the former uranium mine Zirovski vrh, Slovenia, mine waste and mill tailings were deposited at the Jazbec site and the Borst site, respectively. Plants grown in soils contaminated with the seepage waters from tailings may represent radiological concern if radionuclides from the uranium decay chain are transferred into the food chain. Uranium is usually accumulated in the roots and translocated to the shoots in limited amounts. Uranium plant accumulators are usually plants from Brassicaceae and Poaceae families. A common reed (Phragmites australis (Cav.) Trin. ex Steud.), a tall perennial grass, growing in a wetland habitats, accumulates metals in the above-ground parts. It may be used for phytoremediation of uranium-contaminated soils, because of high biomass production and high metal-accumulation potential. Preliminary results of radionuclide contents measured in such plants, growing on the deposit tailings are presented. A common reed, that was grown on the Borst tailings pile accumulated 8.6 {+-} 8 mBq/g dry weight (d.w.) and 2.4 {+-} 2 mBq/g dry weight (d.w.) of {sup 238}U in leaves and stems, respectively. In the paper, activity concentrations of other nuclides, i.e. {sup 226}Ra, {sup 210}Pb and {sup 40}K are also shown and discussed.

  5. Quantification of environment-driven changes in epiphytic macroinvertebrate communities associated to Phragmites australis

    OpenAIRE

    Miguel CAÑEDO-ARGÜELLES; Maria RIERADEVALL

    2009-01-01

    The epiphytic macroinvertebrate communities associated with the Common Reed, Phragmites australis (Cav.) Trin. ex Steudel, were examined seasonally from summer 2004 to spring 2005 in eleven coastal lagoons of the Llobregat Delta (NE Spain) following the method proposed by Kornijów & Kairesalo (1994). The aims of the study were to: 1) characterise and quantify changes in epiphytic macroinvertebrate communities along environmental gradients; 2) assess the contribution of elements of the epi...

  6. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  7. High Spatial resolution remote sensing for salt marsh change detection on Fire Island National Seashore

    Science.gov (United States)

    Campbell, A.; Wang, Y.

    2017-12-01

    Salt marshes are under increasing pressure due to anthropogenic stressors including sea level rise, nutrient enrichment, herbivory and disturbances. Salt marsh losses risk the important ecosystem services they provide including biodiversity, water filtration, wave attenuation, and carbon sequestration. This study determines salt marsh change on Fire Island National Seashore, a barrier island along the south shore of Long Island, New York. Object-based image analysis was used to classifying Worldview-2, high resolution satellite, and topobathymetric LiDAR. The site was impacted by Hurricane Sandy in October of 2012 causing a breach in the Barrier Island and extensive overwash. In situ training data from vegetation plots were used to train the Random Forest classifier. The object-based Worldview-2 classification achieved an overall classification accuracy of 92.75. Salt marsh change for the study site was determined by comparing the 2015 classification with a 1997 classification. The study found a shift from high marsh to low marsh and a reduction in Phragmites on Fire Island. Vegetation losses were observed along the edge of the marsh and in the marsh interior. The analysis agreed with many of the trends found throughout the region including the reduction of high marsh and decline of salt marsh. The reduction in Phragmites could be due to the species shrinking niche between rising seas and dune vegetation on barrier islands. The complex management issues facing salt marsh across the United States including sea level rise and eutrophication necessitate very high resolution classification and change detection of salt marsh to inform management decisions such as restoration, salt marsh migration, and nutrient inputs.

  8. Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment

    DEFF Research Database (Denmark)

    Flury, Sabine; McGinnis, Daniel Frank; Gessner, Mark O.

    2010-01-01

    We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel ...... to the atmosphere, even when they occupy only relatively small littoral areas. More detailed investigations are clearly needed to assess whether global warming and nitrogen deposition can have climate feedbacks by altering methane fluxes from these wetlands.  ......We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel...... traps deployed in a series of enclosures for two 3 week periods. Diffusive fluxes were estimated on the basis of measured CH4 concentrations and application of Fick's law. Neither diffusive nor ebullitive fluxes of methane were significantly affected by warming or nitrate enrichment, possibly because...

  9. Nitrous oxide emissions from Phragmites australis-dominated zones in a shallow lake

    International Nuclear Information System (INIS)

    Yang Zhifeng; Zhao Ying; Xia Xinghui

    2012-01-01

    Nitrous oxide (N 2 O) emissions from Phragmites australis (reed) – dominated zones in Baiyangdian Lake, the largest shallow lake of Northern China, were investigated under different hydrological conditions with mesocosm experiments during the growing season of reeds. The daily and monthly N 2 O emissions were positively correlated with air temperature and the variation of aboveground biomass of reeds (p 2 O emissions from reeds were about 45.8–52.8% of that from the sediments. In terms of the effect of hydrological conditions, N 2 O emissions from the aquatic-terrestrial ecotone were 9.4–26.1% higher than the submerged zone, inferring that the variation of water level would increase N 2 O emissions. The annual N 2 O emission from Baiyangdian Lake was estimated to be about 114.2 t. This study suggested that N 2 O emissions from shallow lakes might be accelerated by the climate change as it has increased air temperature and changed precipitation, causing the variation of water level. - Highlights: ► The daily N 2 O emissions were significant positively correlated with air temperature. ► The monthly N 2 O emissions positively correlated with reed aboveground biomass variations. ► The N 2 O emissions from reeds contributed to 45.8–52.8% of that from the sediment. ► N 2 O emissions from the aquatic-terrestrial ecotone were 9.4–26.1% higher than the submerged zone. ► N 2 O emissions from shallow lakes might be accelerated by the climate change. - The increase of air temperature and water level variation would increase N 2 O emissions, suggesting N 2 O emissions from shallow lakes might be accelerated by climate change.

  10. Bioaccumulation of metals in reeds collected from an acid mine drainage contaminated site in winter and spring.

    Science.gov (United States)

    Guo, Lin; Cutright, Teresa J

    2016-01-01

    Wetland plants such as Phragmites australis has been used to treat acid mine drainage (AMD) contaminated soil which is a serious environmental issue worldwide. This project investigated metal plaque content(s) and metal uptake in reeds grown in an AMD field in winter and spring. The results indicated that the level of Fe plaque was much higher than Mn and Al plaque as the soil contained more Fe than Al and Mn. The amounts of Mn and Al plaque formed on reeds in spring were not significantly different from that in winter (p > .05). However, more Fe plaque was formed on reeds collected in spring. The concentrations of metals in underground organs were positively related to the metal levels in soils. More Mn and Al transferred to the aboveground tissues of reeds during the spring while the Fe levels in reeds did not significantly vary with seasons. Roots and rhizomes were the main organs for Fe sequestration (16.3 ± 4.15 mg/g in roots in spring) while most Al was sequestered in the shoots of reeds (2.05 ± 0.09 mg/g in shoots in spring). Further research may be needed to enhance the translocation of metals in reeds and increase the phytoremediation efficiency.

  11. ALL THAT "PHRAG": BRINGING ENGINEERING, WETLAND ECOLOGY, ENVIRONMENTAL SCIENCE, AND LANDSCAPE ECOLOGY TO BEAR ON THE QUESTION OF COMMON REED IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  12. Use of biological indexes of the common reed (Phragmites australis) seed progeny in the environmental safety of radioactive contaminated water bodies

    Energy Technology Data Exchange (ETDEWEB)

    Yavnyuk, A. [National Aviation University, Kiev (Ukraine); Shevtsova, N.; Gudkov, D. [Institute of Hydrobiology of the National Academy of Sciences, Kiev (Ukraine)

    2014-07-01

    Environmental protection requires effective monitoring system of radionuclide contamination and radiobiological effects as well as development of their prevention and minimizing measures for humans and biota. There is a majority of conventional techniques for living organisms' habitat quality assessment. One of the most widespread, convenient and accessible ones, is the seed progeny analysis, for example of conifers, cereals and wild herbaceous plants. Availability of vitality, growth, mutability indexes and abnormalities of vascular plant germs for environment quality express assessment was discussed in numerous publications. However, this point is studied insufficiently concerning aquatic vascular plants, forming communities playing significant role in radionuclides distribution in contaminated water bodies. Common reed (Phragmites australis (Trin) Ex. Steud) is a widespread species mostly dominating in air-aquatic vascular plant communities of freshwater bodies; it is a first-order {sup 137}Cs and {sup 90}Sr accumulating species. To assess the common reed germs growth indexes availability, seeds were sampled in polygon water bodies of different radionuclide contamination levels and 0.7-22 mcGy h{sup -1} total absorbed dose range, within the Chernobyl Exclusion Zone. In water bodies with background level of radionuclide contamination, for comparison, total absorbed dose varied in range of 0.03-0.3 mcGy h{sup -1}. Series of seeds germination experiments was carried out in laboratory conditions. Complex of germs indexes was investigated, conditionally divided into three groups: (1) Vitality indexes. In course of experiment series, vitality was assessed via germinating energy, germinating ability indexes, germination period (first and last germ appearance) and survivability study; (2) Growth indexes. Root and leaf length, occurrence of plant groups with different vegetative organs length were determined for germs growth speed assessment; (3) Teratological

  13. Host plant development, water level and water parameters shape Phragmites australis-associated oomycete communities and determine reed pathogen dynamics in a large lake.

    Science.gov (United States)

    Wielgoss, Anna; Nechwatal, Jan; Bogs, Carolin; Mendgen, Kurt

    2009-08-01

    In a 3-year-study, we analysed the population dynamics of the reed pathogen Pythium phragmitis and other reed-associated oomycetes colonizing fresh and dried reed leaves in the littoral zone of a large lake. Oomycete communities derived from internal transcribed spacer clone libraries were clearly differentiated according to substrate and seasonal influences. In fresh leaves, diverse communities consisting of P. phragmitis and other reed-associated pathogens were generally dominant. Pythium phragmitis populations peaked in spring with the emergence of young reed shoots, and in autumn after extreme flooding events. In summer it decreased with falling water levels, changing water chemistry and rising temperatures. Another Pythium species was also highly abundant in fresh leaves throughout the year and might represent a new, as-yet uncultured reed pathogen. In dried leaves, reed pathogens were rarely detected, whereas saprophytic species occurred abundantly during all seasons. Saprophyte communities were less diverse, less temperature sensitive and independent of reed development. In general, our results provide evidence for the occurrence of highly specialized sets of reed-associated oomycetes in a natural reed ecosystem. Quantitative analyses (clone abundances and quantitative real-time PCR) revealed that the reed pathogen P. phragmitis is particularly affected by changing water levels, water chemistry and the stage of reed development.

  14. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis)

    International Nuclear Information System (INIS)

    Teuchies, J.; Deckere, E. de; Bervoets, L.; Meynendonckx, J.; Regenmortel, S. van; Blust, R.; Meire, P.

    2008-01-01

    A historical input of trace metals into tidal marshes fringing the river Scheldt may be a cause for concern. Nevertheless, the specific physicochemical form, rather than the total concentration, determines the ecotoxicological risk of metals in the soil. In this study the effect of tidal regime on the distribution of trace metals in different compartments of the soil was investigated. As, Cd, Cu and Zn concentrations in sediment, pore water and in roots were determined along a depth profile. Total sediment metal concentrations were similar at different sites, reflecting pollution history. Pore water metal concentrations were generally higher under less flooded conditions (mean is (2.32 ± 0.08) x 10 -3 mg Cd L -1 and (1.53 ± 0.03) x 10 -3 mg Cd L -1 ). Metal concentrations associated with roots (mean is 202.47 ± 2.83 mg Cd kg -1 and 69.39 ± 0.99 mg Cd kg -1 ) were up to 10 times higher than sediment (mean is 20.48 ± 0.19 mg Cd kg -1 and 20.42 ± 0.21 mg Cd kg -1 ) metal concentrations and higher under dryer conditions. Despite high metal concentrations associated with roots, the major part of the metals in the marsh soil is still associated with the sediment as the overall biomass of roots is small compared to the sediment. - Pore water metal concentrations and metal root plaque concentration are influenced by the tidal regime

  15. Cosmopolitan species as ecophysiological models for responses to global change: the common reed Phragmites australis

    Czech Academy of Sciences Publication Activity Database

    Eller, F.; Skálová, Hana; Caplan, J. S.; Bhattarai, G. P.; Burger, M. K.; Cronin, J. T.; Guo, Wen-Yong; Guo, X.; Hazelton, E. L. G.; Kettenring, K. M.; Lambertini, C.; McCormick, M. K.; Meyerson, L. A.; Mozdzer, T. J.; Pyšek, Petr; Sorrell, B. K.; Whigham, D. F.; Brixi, H.

    2017-01-01

    Roč. 8, NOV 16 (2017), s. 1-24, č. článku 1833. ISSN 1664-462X R&D Projects: GA ČR GB14-36079G; GA ČR(CZ) GA14-15414S Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : Phragmites * ecophysiology * global change Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.298, year: 2016

  16. Determining the best phenological state for accurate mapping of Phragmites australis in wetlands using time series multispectral satellite data

    Science.gov (United States)

    Rupasinghe, P. A.; Markle, C. E.; Marcaccio, J. V.; Chow-Fraser, P.

    2017-12-01

    Phragmites australis (European common reed), is a relatively recent invader of wetlands and beaches in Ontario. It can establish large homogenous stands within wetlands and disperse widely throughout the landscape by wind and vehicular traffic. A first step in managing this invasive species includes accurate mapping and quantification of its distribution. This is challenging because Phragimtes is distributed in a large spatial extent, which makes the mapping more costly and time consuming. Here, we used freely available multispectral satellite images taken monthly (cloud free images as available) for the calendar year to determine the optimum phenological state of Phragmites that would allow it to be accurately identified using remote sensing data. We analyzed time series, Landsat-8 OLI and Sentinel-2 images for Big Creek Wildlife Area, ON using image classification (Support Vector Machines), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). We used field sampling data and high resolution image collected using Unmanned Aerial Vehicle (UAV; 8 cm spatial resolution) as training data and for the validation of the classified images. The accuracy for all land cover classes and for Phragmites alone were low at both the start and end of the calendar year, but reached overall accuracy >85% by mid to late summer. The highest classification accuracies for Landsat-8 OLI were associated with late July and early August imagery. We observed similar trends using the Sentinel-2 images, with higher overall accuracy for all land cover classes and for Phragmites alone from late July to late September. During this period, we found the greatest difference between Phragmites and Typha, commonly confused classes, with respect to near-infrared and shortwave infrared reflectance. Therefore, the unique spectral signature of Phragmites can be attributed to both the level of greenness and factors related to water content in the leaves during late

  17. Long-term ionizing radiation impact on seed progeny of common reed in water bodies of the Chernobyl exclusive zone

    International Nuclear Information System (INIS)

    Shevtsova, N.L.; Yavnyuk, A.A.; Gudkov, D.Yi.

    2012-01-01

    Results of the investigation of common reed's (Phragmites australis (Trin) Ex. Steud.) biological characteristics under conditions of long-term ionizing radiation impact are represented. Indices of seeds' vitality and disorders are analyzed. Low vitality indices, significant ontogenesis disorders, and high percent of abnormalities of germs are determined in water bodies, where littoral plants receive the absorbed dose in a low-dose range of 1-12 cGy year -1 .

  18. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes

    Science.gov (United States)

    Kowalski, Kurt P.; Bacon, Charles R.; Bickford, Wesley A.; Braun, Heather A.; Clay, Keith; Leduc-Lapierre, Michele; Lillard, Elizabeth; McCormick, Melissa K.; Nelson, Eric; Torres, Monica; White, James W. C.; Wilcox, Douglas A.

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis andPhragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.

  19. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes.

    Science.gov (United States)

    Kowalski, Kurt P; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.

  20. Removal of personal care compounds from sewage sludge in reed bed container (lysimeter) studies--effects of macrophytes.

    Science.gov (United States)

    Chen, Xijuan; Pauly, Udo; Rehfus, Stefan; Bester, Kai

    2009-10-15

    Sludge reed beds have been used for dewatering (draining and evapotranspiration) and mineralisation of sludge in Europe since 1988. Although reed beds are considered as a low cost and low contamination method in reducing volume, breaking down organic matter and increasing the density of sludge, it is not yet clear whether this enhanced biological treatment is suitable for degradation of organic micro-pollutants such as personal care products. Within this project the effect of biological sludge treatment in a reed bed on reducing the concentrations of the fragrances HHCB, AHTN, OTNE was studied as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined. Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted into containers (lysimeters) with a size of 1 m x 1 m x 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20-30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under environmental conditions. The reduction is most likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 10 years for reed beds, an assessment was made for the whole life time.

  1. An investigation of the possibility of mercury phytoremediation from Bandar ImamChlor-alkali plants' wastewater using Phragmites australis

    International Nuclear Information System (INIS)

    Tayebi, L.; Hamidian, A.H.; Danehkar, A.; Poorbagher, H.

    2016-01-01

    The Petrochemical industry is the most important and most widely active industries in the country. Due to the variety and complexity of industrial products, it also produces a wild range of pollutants. Mercury waste disposal from Chlor-alkali units is one of the fundamental problems of this industry. Various studies have shown that Phytoremediation system for removal of mercury from aqueous solutions is very efficient and, in some cases up to 95% of mercury has been removed from the solution. The purpose of this study was to evaluate the ability of common reed (Phragmites australis) in the removal of mercury from the Chlor-alkali effluent in Bandar Imam Petrochemical. Plant samples Harvested from Shadegan wetland were cultured hydroponically in plastic aquariums. Effluent samples which were taken from Chlor-alkali plants were added to the culture medium. An aquarium containing wastewater, water and nutrients was considered as control. Mercury concentrations in water and plant at 1, 3, 5 and 7 days were measured by Varian Spectra 220 Atomic Absorption Spectroscopy. The results showed that Time has a direct effect on mercury up taking by common reed. The common Reed absorption average was 2657.25 ppm within 7 days, that shows a high capacity of mercury absorption from Chlor-alkali plant effluents. Also In the study period, 96.25% of mercury were removed from common reed aquarium effulgent water.

  2. Removal of personal care compounds from sewage sludge in reed bed container (lysimeter) studies - Effects of macrophytes

    DEFF Research Database (Denmark)

    Chen, Xijuan; Pauly, Udo; Rehfus, Stefan

    2009-01-01

    as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined. Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted...... into containers (lysimeters) with a size of 1 m × 1 m × 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20-30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under...... environmental conditions. The reduction is most likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 10 years...

  3. Coatal salt marshes and mangrove swamps in China

    Science.gov (United States)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  4. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Teixeira, Catarina; Almeida, C. Marisa R.; Nunes da Silva, Marta; Bordalo, Adriano A.; Mucha, Ana P.

    2014-01-01

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed

  5. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  6. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant.

    Science.gov (United States)

    Tokuyama, Tatsuaki; Mine, Atsusi; Kamiyama, Kaoru; Yabe, Ryuichi; Satoh, Kazuo; Matsumoto, Hirotoshi; Takahashi, Reiji; Itonaga, Koji

    2004-01-01

    An ammonia-oxidizing bacterium (strain YNSRA) was isolated from the rhizoplane of the reed (Phragmites communis) used in an aquaponics plant which is a wastewater treatment plant. Strain YNSRA was identified as Nitrosomonas communis by taxonomic studies. The hydroxylamine-cytochrome c reductase (HCR) of strain YNSRA was found to have a higher activity (25.60 u/mg) than that of Nitrosomonas europaea ATCC25978T (8.94 u/mg). Ribulose-1,5-bisphosphate carboxylase (RubisCO) activity was detected at very low levels in strain YNSRA, whereas strain ATCC25978T had definite activity.

  7. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China.

    Directory of Open Access Journals (Sweden)

    Lexuan Gao

    Full Text Available Determination of spatial genetic structure (SGS in natural populations is important for both theoretical aspects of evolutionary genetics and their application in species conservation and ecological restoration. In this study, we examined genetic diversity within and among the natural populations of a cosmopolitan grass Phragmites australis (common reed in the Yellow River Delta (YRD, China, where a mosaic of habitat patches varying in soil salinity was detected. We demonstrated that, despite their close geographic proximity, the common reed populations in the YRD significantly diverged at six microsatellite loci, exhibiting a strong association of genetic variation with habitat heterogeneity. Genetic distances among populations were best explained as a function of environmental difference, rather than geographical distance. Although the level of genetic divergence among populations was relatively low (F'(ST =0.073, weak but significant genetic differentiation, as well as the concordance between ecological and genetic landscapes, suggests spatial structuring of genotypes in relation to patchy habitats. These findings not only provided insights into the population dynamics of common reed in changing environments, but also demonstrated the feasibility of using habitat patches in a mosaic landscape as test systems to identify appropriate genetic sources for ecological restoration.

  8. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    Science.gov (United States)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  9. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    Directory of Open Access Journals (Sweden)

    Kimberly L Dibble

    Full Text Available Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water, recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1 while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological

  10. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data

    Science.gov (United States)

    Luo, Shezhou; Wang, Cheng; Xi, Xiaohuan; Pan, Feifei; Qian, Mingjie; Peng, Dailiang; Nie, Sheng; Qin, Haiming; Lin, Yi

    2017-06-01

    Wetland biomass is essential for monitoring the stability and productivity of wetland ecosystems. Conventional field methods to measure or estimate wetland biomass are accurate and reliable, but expensive, time consuming and labor intensive. This research explored the potential for estimating wetland reed biomass using a combination of airborne discrete-return Light Detection and Ranging (LiDAR) and hyperspectral data. To derive the optimal predictor variables of reed biomass, a range of LiDAR and hyperspectral metrics at different spatial scales were regressed against the field-observed biomasses. The results showed that the LiDAR-derived H_p99 (99th percentile of the LiDAR height) and hyperspectral-calculated modified soil-adjusted vegetation index (MSAVI) were the best metrics for estimating reed biomass using the single regression model. Although the LiDAR data yielded a higher estimation accuracy compared to the hyperspectral data, the combination of LiDAR and hyperspectral data produced a more accurate prediction model for reed biomass (R2 = 0.648, RMSE = 167.546 g/m2, RMSEr = 20.71%) than LiDAR data alone. Thus, combining LiDAR data with hyperspectral data has a great potential for improving the accuracy of aboveground biomass estimation.

  11. Plant distribution and stand characteristics in brackish marshes: Unravelling the roles of abiotic factors and interspecific competition

    Science.gov (United States)

    Carus, Jana; Heuner, Maike; Paul, Maike; Schröder, Boris

    2017-09-01

    Due to increasing pressure on estuarine marshes from sea level rise and river training, there is a growing need to understand how species-environment relationships influence the zonation and growth of tidal marsh vegetation. In the present study, we investigated the distribution and stand characteristics of the two key brackish marsh species Bolboschoenus maritimus and Phragmites australis in the Elbe estuary together with several abiotic habitat factors. We then tested the effect of these habitat factors on plant growth and zonation with generalised linear models (GLMs). Our study provides detailed information on the importance of single habitat factors and their interactions for controlling the distribution patterns and stand characteristics of two key marsh species. Our results suggest that flow velocity is the main factor influencing species distribution and stand characteristics and together with soil-water salinity even affects the inundation tolerance of the two specie investigated here. Additionally, inundation height and duration as well as interspecific competition helped explain the distribution patterns and stand characteristics. By identifying the drivers of marsh zonation and stand characteristics and quantifying their effects, this study provides useful information for evaluating a future contribution of tidal marsh vegetation to ecosystem-based shore protection.

  12. Can nutrient enrichment influence the invasion of Phragmites australis?

    Science.gov (United States)

    Uddin, Md Nazim; Robinson, Randall William

    2018-02-01

    Plant invasion and nutrient enrichment because of anthropogenic landscape modifications seriously threaten native plant community diversity in aquatic and wetland ecosystems. It is poorly understood, however, whether these two disturbances interact with the functional identity of recipient native plants to drive community change. We performed combined studies in the fields and greenhouse to examine whether nutrient enrichment may trigger the invasion of Phragmites australis in wetlands through competitive advantage over native Melaleuca ericifolia. Chemical characterizations of rhizosphere water were distinguished in two different nutrient enriched wetlands associated with and without Phragmites over the seasons. Significant changes in rhizosphere water were observed in invaded area compared to uninvaded area at both sites. High nitrogen (NO 3 - ), phosphorous (PO 4 3- ), dissolved organic carbon, phenolics contents, with low pH were found in invaded areas compared to uninvaded areas. Total biomass of Phragmites was positively regressed with rhizosphere water nitrogen (NO 3 - ) and phosphorous (PO 4 3- ) content. Nutrient addition significantly enhanced the growth and competitive ability of Phragmites over Melaleuca. In contrast, Melaleuca was significantly less competitive than Phragmites. There was a significantly positive correlation between the growth of Phragmites grown alone and its competitive ability. The findings in greenhouse studies coupled with characteristics of Phragmites and its' rhizosphere chemistry in the nutrient enriched fields suggest that nutrient enrichment may enhance Phragmites invasion through correspondingly increasing growth and maintaining inherent competitive advantages of Phragmites. Nutrient management could limit the vigorous growth of Phragmites in wetlands and thereby reduce invasion through competitive advantages over natives, which might have important management implications for wetland managers. Copyright © 2017. Published by

  13. Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland.

    Science.gov (United States)

    Lilley, Thomas M; Meierjohann, Axel; Ruokolainen, Lasse; Peltonen, Jani; Vesterinen, Eero; Kronberg, Leif; Nikinmaa, Mikko

    2012-08-01

    Due to their adsorptive behavior, organotin compounds (OTCs), such as tributyltin (TBT), are accumulated in aquatic sediments. They resist biodegradation and, despite a ban in 2008, are a potential source for future exposure. Sediment OTCs have mostly been measured from sites of known high concentrations such as ports, shipping lanes, and marine dredging waste sites. The possible flow of OTCs from marine to terrestrial ecosystems, however, has not been studied. In the present study, the authors assessed whether sediments in common reed beds (Phragmites australis) accumulate TBT and whether chironomid (Diptera: Chironomidae) communities developing in reed-bed sediments act as vectors in the transfer of TBT from aquatic to terrestrial ecosystems in the Airisto channel, Archipelago Sea. The authors also investigated whether distance from the only known source and depth and TBT concentration of the adjacent shipping lane affect reed-bed concentrations. Thirty-six sites along the Airisto channel were sampled at 2-km intervals with triplicate samples from reed beds and the adjacent shipping lane for sediment and seven reed-bed sites for chironomids, and these were analyzed with an solid phase extraction liquid chromatography tamdem mass spectrometry method. The closer to the source the sample site was, the higher the measured TBT concentrations were; and the deeper the shipping lane, the lower the concentration of TBT in reed-bed sediments. The chironomid TBT concentrations correlated with reed-bed sediment TBT concentrations and showed evidence of accumulation. Therefore, TBT may be transferred, through the food web, from aquatic to terrestrial ecosystems relatively close to a source through ecosystem boundaries, such as common reed beds, which are areas of high insect biomass production in the Archipelago Sea. Copyright © 2012 SETAC.

  14. Analysis of in situ water velocity distributions in the lowland river floodplain covered by grassland and reed marsh habitats - a case study of the bypass channel of Warta River (Western Poland

    Directory of Open Access Journals (Sweden)

    Laks Ireneusz

    2017-12-01

    Full Text Available The analysis of in situ measurements of velocity distribution in the floodplain of the lowland river has been carried out. The survey area was located on a bypass channel of the Warta River (West of Poland which is filled with water only in case of flood waves. The floodplain is covered by grassland and reed marsh habitats. The velocity measurements were performed with an acoustic Doppler current profiler (ADCP in a cross-section with a bed reinforced with concrete slabs. The measured velocities have reflected the differentiated impact of various vegetation types on the loss of water flow energy. The statistical analyses have proven a relationship between the local velocities and the type of plant communities.

  15. Phosphorus storage and mobilization in coastal Phragmites wetlands: Influence of local-scale hydrodynamics

    Science.gov (United States)

    Karstens, Svenja; Buczko, Uwe; Glatzel, Stephan

    2016-04-01

    Coastal Phragmites wetlands are at the interface between terrestrial and aquatic ecosystems and are of paramount importance for nutrient regulation. They can act both as sinks and sources for phosphorus, depending on environmental conditions, sediment properties as well as on antecedent nutrient loading and sorption capacity of the sediments. The Darss-Zingst Bodden Chain is a shallow lagoon system at the German Baltic Sea coast with a long eutrophication history. It is lined almost at its entire length by reed wetlands. In order to elucidate under which conditions these wetlands act as sources or sinks for phosphorus, in-situ data of chemo-physical characteristics of water and sediment samples were combined with hydrodynamic measurements and laboratory experiments. Small-scale basin structures within the wetland serve as sinks for fine-grained particles rich in phosphorus, iron, manganese and organic matter. Without turbulent mixing the bottom water and the sediment surface lack replenishment of oxygen. During stagnant periods with low water level, low turbulence and thus low-oxygen conditions phosphorus from the sediments is released. But the sediments are capable of becoming sinks again once oxygen is resupplied. A thin oxic sediment surface layer rich in iron and manganese adsorbs phosphorus quickly. We demonstrate that sediments in coastal Phragmites wetlands can serve both as sources and sinks of soluble reactive phosphorus on a very short time-scale, depending on local-scale hydrodynamics and the state of the oxic-anoxic sediment interface.

  16. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.

    Science.gov (United States)

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-01-01

    The ability of Phragmites australis to take up heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn, and Hg) and other trace elements (As, Se, Ba), from estuarine sediments was investigated using a pilot plant experimental approach. Bioaccumulation (BCF) and translocation factors (TF) were calculated in vegetative and senescence periods for two populations of P. australis, from contaminated (MIC) and non-contaminated (GAL) estuarine sediments, respectively, both growing in estuarine contaminated sediment (RIA) from ría del Carmen y Boo, Santander Bay, Spain. The highest BCF values were obtained for Ni (0.43), Ba (0.43) Mo (0.36), Cr (0.35), and Cd (0.31) for plants collected from site GAL following the senescence period. The highest BCF values recorded for plants collected from MIC following the senescence period were for Mo (0.22) and Cu (0.22). Following senescence, plants collected from GAL and MIC presented TF>1 for Ni, Mo, Se, and Zn, and in addition plants collected from MIC presented TF>1 for Ba, Cr, and Mn. A substantial increase of Micedo's rhizosphere, six times higher than Galizano's rhizosphere, suggested adaptation to contaminated sediment. The evaluated communities of P. australis demonstrated their suitability for phytoremediation of heavy metals contaminated estuarine sediments.

  17. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    Science.gov (United States)

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future

  18. Saving reed lands by giving economic value to reed

    Directory of Open Access Journals (Sweden)

    F.W. Croon

    2014-07-01

    Full Text Available Discussions about the need for renewable energy, the need for nature conservation, the need to double the world’s food production to eliminate hunger, the need to reduce carbon dioxide emission, and the wish to reduce dependency on dwindling oil resources, show that these issues are intimately related and sometimes mutually exclusive. The use of food crops for the production of renewable fuels has resulted in the energy vs. food debate; the use of scarce land and fresh water for the dedicated production of biomass conflicts with food production and nature conservation; the collection of harvest residues and forest wastes as biomass to produce renewable fuels is complex and leaves a CO2 footprint. The several species of reed that grow naturally in deltas, river plains etc. can provide large amounts of biomass but are hardly mentioned in the debates. Harvesting reed does not threaten the nature and the natural functions of reed lands, which are carbon neutral or carbon dioxide sinks. Reed production does not need extensive infrastructure or complex cultivation and does not compete with food production for land and fresh water. Reed lands in many places are under threat of reclamation for economic activities and urbanisation. This trend can be countered if reed is seen to have a proven economic value. In this article I argue that giving a sustainable economic value to reed lands can only be realised if the exploitation is recognised as being environmentally acceptable, commercially feasible and a source of economic gains for all stakeholders. Commercial feasibility can be achieved under present economic conditions only if a reliable supply of considerable volumes of reed at a limited price can be guaranteed.

  19. Influence of vegetation and gravel mesh on the tertiary treatment of wastewater from a cosmetics industry.

    Science.gov (United States)

    Vlyssides, Apostolos G; Mai, Sofia T H; Barampouti, Elli Maria P; Loukakis, Haralampos N

    2009-07-01

    To estimate the influence of gravel mesh (fine and coarse) and vegetation (Phragmites and Arundo) on the efficiency of a reed bed, a pilot plant was included after the wastewater treatment plant of a cosmetic industry treatment system according to a 22 factorial experimental design. The maximum biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total phosphorous (TP) reduction was observed in the reactor, where Phragmites and fine gravel were used. In the reactor with Phragmites and coarse gravel, the maximum total Kjeldahl nitrogen (TKN) and total suspended solids (TSS) reduction was observed. The maximum total solids reduction was measured in the reed bed, which was filled with Arundo and coarse gravel. Conclusively, the treatment of a cosmetic industry's wastewater by reed beds as a tertiary treatment method is quite effective.

  20. Nitrogen removal through N cycling from sediments in a constructed coastal marsh as assessed by 15N-isotope dilution.

    Science.gov (United States)

    Ro, Hee-Myong; Kim, Pan-Gun; Park, Ji-Suk; Yun, Seok-In; Han, Junho

    2018-04-01

    Constructed coastal marsh regulates land-born nitrogen (N) loadings through salinity-dependent microbial N transformation processes. A hypothesis that salinity predominantly controls N removal in marsh was tested through incubation in a closed system with added- 15 NH 4 + using sediments collected from five sub-marshes in Shihwa marsh, Korea. Time-course patterns of concentrations and 15 N-atom% of soil-N pools were analyzed. Sediments having higher salinity and lower soil organic-C and acid-extractable organic-N exhibited slower rates of N mineralization and immobilization, nitrification, and denitrification. Rates of denitrification were not predicted well by sediment salinity but by its organic-C, indicating heterotrophic denitrification. Denitrification dominated N-loss from this marsh, and nitrogen removal capacity of this marsh was estimated at 337 kg N day -1 (9.9% of the daily N-loadings) considering the current rooting depth of common reeds (1.0 m). We showed that sediment N removal decreases with increasing salinity and can increase with increasing organic-C for heterotrophic denitrification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Larvae and Nests of Aculeate Hymenoptera (Hymenoptera: Aculeata) Nesting in Reed Galls Induced by Lipara spp. (Diptera: Chloropidae) with a Review of Species Recorded. Part II.

    Science.gov (United States)

    Astapenková, Alena; Heneberg, Petr; Bogusch, Petr

    2017-01-01

    The ability of aculeate Hymenoptera to utilize wetlands is poorly understood, and descriptions of their nests and developmental stages are largely absent. Here we present results based on our survey of hymenopterans using galls induced by Lipara spp. flies on common reed Phragmites australis in the years 2015-2016. We studied 20,704 galls, of which 9,446 were longitudinally cut and the brood from them reared in the laboratory, while the remaining 11,258 galls reared in rearing bags also in laboratory conditions. We recorded eight species that were previously not known to nest in reed galls: cuckoo wasps Chrysis rutilans and Trichrysis pumilionis, solitary wasps Stenodynerus chevrieranus and Stenodynerus clypeopictus, and bees Pseudoanthidium tenellum, Stelis punctulatissima, Hylaeus communis and Hylaeus confusus. Forty five species of Hymenoptera: Aculeata are known to be associated with reed galls, of which 36 make their nests there, and the other are six parasitoids of the family Chrysididae and three cuckoo bees of the genus Stelis. Of these species, Pemphredon fabricii and in southern Europe also Heriades rubicola are very common in reed galls, followed by Hylaeus pectoralis and two species of the genus Trypoxylon. We also found new host-parasite associations: Chrysis angustula in nests of Pemphredon fabricii, Chrysis rutilans in nests of Stenodynerus clypeopictus, Trichrysis pumilionis in nests of Trypoxylon deceptorium, and Stelis breviuscula in nests of Heriades rubicola. We provide new descriptions of the nests of seven species nesting in reed galls and morphology of mature larvae of eight species nesting in reed galls and two parasitoids and one nest cleptoparasite. The larvae are usually very similar to those of related species but possess characteristics that make them easy to distinguish from related species. Our results show that common reeds are not only expansive and harmful, but very important for many insect species associated with habitats

  2. Enhanced Nutrients Removal Using Reeds Straw as Carbon Source in a Laboratory Scale Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Tong Wang

    2018-05-01

    Full Text Available The low carbon/nitrogen (C/N ratio and high nitrate content characteristics of agricultural runoff restricted the nitrogen removal in constructed wetlands (CWs. To resolve such problems, the economically- and easily-obtained Phragmites Australis (reeds litters were applied and packed in the surface layer of a surface flow CW as external carbon sources. The results demonstrated that the introduction of the reeds straw increased the C concentration as a result of their decomposition during the CW operation, which will help the denitrification in the ensuing operation of an entire 148 days. The total nitrogen (TN and Chemical Oxygen Demand (COD ( in the effluent reached the peak level of 63.2 mg/L and 83 mg/L at the fourth and the second day, respectively. Subsequently, the pollutants in the CW that were filled with straw decreased rapidly and achieved a stable removal after 13 days of operation. Moreover, the present study showed that the N removal efficiency increased with the increase of the hydraulic retention time (HRT. Under the HRT of four days, the CW presented 74.1 ± 6%, 87.4 ± 6% and 56.0 ± 6% removal for TN, NO3-, and TP, respectively.

  3. Understanding Spatial and Temporal Shifts in Blue Carbon, Piermont Marsh, Lower Hudson Estuary, NY

    Science.gov (United States)

    Peteet, D. M.; Nichols, J. E.; Kenna, T. C.; Corbett, E. J.; Allen, K. A.; Newton, R.; Vincent, S.; Haroon, A.; Shumer, M.

    2015-12-01

    Piermont Marsh is a National Estuarine Research Reserve (NERR) protected brackish wetland in the lower Hudson Valley. It serves as a nursery for fish, a coastal buffer in storms, a repository of native wetland species unique to the Hudson, and a paleoenvironmental archive. At risk for disappearance due to rising sea level, we assess the present carbon stores and their spatial and temporal variability through time. Determining the depth of peat in transects throughout Piermont Marsh (41°N, 73°55'W), is one step in reconstructing the stores of carbon in the marsh and how they have shifted over millennia. Through the last decade, we have focused field efforts on probing the depths of the marsh through a series of transects and in acquiring sediment cores from which we establish sedimentation rates and carbon storage through time. AMS C-14 dating, XRF fluorescence, pollen analysis, and Cesium-137 provide chronological control for the sedimentation rates, pollution history, and an understanding of the regional and local shifts in vegetation. C-13 and pollen measurements in selected cores indicate major shifts in local vegetation with coastal eutrophication as the marsh has been invaded, first by Typha angustifolia in the nineteenth century and then by Phragmites australis in the twentieth century up to the present. N-15 measurements indicate a large shift in nitrogen as humans have impacted the marsh. We present a comprehensive, three-dimensional view of the effects of climate, vegetation, and human impact on the carbon storage of Piermont Marsh. This project provided a site for a place- and project-based learning through Lamont-Doherty's Secondary School Field Research Program. Many of the field samples were collected by young investigators from schools in New York City and towns near Piermont.

  4. Anthropogenic ecological change and impacts on mosquito breeding and control strategies in salt-marshes, Northern Territory, Australia.

    Science.gov (United States)

    Jacups, Susan; Warchot, Allan; Whelan, Peter

    2012-06-01

    Darwin, in the tropical north of Australia, is subject to high numbers of mosquitoes and several mosquito-borne diseases. Many of Darwin's residential areas were built in close proximity to tidally influenced swamps, where long-term storm-water run-off from nearby residences into these swamps has led to anthropogenic induced ecological change. When natural wet-dry cycles were disrupted, bare mud-flats and mangroves were transformed into perennial fresh to brackish-water reed swamps. Reed swamps provided year-round breeding habitat for many mosquito species, such that mosquito abundance was less predictable and seasonally dependent, but constant and often occurring in plague proportions. Drainage channels were constructed throughout the wetlands to reduce pooled water during dry-season months. This study assesses the impact of drainage interventions on vegetation and mosquito ecology in three salt-marshes in the Darwin area. Findings revealed a universal decline in dry-season mosquito abundance in each wetland system. However, some mosquito species increased in abundance during wet-season months. Due to the high expense and potentially detrimental environmental impacts of ecosystem and non-target species disturbance, large-scale modifications such as these are sparingly undertaken. However, our results indicate that some large scale environmental modification can assist the process of wetland restoration, as appears to be the case for these salt marsh systems. Drainage in all three systems has been restored to closer to their original salt-marsh ecosystems, while reducing mosquito abundances, thereby potentially lowering the risk of vector-borne disease transmission and mosquito pest biting problems.

  5. Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis).

    Science.gov (United States)

    Duman, Fatih; Cicek, Mehmet; Sezen, Goksal

    2007-08-01

    In this study, two aquatic macrophytes Phragmites australis and Schoenoplectus lacustris and corresponding sediment samples were collected every three months from Lake Sapanca (Turkey) and analysed for their heavy-metal contents (Pb, Cr, Cu, Mn, Ni, Zn and Cd). Accumulation factor ratios of plant parts were calculated for all metals, and the two species were compared in terms of accumulation properties. The highest concentrations were measured in the root systems while relatively low concentrations were found in the rhizome and above-ground parts of the plants. The accumulation ratios of root for P. australis were usually higher than the ratios for S. lacustris. While the accumulation ratios of root were higher in winter than in the other seasons for P. australis, for S. lacustris the highest accumulation ratios were found in the autumn. Both plant species were found to be root accumulators of Pb, Cu, Mn, Ni, Zn and Cd.

  6. Restoration of Tidal Flow to Impounded Salt Marsh Exerts Mixed Effect on Leaf Litter Decomposition

    Science.gov (United States)

    Henry, B. A.; Schade, J. D.; Foreman, K.

    2015-12-01

    Salt marsh impoundments (e.g. roads, levees) disconnect marshes from ocean tides, which impairs ecosystem services and often promotes invasive species. Numerous restoration projects now focus on removing impoundments. Leaf litter decomposition is a central process in salt marsh carbon and nutrient cycles, and this study investigated the extent to which marsh restoration alters litter decomposition rates. We considered three environmental factors that can potentially change during restoration: salinity, tidal regime, and dominant plant species. A one-month field experiment (Cape Cod, MA) measured decay of litter bags in impounded, restored, and natural marshes under ambient conditions. A two-week lab experiment measured litter decay in controlled incubations under experimental treatments for salinity (1ppt and 30 ppt), tidal regime (inundated and 12 hr wet-dry cycles), and plant species (native Spartina alterniflora and invasive Phragmites australis). S. alterniflora decomposed faster in situ than P. australis (14±1.0% mass loss versus 0.74±0.69%). Corroborating this difference in decomposition, S. alterniflora supported greater microbial respiration during lab incubation, measured as CO2 flux from leaf litter and biological oxygen demand of water containing leached organic matter (OM). However, nutrient analysis of plant tissue and leached OM show P. australis released more nitrogen than S. alterniflora. Low salinity treatments in both lab and field experiments decayed more rapidly than high salinity treatments, suggesting that salinity inhibited microbial activity. Manipulation of inundation regime did not affect decomposition. These findings suggest the reintroduction of tidal flow to an impounded salt marsh can have mixed effects; recolonization by the native cordgrass could supply labile OM to sediment and slow carbon sequestration, while an increase in salinity might inhibit decomposition and accelerate sequestration.

  7. The removal of heavy metals by iron mine drainage sludge and Phragmites australis

    Science.gov (United States)

    Hoang Ha, Nguyen Thi; Anh, Bui Thi Kim

    2017-06-01

    This study was conducted to assess the removal of heavy metals from solutions by the combination of modified iron mine drainage sludge (sorbent column) and surface and subsurface flow constructed wetlands using the common reed (Phragmites australis) during 30 days of experiment. The results of this study demonstrated that the average removal rates of Zn, Pb, Mn, and As by sorbent column were 59.0, 55.1, 38.7, and 42.4%, respectively. The decreasing trend of removal rates of metals by sorbent column was obtained during the experiment. The average removal rates of Zn, Pb, Mn, and As by sorbent column-surface constructed wetland were 78.9, 73.5, 91.2, and 80.5%, respectively; those by sorbent column-subsurface flow constructed wetland were 81.7, 81.1, 94.1, and 83.1% which reflected that subsurface flow constructed wetland showed higher removal rate than the surface system. Concentrations of heavy metals in the outlet water were lower than the Vietnamese standard limits regulated for industrial wastewater. The results indicate the feasibility of integration of iron mine drainage sludge and constructed wetlands for wastewater treatment.

  8. Observations of the ipogean part of Typha Latifolia and Phragmites Australis; Osservazioni sull'apparato ipogeo di Typha Latifolia e Phragmites Australis

    Energy Technology Data Exchange (ETDEWEB)

    Borin, M.; Bonaiti, G. [Padua Univ., Padua (Italy). Dipt. di Agronomia Ambientale e Produzioni Vegetali

    2000-06-01

    Since the interest on the use of wetlands to provide treatment of wastewaters is increasing in Italy, and the role of plants for the high performance of such systems is essential, observations on the ipogean part of Typha latifolia and Phragmites australis have been conducted after one year of growth in cubic containers (0,8 cm each side) filled with loamy textured soil. The length of rhizomes, the rhizomes and roots biomass production, and the TKN immobilisation in rhizomes and roots have been measured in soil layers of 10 cm wide. Typha latifolia and Phragmites australis produced high quantities of biomass (33 and 39 t {center_dot} ha{sup 1} of dry weight respectively) and showed a high immobilisation of nitrogen (270 and 250 kg {center_dot} ha{sup 1} respectively). The hypogeal part of Typha latifolia was developed especially in the first layers, whereas the one of Phragmites australis was more distributed along the soil profile (94 and 69% of the total biomass in the first 30 cm respectively). [Italian] Considerato l'interesse crescente che si sta osservando in Italia per la fitodepurazione delle acque inquinate e vista l'importanza che le piante esercitano in questa tecnologia, si sono condotte delle osservazioni sullo sviluppo dell'apparato ipogeo di Typha latifolia L. e Phragmites australis dopo un anno di accrescimento in cassoni cubici (0,8 m di lato) riempiti con terreno a grana media. Sono stati rilevati, per strati di 10 cm di profondita', la lunghezza dei rizomi, la biomassa di rizomi e radici ed il contenuto di TKN in rizomi e radici. Typha latifolia e Phragmites australis hanno prodotto molta biomassa (33 e 39 t {center_dot} ha{sup 1}di sostanza secca rispettivamente) ed hanno immagazinato una notevole quantita' di azoto (270 e 250 kg {center_dot} ha{sup 1} rispettivamente). Lungo il profilo del terreno, l'apparato ipogeo di Typha latifolia e' risultato piu' concentrato nei primi strati di quanto osservato in

  9. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity.

    Science.gov (United States)

    Rudrappa, Thimmaraju; Choi, Yong Seok; Levia, Delphis F; Legates, David R; Lee, Kelvin H; Bais, Harsh P

    2009-06-01

    Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants.

  10. Nest height of the red bishop ( Eupiectes orix ) | Woodall | African ...

    African Journals Online (AJOL)

    Heights of nests and reeds in a colony of red bishops (Euplectes orix) in Phragmites mauritianus reeds on the Makabusi River, Zimbabwe were measured in two breeding seasons. Nests were placed high in the reeds with fewer above the mean and more below the mean than in a normal distribution. During the course of a ...

  11. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    Science.gov (United States)

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Seasonal and spatial variations in heterotrophic nanoflagellate and bacteria abundances in sediments of a freshwater littoral zone

    NARCIS (Netherlands)

    Starink, Mathieu; Bär-Gilissen, M.J.; Cappenberg, T.E.

    1996-01-01

    We studied seasonal variation in heterotrophic nanoflagellates (HNAN) and bacterial, densities at different depths in the sediment of two freshwater littoral stations. Station 1 was in a reed bed of Phragmites australis; station 2 was outside the reed zone in open water. Benthic HNAN abundances

  13. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    Science.gov (United States)

    Minke, Merten; Augustin, Jürgen; Burlo, Andrei; Yarmashuk, Tatsiana; Chuvashova, Hanna; Thiele, Annett; Freibauer, Annette; Tikhonov, Vitalij; Hoffmann, Mathias

    2016-07-01

    Peat extraction leaves a land surface with a strong relief of deep cutover areas and higher ridges. Rewetting inundates the deep parts, while less deeply extracted zones remain at or above the water level. In temperate fens the flooded areas are colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis dependent on water depth. Reeds of Typha and Phragmites are reported as large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. Here, we analyze the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse gas emissions were measured campaign-wise with manual chambers every 2 to 4 weeks for 2 years and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions generally increased with net ecosystem CO2 uptake. Mesotrophic small sedge reeds with water table around the land surface were small GHG sources in the range of 2.3 to 4.2 t CO2 eq. ha-1 yr-1. Eutrophic tall sedge - Typha latifolia reeds on newly formed floating mats were substantial net GHG emitters in the range of 25.1 to 39.1 t CO2 eq. ha-1 yr. They represent transient vegetation stages. Phragmites reeds ranged between -1.7 to 4.2 t CO2 eq. ha-1 yr-1 with an overall mean GHG emission of 1.3 t CO2 eq. ha-1 yr-1. The annual CO2 balance was best explained by vegetation biomass, which includes the role of vegetation composition and species. Methane emissions were obviously driven by biological activity of vegetation and soil organisms. Shallow flooding of cutover temperate fens is a suitable measure to arrive at low GHG emissions. Phragmites australis establishment should be promoted in deeper flooded areas and will lead to moderate, but

  14. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    Science.gov (United States)

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. © 2014 John Wiley & Sons Ltd.

  15. "ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"

    Energy Technology Data Exchange (ETDEWEB)

    SANTHI, NANDAKISHORE [Los Alamos National Laboratory

    2007-01-22

    We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relative error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.

  16. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.

    Science.gov (United States)

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdenaceur, Hassen; Jedidi, Naceur

    2015-01-01

    Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg(-1)) without or with PCP (0, 50, and 250 mg kg(-1)) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.

  17. Simulation of Single Reed Instruments Oscillations Based on Modal Decomposition of Bore and Reed Dynamics

    OpenAIRE

    Silva, Fabrice; Debut, Vincent; Kergomard, Jean; Vergez, Christophe; Deblevid, Aude; Guillemain, Philippe

    2007-01-01

    This paper investigates the sound production in a system made of a bore coupled with a reed valve. Extending previous work (Debut, 2004), the input impedance of the bore is projected on the modes of the air column. The acoustic pressure is therefore calculated as the sum of modal components. The airrrflow blown into the bore is modulated by reed motion, assuming the reed to be a single degree of freedom oscillator. Calculation of self-sustained oscillations controlled by time-varyi...

  18. Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis

    Directory of Open Access Journals (Sweden)

    Franziska Eller

    2017-11-01

    Full Text Available Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1 P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO2; (2 each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3 the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4 genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5 responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses

  19. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  20. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed

    Science.gov (United States)

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps. .

  1. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    Science.gov (United States)

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. JST Thesaurus Headwords and Synonyms: Phragmites australis [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term Phragmites australis 名詞 一般 * * * ...* ヨシ ヨシ ヨシ Thesaurus2015 200906077254295905 C LS06 UNKNOWN_2 Phragmites australis

  3. JST Thesaurus Headwords and Synonyms: Phragmites communis [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term Phragmites communis 名詞 一般 * * * *... ヨシ ヨシ ヨシ Thesaurus2015 200906077254295905 C LS06 UNKNOWN_2 Phragmites communis

  4. Surveying managers to inform a regionally relevant invasive Phragmites australis control research program.

    Science.gov (United States)

    Rohal, C B; Kettenring, K M; Sims, K; Hazelton, E L G; Ma, Z

    2018-01-15

    Managers of invasive species consider the peer-reviewed literature only moderately helpful for guiding their management programs. Though this "knowing-doing gap" has been well-described, there have been few efforts to guide scientists in how to develop useful and usable science. Here we demonstrate how a comprehensive survey of managers (representing 42 wetland management units across the Great Salt Lake watershed) can highlight management practices and challenges (here for the widespread invasive plant, Phragmites australis, a recent and aggressive invader in this region) to ultimately inform a research program. The diversity of surveyed organizations had wide-ranging amounts of Phragmites which led to different goals and approaches including more aggressive control targets and a wider array of control tools for smaller, private organizations compared to larger government-run properties. We found that nearly all managers (97%) used herbicide as their primary Phragmites control tool, while burning (65%), livestock grazing (49%), and mowing (43%) were also frequently used. Managers expressed uncertainties regarding the timing of herbicide application and type of herbicide for effective control. Trade-offs between different Phragmites treatments were driven by budgetary concerns, as well as environmental conditions like water levels and social constraints like permitting issues. Managers had specific ideas about the plant communities they desired following Phragmites control, yet revegetation of native species was rarely attempted. The results of this survey informed the development of large-scale, multi-year Phragmites control and native plant revegetation experiments to address management uncertainties regarding herbicide type and timing. The survey also facilitated initial scientist-manager communication, which led to collaborations and knowledge co-production between managers and researchers. An important outcome of the survey was that experimental results were

  5. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms – Water, BOD, carbon and nutrient removal

    International Nuclear Information System (INIS)

    Gustavsson, L.; Engwall, M.

    2012-01-01

    Highlights: ► It is necessary to improve existing and develop new sludge management techniques. ► One method is dewatering and biodegradation of compounds in constructed wetlands. ► The result showed high reduction of all tested parameters after treatment. ► Plants improve degradation and Phragmites australis is tolerant to xenobiotics. ► The amount of sludge could be reduced by 50–70%. - Abstract: Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50–70%, mainly by dewatering and biodegradation of organic compounds.

  6. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  7. Biodiversity of Van Reeds, Eastern Turkey

    Directory of Open Access Journals (Sweden)

    Özdemir Adızel

    2017-12-01

    Full Text Available In this study, it is aimed to determine the vertebrate fauna and flora species diversity of Van Reeds. For this purpose, studies were conducted between 2014 and 2017 and 1 fish, 3 frog, 6 reptilian, 185 bird, and 5 mammal species, 200 fauna species and 79 flora species in total, were determined in the study area. Van Reeds is an important breeding, feeding, and wintering feature especially for birds. Reeds, which has various biodiversity, is exposed to intense pressure and destruction. The main threats in the study area are construction, filling, hunting, drainage, and pollution.

  8. Ecology and physiology of reed. A literature study for evaluation of reed as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndahl, G.; Egneus, H.

    1980-04-01

    The potentials of reed as an energy source are evaluated. The following subjects are discussed: The structure and life-cycle of reed; Primary production and photosynthesis; important environmental factors for the production; Genetic variation; Competition, succession and parasitism; Human influence like cultivation, harvesting a.o. An extensive list of referencer is given.

  9. Quality indicators for woodwind reed material

    International Nuclear Information System (INIS)

    Glave, Stefan; Pallon, Jan; Bornman, Chris; Bjoern, Lars Olof; Wallen, Rita; Raastam, Jacob; Kristiansson, Per; Elfman, Mikael; Malmqvist, Klas

    1999-01-01

    For the generation of sound, some woodwind musical instruments, e.g. oboe, bassoon, clarinet and saxophone, are provided with mouthpieces made from reeds. These reeds are the culms of Arundo donax, a tall, cane-like perennial grass. A general problem is that the material is of varying quality, yet externally differences cannot be observed. Hence, large proportions of the prepared reeds are unusable. One hypothesis is that the changes in quality are correlated with differences in the chemical and anatomical structure of the tissue. Therefore, a comparison of superior and inferior mouthpieces, used by professional musicians, was undertaken to determinate potential indicators of quality. Nuclear microprobe analysis of reeds was carried out and complemented by scanning electron and light microscopy. The elemental levels of Si, P, S, Cl, K and Ca were compared between good and poor mouthpieces using appropriate statistical tests. No statistically significant differences could be identified. Microscopical observations showed that partial occlusion of vessels by tylose formation was associated with material deemed unusable

  10. Geographic variation in growth responses in Phragmites australis

    NARCIS (Netherlands)

    Clevering, O.A.; Brix, H.; Lukavska, J.

    2001-01-01

    Phragmites australis is a cosmopolitan wetlands species occurring in a wide range of climatic habitats, It can be assumed that adaptations to climate have evolved to enable the synchronization of growth with the seasonality of the environment. To study these adaptations, European P. australis was

  11. Rotation Impact of Reed Switch

    International Nuclear Information System (INIS)

    Park, Yun Bum; Lee, Jae Seon; Kim, Jong Wook; Han, Eun Sil; Park, Hee June

    2016-01-01

    A CRDM (Control Rod Drive Mechanism) is an electromagnetic device which drives a control rod assembly linearly to regulate the reactivity of a nuclear core. A RPIS (Rod Position Indication System) is used as a position indicator of a control rod assembly for a CRDM of a nuclear reactor, SMART. A highly accurate RPIS for SMART is required because the reactivity of a nuclear core for a small modular reactor is more sensitive than the commercial ones. In this study, the effect of positioning direction of the reeds in a reed switch for the CRDM RPIS has been studied using the electromagnetic FE analysis. It is found that the positioning direction of the reeds slightly but not significantly affects the formation of attraction. Analysis results will be used as the basis on estimated accuracy of full RPIS system.

  12. Rotation Impact of Reed Switch

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun Bum; Lee, Jae Seon; Kim, Jong Wook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Eun Sil [Taesung S and E, Seoul (Korea, Republic of); Park, Hee June [Woojin Inc., Hwaseong (Korea, Republic of)

    2016-10-15

    A CRDM (Control Rod Drive Mechanism) is an electromagnetic device which drives a control rod assembly linearly to regulate the reactivity of a nuclear core. A RPIS (Rod Position Indication System) is used as a position indicator of a control rod assembly for a CRDM of a nuclear reactor, SMART. A highly accurate RPIS for SMART is required because the reactivity of a nuclear core for a small modular reactor is more sensitive than the commercial ones. In this study, the effect of positioning direction of the reeds in a reed switch for the CRDM RPIS has been studied using the electromagnetic FE analysis. It is found that the positioning direction of the reeds slightly but not significantly affects the formation of attraction. Analysis results will be used as the basis on estimated accuracy of full RPIS system.

  13. Phragmites Management at Times Beach, Buffalo, New York

    Science.gov (United States)

    2016-01-01

    nettle Urtica dioica L. ssp dioica N RESULTS AND DISCUSSION: Baseline data collected in summer 2012 was used to characterize the site (Table 3...because eighty percent of phragmites biomass is produced underground in the roots and rhizomes (Holm et al. 1977), and rhizomes can live for three to six

  14. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    Science.gov (United States)

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  15. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

    Science.gov (United States)

    Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R

    2017-06-15

    This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    Science.gov (United States)

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  17. Reed as a gasification fuel: a comparison with woody fuels

    Directory of Open Access Journals (Sweden)

    S. Link

    2013-10-01

    Full Text Available Reed and coniferous wood can be used for energy production via thermochemical conversion, for instance by gasification. The rate-determining step of the gasification process is the reaction between the char and the gaseous environment in the gasifier, whose rate depends on variables such as pressure, temperature, particle size, mineral matter content, porosity, etc. It is known that reactivity can be improved by increasing the temperature, but on the other hand the temperature achieved in the reactor is limited due to the ash fusion characteristics. Usually, the availability of reed as a fuel is locally modest and, therefore, it must be blended with other fuels such as wood. Blending of fuels brings together several problems relating to ash behaviour, i.e. ash fusion issues. Because there is no correlation between the ash fusion characteristics of biomass blends and their individual components, it is essential to carry out prior laboratory-scale ash fusion tests on the blends. This study compares the reactivity of reed and coniferous wood, and the ash fusion characteristics of blends of reed and coniferous wood ashes. When compared with Douglas fir and reed chars, pine pellets have the highest reactivity. Reed char exhibits the lowest reactivity and, therefore, it is advantageous to gasify reed alone at higher gasification temperatures because the ash fusion temperatures of reed are higher than those of woody fuels. The ash produced by reed and wood blends can melt at lower temperatures than ash from both reed and wood gasified separately. Due to this circumstance the gasification temperature should be chosen carefully when gasification of blends is carried out.

  18. Heavy metal contents and transfer capacities of Phragmites australis and Suaeda salsa in the Yellow River Delta, China

    Science.gov (United States)

    Zhang, Shuai; Bai, Junhong; Wang, Wei; Huang, Laibing; Zhang, Guangliang; Wang, Dawei

    2018-04-01

    Plant samples including roots, stems and leaves of Phragmites australis and Suaeda salsa were collected in the short-term flooding and tidal flooding wetlands of the Yellow River Delta of China. Six heavy metals (e.g., As, Cd, Cr, Cu, Pb, and Zn) were measured in roots, stems and leaves of each plant species using inductively coupled plasma atomic absorption spectrometry (ICP-AAS) to investigate the levels, and transfer capabilities of heavy metals in these two plant species. Our results showed that in the tidal flooding wetlands, the contents of As, Cr and Cd in roots of Phragmites australis and Suaeda salsa were higher than those in their stems and leaves. Suaeda salsa showed higher contents of Pb and Zn in leaves than those in roots and stems, whereas lower levels of Pb and Zn were observed in Phragmites australis. In the short-term flooding wetlands, heavy metal contents exhibited a big difference between different tissues of Phragmites australis and Suaeda salsa, and both plant species showed higher levels of Pb and Zn in leaves. Suaeda salsa roots enriched more As and Cd, whereas higher enrichment levels were observed in Phragmites australis leaves, which indicated different transfer capacities of these two wetland plants. The transfer factors for stems and leaves of Phragmites australis in the tidal flooding wetlands significantly differed from those in the short-term flooding wetlands, however, no significant differences in transfer factors for stems and leaves of Suaeda salsa were observed between these two types of wetlands.

  19. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake

    International Nuclear Information System (INIS)

    Batty, Lesley C.; Younger, Paul L.

    2004-01-01

    The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H + ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development

  20. Pacemaker reed switch behavior in 0.5, 1.5, and 3.0 Tesla magnetic resonance imaging units: are reed switches always closed in strong magnetic fields?

    Science.gov (United States)

    Luechinger, Roger; Duru, Firat; Zeijlemaker, Volkert A; Scheidegger, Markus B; Boesiger, Peter; Candinas, Reto

    2002-10-01

    MRI is established as an important diagnostic tool in medicine. However, the presence of a cardiac pacemaker is usually regarded as a contraindication for MRI due to safety reasons. The aim of this study was to investigate the state of a pacemaker reed switch in different orientations and positions in the main magnetic field of 0.5-, 1.5-, and 3.0-T MRI scanners. Reed switches used in current pacemakers and ICDs were tested in 0.5-, 1.5-, and 3.0-T MRI scanners. The closure of isolated reed switches was evaluated for different orientations and positions relative to the main magnetic field. The field strengths to close and open the reed switch and the orientation dependency of the closed state inside the main magnetic field were investigated. The measurements were repeated using two intact pacemakers to evaluate the potential influence of the other magnetic components, like the battery. If the reed switches were oriented parallel to the magnetic fields, they closed at 1.0 +/- 0.2 mT and opened at 0.7 +/- 0.2 mT. Two different reed switch behaviors were observed at different magnetic field strengths. In low magnetic fields ( 200 mT), the reed switches opened in 50% of all tested orientations. No difference between the three scanners could be demonstrated. The reed switches showed the same behavior whether they were isolated or an integral part of the pacemakers. The reed switch in a pacemaker or an ICD does not necessarily remain closed in strong magnetic fields at 0.5, 1.5, or 3.0 T and the state of the reed switch may not be predictable with certainty in clinical situations.

  1. Effects of reed cutting on density and breeding success of reed warbler Acrocephalus scirpacaeus and sedge warbler A. schoenobaenus

    NARCIS (Netherlands)

    Graveland, J.

    1999-01-01

    The management of reedbeds for birds is often a controversial issue in discussions between conservationists, reed harvesters and managers. At the same time, data on the density and nesting success of birds in cut and uncut reed are scarce. This paper presents the results of a study on the density

  2. Functional role of bacteria from invasive Phragmites australis in promotion of host growth

    Science.gov (United States)

    Soares, M. A.; Li, H-Y; Kowalski, Kurt P.; Bergen, M.; Torres, M. S.; White, J. F.

    2016-01-01

    We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.

  3. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity.

    Science.gov (United States)

    Rudrappa, Thimmaraju; Bonsall, Justin; Gallagher, John L; Seliskar, Denise M; Bais, Harsh P

    2007-10-01

    Phragmites australis is considered the most invasive plant in marsh and wetland communities in the eastern United States. Although allelopathy has been considered as a possible displacing mechanism in P. australis, there has been minimal success in characterizing the responsible allelochemical. We tested the occurrence of root-derived allelopathy in the invasiveness of P. australis. To this end, root exudates of two P. australis genotypes, BB (native) and P38 (an exotic) were tested for phytotoxicity on different plant species. The treatment of the susceptible plants with P. australis root exudates resulted in acute rhizotoxicity. It is interesting to note that the root exudates of P38 were more effective in causing root death in susceptible plants compared to the native BB exudates. The active ingredient in the P. australis exudates was identified as 3,4,5-trihydroxybenzoic acid (gallic acid). We tested the phytotoxic efficacy of gallic acid on various plant systems, including the model plant Arabidopsis thaliana. Most tested plants succumbed to the gallic acid treatment with the exception of P. australis itself. Mechanistically, gallic acid treatment generated elevated levels of reactive oxygen species (ROS) in the treated plant roots. Furthermore, the triggered ROS mediated the disruption of the root architecture of the susceptible plants by damaging the microtubule assembly. The study also highlights the persistence of the exuded gallic acid in P. australis's rhizosphere and its inhibitory effects against A. thaliana in the soil. In addition, gallic acid demonstrated an inhibitory effect on Spartina alterniflora, one of the salt marsh species it successfully invades.

  4. Development of anatomical structure of roots of Phragmites australis

    Czech Academy of Sciences Publication Activity Database

    Soukup, A.; Votrubová, O.; Čížková, Hana

    2002-01-01

    Roč. 153, - (2002), s. 277-287 ISSN 0028-646X R&D Projects: GA MŠk OC 844.20; GA MŠk VS96145 Institutional research plan: CEZ:AV0Z6005908 Keywords : Casparian bands * exodermis * endodermis * lignin * suberin * root anatomy * Phragmites Subject RIV: EF - Botanics Impact factor: 2.945, year: 2002

  5. Surface water sanitation and biomass production in a large constructed wetland in the Netherlands

    NARCIS (Netherlands)

    Meerburg, B.G.; Vereijken, P.H.; Visser, de W.; Verhagen, A.; Korevaar, H.; Querner, E.P.; Blaeij, de A.T.; Werf, van der A.K.

    2010-01-01

    In Western-Europe, agricultural practices have contributed to environmental problems such as eutrophication of surface and ground water, flooding, drought and desiccation of surrounding natural habitats. Solutions that reduce the impact of these problems are urgently needed. Common reed (Phragmites

  6. Comparison of metabolisable energy values of different foodstuffs determined in ostriches and poultry

    DEFF Research Database (Denmark)

    Cilliers, S C; Sales, J; Hayes, J P

    1999-01-01

    Apparent (AMEn) and true (TMEn) metabolisable energy values, corrected for nitrogen retention, of wheat bran, saltbush (Atriplex nummularia), common reed (Phragmites australis), lupins, soyabean oil cake meal (SBOCM), sunflower oil cake meal (SFOCM) and fishmeal were compared in 7 successive trials...

  7. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  8. Factors affecting post-control reinvasion by seed of an invasive species, Phragmites australis, in the central Platte River, Nebraska.

    Science.gov (United States)

    Galatowitsch, Susan M.; Larson, Diane L.; Larson, Jennifer L.

    2016-01-01

    Invasive plants, such as Phragmites australis, can profoundly affect channel environments of large rivers by stabilizing sediments and altering water flows. Invasive plant removal is considered necessary where restoration of dynamic channels is needed to provide critical habitat for species of conservation concern. However, these programs are widely reported to be inefficient. Post-control reinvasion is frequent, suggesting increased attention is needed to prevent seed regeneration. To develop more effective responses to this invader in the Central Platte River (Nebraska, USA), we investigated several aspects of Phragmites seed ecology potentially linked to post-control reinvasion, in comparison to other common species: extent of viable seed production, importance of water transport, and regeneration responses to hydrology. We observed that although Phragmites seed does not mature until very late in the ice-free season, populations produce significant amounts of viable seed (>50 % of filled seed). Most seed transported via water in the Platte River are invasive perennial species, although Phragmites abundances are much lower than species such as Lythrum salicaria, Cyperus esculentus and Phalaris arundinacea. Seed regeneration of Phragmites varies greatly depending on hydrology, especially timing of water level changes. Flood events coinciding with the beginning of seedling emergence reduced establishment by as much as 59 % compared to flood events that occurred a few weeks later. Results of these investigations suggest that prevention of seed set (i.e., by removal of flowering culms) should be a priority in vegetation stands not being treated annually. After seeds are in the seedbank, preventing reinvasion using prescribed flooding has a low chance of success given that Phragmites can regenerate in a wide variety of hydrologic microsites.

  9. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.

    Science.gov (United States)

    Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna

    2015-01-01

    The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.

  10. One-way quantum repeaters with quantum Reed-Solomon codes

    Science.gov (United States)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-05-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.

  11. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  12. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses

    Science.gov (United States)

    Wang, Sikai; Jin, Binsong; Qin, Haiming; Sheng, Qiang; Wu, Jihua

    2015-01-01

    Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems. PMID:26261984

  13. Will Restored Tidal Marshes Be Sustainable?

    Directory of Open Access Journals (Sweden)

    Michelle Orr

    2003-10-01

    Full Text Available We assess whether or not restored marshes in the San Francisco Estuary are expected to be sustainable in light of future landscape scale geomorphic processes given typical restored marsh conditions. Our assessment is based on a review of the literature, appraisal of monitoring data for restored marshes, and application of vertical accretion modeling of organic and inorganic sedimentation. Vertical accretion modeling suggests that salt marshes in San Pablo Bay will be sustainable for moderate relative sea level rise (3 to 5 mm yr-1 and average sediment supply (c. 100 mg L-1. Accelerated relative sea level rise (above 6 mm yr-1 and/or reduced sediment supply (50 mg L-1 will cause lowering of the marsh surface relative to the tide range and may cause shifts from high to low marsh vegetation by the year 2100. Widespread conversion of marsh to mudflat-"ecological drowning"-is not expected within this time frame. Marshes restored at lower elevations necessary to aid the natural development of channel systems (c. 0.5 m below mean higher high water are predicted to accrete to high marsh elevations by the year 2100 for moderate relative sea level rise and sediment supply conditions. Existing rates of sediment accretion in restored fresh water tidal marshes of the Delta of greater than 9 mm yr-1 and slightly lower drowning elevations suggest that these marshes will be resilient against relatively high rates of sea level rise. Because of higher rates of organic production, fresh water marshes are expected to be less sensitive to reduced sediment availability than salt marshes. The ultimate long-term threat to the sustainability of tidal marshes is the interruption of coastal rollover-the process by which landward marsh expansion in response to sea level rise compensates for shoreline erosion. Bay front development now prevents most landward marsh expansion, while shoreline erosion is expected to accelerate as sea level rises.

  14. Regional Energy Deployment System (ReEDS)

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

    2011-12-01

    The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

  15. Effects of two common macrophytes on methane dynamics in freshwater sediments

    NARCIS (Netherlands)

    Van der Nat, F.J.; Middelburg, J.J.

    1998-01-01

    The methane cycle in constructed wetlands without plants and with Phragmites australis (reed) and Scirpus lacustris (bulrush) was investigated. Variations in CH4 production largely determined variations in CH4 emission among the systems: rather than variations in CH4 storage and oxidation. Twofold

  16. The impacts of ditch cuttings on weed pressure and crop yield in maize

    NARCIS (Netherlands)

    Huijser, M.P.; Meerburg, B.G.; Holshof, G.

    2004-01-01

    The Flevoland Polder in The Netherlands is characterised by large agricultural fields separated by ditches. The vegetation in the ditches is typically cut twice a year to ensure sufficient drainage. Removal of the cuttings, primarily reed (Phragmites australis), results in a substantial increase in

  17. Livestock as a potential biological control agent for an invasive wetland plant

    Directory of Open Access Journals (Sweden)

    Brian R. Silliman

    2014-09-01

    Full Text Available Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species.

  18. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    Science.gov (United States)

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  19. Quantification of environment-driven changes in epiphytic macroinvertebrate communities associated to Phragmites australis

    Directory of Open Access Journals (Sweden)

    Miguel CAÑEDO-ARGÜELLES

    2009-08-01

    Full Text Available The epiphytic macroinvertebrate communities associated with the Common Reed, Phragmites australis (Cav. Trin. ex Steudel, were examined seasonally from summer 2004 to spring 2005 in eleven coastal lagoons of the Llobregat Delta (NE Spain following the method proposed by Kornijów & Kairesalo (1994. The aims of the study were to: 1 characterise and quantify changes in epiphytic macroinvertebrate communities along environmental gradients; 2 assess the contribution of elements of the epiphytic compartment to structuring the community; 3 define the optima and tolerances of selected epiphytic macroinvertebrate taxa for the most relevant ecological factors responsible for assemblage composition; and 4 identify possible epiphytic species assemblages that would allow a lagoon’s typology to be established, as well as their representative indicator species. Communities showed statistically significant seasonal variation, with two faunal peaks: one in summer, with high chironomid densities, and the other in winter, with high naidid densities. These peaks showed a clear response to the influence of environmental factors. Salinity explained the highest percentage of total variance (36%, while trophic variables (nutrients, phytoplanktonic chlorophyll-a, and total organic carbon and epiphyton biomass (19.2 and 4% of total variance explained, respectively were secondary. Three different epiphytic macroinvertebrate species assemblages could be defined. These assemblages were directly linked to conductivity conditions, which determined the rate of survival of certain taxa, and to the existence of a direct connection with the sea, which permitted the establishment of "brackish-water" species. In spite of the existence of these species assemblages, the species composition and biomass of epiphytic macroinvertebrates and epiphyton differed substantially between lagoons; both elements were subject to changes in the environment, which finally determined the site

  20. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  1. Biosphere 2's Marsh Biome

    Science.gov (United States)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  2. Hydrology of Fritchie Marsh, coastal Louisiana

    Science.gov (United States)

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  3. The Effect of Artificial Mowing on the Competition of Phragmites australis and Spartina alterniflora in the Yangtze Estuary

    Directory of Open Access Journals (Sweden)

    Yue Yuan

    2017-01-01

    Full Text Available Spartina alterniflora Loisel. is one of the most invasive species in the world. However, little is known about the role of artificial mowing in its invasiveness and competiveness. In this work, we studied the effect of mowing on its interspecific interactions with native species Phragmites australis (Cav. Trin ex Steud of the Yangtze Estuary, China. We calculated their relative neighbor effect (RNE index, effect of relative crowding (Dr index, and interaction strength (I index. The results showed that the RNE of Phragmites australis and Spartina alterniflora was 0.354 and 0.619, respectively, and they have competitive interactions. The mowing treatments can significantly influence the RNE of Phragmites australis and Spartina alterniflora on each other. Concretely, the RNE of Spartina alterniflora in the removal treatments was significantly higher than the value in the controls. But the RNE of Phragmites australis in the removal treatments was significantly lower than the value in the controls. Meanwhile, Dr of the two species on the targets was higher in the removal treatments than that in the controls, and the opposite was for I. We concluded that artificial mowing could promote the invasion of Spartina alterniflora by increasing its competitive performance compared with native species.

  4. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    International Nuclear Information System (INIS)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-01-01

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area α. An engine cycle and predicted thrust was explained.

  5. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  6. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    Science.gov (United States)

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  7. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and

  8. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  9. The conditions for use of reed canary grass briquettes and chopped reed canary grass in small heating plants; Foerutsaettningar foer anvaendning av roerflensbriketter och hackad roerflen i mindre vaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Davidsson, Kent; Holmgren, Magnus A. (Swedish National Testing and Research Inst., Boraas (Sweden)); Hedman, Henry; Oehman, Rikard; Leffler, Joel (ETC, Piteaa (Sweden))

    2010-09-15

    The aim of this study was to test fuel blends of briquettes and chopped reed canary grass in three existing heating plants (50 kW - 500 kW) and elucidate the requirements for good performance and low emissions. In addition, the study investigated production of reed canary grass briquettes using a Polish screw press developed for straw. Some tests with a bale shredder were also undertaken. The screw press technique is of interest for reed canary grass because it is a simple technique, easy to handle, developed for small scale production, and for straw. The test with reed canary grass in this study showed that the technique worked well but that further adjustments and a longer test period are needed in order to achieve higher bulk density and mechanical strength. The test with chopped reed canary grass shows that a system with a forage harvester is slightly more effective than baling and cutting in a bale shredder. The study concluded that few existing heating plants of size 50 kW-1 MW that currently use wood fuels will be able to use reed canary grass without adjustment, conversion or replacement of the combustion equipment. Reed canary grass has 15-20 times higher ash content than wood briquettes and 2-3 times higher ash content than forest residue; the combustion equipment must be able to handle these properties. The boiler must be equipped with a continuously operating ashing system and it must be possible to move the ash bed mechanically. There is a risk of high content of unburned matter if the residence time in the boiler is too short, due to the structure and low bulk density of the reed canary grass ash. Using a blend of wood briquettes and reed canary briquettes results in lower ash content, but also affects the ash chemistry and tends to lower the initial ash fusion temperature compared to using 100 % reed canary grass. Blending chopped reed canary grass and wood chips in an existing small scale heating plant also requires measures to achieve an even fuel

  10. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    Science.gov (United States)

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  11. The marshes in Bogota

    International Nuclear Information System (INIS)

    Garcia Romero, Juan F; Moreno Gutierrez, Vanesa; Villalba Malaver, Juan Carlos

    1998-01-01

    A description is made, a diagnosis and some exits, to their preservation for each one of the 10 marshes that they still exist in Bogota. The marshes defines them the convention of Ramsar: As extensions of swamps, swamps or peat-bogs covered with water, be these of natural or artificial, permanent or temporary, stagnated regime or currents, sweet, salubrious or salted, included those of extensions of marine water whose depth in tide lowers don't exceed six meters. The marshes occupy the space that there are between the humid means and the dry means, and that they possess characteristic of both, for what they cannot be classified categorically as aquatic neither terrestrial. The characteristic of a marsh is the presence of water during sufficiently lingering periods as to alter the soils, their microorganisms and the flora and fauna communities

  12. Assemblage of filamentous fungi associated with aculeate hymenopteran brood in reed galls.

    Science.gov (United States)

    Heneberg, Petr; Bizos, Jiří; Čmoková, Adéla; Kolařík, Miroslav; Astapenková, Alena; Bogusch, Petr

    2016-01-01

    Monotypic stands of common reed and the reed-gall-associated insect assemblages are distributed worldwide. However, fungi associated with these assemblages have not been characterized in detail. Here we examined 5200 individuals (12 species) of immature aculeate hymenopterans or their parasitoids collected at 34 sampling sites in Central Europe. We noticed fungal outgrowth on exoskeletons of 83 (1.60%) larvae and pupae. The most common host was eudominant Pemphredon fabricii. However, the less abundant aculeate hymenopteran reed gall inquilines were infected at higher prevalence, these included Trypoxylon deceptorium, Trypoxylon minus, Hoplitis leucomelana and Hylaeus moricei (all considered new host records). We identified three fungal species, Penicillium buchwaldii (72% of cases), Aspergillus pseudoglaucus (22%) and Penicillium quebecense (6%). When multibrooded nests were affected, only a part of individuals was infected in 62% of cases. The sampling site-specific infection rate reached up to 13%, thus fungal infections should be considered an important variable driving the abundance of gall inquilines. Infections of generalist host species were more frequent than those of reed gall specialists, suggesting that suboptimal conditions decreased the immunocompetence of non-specialized species, which only occasionally nest in reed galls and feed in reed beds. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Organic carbon isotope systematics of coastal marshes

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  14. Fast Reed-Solomon Decoder

    Science.gov (United States)

    Liu, K. Y.

    1986-01-01

    High-speed decoder intended for use with Reed-Solomon (RS) codes of long code length and high error-correcting capability. Design based on algorithm that includes high-radix Fermat transform procedure, which is most efficient for high speeds. RS code in question has code-word length of 256 symbols, of which 224 are information symbols and 32 are redundant.

  15. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    Science.gov (United States)

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of

  16. Balanced Reed-Solomon codes for all parameters

    KAUST Repository

    Halbawi, Wael; Liu, Zihan; Hassibi, Babak

    2016-01-01

    We construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes with any length n and dimension k. By sparsest, we mean that each row has the least possible number of nonzeros, while balanced means that the number of nonzeros in any two columns differs by at most one. Codes allowing such encoding schemes are useful in distributed settings where computational load-balancing is critical. The problem was first studied by Dau et al. who showed, using probabilistic arguments, that there always exists an MDS code over a sufficiently large field such that its generator matrix is both sparsest and balanced. Motivated by the need for an explicit construction with efficient decoding, the authors of the current paper showed that the generator matrix of a cyclic Reed-Solomon code of length n and dimension k can always be transformed to one that is both sparsest and balanced, when n and k are such that k/n (n-k+1) is an integer. In this paper, we lift this condition and construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes for any set of parameters.

  17. Balanced Reed-Solomon codes for all parameters

    KAUST Repository

    Halbawi, Wael

    2016-10-27

    We construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes with any length n and dimension k. By sparsest, we mean that each row has the least possible number of nonzeros, while balanced means that the number of nonzeros in any two columns differs by at most one. Codes allowing such encoding schemes are useful in distributed settings where computational load-balancing is critical. The problem was first studied by Dau et al. who showed, using probabilistic arguments, that there always exists an MDS code over a sufficiently large field such that its generator matrix is both sparsest and balanced. Motivated by the need for an explicit construction with efficient decoding, the authors of the current paper showed that the generator matrix of a cyclic Reed-Solomon code of length n and dimension k can always be transformed to one that is both sparsest and balanced, when n and k are such that k/n (n-k+1) is an integer. In this paper, we lift this condition and construct balanced and sparsest generator matrices for cyclic Reed-Solomon codes for any set of parameters.

  18. Development library of finite elements for computer-aided design system of reed sensors

    Science.gov (United States)

    Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.

    2018-05-01

    The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.

  19. A STUDY OF RECOVERING A REED ECOSYSTEM USING POROUS CONCRETE IN THE LAKE BIWA SHORE

    Science.gov (United States)

    Takeda, Naho; Kato, Hayato; Okamoto, Takahisa; Kojima, Takayuki

    In this study, reed planting tests were carried out at the Biyo-center, an experiment station on the Lake Biwa shore, in order to evaluate the feasibility of a planting method with porous concrete (PoC method). Reed planting tests with coconut-fiber mats (mat method), which were generally used around Lake Biwa, were simultaneously carried out to compare with the PoC method. The reeds planted by the PoC method grew better than the ones planted by the mat method, and the number of reeds which were washed away by waves was smaller than that planted by the mat method. The result of the observation of reeds planted in the PoC showed plant maturation, and reeds could ta ke root into the PoC without interference with the voids of the PoC. As a result, it was shown that the reed planting tests with the PoC method was simple and effective, so it would become in harmony with the environment around Lake Biwa.

  20. Position indicating systems and reed contact unit assemblies for such systems

    International Nuclear Information System (INIS)

    Foxworthy, M.K.

    1980-01-01

    Specifications are given for a position indicating system for determining the position of a movable member inside a sealed container such as the position of a control rod in a nuclear reactor. The system comprises a magnetic flux producing member mounted to the movable member so as to move with it, a series of magnetic reed contact units mounted along the outside of the sealed container to be individually actuated by the flux producer as the movable member moves within the sealed container to indicate the position of this member. Each of the reed contact units is connected to a source of alternating electric current to produce a magnetic flux field to minimize the flux differential between the actuated and unactuated reed contact positions. A second aspect of the invention provides for a low operating flux differential reed contact unit assembly for a position indicating system such that it is actuated by the magnetic member at one magnetic flux level and deactivated at a second level. There is a source of alternating current connected to a coil surrounding the reed contact unit so as to produce an alternating magnetic flux with amplitude less than the difference between the two levels. Variations are given, also diagrams and benefits. (U.K.)

  1. Decomposition processes in soil of a healthy and a declining Phragmites australis stand

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Picek, Tomáš; Šimek, Miloslav; Bauer, Václav; Kopecký, Jiří; Pechar, Libor; Lukavská, Jaroslava; Čížková, Hana

    2001-01-01

    Roč. 69, - (2001), s. 217-234 ISSN 0304-3770 R&D Projects: GA ČR GA206/96/0589 Institutional research plan: CEZ:AV0Z6066911 Keywords : decomposition * eutrophication * Phragmites australis Subject RIV: EH - Ecology, Behaviour Impact factor: 1.361, year: 2001

  2. Biology, Management and Utilization of Common Reed Pharagnites australis.

    Science.gov (United States)

    1987-02-01

    Vrije Universiteit Waterways Experiment Staticn Department of Ecology and Ecotoxicology Environmental Laboratory P.O. Box 7161 P.O. Box 631 1007 MC...Madelijn van der Werff Vrije Universiteit Department of Ecology and Ecotoxicology Amsterdam and John W. Simmers and Stratford H. Kay Waterways...lowing and cutting 67 5.2.4. Active regulation of the water table 68 5.5. Nature conservation 68 5.4. Reed cultivation 69 Z.4. 1. Reed harvest 69 6

  3. Reed-Solomon error-correction as a software patch mechanism.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.

  4. Coastal salt-marshes in Albania

    OpenAIRE

    JULIAN SHEHU; ALMA IMERI; RUDINA KOCI; ALFRED MULLAJ

    2014-01-01

    The salt marshes of Albania comprise a narrow belt along the Adriatic and Ionian Seas. They have been the subject of a range of human activities causing habitat loss. Enclosure for agricultural use, ports and other infrastructure has reduced many salt marshes to a narrow fringe along estuary shores. Salt marshes are important for a range of interests. In particular they support a range of specialist plant communities and associated animals (especially breeding and wintering birds) and often h...

  5. Florida's salt-marsh management issues: 1991-98.

    Science.gov (United States)

    Carlson, D B; O'Bryan, P D; Rey, J R

    1999-06-01

    During the 1990s, Florida has continued to make important strides in managing salt marshes for both mosquito control and natural resource enhancement. The political mechanism for this progress continues to be interagency cooperation through the Florida Coordinating Council on Mosquito Control and its Subcommittee on Managed Marshes (SOMM). Continuing management experience and research has helped refine the most environmentally acceptable source reduction methods, which typically are Rotational Impoundment Management or Open Marsh Water Management. The development of regional marsh management plans for salt marshes within the Indian River Lagoon by the SOMM has helped direct the implementation of the best management practices for these marshes. Controversy occasionally occurs concerning what management technique is most appropriate for individual marshes. The most common disagreement is over the benefits of maintaining an impoundment in an "open" vs. "closed" condition, with the "closed" condition, allowing for summer mosquito control flooding or winter waterfowl management. New federal initiatives influencing salt-marsh management have included the Indian River Lagoon-National Estuary Program and the Pesticide Environmental Stewardship Program. A new Florida initiative is the Florida Department of Environmental Protection's Eco-system Management Program with continuing involvement by the Surface Water Improvement and Management program. A developing mitigation banking program has the potential to benefit marsh management but mosquito control interests may suffer if not handled properly. Larvicides remain as an important salt-marsh integrated pest management tool with the greatest acreage being treated with temephos, followed by Bacillus thuringiensis israelensis and methoprene. However, over the past 14 years, use of biorational larvicides has increased greatly.

  6. 77 FR 43369 - Lexisnexis, a Subsidiary of Reed Elsevier Customer Service Department and Fulfillment Department...

    Science.gov (United States)

    2012-07-24

    ..., a Subsidiary of Reed Elsevier Customer Service Department and Fulfillment Department, Including On... Including Remote Workers in New York Reporting to Miamisburg, OH; Lexisnexis, a Subsidiary of Reed Elsevier... subsidiary of Reed Elsevier, Inc., Customer Service Department and Fulfillment Department, including on-site...

  7. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.

    Science.gov (United States)

    Almeida, C Marisa R; Oliveira, Tânia; Reis, Izabela; Gomes, Carlos R; Mucha, Ana P

    2017-12-01

    Autochthonous bioaugmentation for metal phytoremediation is still little explored, particularly its application to estuarine salt marshes, but results obtained so far are promising. Nevertheless, understanding the behaviour of the microbial communities in the process of bioaugmentation and their role in improving metal phytoremediation is very important to fully validate the application of this biological technology. This study aimed to characterize the bacterial community dynamic associated with the application of autochthonous bioaugmentation in an experimentation which showed that Phragmites australis rhizosphere microorganisms could increase this salt marsh plant potential to phytoremediate Cu contaminated sediments. Bacterial communities present in the autochthonous microbial consortium resistant to Cu added to the medium and in the sediment at the beginning and at the end of the experiment were characterized by ARISA. Complementarily, the consortium and the sediment used for its production were characterized by next generation sequencing using the pyrosequencing platform 454. The microbial consortium resistant to Cu obtained from non-vegetated sediment was dominated by the genus Lactococcus (46%), Raoultella (25%), Bacillus (12%) and Acinetobacter (11%), whereas the one obtained form rhizosediment was dominated by the genus Gluconacetobacter (77%), Bacillus (17%) and Dyella (3%). Results clearly showed that, after two months of experiment, Cu caused a shift in the bacterial community structure of sediments, an effect that was observed either with or without addition of the metal resistant microbial consortium. Therefore, bioaugmentation application improved the process of phytoremediation (metal translocation by the plant was increased) without inducing long term changes in the bacterial community structure of the sediments. So, phytoremediation combined with autochthonous bioaugmentation can be a suitable technology for the recovery of estuarine areas

  8. One way quantum repeaters with quantum Reed-Solomon codes

    OpenAIRE

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-01-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of $d$-level systems for large dimension $d$. We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generation of quantum repeaters using quan...

  9. System for the Reduction of Substances in Reject Water from Reed-Bed Sludge Mineralization Plants

    DEFF Research Database (Denmark)

    2004-01-01

    The invention is a system for the reduction of substances in reject water from reed-bed sludge mineralization plants (also referred to as sludge dewatering reed-beds). The systems utilizes the composition of substances in reject water from reed-beds and that of sludge to reduce substance mass from...... the reject water via recirculation into a mixed reactor and back onto the reed-beds. The mixed rector consists of a container in which sludge (that is typically loaded directly on to reed-beds) is mixed with recirculated reject water from reed-beds. The sludge mixture has a definable hydraulic retention time...... of by sending it back to the head of a wastewater treatment plant. The system has proven to reduce the mass of nitrogen, COD, and water in the reject water, and can possibly reduce phosphorus and other substances. The overall effect is a reduction in the substance recycle within a wastewater treatment plant...

  10. Ecology and physiology of reed. A literature study for evaluation of reed as an energy source. Vassens Ekologi och Fysiologi. Litteraturstudie foer Bedoerfrung au Vass som Energiraavaren

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndahl, G.; Egnens, H.

    1980-01-01

    The potentials of reed as an energy source are evaluated. The following subjects are discussed: The structure and life-cycle of reed; Primary production and photosynthesis; Important environmental factors for the production; Genetic variation; Competition, succession and parasitism; Human influence like cultivation, harvesting, etc. An extensive list of references is given.

  11. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  12. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  13. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime.

    Directory of Open Access Journals (Sweden)

    Junhong Bai

    Full Text Available Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa in the Yellow River Delta (YRD of China during three seasons (summer and fall of 2007 and the following spring of 2008 after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering.

  14. Genetic and epigenetic diversity and structure of Phragmites australis from local habitats of the Songnen Prairie using amplified fragment length polymorphism markers.

    Science.gov (United States)

    Qiu, T; Jiang, L L; Yang, Y F

    2016-08-19

    The genetic and epigenetic diversity and structure of naturally occurring Phragmites australis populations occupying two different habitats on a small spatial scale in the Songnen Prairie in northeastern China were investigated by assessing amplified fragment length polymorphisms (AFLPs) and methylation-sensitive amplified polymorphisms (MSAPs) through fluorescent capillary detection. The two groups of P. australis were located in a seasonal waterlogged low-lying and alkalized meadow with a pH of 8-8.5 and in an alkaline patch without accumulated rainwater and with a pH greater than 10. These groups showed high levels of genetic diversity at the habitat level based on the percentage of polymorphic bands (90.32, 82.56%), Nei's gene diversity index (0.262, 0.248), and the Shannon diversity index (0.407, 0.383). Although little is known about the between-habitat genetic differentiation of P. australis on a small spatial scale, our results implied significant genetic differentiation between habitats. Extensive epigenetic diversity within habitats, along with clear differentiation, was found. Specifically, the former habitat (Habitat 1, designated H1) harbored higher levels of genetic and epigenetic diversity than the latter (Habitat 2, designated H2), and population-level diversity was also high. This study represents one of few attempts to predict habitat-based genetic differentiation of reeds on a small scale. These assessments of genetic and epigenetic variation are integral aspects of molecular ecological studies on P. australis. Possible causes for within- and between-habitat genetic and epigenetic variations are discussed.

  15. The vibrating reed frequency meter : digital investigation of an early cochlear model

    NARCIS (Netherlands)

    Bell, Andrew; Wit, Hero P.

    2015-01-01

    The vibrating reed frequency meter, originally employed by Bekesy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system,

  16. Structural Classification of Marshes with Polarimetric SAR Highlighting the Temporal Mapping of Marshes Exposed to Oil

    Directory of Open Access Journals (Sweden)

    Elijah Ramsey

    2015-09-01

    Full Text Available Empirical relationships between field-derived Leaf Area Index (LAI and Leaf Angle Distribution (LAD and polarimetric synthetic aperture radar (PolSAR based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.

  17. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  18. Noncontact modal analysis of a pipe organ reed using airborne ultrasound stimulated vibrometry

    Science.gov (United States)

    Huber, Thomas M.; Fatemi, Mostafa; Kinnick, Randall R.; Greenleaf, James F.

    2004-05-01

    The goal of this experiment was to excite and measure, in a noncontact manner, the vibrational modes of the reed from a reed organ pipe. To perform ultrasound stimulated excitation, two ultrasound beams in air of different frequencies were directed at the reed; the audio-range beat frequency between these ultrasound beams induced vibrations. The resulting vibrational deflection shapes were measured with a scanning vibrometer. The modes of any relatively small object can be studied in air using this technique. For a 36 mm by 7 mm clamped brass reed cantilever, displacements and velocites of 5 μ and 4 mm/s could be imparted at the fundamental frequency of 145 Hz. Using the same ultrasound transducer, excitation across the entire range of audio frequencies was obtained, which was not possible using audio excitation with a speaker. Since the beam was focused on the reed, ultrasound stimulated excitation eliminated background effects observed during mechanical shaker excitation, such as vibrations of clamps and supports. We will discuss the results obtained using single, dual, and confocal ultrasound transducers in AM and unmodulated CW modes, along with results obtained using a mechanical shaker and audio excitation using a speaker.

  19. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D.

    2005-01-01

    This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export

  20. Galveston Bay Marsh Terracing 2001-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marsh terracing is used to restore coastal wetlands by converting shallow nonvegetated bottom to intertidal marsh. Terraces are constructed from excavated bottom...

  1. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2016-06-01

    Full Text Available Synthetic aperture radar polarimetry (PolSAR and polarimetric decomposition techniques have proven to be useful tools for wetland mapping. In this study we classify reed belts and monitor their phenological changes at a natural lake in northeastern Germany using dual-co-polarized (HH, VV TerraSAR-X time series. The time series comprises 19 images, acquired between August 2014 and May 2015, in ascending and descending orbit. We calculated different polarimetric indices using the HH and VV intensities, the dual-polarimetric coherency matrix including dominant and mean alpha scattering angles, and entropy and anisotropy (normalized eigenvalue difference as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The image classifications were performed with the random forest classifier and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes for the double-bounce–sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles and in the dual-polarimetric coherence (amplitude, anisotropy, entropy, and anisotropy-entropy combinations; whereas in summer dense leaves cause volume scattering, in winter, after leaves have fallen, the reed stems cause predominately double-bounce scattering. Our study showed that the five most important parameters for the classification of reed are the intensity difference HH-VV, the mean alpha scattering angle, intensity ratio HH/VV, and the coherence (phase. Due to the better separation of reed and other vegetation (deciduous forest, coniferous forest, meadow, winter acquisitions are preferred for the mapping of reed. Multi-temporal stacks of winter images performed better than summer ones. The combination of ascending and descending images also improved the result as it reduces the influence of the sensor

  2. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  3. Hardware/Software Co-design Applied to Reed-Solomon Decoding for the DMB Standard

    NARCIS (Netherlands)

    Dam, A.C.; Lammertink, M.G.J.; Rovers, K.C.; Slagman, J.; Wellink, A.M.; Rauwerda, G.K.; Smit, Gerardus Johannes Maria

    2006-01-01

    This paper addresses the implementation of Reed- Solomon decoding for battery-powered wireless devices. The scope of this paper is constrained by the Digital Media Broadcasting (DMB). The most critical element of the Reed-Solomon algorithm is implemented on two different reconfigurable hardware

  4. Analisa Kinerja Pengkodean Kanal Type Reed Solomon Coding pada Kualitas Transmisi Citra

    Directory of Open Access Journals (Sweden)

    Baharuddin

    2018-03-01

    Full Text Available Dalam sistem telekomunikasi, data multimedia berupa audio, citra, dan video ditransmisikan ke penerima melalui sebuah kanal komunikasi. Pada sistem telekomunikasi yang menggunakan kanal komunikasi wireless, selain pengaruh redaman, gangguan yang paling dominan adalah noise dan fading. Fading dan noise dikanal akan menurunkan kinerja sistem telekomunikasi digital karena dapat menyebabkan terjadinya kesalahan pendeteksian sinyal, sehingga terjadi perubahan bit atau simbol pada sisi penerima. Dengan menerapkan teknik pengkodean kanal tipe Reed Solomon Code pada sisi pengirim dan penerima, maka dapat ditingkatkan kinerja dari sistem komunikasi digital tersebut. Melalui simulasi dalam penelitian ini, telah dianalisa pengaruh penerapan teknik pengkodean kanal Reed Solomon Code pada sistem yang dipengaruhi noise Additive White Gaussian Noise (AWGN dan fading Rayleigh. Besarnya pengaruh penggunaan dari teknik pengkodean kanal Reed Solomon Code dapat diketahui melalui analisa Bit Error Rate (BER dan Peak Signal to Noise Ratio (PSNR. Hasil simulasi dari penelitian ini menunjukkan bahwa adanya peningkatan perbaikan sistem dipenerima rata-rata 5dB bila dibandingkan dengan tanpa menggunakan teknik pengkodean kanal Reed Solomon Code.

  5. Research on Noise Reduction of Reed Valves of a Hermetic Refrigerator Compressor

    Science.gov (United States)

    He, Zhilong; Chen, Qian; Li, Dantong; Wang, Ju; Xia, Pu; Wang, Tao

    2017-08-01

    The noise level of the refrigerator compressor has received more and more attention in recent years. As the key component of a compressor, reed valve is its main noise source. In this paper, a new noise reduction technology of coating on reed valve surface is proposed and verified by experiments. Firstly, the reed valves were coated, and their surface characteristics were checked. Then, the refrigerator compressor p-V diagram test was carried out to investigate the influence of doped diamond-like carbon (DLC) coating on power consumption. Finally, the noise test rig for the refrigerator compressor was set up. Based on the standard test method, noise spectrum was measured in a semi-anechoic room under standard working condition. Research results showed that the compressor noise was significantly reduced by 1.8dB (A) after coating. Moreover, the effect of aerodynamic noise reduction at suction side is better than that at discharge side. However, the influence of the film thickness on noise reduction value is little. The COP was reduced by 0.6% as compared to the compressor with uncoated reed valves.

  6. A Proteome Translocation Response to Complex Desert Stress Environments in Perennial Phragmites Sympatric Ecotypes with Contrasting Water Availability.

    Science.gov (United States)

    Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia

    2017-01-01

    After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites . The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.

  7. Marshes on the Move: Testing effects of seawater intrusion on ...

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress tolerance and interspecific interactions. As seawater inundates progressively higher marsh elevations, shifts in marsh vegetation communities landward may herald salt marsh “migration”, which could allow continuity of marsh function and ecosystem service provision. To elucidate possible effects of seawater intrusion on marsh-upland edge plant communities, a space-for-time approach was replicated at two Rhode Island salt marshes. At each site, peat blocks (0.5 m x 0.5 m x 0.5 m, n=6) with intact upland-marsh edge vegetation were transplanted downslope into the regularly-inundated mid-marsh. Procedural controls (n=3) were established at each elevation by removing and replacing peat blocks, and natural controls (n=3) consisted of undisturbed plots. During peak productivity, each plot was assessed for species composition, percent cover and average height. Results demonstrate stunting of marsh-upland edge vegetation in response to increased inundation, and the beginnings of colonization of the transplanted plots by salt marsh species. The extent of colonization differed between the two sites, suggesting that site-specific factors govern vegetation responses to increased inundation.

  8. The Reed Elsevier stock price gap

    NARCIS (Netherlands)

    Kamp, B.

    1995-01-01

    This is the report of a limited study on the structural stock price differences between Reed and Elsevier. The purpose of this study is to provide an overview of the problem area and to formulate and discuss several hypotheses regarding the causes of this gap. The research was performed by

  9. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    Science.gov (United States)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  10. Biological Flora of the British Isles: Phragmites australis

    Czech Academy of Sciences Publication Activity Database

    Packer, J. G.; Meyerson, L. A.; Skálová, Hana; Pyšek, Petr; Kueffer, C.

    2017-01-01

    Roč. 105, č. 4 (2017), s. 1123-1162 ISSN 0022-0477 R&D Projects: GA ČR(CZ) GA14-15414S Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : common reed * genome size * plant invasion Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 5.813, year: 2016

  11. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

    Directory of Open Access Journals (Sweden)

    Jemaneh eZeleke

    2013-08-01

    Full Text Available The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR of the methyl coenzyme M reductase A (mcrA and dissimilatory sulfite-reductase (dsrB genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands, respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively, which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m-2 h-1. Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S

  12. Immersion in a Hudson Valley Tidal Marsh and Climate Research Community - Lamont-Doherty's Secondary School Field Research Program

    Science.gov (United States)

    Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.

    2015-12-01

    A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time

  13. Arrangement of permanent magnet and reed switches for control rod position indicator of SMART CEDM

    International Nuclear Information System (INIS)

    Yoo, J. Y.; Kim, J. I.; Kim, J. H.; Hur, H.; Jang, M. H.

    2001-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indication. In this study, the characteristics of permanent magnet and reed switches are introduced and the calculation method for arrangement of permanent magnet and reed switch is presented

  14. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  15. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  16. Assessing the Potential for Inland Migration of a Northeastern Salt Marsh

    Science.gov (United States)

    Farron, S.; FitzGerald, D.; Hughes, Z. J.

    2017-12-01

    It is often assumed that as sea level rises, salt marshes will expand inland. If the slope of the upland is relatively flat and sufficient sediment is available, marshes should be able to spread horizontally and grow vertically in order to maintain their areal extent. However, in cases where marshes are backed by steeper slopes, or sediment supply is limited, rising sea level will produce minimal gains along the landward edge insufficient to offset potential losses along the seaward edge. This study uses future sea level rise scenarios to project areal losses for the Great Marsh in Massachusetts, the largest continuous salt marsh in New England. Land area covered by salt marsh is defined by surface elevation. Annual sediment input to the system is estimated based on the areal extent of high and low marsh, historical accretion rates for each, and known organic/inorganic ratios. Unlike other studies, sediment availability is considered to be finite, and future accretion rates are limited based on the assumption that the system is presently receiving the maximum sediment input available. The Great Marsh is dominated by high marsh; as sea level rises, it will convert to low marsh, vastly altering the ecological and sedimentological dynamics of the system. If it is assumed that former high marsh areas will build vertically at the increased rate associated with low marsh, then much of the total marsh area will be maintained. However, this may be an unrealistic assumption due to the low levels of suspended sediment within the Great Marsh system. Modeling the evolution of the Great Marsh by assuming that the current accretion rate is the maximum possible for this system reveals much greater losses than models assuming an unlimited sediment supply would predict (17% less marsh by 2115). In addition, uplands surrounding the Great Marsh have been shaped by glaciation, leaving numerous drumlins and other glacial landforms. Compared to the flat backbarrier, the surrounding

  17. Investigation of a Bio-Inspired Liner Concept

    Science.gov (United States)

    Koch, L. Danielle

    2017-01-01

    Four samples of natural reeds, Phragmites australis, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz. Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested. Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds. This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz. Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept.

  18. Salt Marshes as Sources and Sinks of Silica

    Science.gov (United States)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  19. Shoot cuttings propagation of giant reed (Arundo donax L.) in water and moist soil: The path forward?

    Energy Technology Data Exchange (ETDEWEB)

    Ceotto, Enrico; Di Candilo, Mario [C.R.A. - Centro di Ricerca per le Colture Industriali, Via di Corticella 133, 40128 Bologna (Italy)

    2010-11-15

    Giant reed (Arundo donax L.) is a perennial rhizomatous grass that can be regarded as an ideal crop for bioenergy production, owing to several intrinsic characteristics. Despite to the promising yield results obtained in many plot experiments, the cultivation of giant reed at field scale is still a challenge. Owing to the floral sterility of the species, rhizome propagation has been predominantly used to establish field plots experiments, although this method is unpractical and monetarily expensive. Giant reed is a hydrophytic plant that typically spread in riparian systems by flood-mediated fragmentation and dispersal of vegetative propagules. Since giant reed propagation is strictly dependent on temporary abundance of water, this plant characteristic might be exploited for fostering the diffusion of giant reed as a bioenergy field crop. The objectives of this paper were: i) to disseminate some techniques for shoot cutting propagation of giant reed in water and in moist soil; ii) to address the critical points that remain to be solved for a widespread diffusion of this species as a bioenergy field crop. (author)

  20. Moving from a regional to a continental perspective of Phragmites australis invasion in North America

    Science.gov (United States)

    Kettenring, Karin M.; de Blois, Sylvie; Hauber, Donald P.

    2012-01-01

    Aims We use a regional comparison of Phragmites australis (common reed) subsp. americanus, P. australis subsp. berlandieri and introduced P. australis (possibly five sublineages) in the Chesapeake Bay, the St Lawrence River, Utah and the Gulf Coast to inform a North American perspective on P. australis invasion patterns, drivers, impacts and research needs. Findings and research needs Our regional assessments reveal substantial diversity within and between the three main lineages of P. australis in terms of mode of reproduction and the types of environment occupied. For introduced P. australis, the timing of introduction also differed between the regions. Nevertheless, a common finding in these regions reinforces the notion that introduced P. australis is opportunistic and thrives in disturbed habitats. Thus, we expect to see substantial expansion of introduced P. australis with increasing anthropogenic disturbances in each of these regions. Although there have been some studies documenting the negative impacts of introduced P. australis, it also plays a beneficial role in some regions, and in some cases, the purported negative impacts are unproven. There is also a broader need to clarify the genetic and ecological relationships between the different introduced sublineages observed in North America, and their relative competitive ability and potential for admixture. This may be done through regional studies that use similar methodologies and share results to uncover common patterns and processes. To our knowledge, such studies have not been performed on P. australis in spite of the broad attention given to this species. Such research could advance theoretical knowledge on biological invasion by helping to determine the extent to which the patterns observed can be generalized or are sublineage specific or region specific. Synthesis Given what appears to be sometimes idiosyncratic invasion patterns when interpreted in isolation in the regions that we analysed, it may

  1. Application of Hyperspectal Techniques to Monitoring & Management of Invasive Plant Species Infestation

    Science.gov (United States)

    2008-01-09

    Scirpus olnei, S. robustus, Hibiscus palustris, Eryngium virginianum. 1. Common reed (Phragmites australis) - large cane or bamboo-like grass...Index 2 760 695 R R plant stress status Zarco-Tejada (1998) PI3, Pigment Index 3 690 440 R R vegetation health , based on chlorophyll fluorescence...ratios Lichtenthaler et al. (1996) PI4, Pigment Index 4 740 440 R R vegetation health , based on chlorophyll fluorescence ratios

  2. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    Science.gov (United States)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  3. Tidal Marshes: The Boundary between Land and Ocean.

    Science.gov (United States)

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  4. Reed Watkins: A Passion for Plume Moths

    Science.gov (United States)

    Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....

  5. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  6. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  7. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.

    2017-03-10

    Australia\\'s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia\\'s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia\\'s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  8. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  9. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  10. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  11. Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities

    OpenAIRE

    Uddin, Md Nazim; Robinson, Randall William

    2017-01-01

    Background Phragmites australis, a ubiquitous wetland plant, has been considered one of the most invasive species in the world. Allelopathy appears to be one of the invasion mechanisms, however, the effects could be masked by resource competition among target plants. The difficulty of distinguishing allelopathy from resource competition among plants has hindered investigations of the role of phytotoxic allelochemicals in plant communities. This has been addressed via experiments conducted in ...

  12. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  13. Marshes on the Move: Testing effects of seawater intrusion on vegetation communities of the salt marsh-upland ecotone

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress to...

  14. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  15. Islands in a desert : breeding ecology of the African Reed Warbler Acrocephalus baeticatus in Namibia

    NARCIS (Netherlands)

    Eising, CM; Komdeur, J; Buys, J; Reemer, M; Richardson, DS; Richardson, David S.

    The continental African Reed Warbler Acrocephalus baeticatus, like its relative the Seychelles Warbler Acrocephalus sechellensis, breeds in isolated patches. We studied the mating system of the African Reed Warbler to see whether this species, like the Seychelles Warbler, shows co-operative

  16. Gravity Drainage of Activated Sludge on Reed Beds

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Dominiak, Dominik Marek; Keiding, Kristian

    and operation of reed beds and the efficiencies are often lower than predicted. One reason is that the sludge quality varies from plant to plant and even within plants from time to time. No good method exists for measuring the sludge quality with respect to drainage characteristics. A new experimental method...... has therefore been developed to measure relevant quality parameters: specific cake resistance, settling velocity and cake compressibility. It has been found that activated sludge form highly compressible cake even at the low compressive pressures obtained during drainage. Numerical simulation shows......Activated sludge is a by-product from waste water treatment plants, and the water content in the sludge is high (> 90%). Among several methods to remove the water, sludge drying reed beds are often used to dewater the sludge by drainage. There is, however, no well-defined criterion for design...

  17. Heavy metal sequestration by humic substances during phyto-treatment of sewage sludges

    International Nuclear Information System (INIS)

    Peruzzi, E.; Doni, S.; Macci, C.; Ceccanti, B.; Masciandaro, G.

    2009-01-01

    The presence of heavy metals in sludges stabilized in a reed bed system, may affect their use for agricultural purposes; however, the environmental impact of sludges depends on the availability and phyto toxicity of their heavy metal. The aim of this paper was to determine the effectiveness of a reed bed (Phragmites Australia) sludge treatment system in two urban wastewater treatment plants in Italy after two-year period of operation: by estimating the process of sludge stabilization, following conventional and non conventional parameters related with the evolution of organic matter quality Water soluble Carbon, Dehydrogenase activity, Fulvic Acids, Humic Acids, Pyrolytic indices or organic matter Mineralization and Humification); by following the heavy metal speciation bioavailability in sludges. (Author)

  18. Salt Marshes as Potential Indicatore of Global Climate Change

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairens, David; Jung, S.H.

    2011-01-01

    Coastal scientists postulate that salt marshes are significantly affected by dynamics of global climate. However, few studies have explicitly proposed a perspective that regards salt marshes as potential indicators of climate change. This review article evaluates the possibility of salt marshes...... as indicators of global climate change, focusing upon three major aspects: sedimentary, vegetation, and biogeochemical dynamics. The previous literature concerned with these aspects commonly argues that the primary impact of climate change on salt marshes occurs via sea-level variations, because hydrologic...... fluctuations regulate the frequency, duration, and depth of over-marsh flooding events. Sedimentary, floristic, and biogeochemical dynamics prove to be significantly influenced by sealevel changes regardless of climate zones, and hence, undoubtedly possess a potential for indicating climate signatures. However...

  19. Ecosystem Service Value for the Common Reed Wetlands in the Liaohe Delta, Northeast China

    DEFF Research Database (Denmark)

    Ye, Siyuan; Laws, Edward A.; Costanza, Robert

    2016-01-01

    The largest reed field in the world, with an area of 1000 km2 in 1953, is located in the Liaohe Delta, which lies in the five-point-in-a-line economic strategic zone of northeastern China. However, the area of reeds has declined dramatically in recent years to accommodate oil field infrastructure...

  20. Differences in breeding bird assemblages related to reed canary grass cover cover and forest structure on the Upper Mississippi River

    Science.gov (United States)

    Kirsch, Eileen M.; Gray, Brian R.

    2017-01-01

    Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior areas to 1) measure reed canary grass cover and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass cover. Reed canary grass was found far into forest interiors, and its cover was similar between interior and edge sites. Bird assemblages differed between areas with more or less reed canary grass cover (.53% cover breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass cover. Bird diversity and abundance were similar between sites with different reed canary grass cover. A stronger divergence in bird assemblages was associated with ground cover ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.

  1. Can salt marshes survive sea level rise ?

    Science.gov (United States)

    Tambroni, N.; Seminara, G.

    2008-12-01

    Stability of salt marshes is a very delicate issue depending on the subtle interplay among hydrodynamics, morphodynamics and ecology. In fact, the elevation of the marsh platform depends essentially on three effects: i) the production of soil associated with sediments resuspended by tidal currents and wind waves in the adjacent tidal flats, advected to the marsh and settling therein; ii) production of organic sediments by the salt marsh vegetation; iii) soil 'loss' driven by sea level rise and subsidence. In order to gain insight into the mechanics of the process, we consider a schematic configuration consisting of a salt marsh located at the landward end of a tidal channel connected at the upstream end with a tidal sea, under different scenarios of sea level rise. We extend the simple 1D model for the morphodynamic evolution of a tidal channel formulated by Lanzoni and Seminara (2002, Journal of Geophysical Research-Oceans, 107, C1) allowing for sediment resuspension in the channel and vegetation growth in the marsh using the depth dependent model of biomass productivity of Spartina proposed by Morris et al. (2002, Ecology, 83, pp. 2869 - 2877). We first focus on the case of a tide dominated salt marsh neglecting wind driven sediment resuspension in the shoal. Results show that the production of biomass plays a crucial role on salt marsh stability and, provided productivity is high enough, it may turn out to be sufficient to counteract the effects of sea level rise even in the absence of significant supply of mineral sediments. The additional effect of wind resuspension is then introduced. Note that the wind action is twofold: on one hand, it generates wind waves the amplitude of which is strongly dependent on shoal depth and wind fetch; on the other hand, it generates currents driven by the surface setup induced by the shear stress acting on the free surface. Here, each contribution is analysed separately. Results show that the values of bottom stress induced by

  2. Assessing Salt Marsh Recovery Utilizing Improved Computer-Aided Tomography Technology (CTT)

    Science.gov (United States)

    In 2001 the Padanarum marsh, a small 7.2-acre marsh in Dartmouth, MA, was chosen as a Tidal Hydrology Restoration site. The site was initially characterized as a brackish mostly freshwater deteriorating marsh. In May 2003 the seawater input to this marsh was increased by replacin...

  3. The mechanical spectra of deposited materials by a composite reed vibration method

    International Nuclear Information System (INIS)

    Ying, X.N.; Zhang, L.; Yuan, Y.H.

    2010-01-01

    Recently a composite reed vibration method has been designed to measure the mechanical spectra (complex Young's modulus) of materials from liquid to solid state. The mechanical spectra of materials can be obtained from a composite system consisting of a substrate reed and of materials deposited on it. In this report, two sets of formulas to calculate the mechanical spectra of deposited materials are further analyzed. The proof is given for the previous named 'approximate formulas' (labeled as Formula II). Then the composite reed vibration method can be safely used as an extension of the mechanical spectrum method of the thin solid film. At the same time, some comments are made on previous analytical formulas (labeled as Formula I). At last, more experiments with a small amount of deposited materials are performed. It is found that smaller quantity is more favorable to achieve the intrinsic mechanical spectra of deposited materials.

  4. Ammonia Fiber Expansion Pretreatment and Enzymatic Hydrolysis on Two Different Growth Stages of Reed Canarygrass

    Science.gov (United States)

    Bradshaw, Tamika C.; Alizadeh, Hasan; Teymouri, Farzaneh; Balan, Venkatesh; Dale, Bruce E.

    Plant materials from the vegetative growth stage of reed canarygrass and the seed stage of reed canarygrass are pretreated by ammonia fiber expansion (AFEX) and enzymatically hydrolyzed using 15 filter paper units (FPU) cellulase/g glucan to evaluate glucose and xylose yields. Percent conversions of glucose and xylose, effects of temperature and ammonia loading, and hydrolysis profiles are analyzed to determine the most effective AFEX treatment condition for each of the selected materials. The controls used in this study were untreated samples of each biomass material. All pretreatment conditions tested enhanced enzyme digestibility and improved sugar conversions for reed canarygrass compared with their untreated counterparts. Based on 168 h hydrolysis results using 15 FPU Spezyme CP cellulase/g glucan the most effective AFEX treatment conditions were determined as: vegetative growth stage of reed canarygrass—100°C, 60% moisture content, 1.2∶1 kg ammonia/kg of dry matter (86% glucose and 78% xylose) and seed stage of reed canarygrass—100°C, 60% moisture content, 0.8∶1 kg ammonia/kg of dry matter (89% glucose and 81% xylose). Supplementation by commercial Multifect 720 xylanase along with cellulase further increased both glucose and xylose yields by 10-12% at the most effective AFEX conditions.

  5. Space communication system for compressed data with a concatenated Reed-Solomon-Viterbi coding channel

    Science.gov (United States)

    Rice, R. F.; Hilbert, E. E. (Inventor)

    1976-01-01

    A space communication system incorporating a concatenated Reed Solomon Viterbi coding channel is discussed for transmitting compressed and uncompressed data from a spacecraft to a data processing center on Earth. Imaging (and other) data are first compressed into source blocks which are then coded by a Reed Solomon coder and interleaver, followed by a convolutional encoder. The received data is first decoded by a Viterbi decoder, followed by a Reed Solomon decoder and deinterleaver. The output of the latter is then decompressed, based on the compression criteria used in compressing the data in the spacecraft. The decompressed data is processed to reconstruct an approximation of the original data-producing condition or images.

  6. ADVANCES IN CLOG STATE MONITORING FOR USE IN AUTOMATED REED BED INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Theodore HUGHES-RILEY

    2014-06-01

    Full Text Available Constructed wetlands are a popular form of waste-water treatment that have proliferated across Europe and the rest of the world in recent years as an environmentally conscious form of waste water treatment. The ability to monitor the conditions in the bed and control input factors such as heating and aeration may extend the lifetime of the reed bed substantially beyond the ten year lifetime normally reached. The Autonomous Reed Bed Installation (ARBI project is an EU FP7 initiative to develop a reed bed with automated control over input parameters based on readings taken from embedded sensors. Automated remedial action may improve bed treatment efficiency, and prolong the life of the bed and avoiding the need to refurbish the bed, which is both time consuming and costly. One critical parameter to observe is the clog state of the reed bed, as this can severely impact on the efficiency of water treatment to the point of the bed becoming non-operable. Magnetic resonance (MR sensors can be a powerful tool in determining clogging levels, and has previously been explored in the literature. This work is based on a conference paper (2nd International Conference "Water resources and wetlands", 2014 and details magnetic sensors suitable for long-term embedding into a constructed wetland. Unlike previous studies this work examines a probe embedded into a wetland.

  7. NRC [Nuclear Regulatory Commission] staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    International Nuclear Information System (INIS)

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved

  8. Fluid-Structure Interaction of a Reed Type Valve Subjected to Piston Displacement

    OpenAIRE

    Estruch, Olga; Lehmkuhl, Oriol; Rigola, Joaquim; Pérez-Segarra, Carles David

    2014-01-01

    In the field of reciprocating compressors, the developing of reed type valves is a challenging task. The understanding of the fluid flow behaviour through the valve reed is essential to improve the valve design. Hence, this work attempts the dynamic simulation of this fluid-structure interaction (FSI) problem, taking into account valve movement due to piston displacement. In this work attends the in-house implemented CFD&HT and moving mesh coupled code TermoFluids [1]. The CFD&HT solver consi...

  9. Analysis of magnetic field and hysteresis of reed switches for control rod position indicator of SMART CEDM

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, J. H.; Heo, H.; Kim, J. I.; Jang, M. H.

    2002-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The hysteresis of reed switches is one of the important factors in a repeat accuracy of control rod position indication. In this study, the hysteresis of reed switches is introduced and the design method using the magnetic analysis of reed switches in presented

  10. Hydrodynamic Modeling of Santa Marta's Big Marsh

    International Nuclear Information System (INIS)

    Saldarriaga, Juan

    1991-01-01

    The ecological degradation of Santa Marta's Big Marsh and their next areas it has motivated the realization of diagnosis studies and design by several state and private entities. One of the recommended efforts for international advisory it was to develop an ecological model that allowed the handling of the water body and the economic test of alternative of solution to those ecological problems. The first part of a model of this type is in turn a model that simulates the movement of the water inside the marsh, that is to say, a hydrodynamic model. The realization of this was taken charge to the civil engineering department, on the part of Colciencias. This article contains a general explanation of the hydrodynamic pattern that this being developed by a professors group. The ecological causes are described and antecedent, the parts that conform the complex of the Santa Marta big Marsh The marsh modeling is made and it is explained in qualitative form the model type Hydrodynamic used

  11. Decline of the Macquarie Marshes ecosystem, Australia, since European arrival recorded by organic geochemical proxies in sediments

    Science.gov (United States)

    Yu, L.; Chivas, A. R.; Garcia, A.; Hu, J.

    2011-12-01

    The Macquarie Marshes are floodplain wetlands in semi-arid NSW, Australia, and a Ramsar site experiencing accelerated deterioration in the last 50 years due to anthropogenic activities. We investigated environmental changes occurring in the northern and southern marshes using organic geochemical proxies from short cores and surface samples as modern analogues. Some proxies of modern plants (ferns, charophyte, reeds, Eucalyptus) and biota (black swan guano) samples, which are abundant in the Macquarie Marshes, were also analysed for comparison. The proxies analysed include bulk organic carbon and nitrogen (TOC, TN, C/N ratio), carbon and nitrogen isotopes (δ13C, δ15N) and some organic biomarkers (focusing on n-alkanes, sterols and polycylic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs)). TOC values in surface samples range between 2 to 5% depending on the organic input. The TOC and TN curves exhibit similar trends along time, decreasing to only one tenth at the depth of 70 cm (~ 565-752 years old) than those at the surface. The bulk δ13C values of modern samples (less than 50 years old) vary from -23% to -26%, falling within the range of values found in black swan guano(-21.6%) and plants (-27.0 to -31.5%). The calculated C/N ratios range from 10 to 25, and together with δ13C values suggest that the organic matter is mainly derived from terrestrial C3 plants. The contribution of aquatic plants is shown by shifts to higher δ13C values and lower C/N values in the core sections below the 40 cm depth (older than 130 years). Changes in vegetation type are also reflected by n-alkane and sterol biomarkers. In one core from the northern marshes, the temporal variation of (n-C27+C29)/n-C31 ratio indicates that the dominance of grasses has gradually been replaced by higher plants about 130 years ago. Sediments from the floodplain and dry lagoons show a dominant peak in long-chain n-alkanes with strong odd-to-even preference, contributed by emergent

  12. Unsupervised detection of salt marsh platforms: a topographic method

    Science.gov (United States)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform

  13. Unsupervised detection of salt marsh platforms: a topographic method

    Directory of Open Access Journals (Sweden)

    G. C. H. Goodwin

    2018-03-01

    Full Text Available Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM, referred to as Topographic Identification of Platforms (TIP. Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives

  14. Phragmites australis management in the United States: 40 years of methods and outcomes

    OpenAIRE

    Hazelton, Eric L. G.; Mozdzer, Thomas J.; Burdick, David M.; Kettenring, Karin M.; Whigham, Dennis F.

    2014-01-01

    Studies on invasive plant management are often short in duration and limited in the methods tested, and lack an adequate description of plant communities that replace the invader following removal. Here we present a comprehensive review of management studies on a single species, in an effort to elucidate future directions for research in invasive plant management. We reviewed the literature on Phragmites management in North America in an effort to synthesize our understanding of management ef...

  15. A study on flow distribution for integrated hybrid actuator by analysis of reed valve

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jang Mi; Kang, Seung Hwan; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of); Goo, Nam Seo; Li, Yong Zhe [Konkuk University, Seoul (Korea, Republic of)

    2016-05-15

    Many studies have been conducted recently on an integrated hybrid actuator due to the increasing need for unmanned aircraft and guided weapons. In this study, flow distribution was analyzed for a reed valve which was used for flow regulation to improve the performance of the actuator. By using a Fluid structural interaction (FSI) technique with Computational fluid dynamics (CFD) having a moving mesh, numerical analysis was performed according to the thickness, shape and driving frequency of the reed valve. From the calculated results, the maximum performance of the reed valve was found at the valve thickness of 0.15 mm and the driving frequency of 250 Hz for a no-load state. The optimum thickness and shape for the valve for each driving frequency were also realized.

  16. Salt Marsh Formation in the Lower Hudson River Estuary

    Science.gov (United States)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  17. Modelling the long-term vertical dynamics of salt marshes

    Science.gov (United States)

    Zoccarato, Claudia; Teatini, Pietro

    2017-04-01

    Salt marshes are vulnerable environments hosting complex interactions between physical and biological processes with a strong influence on the dynamics of the marsh evolution. The estimation and prediction of the elevation of a salt-marsh platform is crucial to forecast the marsh growth or regression under different scenarios considering, for example, the potential climate changes. The long-term vertical dynamics of a salt marsh is predicted with the aid of an original finite-element (FE) numerical model accounting for the marsh accretion and compaction and for the variation rates of the relative sea level rise, i.e., land subsidence of the marsh basement and eustatic rise of the sea level. The accretion term considers the vertical sedimentation of organic and inorganic material over the marsh surface, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing load of the overlying younger deposits. The modelling approach is based on a 2D groundwater flow simulator, which provides the pressure evolution within a compacting/accreting vertical cross-section of the marsh assuming that the groundwater flow obeys the relative Darcy's law, coupled to a 1D vertical geomechanical module following Terzaghi's principle of effective intergranular stress. Soil porosity, permeability, and compressibility may vary with the effective intergranular stress according to empirically based relationships. The model also takes into account the geometric non-linearity arising from the consideration of large solid grain movements by using a Lagrangian approach with an adaptive FE mesh. The element geometry changes in time to follow the deposit consolidation and the element number increases in time to follow the sedimentation of new material. The numerical model is tested on different realistic configurations considering the influence of (i) the spatial distribution of the sedimentation rate in relation to the distance from the marsh margin, (ii

  18. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Directory of Open Access Journals (Sweden)

    Johannes Teuchies

    Full Text Available Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  19. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  20. An introduction to constructed wetlands (reed beds) sustainable low cost wastewater treatment plants

    International Nuclear Information System (INIS)

    Ahmad, M.I.

    2005-01-01

    The use of 'conventional' wastewater treatment technology (trickling filters and activated sludge) in developing countries has often been unsuccessful due to high cost, complex operating requirements and expensive maintenance procedures. Typical examples of such projects are wastewater plants in Islamabad and Karachi. Actually the conventional systems, such as trickling filters and activated sludge plants were developed to address the concerns about organic pollution of natural water bodies in western temperate climates, rather than the reduction of organic matter as well as pathogens which is often a priority in developing countries. Pakistan, being a developing country cannot and should not follow the western technology blindly but needs the use of a ppropriate technology . Appropriate technology is defined as a treatment system which meets the following criteria: Affordable: Total amount costs, including capital, operation, maintenance and depreciation are within the user's ability to pay. Operable: Operation of the system is possible with locally available labor and support. Reliable: Effluent quality requirements can be met consistently. Currently there are a limited number of appropriate technologies for small communities, which should be considered by a community and their designers. These include conventional and non-conventional systems such as stabilization ponds or lagoons, slow sand filters, land treatment systems, and wetlands (natural or constructed). The non-conventional systems often utilize 'ecological' treatment mechanism (such as aquatic systems or wetlands) and do not have the mechanical parts or energy requirements of conventional systems. Waste Stabilization Ponds are one such solution but sometimes are constrained by land availability, topography, and are not environment friendly. In such locations, natural or constructed wetlands (Reed Beds) could provide an alternative technology. It is what we call a LOW technology, rather than HI TECH

  1. Phragmites australis as a model organism for studying plant invasions

    Czech Academy of Sciences Publication Activity Database

    Meyerson, L. A.; Cronin, J. T.; Pyšek, Petr

    2016-01-01

    Roč. 18, č. 9 (2016), s. 2421-2431 ISSN 1387-3547 R&D Projects: GA ČR(CZ) GA14-15414S Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : common reed * model species * global climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 2.473, year: 2016

  2. Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2014-07-01

    Full Text Available decrease in the NIR24, and similarly the radionuclides Cs and Sr at Chernobyl were highly negatively correlated to the REP, green and NIR regions26. An opposite trend was observed in plants exposed to Cd24, Pb27, a combination of heavy metals (As, Cd, Cr.... Davids C, Tyler AN. Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote Sens Environ. 2003;85(1):30–38. http:// dx.doi.org/10.1016/S0034-4257(02)00184-0 Research Article Assessing leaf spectral properties of Phragmites...

  3. Decoding Reed-Solomon Codes beyond half the minimum distance

    DEFF Research Database (Denmark)

    Høholdt, Tom; Nielsen, Rasmus Refslund

    1999-01-01

    We describe an efficient implementation of M.Sudan"s algorithm for decoding Reed-Solomon codes beyond half the minimum distance. Furthermore we calculate an upper bound of the probabilty of getting more than one codeword as output...

  4. Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data

    Science.gov (United States)

    Couvillion, Brady R.; Beck, Holly

    2013-01-01

    Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of

  5. Balanced Sediment Fluxes in Southern California's Mediterranean-climate Zone Salt Marshes

    Science.gov (United States)

    Rosencranz, J. A.; Dickhudt, P.; Ganju, N. K.; Thorne, K.; Takekawa, J.; Ambrose, R. F.; Guntenspergen, G. R.; Brosnahan, S.; MacDonald, G. M.

    2015-12-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many southern California, USA salt marshes import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are also potentially important for marsh stability. We calculated tidal creek sediment fluxes within a sediment starved 1.5 km2 salt marsh (Seal Beach) and a less modified 1 km2 marsh (Mugu) with a watershed sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12000 and 8800 kg in a western channel. This offset 8700 kg export during two months of dry weather, while landward net fluxes in the eastern channel accounted for 33% of the import. During the storm, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1-2 mm near creek levees. An exceptionally high tide sequence at Mugu yielded 4.4 g/s mean sediment flux, importing 1700 kg, accounting for 20% of dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are currently geomorphically stable. Our results suggest that storms and exceptionally high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea-level rise scenarios, results suggest that balanced sediment fluxes may lead to marsh elevational instability, based on estimated mineral sediment deficits.

  6. Marsh canopy structure changes and the Deepwater Horizon oil spill

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  7. Loss of 'blue carbon' from coastal salt marshes following habitat disturbance.

    Directory of Open Access Journals (Sweden)

    Peter I Macreadie

    Full Text Available Increased recognition of the global importance of salt marshes as 'blue carbon' (C sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2 if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora sediment C levels following seagrass (Thallasiatestudinum wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA, we recorded 296 patches (7.5 ± 2.3 m(2 mean area ± SE of vegetation loss (aged 3-12 months in a salt marsh meadow the size of a soccer field (7 275 m(2. Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

  8. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013

    Science.gov (United States)

    Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.

    2017-05-30

    The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.

  9. In vitro incorporation of tritiated thymidine by the Sternberg-Reed cells in Hodgkin disease

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, M; Tkachenko, G; Gavilondo, J; Baeza, B [National Institute of Oncology and Radiology, Havana (Cuba)

    1975-01-01

    A new DNA synthesis by the Sternberg-Reed cells in Hodgkin disease was studied using tritiated thymidine and autoradiography. The results show that after incubation pulses of 30 and 60 minutes, cells with lobulated nucleus, binucleated and trinucleated cells identifiable to the diagnostic Sternberg-Reed cells could undergo a new DNA synthesis. This points to a more dynamic interpretation of this type of cell.

  10. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, A.; Eurek, K.; Mai, T.; Perry, A.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact of variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.

  11. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  12. Tidal Marshes as Pulsing Systems: New Estimates of Marsh-Carbon Export and Fate

    Science.gov (United States)

    Logozzo, L. A.; Neale, P.; Tzortziou, M.; Nelson, N.; Megonigal, P.

    2016-02-01

    We investigated wetland-estuarine exchanges of dissolved organic carbon (DOC), chromophoric dissolved organic matter (CDOM), dissolved inorganic carbon (DIC), and chlorophyll a (chl a) in the Chesapeake Bay Kirkpatrick wetlands, an ecosystem that is representative of brackish marshes with organic-rich soils in North America. 1 L water samples were collected every hour over multiple semidiurnal tidal cycles (24 h deployments) and the flow was continuously measured every minute over the course of the study. DIC samples were collected and filtered on site. Fluxes were estimated using the measured flow and concentrations of biogeochemical variables (DOC, DIC, and chl a as a measure of algal biomass). aCDOM(300) was used as a proxy for CDOM amount to observe variations over two semidiurnal tidal cycles. Relative to high tide water, low tide water was consistently enriched in DOC, DIC, and CDOM, whereas it was consistently depleted in chl a. Initial estimates of fluxes over the tidal cycle showed net export of DIC and DOC from the marsh, and net import of chl a into the marsh. These results are consistent with DOC flux estimates from previous studies, but our method utilizes high temporal resolution flow measurements, improving flux estimate accuracy. Transect sampling from the marsh into the sub-estuary during ebbing tide indicated a strong negative gradient in a­CDOM­(300) and non-conservative mixing with salinity. The observed gradients in CDOM absorption spectral shape (slope and slope ratios) and the relative changes in the major fluorescence components identified in 3D fluorescence excitation-emission-matrices, indicated strong photochemical degradation in the estuary and a shift from higher to lower molecular-weight organic compounds. The weaker gradients observed for DOC and DIC compared to aCDOM(300) indicate that while microbial degradation does occur, photobleaching is the dominant degradation mechanism for CDOM in the estuary.

  13. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).

    Science.gov (United States)

    Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina

    2017-06-13

    Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.

  14. Climate change and sustainability of the carbon sink in Maritime salt marshes

    International Nuclear Information System (INIS)

    Chmura, G.L.

    2008-01-01

    Ideal carbon sinks do not emit greenhouse gases (GHGs) and are sustainable with future trends in global warming. This presentation discussed the potential for using Maritime salt marshes as carbon sinks. The marshes are covered with grasses adapted to saline soils. Photosynthesis by the marsh plants and algae fix the carbon dioxide (CO 2 ) directly from the atmosphere. The carbon is then buried by mineral sediment. Wetlands without saline water are known to produce methane. The carbon in salt marsh soils does not significantly decline with depth or time. Salt marshes and mangroves store an average of 210 g of CO 2 per m 2 per year. The tidal floodwaters keep the soils wet, which allows for slow decomposition. Canadian salt marsh soils have increased in thickness at a rate of between 2 to 4 mm per year. Measurement programs have demonstrated the sustainability of inner Bay of Fundy marshes in relation to rising sea levels. Opportunities for carbon sinks also exist in dyked marshes in the region. It was concluded that the salt marshes can account for between 4 to 6 per cent of Canada's targeted reductions under the Kyoto Protocol. tabs., figs.

  15. Herbivory drives the spread of salt marsh die-off.

    Directory of Open Access Journals (Sweden)

    Mark D Bertness

    Full Text Available Salt marsh die-off is a Western Atlantic conservation problem that has recently spread into Narragansett Bay, Rhode Island, USA. It has been hypothesized to be driven by: 1 eutrophication decreasing plant investment into belowground biomass causing plant collapse, 2 boat wakes eroding creek banks, 3 pollution or disease affecting plant health, 4 substrate hardness controlling herbivorous crab distributions and 5 trophic dysfunction releasing herbivorous crabs from predator control. To distinguish between these hypotheses we quantified these variables at 14 Narragansett Bay salt marshes where die-off intensity ranged from <5% to nearly 98%. Nitrogen availability, wave intensity and plant growth did not explain any variation in die-off. Herbivory explained 73% of inter-site variation in die-off and predator control of herbivores and substrate hardness also varied significantly with die-off. This suggests that salt marsh die-off is being largely driven by intense herbivory via the release of herbivorous crabs from predator control. Our results and those from other marsh systems suggest that consumer control may not simply be a factor to consider in marsh conservation, but with widespread predator depletion impacting near shore habitats globally, trophic dysfunction and runaway consumption may be the largest and most urgent management challenge for salt marsh conservation.

  16. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.

    Science.gov (United States)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  17. Status of exotic grasses and grass-like vegetation and potential impacts on wildlife in New England

    Science.gov (United States)

    DeStefano, Stephen

    2013-01-01

    The Northeastern section of the United States, known as New England, has seen vast changes in land cover and human population over the past 3 centuries. Much of the region is forested; grasslands and other open-land cover types are less common, but provide habitat for many species that are currently declining in abundance and distribution. New England also consists of some of the most densely populated and developed states in the country. The origin, distribution, and spread of exotic species are highly correlated with human development. As such, exotics are common throughout much of New England, including several species of graminoids (grasses and grass-like plants such as sedges and rushes). Several of the more invasive grass species can form expansive dense mats that exclude native plants, alter ecosystem structure and functions, and are perceived to provide little-to-no value as wildlife food or cover. Although little research has been conducted on direct impacts of exotic graminoids on wildlife populations in New England, several studies on the common reed (Phragmites australis) in salt marshes have shown this species to have variable effects as cover for birds and other wildlife, depending on the distribution of the plant (e.g., patches and borders of reeds are used more by wildlife than expansive densely growing stands). Direct impacts of other grasses on wildlife populations are largely unknown. However, many of the invasive graminoid species that are present in New England have the capability of outcompeting native plants and thereby potentially affecting associated fauna. Preservation, protection, and restoration of grassland and open-land cover types are complex but necessary challenges in the region to maintain biological and genetic diversity of grassland, wetland, and other open-land obligate species.

  18. Salt marsh persistence is threatened by predicted sea-level rise

    Science.gov (United States)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  19. Purification performances of common reed beds based on the ...

    African Journals Online (AJOL)

    SARAH

    2013-11-30

    Nov 30, 2013 ... advantages, the reed bed is a solution to Beninese purification problems. Since technical service agent of ... Journal of Applied Biosciences 71:5682– 5691. ISSN 1997–5902 ..... 15N/14N ratios. Journal of Hydrology, vol. 199,.

  20. Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height of Aquatic Reed Beds at Lake Chiemsee, Bavaria—Germany

    Directory of Open Access Journals (Sweden)

    Nicolás Corti Meneses

    2017-12-01

    Full Text Available Aquatic reed is an important indicator for the ecological assessment of freshwater lakes. Monitoring is essential to document its expansion or deterioration and decline. The applicability of Green-LiDAR data for the status assessment of aquatic reed beds of Bavarian freshwater lakes was investigated. The study focused on mapping diagnostic structural parameters of aquatic reed beds by exploring 3D data provided by the Green-LiDAR system. Field observations were conducted over 14 different areas of interest along 152 cross-sections. The data indicated the morphologic and phenologic traits of aquatic reed, which were used for validation purposes. For the automatic classification of aquatic reed bed spatial extent, density and height, a rule-based algorithm was developed. LiDAR data allowed for the delimitating of the aquatic reed frontline, as well as shoreline, and therefore an accurate quantification of extents (Hausdorff distance = 5.74 m and RMSE of cross-sections length 0.69 m. The overall accuracy measured for aquatic reed bed density compared to the simultaneously recorded aerial imagery was 96% with a Kappa coefficient of 0.91 and 72% (Kappa = 0.5 compared to field measurements. Digital Surface Models (DSM, calculated from point clouds, similarly showed a high level of agreement in derived heights of flat surfaces (RMSE = 0.1 m and showed an adequate agreement of aquatic reed heights with evenly distributed errors (RMSE = 0.8 m. Compared to field measurements, aerial laser scanning delivered valuable information with no disturbance of the habitat. Analysing data with our classification procedure improved the efficiency, reproducibility, and accuracy of the quantification and monitoring of aquatic reed beds.

  1. The protective role of coastal marshes: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Christine C Shepard

    Full Text Available BACKGROUND: Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7, salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30. Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. CONCLUSIONS/SIGNIFICANCE: Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision

  2. Development of the reed bed in Matsalu wetland, Estonia: responses to neotectonic land uplift, sea level changes and human influences

    Directory of Open Access Journals (Sweden)

    Mats Meriste

    2015-05-01

    Full Text Available We studied reed bed development in Matsalu wetland and the Kasari River delta, Estonia, since the late 18th century using historical schemes, topographical maps and aerial photographs. Our aim was to understand the mechanisms controlling reed distribution in Matsalu wetland, the largest coastal wetland of the eastern Baltic Sea occupying an area of about 25 km2. Natural development of the reed bed in Matsalu Bay and the Kasari delta is mainly controlled by shoreline displacement due to post-glacial neotectonic land uplift. The dredging of the Kasari delta in the 1920s–1930s caused a rapid seaward migration of reed bed communities due to the dispersal of fragmented rhizomes on the shallow sea bottom and along the canal banks reaching Matsalu Bay, while the landward parts of the former wetland were occupied by meadow communities. The expansion of the reed bed started in between the 1951s and 1970s and a maximum extent of 27 km2 was gained by the late 1970s at the peak of eutrophication. In the last decades the reed bed development has been influenced by sea level rise and increased intensity of cyclonic activity in the Baltic Sea, which has caused the deterioration of the reed bed that was weakened by eutrophication due to nutrient inflow from agricultural landscapes mainly in the 1960s–1980s.

  3. Signatures of Biogeomorphic Feedbacks in Salt-Marsh Systems

    Science.gov (United States)

    D'Alpaos, Andrea; Marani, Marco

    2015-04-01

    Salt-marsh ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. Dense stands of halophytic vegetations which populate salt marshes largely control the dynamics of these ecosystems influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. Moreover, plants are also known to increase vertical accretion through direct organic accretion. Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we develop a two-dimensional model which describes the mutual interaction and adjustment between tidal flows, sediment transport and morphology mediated by vegetation influence. The model allows us describe the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios were modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that biogeomorphic feedbacks critically affect the response and the resilience of salt-marsh landscapes to changes in the environmental forcing.

  4. Reed Warbler Hosts Fine-Tune their Defenses to Track Three Decades of Cuckoo Decline

    Science.gov (United States)

    Thorogood, Rose; Davies, Nicholas B

    2013-01-01

    Interactions between avian hosts and brood parasites can provide a model for how animals adapt to a changing world. Reed warbler (Acrocephalus scirpaceus) hosts employ costly defenses to combat parasitism by common cuckoos (Cuculus canorus). During the past three decades cuckoos have declined markedly across England, reducing parasitism at our study site (Wicken Fen) from 24% of reed warbler nests in 1985 to 1% in 2012. Here we show with experiments that host mobbing and egg rejection defenses have tracked this decline in local parasitism risk: the proportion of reed warbler pairs mobbing adult cuckoos (assessed by responses to cuckoo mounts and models) has declined from 90% to 38%, and the proportion rejecting nonmimetic cuckoo eggs (assessed by responses to model eggs) has declined from 61% to 11%. This is despite no change in response to other nest enemies or mimetic model eggs. Individual variation in both defenses is predicted by parasitism risk during the host’s egg-laying period. Furthermore, the response of our study population to temporal variation in parasitism risk can also explain spatial variation in egg rejection behavior in other populations across Europe. We suggest that spatial and temporal variation in parasitism risk has led to the evolution of plasticity in reed warbler defenses. PMID:24299407

  5. Estimating patterns in Spartina alterniflora belowground biomass within salt marshes

    Science.gov (United States)

    O'Connell, J. L.; Mishra, D. R.; Alber, M.; Byrd, K. B.

    2017-12-01

    Belowground biomass of marsh plants, such as Spartina alterniflora, help prevent marsh loss because they promote soil accretion, stabilize soils and add organic matter. However, site-wide estimates of belowground biomass are difficult to obtain because root:shoot ratios vary considerably both within species and across sites. We are working to develop a data fusion tool that can predict key characteristics of S. alterniflora, including belowground biomass and plant canopy N, based on satellite imagery. We used field observations from four salt marsh locations along the Georgia Coast, including one that is studied as part of the Georgia Coastal Ecosystems LTER project. From field and remote-sensing data, we developed a hybrid modeling approach to estimate % foliar N (a surrogate for plant assimilated nutrients). Partial Least squares (PLS) regression analysis of Landsat-8 spectral bands could predict variation in foliar N and belowground biomass, suggesting this public data source might be utilized for site-wide assessment of plant biophysical variables in salt marshes. Spectrally estimated foliar N and aboveground biomass were associated with belowground biomass and root:shoot ratio in S. alterniflora. This mirrors results from a previous study from the Sacramento-San Joaquin Delta, CA, on Scheonoplectus acutus, a marsh plant found in some tidal freshwater marshes. Therefore remote sensing may be a useful tool for measuring whole plant productivity among multiple coastal marsh species.

  6. Mapping of reed in shallow bays. SFR-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten; Lindgren, Fredrik (Umeaa Univ. (Sweden))

    2011-03-15

    The regolith-lake development model (RLDM) describes the development of shallow bays to lakes and the infilling of lakes in the Forsmark area during an interglacial. The sensitivity analysis has shown the need for an update of the infill procedure in the RLDM. Data from the mapping of reed in shallow bays in the Forsmark area will be used to improve the infill procedure of an updated RLDM. The field work was performed in August 26-31, 2010. The mapping of reed was done in 124 points. In these points, coordinates and water depth were mapped using an echo sounder and a DGPS. Quaternary deposits and the thickness of soft sediments were mapped using an earth probe. Measurement points were delivered in ESRI shape format with coordinates in RT90 2.5 gon W and altitudes in the RHB70 system for storage in SKB's GIS data base

  7. Dorothy Reed and Hodgkin's disease: a reflection after a century

    International Nuclear Information System (INIS)

    Zwitter, Matjaz; Cohen, Joel R.; Barrett, Ann; Robinton, Elizabeth D.

    2002-01-01

    It has now been 100 years since Dorothy Reed, at the age of 28, wrote her paper on Hodgkin's disease. Her biography reveals the difficult lives of women entering the hitherto male-dominated field of medicine, let alone medical research. Her historic paper on Hodgkin's disease is remarkable for its brilliant observations and concise scientific reasoning. Nevertheless, she was told that as a woman she could not hope for a career as an academic pathologist. After marriage to Charles Elwood Mendenhall, Professor of Physics at the University of Wisconsin and after giving birth to four children, the second part of her career began. Motivated by the loss of her firstborn, she began a study of infant mortality, an interest that lasted throughout her career. In 1926, Mendenhall undertook a survey comparing infant and maternal mortality rates in Denmark and the United States. This influential study concluded that American mortality rates were higher because of unnecessary interference in the natural process of childbirth and recommended the education of midwives follow the Danish model. In 1937, her efforts were rewarded when Madison, WI received recognition for having the lowest infant mortality of any city in the United States. Reading Reed's paper on Hodgkin's disease, we see that her observations go far beyond a description of a specific cell. Her presentation of macroscopic and microscopic features is remarkable for the distinction between 'young' and 'old' growths: Reed saw Hodgkin's disease as a process, rather than the spreading of a cancer. She was the first to note that those most commonly affected are boys or young adults, especially those whose general health before the disease had been excellent. She was also the first to note anergy to tuberculin. Dorothy Reed defined Hodgkin's disease in relation to tuberculosis, described its pathologic features, and offered comments on its pathogenesis, epidemiology, and immunology that still deserve to be discussed

  8. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Directory of Open Access Journals (Sweden)

    Mary Alldred

    Full Text Available Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  9. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Science.gov (United States)

    Alldred, Mary; Baines, Stephen B; Findlay, Stuart

    2016-01-01

    Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  10. Assessing biomass of diverse coastal marsh ecosystems using statistical and machine learning models

    Science.gov (United States)

    Mo, Yu; Kearney, Michael S.; Riter, J. C. Alexis; Zhao, Feng; Tilley, David R.

    2018-06-01

    The importance and vulnerability of coastal marshes necessitate effective ways to closely monitor them. Optical remote sensing is a powerful tool for this task, yet its application to diverse coastal marsh ecosystems consisting of different marsh types is limited. This study samples spectral and biophysical data from freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops statistical and machine learning models to assess the marshes' biomass with combined ground, airborne, and spaceborne remote sensing data. It is found that linear models derived from NDVI and EVI are most favorable for assessing Leaf Area Index (LAI) using multispectral data (R2 = 0.7 and 0.67, respectively), and the random forest models are most useful in retrieving LAI and Aboveground Green Biomass (AGB) using hyperspectral data (R2 = 0.91 and 0.84, respectively). It is also found that marsh type and plant species significantly impact the linear model development (P biomass of Louisiana's coastal marshes using various optical remote sensing techniques, and highlights the impacts of the marshes' species composition on the model development and the sensors' spatial resolution on biomass mapping, thereby providing useful tools for monitoring the biomass of coastal marshes in Louisiana and diverse coastal marsh ecosystems elsewhere.

  11. A coupled geomorphic and ecological model of tidal marsh evolution.

    Science.gov (United States)

    Kirwan, Matthew L; Murray, A Brad

    2007-04-10

    The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.

  12. Reed-Solomon Codes and the Deep Hole Problem

    Science.gov (United States)

    Keti, Matt

    In many types of modern communication, a message is transmitted over a noisy medium. When this is done, there is a chance that the message will be corrupted. An error-correcting code adds redundant information to the message which allows the receiver to detect and correct errors accrued during the transmission. We will study the famous Reed-Solomon code (found in QR codes, compact discs, deep space probes,ldots) and investigate the limits of its error-correcting capacity. It can be shown that understanding this is related to understanding the "deep hole" problem, which is a question of determining when a received message has, in a sense, incurred the worst possible corruption. We partially resolve this in its traditional context, when the code is based on the finite field F q or Fq*, as well as new contexts, when it is based on a subgroup of F q* or the image of a Dickson polynomial. This is a new and important problem that could give insight on the true error-correcting potential of the Reed-Solomon code.

  13. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    that disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...

  14. Nutrient cycling in salt marshes: An ecosystem service to reduce eutrophication

    DEFF Research Database (Denmark)

    Lillebø, A. I.; Sousa, A. I.; Flindt, M. R.

    2013-01-01

    and sequestration in salt marshes. This chapter will thus emphasise that salt marsh halophytes have a crucial role on nutrient cycling and sequestration, providing ecological services that contribute to maintain the ecosystem health. © 2012 Nova Science Publishers, Inc. All rights reserved.......Salt marshes are classified as sensitive habitat under the Habitats Directive (92/43/EEC), which aims to promote the maintenance of biodiversity. Worldwide, the reduction of salt marsh areas, as a result of anthropogenic disturbance is of major concern, and several studies on the ecology...

  15. Inorganic Carbon and Oxygen Dynamics in a Marsh-dominated Estuary

    Science.gov (United States)

    Wang, S. R.; Di Iorio, D.; Cai, W. J.; Hopkinson, C.

    2017-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  16. Tidal marsh susceptibility to sea-level rise: importance of local-scale models

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.

    2015-01-01

    Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human

  17. Treating urban sewage using constructed wetlands; Depuracion de aguas residuales urbanas mediante humedales contruidos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J. [ETS Camins, Canals i Ports. UPC. Barcelona (Spain); Ruiz, A. [Biologa. Barcelona. (Spain); Junqueras, X. [Biologo. Barcelona (Spain)

    1997-09-01

    Constructed wetlands are a low-cost alternative for treating sewage from small urbanized areas. The ``Can Massaguer`` children`s holiday home has a 230 m``2 subsurface flow wetland for secondary treatment of the sewage generated by 130 people. The system comprises two porous substrate beds with macrophytes (ditch reed, Phragmites australis) and entry and exit units. Its high purification performance and nil running costs make it ideal for treating wastewaters from small built-up areas. (Author)

  18. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    Science.gov (United States)

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well

  19. The fast decoding of Reed-Solomon codes using high-radix fermat theoretic transforms

    Science.gov (United States)

    Liu, K. Y.; Reed, I. S.; Truong, T. K.

    1976-01-01

    Fourier-like transforms over GF(F sub n), where F sub n = 2(2n) + 1 is a Fermat prime, are applied in decoding Reed-Solomon codes. It is shown that such transforms can be computed using high-radix fast Fourier transform (FFT) algorithms requiring considerably fewer multiplications than the more usual radix 2 FFT algorithm. A special 256-symbol, 16-symbol-error-correcting, Reed-Solomon (RS) code for space communication-link applications can be encoded and decoded using this high-radix FFT algorithm over GF(F sub 3).

  20. Uptake of Carbamazepine by rhizomes and endophytic bacteria of Phragmites australis

    Directory of Open Access Journals (Sweden)

    Andres eSauvetre

    2015-02-01

    Full Text Available Carbamazepine is an antiepileptic and mood-stabilizing drug which is used widely in Europe and North America. In the environment, it is found as a persistent and recalcitrant conta¬mi-nant, being one of the most prominent hazardous pharmaceuticals and personal care products (PPCPs in effluents of wastewater treatment plants (WWTPs. Phragmites australis is one of the species with both, the highest potential of detoxification and phytoremediation. It has been used successfully in the treatment of industrial and municipal wastewater. Recently, the identification of endophytic micro¬organisms from different plant species growing in contaminated sites has provided a list of candidates which could be used as bio-inoculants for bioremediation of difficult compounds. In this study, Phragmites australis plants were exposed to 5 mg/L of carbamazepine. After 9 days the plants had removed 90% of the initial concentration. Endophytic bacteria were isolated from these plants and further characterized. Phylogenetic analysis based on 16S rDNA sequencing revealed that the majority of these isolates belong to three groups: Proteobacteria, Actinobacteria and Bacteroidetes. Carbamazepine uptake and plant growth promoting (PGP traits were analyzed among the isolates. Ninety percent of the isolates produce indole acetic acid (IAA and all of them possess at least one of the PGP traits tested. One isolate identified as Chryseobacterium taeanense combines good carbamazepine uptake and all of the PGP traits. Rhizobium daejeonense can remove carbamazepine and produces 23 µg/mL of IAA. Diaphorobacter nitroreducens and Achromobacter mucicolens are suitable for carbamazepine removal while both, Pseudomonas veronii and Pseudomonas lini show high siderophore production and phosphate solubilization. Alone or in combination, these isolates might be applied as inoculates in constructed wetlands in order to enhance the phyto-remediation of carbamazepine during wastewater

  1. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell

    2015-10-01

    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  2. Salt-Marsh Landscapes and the Signatures of Biogeomorphic Feedbacks

    Science.gov (United States)

    D'Alpaos, A.; Marani, M.

    2014-12-01

    Salt marshes are coastal ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. The dense stands of halophytic plants which populate salt-marsh systems largely contribute to govern their dynamics, influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. In addition, plants are known to increase vertical accretion through direct organic accretion. Looking across the salt-marsh landscape can one see the signatures of feedbacks between landscape and biota? Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we extend the model proposed by Marani et al. (2013) to a two-dimensional framework, furthermore including the effect of direct capture of sediment particles by plant stems. This allows us to account for the effect of the drainage density of tidal networks on the observed biogeomorphic patterns and to model the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios have been modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that

  3. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    Science.gov (United States)

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  4. Accretion rates in salt marshes in the Eastern Scheldt, South-west Netherlands

    International Nuclear Information System (INIS)

    Oenema, O.; DeLaune, R.D.

    1988-01-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of 137 Cs in sediment cores, from historic documents, and from artificial white-coloured tracer layers in salt marshes in the Eastern Scheldt. Salt marsh accretion is related to the steady rise of the mean high tide in the Eastern Scheldt during the last few decades. Mean accretion rates vary from 0.4-0.9 cm year -1 in the St Annaland marsh to 1.0-1.5 cm year -1 in the Rattekaai marsh. Sediment accumulation in accreting marshes exceed the loss of sediment, by retreat of the marsh cliffs, by a factor of 10-20. Short-term spatial and temporal variations in accretion rates are large. Spatial variations are associated with levee and backmarsh sites and the density of marsh vegetation. Temporal variations are mainly related to fluctuations in hydrodynamic conditions. The net vertical accretion rate of organic carbon is 0.4 ± 0.1 kg m -2 year -1 , approximately half this rate is associated with the current deposit, and the other half with net additions from the belowground root biomass. A simple model for the root biomass distribution of Spartina anglica with depth and the depth-dependent fossilization of root biomass in sediments of the Rattekaai marsh is presented. (author)

  5. Using aerial photography for mapping giant reed infestations along the Texas-Mexico portion of the Rio Grande.

    Science.gov (United States)

    Giant reed (Arundo donax L.) is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and...

  6. 77 FR 19362 - Environmental Assessment and Finding of No Significant Impact for License Renewal for the Reed...

    Science.gov (United States)

    2012-03-30

    ... serves about 1,300 students. The Reed Research Reactor is housed in a section of the Psychology Building constructed specifically for that purpose. The section of the Psychology building housing the Reed Research... encompasses the entire Psychology Building and all areas 76 meters (250 feet) from the center of the reactor...

  7. Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries

    Science.gov (United States)

    Roughan, Brittney L.; Kellman, Lisa; Smith, Erin; Chmura, Gail L.

    2018-04-01

    The supply of nitrogen to ecosystems has surpassed the Earth’s Planetary Boundary and its input to the marine environment has caused estuarine waters to become eutrophic. Excessive supply of nitrogen to salt marshes has been associated with shifts in species’ distribution and production, as well as marsh degradation and loss. Our study of salt marshes in agriculturally intensive watersheds shows that coastal eutrophication can have an additional impact. We measured gas fluxes from marsh soils and verified emissions of nitrous oxide (N2O) in nitrogen-loaded marshes while the reference marsh was a sink for this gas. Salt marsh soils are extremely efficient carbon sinks, but emissions of N2O, a greenhouse gas 298 times more potent than CO2, reduces the value of the carbon sink, and in some marshes, may counterbalance any value of stored carbon towards mitigation of climate change. Although more research is merited on the nitrogen transformations and carbon storage in eutrophic marshes, the possibility of significant N2O emissions should be considered when evaluating the market value of carbon in salt marshes subject to high levels of nitrogen loading.

  8. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    International Nuclear Information System (INIS)

    Reboreda, Rosa; Cacador, Isabel

    2007-01-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system

  9. Tidal salt marshes of the southeast Atlantic Coast: A community profile

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, R.G.; Freeman, B.J.

    1990-09-01

    This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpus robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.

  10. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  11. Spatial patterns in accretion on barrier-island salt marshes

    NARCIS (Netherlands)

    Groot, de A.V.; Veeneklaas, R.M.; Kuijper, D.P.J.; Bakker, J.P.

    2011-01-01

    On minerogenic barrier-island salt marshes, sedimentation is spatially heterogeneous. Although the main forcing factors for sedimentation are known, much less is known about the characteristic sizes of this spatial patterning. Such patterning gives information on the spatial component of salt-marsh

  12. Creation of Principally New Generation of Switching Technique Elements (Reed Switches) with Nanostructured Contact Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karabanov S M; Zeltser I A; Maizels R M; Moos E N; Arushanov K A, E-mail: zeltseria@rmcip.ru [Russia, Ryazan, 390027, Novaya Str., 51B, Ryazan Metal Ceramics Instrumentation Plant JSC (Russian Federation)

    2011-04-01

    The cycle of activities of the creation of principally new generation of reed switches with nanostructured contact surfaces was implemented. Experimental justification of the opportunity of reed switches creation with modified contact surface was given (instead of precious metals-based galvanic coating). Principally new technological process of modification of magnetically operated contacts contacting surfaces was developed, based on the usage of the ion-plasma methods of nanolayers and nanostructures forming having specified contact features.

  13. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system

    Science.gov (United States)

    Lorenzo-Trueba, Jorge; Mariotti, Giulio

    2017-08-01

    The long-term dynamic evolution of an idealized barrier-marsh-lagoon system experiencing sea-level rise is studied by coupling two existing numerical models. The barrier model accounts for the interaction between shoreface dynamics and overwash flux, which allows the occurrence of barrier drowning. The marsh-lagoon model includes both a backbarrier marsh and an interior marsh, and accounts for the modification of the wave regime associated with changes in lagoon width and depth. Overwash, the key process that connects the barrier shoreface with the marsh-lagoon ecosystems, is formulated to account for the role of the backbarrier marsh. Model results show that a number of factors that are not typically associated with the dynamics of coastal barriers can enhance the rate of overwash-driven landward migration by increasing backbarrier accommodation space. For instance, lagoon deepening could be triggered by marsh edge retreat and consequent export of fine sediment via tidal dispersion, as well as by an expansion of inland marshes and consequent increase in accommodation space to be filled in with sediment. A deeper lagoon results in a larger fraction of sediment overwash being subaqueous, which coupled with a slow shoreface response sending sediment onshore can trigger barrier drowning. We therefore conclude that the supply of fine sediments to the back-barrier and the dynamics of both the interior and backbarrier marsh can be essential for maintaining the barrier system under elevated rates of sea-level rise. Our results highlight the importance of considering barriers and their associated backbarriers as part of an integrated system in which sediment is exchanged.

  14. An Exemplary High School Literary Magazine: "The Thinking Reed."

    Science.gov (United States)

    Holbrook, Hilary Taylor, Comp.

    One of a series of 20 literary magazine profiles written to help faculty advisors wishing to start or improve their publication, this profile provides information on staffing and production of "The Thinking Reed," the magazine published by Bethlehem Central High School, Delmar, New York. The introduction describes the literary magazine…

  15. EFEKTIVITAS PERUPUK (Phragmites karka DAN MIKROORGANISME EFEKTIF (EM DALAM PENGOLAHAN LIMBAH CAIR DOMESTIK RUMAH TANGGA

    Directory of Open Access Journals (Sweden)

    Muhammad Ricky Saputra

    2016-10-01

    The results obtained from this study is that in water reservoir the combination of EM4 and Perupuk (Phragmites karka was the best treatment in this study that have been executed. The combination of two treatments that were able to repair four of the seven water quality parameters are DO (-31.48%, BOD5 (99.57%, COD (99.87%, and TSS (92.41% from standard of environment quality in Peraturan Pemerintah (PP No.82 tahun 2001 Kelas II

  16. Accretion rates in salt marshes in the Eastern Scheldt, South-West Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O.; DeLaune, R.D.

    1988-04-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in sediment cores, from historic documents, and from artificial white-coloured tracer layers in salt marshes in the Eastern Scheldt. Salt marsh accretion is related to the steady rise of the mean high tide in the Eastern Scheldt during the last few decades. Mean accretion rates vary from 0.4-0.9 cm year/sup -1/ in the St Annaland marsh to 1.0-1.5 cm year/sup -1/ in the Rattekaai marsh. Sediment accumulation in accreting marshes exceed the loss of sediment, by retreat of the marsh cliffs, by a factor of 10-20. Short-term spatial and temporal variations in accretion rates are large. Spatial variations are associated with levee and backmarsh sites and the density of marsh vegetation. Temporal variations are mainly related to fluctuations in hydrodynamic conditions. The net vertical accretion rate of organic carbon is 0.4 +- 0.1 kg m/sup -2/ year/sup -1/, approximately half this rate is associated with the current deposit, and the other half with net additions from the belowground root biomass. A simple model for the root biomass distribution of Spartina anglica with depth and the depth-dependent fossilization of root biomass in sediments of the Rattekaai marsh is presented.

  17. Analysis of change in marsh types of coastal Louisiana, 1978-2001

    Science.gov (United States)

    Linscombe, Robert G.; Hartley, Stephen B.

    2011-01-01

    Scientists and geographers have provided multiple datasets and maps to document temporal changes in vegetation types and land-water relationships in coastal Louisiana. Although these maps provide useful historical information, technological limitations prevented these and other mapping efforts from providing sufficiently detailed calculations of areal changes and shifts in habitat coverage. The current analysis of habitat change draws upon these past mapping efforts but is based on an advanced, geographic information system dataset that was created by using Landsat 5 Thematic Mapper imagery and digital orthophoto quarter quadrangles. The objective of building this dataset was to more specifically define land-water relationships over time in coastal Louisiana, and it provides the most detailed analysis of vegetation shifts to date. In the current study, we have attempted to explain these vegetation shifts by interpreting them in the context of rainfall records, data from the Palmer Drought Severity Index, and salinity data. During the 23 years we analyzed, total marsh acreage decreased, with conversion of marsh to open water. Furthermore, the general trend across coastal Louisiana was a shift to increasingly fresh marsh types. Although fresh marsh remained almost the same during the 1978-88 study period, there were greater increases during the 1988-2001 study periods. Intermediate marsh followed the same pattern, whereas brackish marsh showed a reverse (decreasing) pattern. Changes in saline (saltwater) marsh were minimal. Interpreting shifts in marsh vegetation types by using climate and salinity data provides better understanding of factors influencing these changes and, therefore, can improve our ability to make predictions about future marsh loss related to vegetation changes. Results of our study indicate that precipitation fluctuations prior to vegetation surveys impacted salinities differently across the coast. For example, a wet 6 months prior to the survey

  18. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits

  19. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits.

  20. High spatial variability in biogeochemical rates and microbial communities across Louisiana salt marsh landscapes

    Science.gov (United States)

    Roberts, B. J.; Chelsky, A.; Bernhard, A. E.; Giblin, A. E.

    2017-12-01

    Salt marshes are important sites for retention and transformation of carbon and nutrients. Much of our current marsh biogeochemistry knowledge is based on sampling at times and in locations that are convenient, most often vegetated marsh platforms during low tide. Wetland loss rates are high in many coastal regions including Louisiana which has the highest loss rates in the US. This loss not only reduces total marsh area but also changes the relative allocation of subhabitats in the remaining marsh. Climate and other anthropogenic changes lead to further changes including inundation patterns, redox conditions, salinity regimes, and shifts in vegetation patterns across marsh landscapes. We present results from a series of studies examining biogeochemical rates, microbial communities, and soil properties along multiple edge to interior transects within Spartina alterniflora across the Louisiana coast; between expanding patches of Avicennia germinans and adjacent S. alterniflora marshes; in soils associated with the four most common Louisiana salt marsh plants species; and across six different marsh subhabitats. Spartina alterniflora marsh biogeochemistry and microbial populations display high spatial variability related to variability in soil properties which appear to be, at least in part, regulated by differences in elevation, hydrology, and redox conditions. Differences in rates between soils associated with different vegetation types were also related to soil properties with S. alterniflora soils often yielding the lowest rates. Biogeochemical process rates vary significantly across marsh subhabitats with individual process rates differing in their hotspot habitat(s) across the marsh. Distinct spatial patterns may influence the roles that marshes play in retaining and transforming nutrients in coastal regions and highlight the importance of incorporating spatial sampling when scaling up plot level measurements to landscape or regional scales.

  1. Generic Reed Solomon Encorder

    Directory of Open Access Journals (Sweden)

    Petrus Mursanto

    2006-11-01

    Full Text Available Reed Solomon (RS codes is a mechanism to detect and correct burst of errors in data transmission and storage systems. It provides a solid introduction to foundation mathematical concept of Galois Field algebra and its application. With the development of digital hardware technology, the RS concepts were brought into reality, i.e. the implementation of RS codec chips. This paper presents the development steps of a generic RS encoder using VHDL. The encoder is able to handle generic width of data, variable length of information, number of error as well as variable form of primitive polynomial and generator polynomial used in the system. The design has been implemented for FPGA chip Xilinx XC3S200-5FT256 and has a better performance than commercially available equivalent encoder.

  2. Comparison of trace metals in South Carolina floodplain and marsh sediments

    International Nuclear Information System (INIS)

    Gardner, L.R.; Chen, H.S.; Settlemyre, J.L.

    1978-01-01

    A comparative study of trace metals (copper, zinc, lead, and molybdenum) in sediment cores from a pristine marsh near North Inlet, S.C., a polluted marsh near Charleston Harbor, S.C., and South Carolina river floodplains indicates that the Charleston Harbor marsh samples have significantly higher concentrations of copper, zinc, and lead than either North Inlet samples or river floodplain samples. It is not clear, however, whether this result can be attributed to industrial contamination because the peak concentrations of copper and zinc in cores from the Charleston Harbor marsh occur at depths between 10 and 60 cm rather than at or near the sediment surface, as is the case for well-documented occurrences of contaminated marine sediments. Also, both marsh areas show similar linear relationships for copper vs. zinc, which suggest that both areas received the same relative inputs of copper and zinc from similar or identical sources and that the differences in concentrations between the two areas are due to differences in the rates of accumulation. Natural mechanisms are suggested to explain the higher content of copper and zinc in Charleston Harbor vs. North Inlet marsh sediments and the variable depth of peak copper and zinc concentrations

  3. Phenotypic and genotypic variation of Phragmites australis: Comparison of populations in two human-made lakes of different age and history

    Czech Academy of Sciences Publication Activity Database

    Čurn, V.; Kubátová, B.; Vávřová, P.; Křiváčková; Suchá, O.; Čížková, Hana

    2007-01-01

    Roč. 86, - (2007), s. 321-330 ISSN 0304-3770 R&D Projects: GA ČR(CZ) GA526/06/0276 Institutional research plan: CEZ:AV0Z60870520 Keywords : Phragmites * Phenotypic variation * Genotypic variation * Lake * Clone Subject RIV: EF - Botanics Impact factor: 1.497, year: 2007

  4. Mosquitoes Associated with Ditch-Plugged and Control Tidal Salt Marshes on the Delmarva Peninsula

    Directory of Open Access Journals (Sweden)

    Paul T. Leisnham

    2011-07-01

    Full Text Available A study was conducted during the summer of 2009 (from July to September to characterize mosquito communities among different habitats in five historically ditched tidal salt marshes and three adjacent wooded areas in the E.A. Vaughn Wetland Management Area on the Maryland Delmarva Peninsula, USA. Study marshes are characteristic of Atlantic coastal salt marshes that had undergone grid ditching from the 1930s to 1950s. In the autumn of 2008 (October and November ditches were plugged near their outlets in two (‘experimental’ marshes with the aim to restore their natural tidal hydrology. The three other marshes were not plugged. Marshes were sampled from July to September in 2009 by using standard dip count method. A total of 2,457 mosquito larvae representing six species were collected on 15.4% (86/557 of all sample occasions and 399 adults representing four mosquito species were collected from landing counts. Aedes sollicitans, Anopheles bradleyi and Culex salinarius were the most common species collected in larval habitats, and Ae. sollicitans was the most common adult collected. Wooded habitats had more total mosquitoes, were also more frequently occupied by mosquitoes and had higher densities of mosquitoes than marsh habitats. Almost all larvae collected from marshes were from one experimental and one control site. The majority of larvae at the control site were Ae. sollicitans in marsh pannes while Cx. salinarius, An. bradleyi, Ae. cantator, and Ae. sollicitans were collected in high numbers from ditches at the experimental site. We found a difference in the proportion of marsh pannes occupied by Ae. sollicitans but not total mosquitoes sampled 4–5 days after spring tide events than on other occasions. Salinity measures of 42 larval habitats showed lower median salinity in mosquito-occupied habitats (11.5 ppt than unoccupied habitats (20.1 ppt, and in habitats in wooded areas followed by ditches and pannes in marsh areas. The results of

  5. Grounds Conservation Management Plan (1982-1991), Fish and Wildlife Management Plan (1982-1991), Forest Resource Management Plan (1979-1988).

    Science.gov (United States)

    1985-06-01

    cattails and phragmites interspersed with other marsh plants such as bulrushes, smooth (saltmarsh) cordgrass, smartweed, marshmallow , and sedges. 9...cutgrasses (Leersia spp.) and crimson-eyed marshmallows just below the dam. Above the dam are sparse stands of muskgrass (Chara spp.). The upper reaches of...Gambo (far above the dam) are dominated by pickeral plant (Pontedoria cordata), crimson-eyed marshmallow , spikerushes and denser stands of muskgrass

  6. Impacts of Intensified Agriculture Developments on Marsh Wetlands

    Directory of Open Access Journals (Sweden)

    Zhaoqing Luan

    2013-01-01

    Full Text Available A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality.

  7. Mapping giant reed (Arundo donax) infestations along the Texas-Mexico portion of the Rio Grande using aerial photography

    Science.gov (United States)

    Giant reed is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and estimate infested...

  8. Searching for the Source of Salt Marsh Buried Mercury.

    Science.gov (United States)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  9. Vectorization of Reed Solomon decoding and mapping on the EVP

    NARCIS (Netherlands)

    Kumar, A.; Berkel, van C.H.

    2008-01-01

    Reed Solomon (RS) codes are used in a variety of (wireless) communication systems. Although commonly implemented in dedicated hardware, this paper explores the mapping of high-throughput RS decoding on vector DSPs. The four modules of such a decoder, viz. Syndrome Computation, Key Equation Solver,

  10. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Science.gov (United States)

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  11. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy

    Science.gov (United States)

    Hu, Kelin; Chen, Qin; Wang, Hongqing; Hartig, Ellen K.; Orton, Philip M.

    2018-01-01

    The salt marshes of Jamaica Bay serve as a recreational outlet for New York City residents, mitigate wave impacts during coastal storms, and provide habitat for critical wildlife species. Hurricanes have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. In this study, the Delft3D modeling suite was utilized to examine the effects of Hurricane Sandy (2012) on salt marsh morphology in Jamaica Bay. Observed marsh elevation change and accretion from rod Surface Elevation Tables and feldspar Marker Horizons (SET-MH) and hydrodynamic measurements during Hurricane Sandy were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model. The model results agreed well with in situ field measurements. The validated model was then used to detect salt marsh morphological change due to Sandy across Jamaica Bay. Model results indicate that the island-wide morphological changes in the bay's salt marshes due to Sandy were in the range of −30 mm (erosion) to +15 mm (deposition), and spatially complex and heterogeneous. The storm generated paired deposition and erosion patches at local scales. Salt marshes inside the west section of the bay showed erosion overall while marshes inside the east section showed deposition from Sandy. The net sediment amount that Sandy brought into the bay is only about 1% of the total amount of reworked sediment within the bay during the storm. Numerical experiments show that waves and vegetation played a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Furthermore, without the protection of vegetation, the marsh islands of Jamaica Bay would experience both more erosion and less accretion in coastal storms.

  12. Elders Point East Marsh Island Restoration Monitoring Data Analysis

    Science.gov (United States)

    2017-09-21

    accounting for more than 90% of the measured biomass on average, indicative of a well-established marsh (Figure 12). For Elders East the data indicated...61 3.3 Other Biological and Physical Measures ...Figure 9. Growth measurements at Elders East and JoCo Marsh. ....................................................... 20 Figure 10. Stem survival at

  13. Appendix 1

    African Journals Online (AJOL)

    Blyth's Reed Warbler x Marsh Warbler hybrid Acrocephalus dumetorum x A. palustris ............1. Number of .... in May 2009 when the finding date was given as “in December. 2005” ...... worn, brown wing feathers would not be replaced until the ...

  14. Wave attenuation across a tidal marsh in San Francisco Bay

    Science.gov (United States)

    Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.

    2018-01-01

    Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.

  15. Cytokinin dynamics in differently senescing laminae of Phragmites australis plants grown in different habitats

    Czech Academy of Sciences Publication Activity Database

    Conrad, K.; Motyka, Václav; Bernhardt, R.; Stein, C.

    2015-01-01

    Roč. 99, JUL 2015 (2015), s. 54-61 ISSN 0254-6299 R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional support: RVO:61389030 Keywords : Chloride * Chlorophylls * Common reed Subject RIV: EF - Botanics Impact factor: 1.244, year: 2015

  16. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  17. Environmental assessment of Al-Hammar Marsh, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Hind Fadhil Abdullah Al-Gburi

    2017-02-01

    Discussion and conclusions: Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.

  18. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  19. Disrupting the Education Monopoly: A Conversation with Reed Hastings

    Science.gov (United States)

    Jacobs, Joanne

    2015-01-01

    This article features an interview with Netflix CEO, Reed Hastings. In this interview, Hastings relates that he told the "Wall Street Journal" in 2008 that he started looking at education--trying to figure out why our education is lagging when our technology is increasing at great rates and there's great innovation in so many other areas…

  20. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...

  1. Upgrated fuel from reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    Results described in this presentation are from a large EU-project - Development of a new crop production system based on delayed harvesting and system for its combined processing to chemical pulp and biofuel powder. This is a project to develop the use of Reed Canary Grass (Phalaris Arundinaceae) both for pulp industry and energy production. The main contractor of the project is Swedish University of Agricultural Sciences (coordinator), task coordinators are United Milling Systems A/S from Denmark, and Jaakko Poeyry Oy and VTT Energy from Finland In addition, there are partners from several countries participating in the project

  2. Long term effects of ash fertilization of reed canary grass; Laangtidseffekter av askgoedsling vid roerflensodling

    Energy Technology Data Exchange (ETDEWEB)

    Palmborg, Cecilia; Lindvall, Eva

    2011-03-15

    Reed canary grass (RCG) is a bio-energy crop with large potential. It is a 1.5 . 2.5 m tall grass that is harvested in spring when it is grown as a fuel. At spring harvest it yields 3 . 10 ton field dried material per ha and year. One disadvantage when reed canary grass is used as a fuel is the high ash content, 5-10 %. This means that large quantities of ash have to be deposited which is expensive, about 1000 SEK/ton. However, since reed canary grass ash contains reasonable amounts of plant nutrients like phosphorous (P), potassium (K) and magnesium (Mg) it could be recycled as fertilizer in agriculture. The ash can be used without any pretreatment since, in agriculture, plant availability is desirable. The aim of this project, was to evaluate a field experiment, where ash was used as a fertilizer in reed canary grass. The experiment was established at the SLU research station in Umea, Sweden in the spring 2002. Three different fertilizer treatments were applied: Treatment A was fertilized with an ash produced by combustion of RCG together with municipal wastes (paper, plastic, leather), treatment B, an ash from combustion of RCG, and for treatment C commercial fertilizers were used. In total, 100 kg ha-1 of nitrogen (N), 15 kg ha-1 of phosphorous (P) and 80 kg ha-1 of potassium (K), were applied each year in all treatments. The amount of ash in treatment A and B was calculated from the chemical analysis of the ashes to be equal to the required amount of P, while K and N were supplied also by commercial fertilizers. [Table 1. Composition of the ashes] Literature study: There is a lack of knowledge about fertilization with reed canary grass ash, since few experiments have been conducted. The composition of reed canary grass is dependent of harvest date and the soil substrate. The amount of ash and the amount of harmful substances such as potassium and chloride generally decreases over winter, giving an increased fuel quality from spring harvest compared to autumn

  3. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    OpenAIRE

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-01-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southe...

  4. Louisiana Marsh Management Plan 1995

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We sampled experimental research areas in the Barataria Basin of Louisiana during March and May, 1995, to examine the effects of structural marsh management on...

  5. Plathelminth abundance in North Sea salt marshes: environmental instability causes high diversity

    Science.gov (United States)

    Armonies, Werner

    1986-09-01

    Although supralittoral salt marshes are habitats of high environmental instability, the meiofauna is rich in species and abundance is high. The community structure of free-living Plathelminthes (Turbellaria) in these salt marshes is described. On an average, 104 individuals are found below an area of 10 cm2. The average species density in ungrazed salt marshes is 11.3 below 10 cm2 and 45.2 below 100 cm2, indicating strong small-scale heterogenity. The faunal similarity between sediment and the corresponding above-ground vegetation is higher than between adjacent sample sites. Species prefer distinct ranges of salinity. In the lower part of the supralittoral salt marshes, the annual fluctuations of salinity are strongest and highly unpredictable. This region is richest in plathelminth species and abundance; diversity is highest, and the faunal composition of parallel samples is quite similar. In the upper part of the supralittoral salt marshes, the annual variability of salinity is lower, plathelminths are poor in species diversity and abundance. Parallel samples often have no species in common. Thus, those salt marsh regions with the most unstable environment are inhabited by the most diverse species assemblage. Compared to other littoral zones of the North Sea, however, plathelminth diversity in salt marshes is low. The observed plathelminth diversity pattern can apparently be explained by the “dynamic equilibrium model” (Huston, 1979).

  6. Stratigraphic response of salt marshes to slow rates of sea-level change

    Science.gov (United States)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  7. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Engel, Annette Summers; Liu, Chang; Paterson, Audrey T; Anderson, Laurie C; Turner, R Eugene; Overton, Edward B

    2017-10-15

    Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria , Firmicutes , Bacteroidetes , and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria ( Rhizobiales ), Chloroflexi ( Dehalococcoidia ), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts. IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial

  8. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.

    Science.gov (United States)

    Rochlin, Ilia; Morris, James T

    2017-08-01

    The 18.6-yr lunar-nodal cycle drives changes in tidal amplitude globally, affecting coastal habitat formation, species and communities inhabiting rocky shores, and salt marsh vegetation. However, the cycle's influence on salt marsh fauna lacked sufficient long-term data for testing its effect. We circumvented this problem by using salt marsh mosquito records obtained over a period of over four decades in two estuaries in the northeastern USA. Salt marsh mosquito habitat is near the highest tide level where the impact of the nodal cycle on flood frequency is greatest. Wavelet spectral and cross-correlation analyses revealed periodicity in salt marsh mosquito abundance that was negatively correlated with tidal amplitude. Tidal amplitude was a significant predictor of salt marsh mosquito abundance with the cycle maxima coinciding with lower mosquito populations, possibly due to access by predatory fish. However, these effects were detected only at the location with extensive salt marsh habitat and astronomical tides and were weakened or lacked significance at the location with small microtidal salt marshes and wind-driven tides. Mosquitoes can serve as proxy indicators for numerous invertebrate species on the salt marsh. These predictable cycles and their effects need to be taken into consideration when investigating, restoring, or managing intertidal communities that are also facing sea-level rise. © 2017 by the Ecological Society of America.

  9. Greenhouse gas emissions from a created brackish marsh in eastern North Carolina

    Science.gov (United States)

    Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, François; Broome, Stephen W.

    2016-01-01

    Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.

  10. Coastal marsh degradation: modeling the influence of vegetation die-off patterns on flow and sedimentation

    Science.gov (United States)

    Schepers, Lennert; Wang, Chen; Kirwan, Matthew; Belluco, Enrica; D'Alpaos, Andrea; Temmerman, Stijn

    2014-05-01

    Coastal marshes are vulnerable ecosystems that provide ecosystem functions such as storm protection and carbon sequestration. However, degradation of vegetated marshes into bare tidal flats or open water has been reported as a worldwide phenomenon, threatening their valuable wetland functions. Moreover, tidal marshes and bare flats are considered as alternative stable ecosystem states, which implies that, once vegetated marshes have degraded to bare flats, the (re)conversion from bare flats to marsh vegetation may be very difficult. Recent aerial photo analysis has demonstrated that the degradation or die-off of a marsh area is a spatial process, whereby vegetation is typically replaced by non-vegetated areas in the form of interior marsh pools, also known as ponds or marsh basins. On a small scale, these pools have similar characteristics among different marshes worldwide: pools that are located further away from tidal channels and with broad channel connections to the tidal channel system appear to have low surface elevations and a low probability for marsh recovery (this is re-establishment of vegetation on the surface). Interior pools located closer to, but that are not connected to channels on the other hand, are positioned on higher elevations and are more likely to recover. These findings may have important implications for the restoration potential of degraded marshes and their functions. We hypothesize that bio-geomorphologic interactions are the main mechanisms causing these differences in elevation and recovery potential of interior marsh pools: pools that are not connected to the channel system, are separated from the channel by vegetation, which reduces the flow velocity, increases sedimentation and may explain our observation of higher surface elevation of this type of pools. In contrast, pools that are connected with the channel system are not protected by vegetation and will experience higher flow velocities and lower sedimentation rates or even

  11. Tritium kinetics in a freshwater marsh ecosystem

    International Nuclear Information System (INIS)

    Adams, L.W.

    1976-01-01

    Ten curies of tritium (as tritiated water, HTO) were applied to a 2-ha enclosed Lake Erie marsh in northwestern Ohio on 29 October 1973. Tritium kinetics in the marsh water, bottom sediment, and selected aquatic plants and animals were determined. Following HTO application, peak tritium levels in the sediment were observed on day 13 in the top 1-cm layer, on day 27 at the 5-cm depth, and on day 64 at the 10-cm depth. Peak levels at 15 and 20 cm were not discernible, although there was some movement of HTO to the 20-cm depth. A model based on diffusion theory described tritium movement through the sediment. Unbound and bound tritium levels in curly-leaf pondweed (Potamogeton crispus), pickerelweed (Pontederia cordata), and smartweed (Polygonum lapathifolium) generally tended to follow tritium levels in marsh water. The unbound tritium:marsh water tritium ratio was significantly larger (P < 0.001) in curly-leaf pondweed than in either of the two emergents. Tritium uptake into the unbound compartments of crayfish (Procambarus blandingi), carp (Cyprinus carpio), and bluegills (Lepomis macrochirus) was rapid. For crayfish, maximum HTO levels were observed on days 3 and 2 for viscera and muscle, respectively. Unbound HTO in carp viscera peaked on day 2, and levels in carp muscle reached a maximum in 4 hours. Maximum levels of unbound HTO in bluegill viscera and muscle were observed on day 1. After peak levels were obtained, unbound HTO paralleled marsh water HTO activity in all species. Tritium uptake into the bound compartments was not as rapid nor were the levels as high as for unbound HTO in any of the species. Peak bound levels in crayfish viscera were observed on day 20 and maximum levels in muscle were noted on day 10. Bound tritium in carp viscera and muscle reached maximum levels on day 20. In bluegills, peaks were reached on days 7 and 5 for viscera and muscle, respectively. Bound tritium in all species decreased following maximum levels

  12. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water

    DEFF Research Database (Denmark)

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott

    2009-01-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis......) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS...

  13. Power decoding Reed-Solomon codes up to the Johnson radius

    DEFF Research Database (Denmark)

    Rosenkilde, Johan Sebastian Heesemann

    2018-01-01

    Power decoding, or "decoding using virtual interleaving" is a technique for decoding Reed-Solomon codes up to the Sudan radius. Since the method's inception, it has been an open question if it is possible to use this approach to decode up to the Johnson radius - the decoding radius of the Guruswami...

  14. Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico.

    Science.gov (United States)

    Colin, Ricardo; Eguiarte, Luis E

    2016-05-01

    Genetic data suggest that three lineages of Phragmites australis are found in North America: the Native North American lineage, the Gulf Coast lineage, and the Invasive lineage. In Mexico, P. australis is a common species, but nothing is known about the distribution or ecology of these lineages. We examined the phylogeography of P. australis to analyze the current geographic distribution of genetic variation, demographic history, and dispersal patterns to better understand its evolutionary history in Mexico. We sampled 427 individuals from 28 populations. We used two noncoding regions of chloroplast DNA to estimate the levels of genetic variation and identified the genetic groups across the species' geographical range in Mexico. We compared the genealogical relationships among haplotypes with those previously reported. A hypothesis of demographic expansion was also tested for the Mexican P. australis lineages. We found 13 new haplotypes native to Mexico that might be undergoing an active process of expansion and diversification. Genealogical analyses provided evidence that two independent lineages of P. australis are present in Mexico. The invasive lineage was not detected with our sampling. Our estimates of population expansions in Mexico ranged from 0.202 to 0.726 mya. Phragmites australis is a native species that has been in Mexico for thousands of years. Genetic data suggest that climatic changes during the Pleistocene played an important role in the demographic expansion of the populations that constitute the different genetic groups of P. australis in Mexico. © 2016 Botanical Society of America.

  15. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  16. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  17. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    Science.gov (United States)

    Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.

    2017-07-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.

  18. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    Science.gov (United States)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  19. Vegetation - Suisun Marsh 2000 [ds161

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  20. Vegetation - Suisun Marsh 1999 [ds160

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  1. Vegetation - Suisun Marsh 2003 [ds162

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  2. Coupled Wave Energy and Erosion Dynamics along a Salt Marsh Boundary, Hog Island Bay, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Anthony M. Priestas

    2015-09-01

    Full Text Available The relationship between lateral erosion of salt marshes and wind waves is studied in Hog Island Bay, Virginia USA, with high-resolution field measurements and aerial photographs. Marsh retreat is compared to wave climate calculated in the bay using the spectral wave-model Simulating Waves Nearshore (SWAN. We confirm the existence of a linear relationship between long-term salt marsh erosion and wave energy, and show that wave power can serve as a good proxy for average salt-marsh erosion rates. At each site, erosion rates are consistent across several temporal scales, ranging from months to decades, and are strongly related to wave power. On the contrary, erosion rates vary in space and weakly depend on the spatial distribution of wave energy. We ascribe this variability to spatial variations in geotechnical, biological, and morphological marsh attributes. Our detailed field measurements indicate that at a small spatial scale (tens of meters, a positive feedback between salt marsh geometry and wave action causes erosion rates to increase with boundary sinuosity. However, at the scale of the entire marsh boundary (hundreds of meters, this relationship is reversed: those sites that are more rapidly eroding have a marsh boundary which is significantly smoother than the marsh boundary of sheltered and slowly eroding marshes.

  3. Monitoring coastal marshes biomass with CASI: a comparison of parametric and non-parametric models

    Science.gov (United States)

    Mo, Y.; Kearney, M.

    2017-12-01

    Coastal marshes are important carbon sinks that face multiple natural and anthropogenic stresses. Optical remote sensing is a powerful tool for closely monitoring the biomass of coastal marshes. However, application of hyperspectral sensors on assessing the biomass of diverse coastal marsh ecosystems is limited. This study samples spectral and biophysical data from coastal freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops parametric and non-parametric models for using the Compact Airborne Spectrographic Imager (CASI) to retrieve the marshes' biomass. Linear models and random forest models are developed from simulated CASI data (48 bands, 380-1050 nm, bandwidth 14 nm). Linear models are also developed using narrowband vegetation indices computed from all possible band combinations from the blue, red, and near infrared wavelengths. It is found that the linear models derived from the optimal narrowband vegetation indices provide strong predictions for the marshes' Leaf Area Index (LAI; R2 > 0.74 for ARVI), but not for their Aboveground Green Biomass (AGB; R2 > 0.25). The linear models derived from the simulated CASI data strongly predict the marshes' LAI (R2 = 0.93) and AGB (R2 = 0.71) and have 27 and 30 bands/variables in the final models through stepwise regression, respectively. The random forest models derived from the simulated CASI data also strongly predict the marshes' LAI and AGB (R2 = 0.91 and 0.84, respectively), where the most important variables for predicting LAI are near infrared bands at 784 and 756 nm and for predicting ABG are red bands at 684 and 670 nm. In sum, the random forest model is preferable for assessing coastal marsh biomass using CASI data as it offers high R2 for both LAI and AGB. The superior performance of the random forest model is likely to due to that it fully utilizes the full-spectrum data and makes no assumption of the approximate normality of the sampling population. This study offers solutions

  4. On locality of Generalized Reed-Muller codes over the broadcast erasure channel

    KAUST Repository

    Alloum, Amira; Lin, Sian Jheng; Al-Naffouri, Tareq Y.

    2016-01-01

    , and more specifically at the application layer where Rateless, LDPC, Reed Slomon codes and network coding schemes have been extensively studied, optimized and standardized in the past. Beyond reusing, extending or adapting existing application layer packet

  5. Paraskeva pühastest ja reede kultusest Satserinna kiriklikus traditsioonis / Kai Kuusing

    Index Scriptorium Estoniae

    Kuusing, Kai

    2005-01-01

    Saatse kirikust pärit Paraskeva pühaste (ikoonide) ikonograafia- ja hagiograafiaalasest materjalist ning Paraskeva kultusega seotud kahest erinevast traditsioonist Saatse kirikus - Ikonioni Paraskeva mälestuspäeva ja Eelija reede pühitsemisest

  6. Key-equations for list decoding of Reed-Solomon codes and how to solve them

    DEFF Research Database (Denmark)

    Beelen, Peter; Brander, Kristian

    2010-01-01

    A Reed-Solomon code of length n can be list decoded using the well-known Guruswami-Sudan algorithm. By a result of Alekhnovich (2005) the interpolation part in this algorithm can be done in complexity O(s^4l^4nlog^2nloglogn), where l denotes the designed list size and s the multiplicity parameter....... The parameters l and s are sometimes considered to be constants in the complexity analysis, but for high rate Reed-Solomon codes, their values can be very large. In this paper we will combine ideas from Alekhnovich (2005) and the concept of key equations to get an algorithm that has complexity O(sl^4nlog^2...

  7. Salt marsh and seagrass communities of Bakkhali Estuary, Cox's Bazar, Bangladesh

    Science.gov (United States)

    Hena, M. K. Abu; Short, F. T.; Sharifuzzaman, S. M.; Hasan, M.; Rezowan, M.; Ali, M.

    2007-10-01

    The species identification, distribution pattern, density and biomass of salt marsh and seagrass plants with some of the ecological parameters were studied in the Bakkhali river estuary, Cox's Bazar, Bangladesh during the first half of 2006. Two salt marsh species ( Spartina sp. and Imperata cylindrica) and one seagrass species ( Halophila beccarii) were identified during this investigation, providing the first reports of Spartina sp. and H. beccarii in coastal Bangladesh. Seagrass H. beccarii was found in an accreted area and co-existing with salt marsh, and scattered sparsely in the salt marsh habitat and macroalgae Ulva intestinalis. Flowering and fruiting were recorded from the seagrass H. beccarri during January and February. No flowers and fruits were observed for the salt marsh Spartina sp. during the study period. Results showed that the shoot density of Spartina ranged from 400 to 2875 shoots m -2 with the highest total biomass (165.80 g dry weight (DW) m -2) in March. Shoot density of H. beccarii ranged from 2716 to 14320 shoots m -2 in this estuarine coastal environment. The total biomass of seagrass was higher (17.56 g DW m -2) in March compared to the other months. The highest H. beccarii above ground (AG) biomass and below ground (BG) biomass were 9.59 g DW m -2 and 9.42 g DW m -2, respectively. These parameters are comparable with those generally observed for the salt marsh and seagrass species in the other places of the world.

  8. A Climate Change Adaptation Strategy for Management of Coastal Marsh Systems

    Science.gov (United States)

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, includin...

  9. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  10. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    Science.gov (United States)

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  11. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    Science.gov (United States)

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-05

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  12. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    Science.gov (United States)

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  13. Responses to playback of different subspecies songs in the Reed Bunting (Emberiza s. schoeniclus)

    DEFF Research Database (Denmark)

    Matessi, Giuliano; Dabelsteen, Torben; Pilastro, A.

    2000-01-01

    Populations of Reed Buntings Emberiza schoeniclus in the western Palearctic are classified in two major subspecies groups according to morphology: northern migratory schoeniclus and Mediterranean resident intermedia. Songs of the two groups differ mainly in complexity and syllable structure......, with intermedia songs being more complex. We explored the possibilities of song as a subspecies isolating mechanism by testing if male schoeniclus Reed Buntings reacted differently to field playbacks of songs from their own subspecies group, from the foreign subspecies group and from a control species...

  14. Optimizing in vitro large scale production of giant reed (Arundo donax L.) by liquid medium culture

    International Nuclear Information System (INIS)

    Cavallaro, Valeria; Patanè, Cristina; Cosentino, Salvatore L.; Di Silvestro, Isabella; Copani, Venera

    2014-01-01

    Tissue culture methods offer the potential for large-scale propagation of giant reed (Arundo donax L.), a promising crop for energy biomass. In previous trials, giant reed resulted particularly suitable to in vitro culture. In this paper, with the final goal of enhancing the efficiency of in vitro production process and reducing costs, the influence of four different culture media (agar or gellan-gum solidified medium, liquid medium into a temporary immersion system-RITA ® or in a stationary state) on in vitro shoot proliferation of giant reed was evaluated. Giant reed exhibited a particular sensitivity to gelling agents during the phase of secondary shoot formation. Gellan gum, as compared to agar, improved the efficiency of in vitro culture giving more shoots with higher mean fresh and dry weight. Moreover, the cultivation of this species into a liquid medium under temporary immersion conditions or in a stationary state, was comparatively as effective as and cheaper than that into a gellan gum medium. Increasing 6-benzylaminopurine (BA) up to 4 mg l −1 also resulted in a further enhancement of secondary shoot proliferation. The good adaptability of this species to liquid medium and the high multiplication rates observed indicate the possibility to obtain from a single node at least 1200 plantlets every six multiplication cycles (about 6 months), a number 100 fold higher than that obtained yearly per plant by the conventional methods of vegetative multiplication. In open field, micropropagated plantlets guaranteed a higher number of survived plants, secondary stems and above ground biomass as compared to rhizome ones. - Highlights: • In vitro propagation offers the potential for large-scale propagation of giant reed. • The success of an in vitro protocol depends on the rate and mode of shoot proliferation. • Substituting liquid media to solid ones may decrease propagation costs in Arundo donax. • Giant reed showed good proliferation rates in

  15. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NARCIS (Netherlands)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive

  16. On locality of Generalized Reed-Muller codes over the broadcast erasure channel

    KAUST Repository

    Alloum, Amira

    2016-07-28

    One to Many communications are expected to be among the killer applications for the currently discussed 5G standard. The usage of coding mechanisms is impacting broadcasting standard quality, as coding is involved at several levels of the stack, and more specifically at the application layer where Rateless, LDPC, Reed Slomon codes and network coding schemes have been extensively studied, optimized and standardized in the past. Beyond reusing, extending or adapting existing application layer packet coding mechanisms based on previous schemes and designed for the foregoing LTE or other broadcasting standards; our purpose is to investigate the use of Generalized Reed Muller codes and the value of their locality property in their progressive decoding for Broadcast/Multicast communication schemes with real time video delivery. Our results are meant to bring insight into the use of locally decodable codes in Broadcasting. © 2016 IEEE.

  17. Determination of seven bisphenol analogues in reed and Callitrichaceae by ultra performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lu, Libin; Yang, Yunjia; Zhang, Jing; Shao, Bing

    2014-03-15

    An analytical procedure was developed to simultaneously determine bisphenol S, bisphenol F, bisphenol B, bisphenol A, bisphenol AF, tetrachlorobisphenol A, and tetrabromobisphenol A in reed and Callitrichaceae. Homogenized samples were extracted with acetonitrile and purified using an ENVI™-Carb cartridge followed by an NH2 cartridge. The analytes were separated and quantified by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The recoveries at three fortified levels in reed and Callitrichaceae were 57-108% and 68-106%, respectively, with relative standard deviations of no more than 15% (n=6). The method limits of quantification and detection for the seven bisphenol analogues were 0.005-0.500μg/kg and 0.002-0.150μg/kg, respectively. This method was used to analyze the seven compounds in ten reed and Callitrichaceae samples collected from Zhejiang, China. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment

    Science.gov (United States)

    Chmura, Gail L.; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R.

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.

  19. Ascosphaera callicarpa, a new species of bee-loving fungus, with a key to the Genus for Europe

    DEFF Research Database (Denmark)

    Wynns, Anja Amtoft; Eilenberg, Jørgen; Jensen, Annette Bruun

    2013-01-01

    named Ascosphaera callicarpa, is common on the larval feces of the solitary bee Chelostoma florisomne which nests in the Phragmites reeds of thatched roofs in Europe. Because collections of Ascosphaera from wild bees are scarce and because little is known about the ecology and distribution......We studied the bee specialist fungus Ascosphaera in wild solitary bees to investigate the diversity of the genus in nature and the ecology of these fungi with their bee hosts. A new morphologically distinctive species was discovered which also has a unique nrITS sequence. This new species, here...

  20. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    Science.gov (United States)

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  1. The Protective Properties of Common Reed Plantations on Shores of the Lower Volga Region

    Directory of Open Access Journals (Sweden)

    Solodovnikov Denis Anatolyevich

    2014-12-01

    Full Text Available The abrasion processing of shores is a pressing problem of large water basins of the Lower Volga region and other Russian regions. About 3 km2 of shoreland is annually lost in the zone of the Volgograd water basin as a result of this process. The existing methods of shores protection are connected with the creation of concrete structures having a high level of erosion resistance. They are extremely expensive and in most cases they are not affordable for rural municipalities suffering from abrasion. The authors offer cheap and environmentally friendly way of protecting the shores of large water basins from abrasion. The method is based on the plantation of a common reed strip on a water basin’s shallow. The biological characteristics of common reed as the main component of shore protection structures are described. The terms and milestones of the work in the conditions of the Volgograd water basin are developed. The main result of applying our methodology is the complete cessation of abrasion processing of the shore at the corresponding piece of land. The authors overview the positive qualities of reed plantations, their biocenotic, barrier and waterproof role in on-shore ecosystems. The application of the described method will allow saving for the national economy dozens of hectares of valuable shore lands annually, in particular, irrigated cropland, settlement lands, infrastructure. In addition to the direct benefits associated with the conservation of land resources, the intensity of adverse processes associated with erosion of shores (water basin muddying, deterioration of sanitary qualities of water will decrease. Due to the wide geographic spread of common reed described in the present work, the technology of shores stabilization can be applied at almost all lowland water basins of Russia.

  2. Summary of intrinsic and extrinsic factors affecting detection probability of marsh birds

    Science.gov (United States)

    Conway, C.J.; Gibbs, J.P.

    2011-01-01

    Many species of marsh birds (rails, bitterns, grebes, etc.) rely exclusively on emergent marsh vegetation for all phases of their life cycle, and many organizations have become concerned about the status and persistence of this group of birds. Yet, marsh birds are notoriously difficult to monitor due to their secretive habits. We synthesized the published and unpublished literature and summarized the factors that influence detection probability of secretive marsh birds in North America. Marsh birds are more likely to respond to conspecific than heterospecific calls, and seasonal peak in vocalization probability varies among co-existing species. The effectiveness of morning versus evening surveys varies among species and locations. Vocalization probability appears to be positively correlated with density in breeding Virginia Rails (Rallus limicola), Soras (Porzana carolina), and Clapper Rails (Rallus longirostris). Movement of birds toward the broadcast source creates biases when using count data from callbroadcast surveys to estimate population density. Ambient temperature, wind speed, cloud cover, and moon phase affected detection probability in some, but not all, studies. Better estimates of detection probability are needed. We provide recommendations that would help improve future marsh bird survey efforts and a list of 14 priority information and research needs that represent gaps in our current knowledge where future resources are best directed. ?? Society of Wetland Scientists 2011.

  3. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  4. DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)

    Science.gov (United States)

    Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...

  5. CO2 and CH4 exchange by Phragmites australis under different climates

    Science.gov (United States)

    Serrano Ortiz, Penélope; Chojnickic, Bogdan H.; Sánchez-Cañete, Enrique P.; Kowalska, Natalia; López-Ballesteros, Ana; Fernández, Néstor; Urbaniak, Marek; Olejnik, Janusz; Kowalski, Andrew S.

    2015-04-01

    The key role of wetlands regarding global warming is the resulting balance between net CO2 assimilation, via photosynthesis, and CO2 and CH4 emissions, given the potential to release stored carbon, because of the high temperature sensitivity of heterotrophic soil respiration and anoxic conditions. However, it is still unknown whether wetlands will convert from long-term carbon sinks to sources as a result of climate change and other anthropogenic effects such as land use changes. Phragmites australis is one of the most common species found in wetlands and is considered the most globally widespread and productive plant species in this type of ecosystem. In this context, the main objective of this study is to analyse the GHG exchange (CO2 and CH4) of two wetlands with Phragmites australis as the dominant species under different climates using the eddy covariance (EC) technique. The first site, Padul, is located in southern Spain, with a sub-humid warm climate, characterised by a mean annual temperature of 16°C and annual precipitation of ca. 470 mm, with a very dry summer. The second site, Rzecin is located in Poland with a mean annual temperature of 8°C, and annual precipitation around 600mm with no dry season. The Padul EC station is equipped with two infrared gas analysers to measure CO2 and CH4 fluxes (LI-7200 and LI-7700 respectively) while the Rzecin EC station has the same CH4 sensor as Padul, but also a sensor measuring both GHG fluxes (DLT-100 Fast Methane Analyser, Los Gatos). In this study, we present: i) the results of a CH4 analyser inter-comparison campaign (LI-7700 vs. Los Gatos), ii) a comparative analysis of the functional behaviour of respiration and photosynthesis in both sites testing relationships between CO2 fluxes measured with the EC technique and meteorological variables such as temperature and direct or diffuse radiation and iii) the CH4 dynamicsat both sites by identifying, when possible, annual, seasonal and diurnal patterns.

  6. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.

    Science.gov (United States)

    Haynert, Kristin; Kiggen, Mirijam; Klarner, Bernhard; Maraun, Mark; Scheu, Stefan

    2017-01-01

    Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial-marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency) on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone. The results further

  7. Does vegetation prevent wave erosion of salt marsh edges?

    Science.gov (United States)

    Feagin, R A; Lozada-Bernard, S M; Ravens, T M; Möller, I; Yeager, K M; Baird, A H

    2009-06-23

    This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.

  8. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    NARCIS (Netherlands)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.; Andersson, M.G.I.; Tramper, A.; de Brabandere, L.; van Damme, S.; Brion, N.; Meire, P.; Dehairs, F.; Middelburg, J.J.; Heip, C.H.R.

    2005-01-01

    We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrientrich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 14 m2 tidal marsh area, and marsh ammonium processing and

  9. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    Science.gov (United States)

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in

  10. Idealized digital models for conical reed instruments, with focus on the internal pressure waveform.

    Science.gov (United States)

    Kergomard, J; Guillemain, P; Silva, F; Karkar, S

    2016-02-01

    Two models for the generation of self-oscillations of reed conical woodwinds are presented. The models use the fewest parameters (of either the resonator or the exciter), whose influence can be quickly explored. The formulation extends iterated maps obtained for lossless cylindrical pipes without reed dynamics. It uses spherical wave variables in idealized resonators, with one parameter more than for cylinders: the missing length of the cone. The mouthpiece volume equals that of the missing part of the cone, and is implemented as either a cylindrical pipe (first model) or a lumped element (second model). Only the first model adds a length parameter for the mouthpiece and leads to the solving of an implicit equation. For the second model, any shape of nonlinear characteristic can be directly considered. The complex characteristic impedance for spherical waves requires sampling times smaller than a round trip in the resonator. The convergence of the two models is shown when the length of the cylindrical mouthpiece tends to zero. The waveform is in semi-quantitative agreement with experiment. It is concluded that the oscillations of the positive episode of the mouthpiece pressure are related to the length of the missing part, not to the reed dynamics.

  11. Preparation and Adsorption Performances of Phragmites australis Activated Carbon with High Acidity

    Directory of Open Access Journals (Sweden)

    FU Cheng-kai

    2017-03-01

    Full Text Available For removal of heavy metals from wastewater and recycling the wetland plants, the present study investigated the viability of using silage of Phragmites australis (PA to prepare activated carbons (ACs with high acidity. BET surface area, porous texture and surface functional characteristics of ACs were analyzed by N2 adsorption/desorption, elemental analysis and Boehm titration method. ACs presented well-developed micro-porosity and favorable surface acidity. The sorption equilibrium data for Ni (Ⅱ and Cd (Ⅱ sorption onto ACs were analyzed by the Langmuir and Freundlich models. The Langmuir model was fitted well to the adsorption behavior. The properties of high surface acidity promoted the adsorption of heavy metals by the silage-treated ACs and the chemical sorption played the key role in the sorption process.

  12. Salt marsh stability and patterns of sedimentation across a backbarrier platform

    DEFF Research Database (Denmark)

    Bartholdy, Anders; Bartholdy, Jesper; Kroon, Aart

    2010-01-01

    Long term observations of clay thicknesses from 1949 to 2007 and measurements of the bulk dry density of salt marsh on the backbarrier of Skallingen (west Denmark) formed the basis of constructing a space distributed model of salt marsh deposition. The deposition potential (an empirical constant, ß...

  13. Alternative nitrate reduction pathways in experimentally fertilized New England salt marshes

    DEFF Research Database (Denmark)

    Uldahl, Anne; Banta, Gary Thomas; Boegh, Eva

    the ecosystem in the form of gaseous N2, while the last process transforms of NO3- to another biologically available form, NH4+, and thus merely recycles N. Salt marshes are important ecosystems for the cycling, retention and removal of biologically available N transported from land to the oceans. We used...... ongoing ecosystem level nutrient additions experiments in two New England salt marshes, Plum Island Sound (NO3- additions since 2003) and Great Sippewissett Marsh (fertilizer additions since the 1970's) to examine the relative importance of these NO3- reduction pathways in salt marshes. Sediments from...... several experimental (and unmanipulated) sites were collected during the late summer/fall of 2009 and summer 2010 to measure the potential rates of NO3- reduction in sediment slurries enriched with NO3- and 15NO3- added as a tracer. The resulting 15N-labeled products (30N2, 29N2 and 15NH4+) were analyzed...

  14. Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: differences between the native and introduced ranges

    Czech Academy of Sciences Publication Activity Database

    Guo, Wen-Yong; Lambertini, C.; Guo, X.; Li, X.-Z.; Eller, F.; Brix, H.

    2016-01-01

    Roč. 18, č. 9 (2016), s. 2551-2561 ISSN 1387-3547 Institutional support: RVO:67985939 Keywords : comon reed * delta type * ecological fitting Subject RIV: EH - Ecology, Behaviour Impact factor: 2.473, year: 2016

  15. Quantifying Trophic Interactions and Carbon Flow in Louisiana Salt Marshes Using Multiple Biomarkers

    Science.gov (United States)

    Polito, M. J.; Lopez-Duarte, P. C.; Olin, J.; Johnson, J. J.; Able, K.; Martin, C. W.; Fodrie, J.; Hooper-Bui, L. M.; Taylor, S.; Stouffer, P.; Roberts, B. J.; Rabalais, N. N.; Jensen, O.

    2017-12-01

    Salt marshes are critical habitats for many species in the northern Gulf of Mexico. However, given their complex nature, quantifying trophic linkages and the flow of carbon through salt marsh food webs is challenging. This gap in our understanding of food web structure and function limits our ability to evaluate the impacts of natural and anthropogenic stressors on salt marsh ecosystems. For example, 2010 Deepwater Horizon (DWH) oil spill had the potential to alter trophic and energy pathways. Even so, our ability to evaluate its effects on Louisiana salt marsh food webs was limited by a poor basis for comparison of the pre-spill baseline food web. To be better equipped to measure significant alterations in salt marsh ecosystems in the future, we quantified trophic interactions at two marsh sites in Barataria Bay, LA in May and October of 2015. Trophic structure and carbon flow across 52 species of saltmarsh primary producers and consumers were examined through a combination of three approaches: bulk tissue stable isotope analysis (δ13C, δ15N, δ34S), dietary fatty acid analysis (FAA), and compound-specific stable isotope analysis of essential amino acids (δ13C EAA). Bulk stable isotope analysis indicated similar trophic diversity between sites and seasons with the use of aquatic resources increasing concomitantly with trophic level. FAA and δ13C EAA biomarkers revealed that marsh organisms were largely divided into two groups: those that primarily derive carbon from terrestrial C4 grasses, and those that predominately derive carbon from a combination of phytoplankton and benthic microalgal sources. Differences in trophic structure and carbon flow were minimal between seasons and sites that were variably impacted by the DWH spill. These data on salt marsh ecosystem structure will be useful to inform future injury assessments and restoration initiatives.

  16. Salt marsh recovery from a crude oil spill: Vegetation, oil weathering, and response

    International Nuclear Information System (INIS)

    Hoff, R.Z.; Shigenaka, G.; Henry, C.B. Jr.

    1993-01-01

    When a spill of Prudhoe Bay crude oil covered a fringing Salicornia virginica marsh in Fidalgo Bay, Washington (northern Puget Sound) in February 1991, response personnel used several low-impact techniques to remove oil from the marsh, and minimized access by cleanup workers. Following the response, a monitoring program was established to track marsh recovery, and to document the effectiveness of the response techniques used and their impacts on the marsh. Through monthly sampling over a 16-month period, vegetative growth was monitored and chemical degradation of remaining oil was tracked. Sampling was conducted along transects located in four areas affected in different ways by the spill, including an oiled, trampled section; an oiled, vacuumed section; and an oiled, washed, and vacuumed section. In addition, a control transect was established in an unoiled adjacent marsh. The study included both biological and chemical components. Biological measurements included percent cover of live vegetation (sampled monthly) and below-ground plant biomass (sampled at the beginning of each growing season in April 1991 and April 1992). Sediment samples included surface sediment (monthly) and core samples collected at the beginning and end of the growing seasons. Sediment samples were analyzed using gas chromatography/mass spectroscopy, and indicator compounds were tracked to determine rates of oil degradation. Results from 16 months of post-spill monitoring show that foot trampling was most detrimental to marsh plants, while washing with vacuuming removed the most oil and minimized adverse impacts to vegetation. Dense clay substrate helped prevent oil from penetrating the sediment, thus minimizing acute toxic effects from oil exposure to marsh plant rootstock. By the second growing season post-spill, Salicornia and other marsh plants were growing in all areas except one heavily oiled patch

  17. Carbon Dioxide and Methane Emissions from Diverse Zones of a California Salt Marsh

    Science.gov (United States)

    Wang, F.; King, J. Y.

    2016-12-01

    With high primary productivity and low organic matter decomposition rates, salt marshes sequester carbon from the atmosphere and contribute to mitigation of climate change. However, the role of wetlands in carbon sequestration is offset by CO2 and CH4 emissions whose magnitudes remain coarsely constrained. To better understand the spatiotemporal dynamics of gaseous carbon fluxes from marsh soils in a Mediterranean climate, we collected air and soil samples over the course of 10 months at Carpinteria Salt Marsh Reserve (CSMR) located in the County of Santa Barbara, California. The CSMR consists of four distinct zones characterized by differences in elevation, tidal regime, and vegetation. Twelve static chambers were deployed among two lower marsh zones, a salt flat, and a marsh-upland transition zone for fortnightly flux measurements from September, 2015 to May, 2016. In August, 2015 and June, 2016, soil cores up to 50 cm deep were extracted near the chambers, segmented by depth, and analyzed for soil moisture, bulk density, EC, pH, organic/inorganic carbon, and total nitrogen content. The gaseous carbon fluxes showed significant spatiotemporal variability, and soil properties differed noticeably by zone and by depth. Integrated over the study period, the marsh-upland transition zone had the highest CO2 fluxes at 292 g C/m2, followed closely by the lower marsh zones (271 g C/m2 and 189 g C/m2), which were one order of magnitude higher than the CO2 fluxes from the salt flat (23 g C/m2). Seasonally, CO2 fluxes were 2.5 to 3.5 times higher during the warmer months (Sept - Oct, Mar - May) than the colder months (Nov - Feb) across all zones. The CH4 fluxes were more temporally heterogeneous, but overall the CH4 emissions from the lower marsh zones (1.37 g C/m2 and 0.41 g C/m2) surpassed those from the salt flat (0.054 g C/m2) by an order of magnitude, and the marsh-upland transition zone was a net methane sink (-0.029 g C/m2). Our results show that soil gaseous carbon

  18. Gulf-Wide Information System, Environmental Sensitivity Index Marsh, Geographic NAD83, LDWF (2001) [esi_fresh_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) fresh marsh data of coastal Louisiana. The ESI is a classification and ranking system, which...

  19. Rates and probable causes of freshwater tidal marsh failure, Potomac River Estuary, Northern Virginia, USA

    Science.gov (United States)

    Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine Walsh; Oberg, Erik T.; Steury, Brent W.; Helwig, Ben; Santucci, Vincent L.; Sanders, Geoffrey

    2013-01-01

    Dyke Marsh, a distal tidal marsh along the Potomac River estuary, is diminishing rapidly in areal extent. This study documents Dyke Marsh erosion rates from the early-1860s to the present during pre-mining, mining, and post-mining phases. From the late-1930s to the mid-1970s, Dyke Marsh and the adjacent shallow riverbottom were mined for gravel, resulting in a ~55 % initial loss of area. Marsh loss continued during the post-mining phase (1976–2012). Causes of post-mining loss were unknown, but were thought to include Potomac River flooding. Post-mining areal-erosion rates increased from 0.138 ha yr−1 (~0.37 ac yr−1) to 0.516 ha yr−1(~1.67 ac yr−1), and shoreline-erosion rates increased from 0.76 m yr−1 (~2.5 ft yr−1) to 2.60 m yr−1 (~8.5 ft yr−1). Results suggest the accelerating post-mining erosion reflects a process-driven feedback loop, enabled by the marsh's severely-altered geomorphic and hydrologic baseline system; the primary post-mining degradation process is wave-induced erosion from northbound cyclonic storms. Dyke Marsh erosion rates are now comparable to, or exceed, rates for proximal coastal marshes in the same region. Persistent and accelerated erosion of marshland long after cessation of mining illustrates the long-term, and potentially devastating, effects that temporally-restricted, anthropogenic destabilization can have on estuarine marsh systems.

  20. Contribution of Cultural Eutrophication to Marsh Loss in Jamaica Bay (NY)

    Science.gov (United States)

    Loss of salt marsh area in the Jamaica Bay Estuary (NY) has accelerated in recent years, with loss rates as high as 45 acres per year. A contributing factor to this acceleration is likely cultural eutrophication due to over 6 decades of sewage effluent inputs. We examined marsh...

  1. Specificity of salt marsh diazotrophs for vegetation zones and plant hosts

    Directory of Open Access Journals (Sweden)

    Debra Aline Davis

    2012-03-01

    Full Text Available Salt marshes located on the east coast of temperate North America are highly productive, typically nitrogen-limited, and support diverse assemblages of nitrogen fixing (diazotrophic bacteria. The distributions of these diazotrophs are strongly influenced by plant host and abiotic environmental parameters. Crab Haul Creek Basin, North Inlet, SC, USA is a tidally dominated marsh that displays discrete plant zones distributed along an elevation gradient from the tidal creek bank to the terrestrial forest. These zones are defined by gradients of abiotic environmental variables, particularly salinity and sulfide. DGGE fingerprinting and phylogenetic analyses of recovered sequences demonstrated that the distributions of some diazotrophs indicate plant host specificity and that diazotroph assemblages across the marsh gradient are heavily influenced by edaphic conditions. Broadly distributed diazotrophs capable of maintaining populations in all environmental conditions across the gradient are also present in these assemblages. Parsimony test results confirm that diazotroph assemblages in different plant zones are significantly (p<0.01 different across the marsh landscape. Results also indicated that diazotroph assemblages associated with different plant hosts growing in the same area of the marsh were structurally similar confirming the influence of edaphic parameters on these assemblages. Principal Component Analysis of DGGE gel banding patterns confirmed these results. This article reviews and analyzes data from North Inlet Estuary, addressing diazotroph assemblage structure and the influence of plant host and environmental conditions. New data demonstrate the heterogeneity of salt marsh rhizosphere microenvironments, and corroborate previous findings from different plant hosts growing at several locations within this estuary. These data support the hypothesis that the biogeography of microorganisms is non-random and is partially driven by

  2. Invertebrate populations in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Llysdinam Field Centre, School of Biosciences, Cardiff University, Newbridge-on-Wye, Llandrindod Wells, Powys, LD1 6NB (United Kingdom)

    2007-01-15

    Monitoring of invertebrates at four field sites in Herefordshire, England, growing miscanthus and reed canary-grass was carried out in 2002, 2003 and 2004 to investigate the ecological impact of these crops on ground beetles, butterflies and arboreal invertebrates. Ground beetles were sampled by pitfall trapping; and arboreal invertebrates by sweep netting and stem beating. The Centre for Ecology and Hydrology's Butterflies Monitoring Scheme methodology was used to record butterflies. The effects of the biomass crops on invertebrates were indirect, through the use of weeds as food resources and habitat. The greater diversity of weed flora within miscanthus fields than within reed canary-grass fields had a greater positive effect on invertebrates. Ground beetles, butterflies and arboreal invertebrates were more abundant and diverse in the most floristically diverse miscanthus fields. The difference in crop architecture and development between miscanthus and reed canary-grass was reflected in their differences in crop height and ground cover early on in the season. However, most of the difference in arthropod abundance between the two crops was attributed to the difference in the agronomic practice of growing the crops such as plant density, and the effect of this on weed growth. Since perennial rhizomatous grasses require a single initial planting and related tillage, and also no major chemical inputs; and because the crops are harvested in the spring and the land is not disturbed by cultivation every year, the fields were used as over-wintering sites for invertebrates suggesting immediate benefits to biodiversity. (author)

  3. Trophic shift in young-of-the-year Mugilidae during salt-marsh colonization.

    Science.gov (United States)

    Lebreton, B; Richard, P; Guillou, G; Blanchard, G F

    2013-04-01

    This study investigated the trophic shift of young-of-the-year (YOY) thinlip grey mullet Liza ramada and golden grey mullet Liza aurata during their recruitment in a salt marsh located on the European Atlantic Ocean coast. Stable-isotope signatures (δ(13) C and δ(15) N) of the fishes followed a pattern, having enrichments in (13) C and (15) N with increasing fork length (LF ): δ(13) C in fishes  30 mm δ(13) C ranged from -15.8 to -12.7‰, closer to the level in salt-marsh food resources. Large differences between the δ(15) N values of mugilids and those of food sources (6·0‰ on average) showed that YOY are secondary consumers, similar to older individuals, when feeding in the salt marsh. YOY mugilids shift from browsing on pelagic prey to grazing on benthic resources from the salt marsh before reaching 30 mm LF. The results highlight the role of European salt marshes as nurseries for juvenile mugilids. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  4. Monitoring for bioremediation efficacy: The marrow marsh experience

    International Nuclear Information System (INIS)

    Nadeau, R.; Singhvi, R.; Ryabik, J.; Lin, Yihua; Syslo, J.

    1993-01-01

    The US Environmental Protection Agency's Environmental Response Team analyzed samples taken from Marrow Marsh, Galveston Bay, Texas, to assess the efficacy of a bioremediation effort in the marsh following the Apex barges spill on July 28, 1990. Samples from the marsh had been collected over a 96-hour period following the first application of the bioremediation agent and then 25 days after the second application, which occurred 8 days after the first. Results of sample analyses to evaluate changes in the chemical characteristics of spilled oil failed to show evidence of oil degradation during the 96 hours after the initial treatment, but did show evidence of degradation 25 days after the second treatment-although differences between samples from treated and untreated sites were not evident. Because control areas had not been maintained after the second application, contamination by the bioremediation agent of previously untreated (control) areas may have occurred, perhaps negating the possibility of detecting differences between treated and control areas. Better preparedness to implement bioremediation and conduct monitoring might have increased the effectiveness of the monitoring effort

  5. Effects of bryophytes on succession from alkaline marsh to Sphagnum bog

    Energy Technology Data Exchange (ETDEWEB)

    Glime, J.M.; Wetzel, R.G.; Kennedy, B.J.

    1982-10-01

    The alkaline eastern marsh of Lawrence Lake, a marl lake in southwestern Michigan, was sampled by randomly placed line transects to determine the bryophyte cover and corresponding vascular plant zones. Cluster analysis indicated three distinct bryophyte zones which correspond with the recognized vascular plant zones. Mosses occupied over 50% of the surface in some areas. Invasion of Sphagnum, vertical zonation of the mosses on hummocks, zonation with distance from the lake, the abundance of non-Sphagnum moss hummocks, and the ability of the non-Sphagnum species to lower the pH of marsh water during laboratory incubations are evidence that non-Sphagnum mosses facilitate succession from alkaline marsh to Sphagnum bog.

  6. Ishmael Reed and the Politics of Aesthetics, or Shake Hands and Come Out Conjuring

    Science.gov (United States)

    Fontenot, Chester J.

    1978-01-01

    Discusses the ways in which Ishmael Reed uses black American folklore, black American language, traditional African religion, and African myths as poetic materials from which he develops artistic forms. (GW)

  7. Effects of Extreme Events on Arsenic Cycling in Salt Marshes

    Science.gov (United States)

    Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.

    2018-03-01

    Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.

  8. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding

    Energy Technology Data Exchange (ETDEWEB)

    Loughry, Thomas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to ten times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.

  9. Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth

    Science.gov (United States)

    Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith

    2018-01-01

    Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.

  10. Cryptic species of sharp-nosed reed frogs in the Hyperolius nasutus ...

    African Journals Online (AJOL)

    The sharp-nosed reed frog is widespread in Africa. Although currently recognized as one species, suggestions have been made that more than one species might exist. We analysed 237 calls of 69 males from 19 localities in the western to southern parts of Africa. Calls fall into three groups, which we recognize as cryptic ...

  11. Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels

    Science.gov (United States)

    Wang, Han

    2010-01-01

    Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…

  12. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    Science.gov (United States)

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  13. Modified Marsh Classification of the Duodenal Biopsies of a Large Database Covering 10 Years

    Directory of Open Access Journals (Sweden)

    Cansu Abayli

    2014-02-01

    Full Text Available Purpose: Celiac is an autoimmune disease caused by of gluten proteins which can be found in multi-grain food like wheat, barley and oat. The disease affects more than 1% of population and characterized by intestinal inflammation. In celiac disease, mucosal damage is a dynamic process. It is shown that it has autoimmune components. It is also T-Cell mediated and can be categorised as a chronic inflammatory disease. The purpose of this study is to make modified Marsh classification of the duodenal biopsies that came to our department in the 10 years. The study deals with reassessment of all events and uncovering the low graded events that were not diagnosed. Material and Methods: 467 biopsies (diagnosed between 2001 and 2011 at the Cukurova University, Faculty of Medicine, Department of Pathology were taken and analyzed by two pathologists. Each sample was reevaluated without taking the previous reports into consideration and scored by using modified Marsh classification. Results: According to Modified Marsh Classification total of 48 cases were diagnosed as Type 1. Total of 6 cases according to Modified Marsh Classification was diagnosed as Type 2. Total of 11 cases according to Modified Marsh Classification was diagnosed as Type 3a. Total of 5 cases, according to Modified Marsh Classification, was diagnosed as Type 3b. Total of 6 cases according to Modified Marsh Classification was diagnosed as Type 3c. Conclusion: As a result of this study, it has been found that Modified Marsh Classification is a very important standardization tool for detection of suspicious duodenal biopsies and for early case examinations.

  14. The Role of Tidal Marsh Restoration in Fish Management in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Bruce Herbold

    2014-03-01

    Full Text Available   Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary. Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011. Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha and the Bay Delta Conservation Plan (26,305 ha. In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012. In the Sacramento–San Joaquin Delta (Delta, one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013. The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010. This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium. 

  15. Interaction between host T cells and Reed-Sternberg cells in Hodgkin lymphomas

    NARCIS (Netherlands)

    Poppema, S; van den Berg, Anke

    2000-01-01

    Recent studies provide evidence that Reed-Sternberg (R-S) cells produce factors that may explain the characteristic inflammatory infiltrate in the affected tissues of Hodgkin lymphoma. The various chemokines and cytokines that are produced lead to a preferential influx of Th2-type T cells and

  16. Refractory organic matter in coastal salt marshes-effect on C sequestration calculations.

    Science.gov (United States)

    Leorri, Eduardo; Zimmerman, Andrew R; Mitra, Siddhartha; Christian, Robert R; Fatela, Francisco; Mallinson, David J

    2018-08-15

    The age and ability of salt marshes to accumulate and sequester carbon is often assessed using the carbon isotopic signatures (Δ 14 C and δ 13 C) of sedimentary organic matter. However, transfers of allochthonous refractory carbon (C RF ) from the watershed to marshes would not represent new C sequestration. To better understand how refractory carbon (C RF ) inputs affect assessments of marsh age and C sequestration, Δ 14 C and δ 13 C of both total organic carbon (TOC), C RF , and non-C RF organic matter fractions were measured in salt marshes from four contrasting systems on the North Atlantic coast. To our knowledge, no salt marsh sediment study has considered refractory or allochthonous carbon in carbon budget calculations or the impact on chronologies. Stable and radiogenic isotope data suggest that while TOC was dominated by autochthonous plant inputs, C RF was dominated by locally recycled or allochthonous C, the delivery of which was controlled by the size and slope of each watershed. Steep-gradient rivers analyzed delivered Δ 14 C-depleted C RF to their estuarine marshes, while the site located in the low-gradient river was associated with larger C RF content. Finally, the marsh isolated from riverine input contained the least fraction of TOC as C RF . Laterally transported C RF caused only a small offset in Δ 14 C in relation to TOC in low-gradient systems (average Δ 14 C offset was -44.4 and -24.2‰ at each location). However, the presence of allochthonous Δ 14 C-depleted C RF in sediments of steep-gradient rivers led to large overestimates of the time of organic matter deposition (i.e. apparent age was older than the 'true' time of deposition) (Δ 14 C offset ranged from -170.6 to -528.9‰). Further, reliance on TOC or loss on ignition analyses to calculate C sequestration by marshes might produce overestimates of at least as much as 10 to 20% since neither account for the lateral transport of allochthonous carbon. Copyright © 2018 Elsevier B

  17. Import and export fluxes of macrozooplankton are taxa- and season-dependent at Jiuduansha marsh, Yangtze River estuary

    Science.gov (United States)

    Qin, Haiming; Sheng, Qiang; Chu, Tianjiang; Wang, Sikai; Wu, Jihua

    2015-09-01

    Macrozooplankton may play important roles in influencing nutrient exchange between salt marsh and nearby estuarine ecosystems through predator-prey interactions and their transport by tidal flows. In this study, macrozooplankton transport through year-round monthly sampling was investigated in a salt marsh creek of the Yangtze River estuary. Twenty-one orders of macrozooplankton were captured. Calanoida and Decapoda were dominant and numerically comprised 59.59% and 37.59% respectively of the total captured macrozooplankton throughout the year. Decapoda mainly occurred in April, May and June. In other months, the Calanoida contributed over 90% of the total individuals. The annual Ferrari index (I) for total individual number of macrozooplankton was 0.27, which generally supports the viewpoint that salt marshes are sources of zooplankton. The salt marsh was mainly a source for decapods and mysids, possibly because of larval release in their breeding seasons. The marsh was also a source for amphipods, probably because some benthic forms became transient planktonic forms during tidal water flushing. Copepods and fish larvae exhibited net import into the salt marsh, which may result from predation from salt marsh settlers or retention in the salt marsh. Monthly Ferrari index (I) estimations revealed that the role of the salt marsh as a sink or source of macrozooplankton was time-dependent, which is related to the life history of animals. This study showed that whether the salt marsh zooplankton act as energy importers or exporters is group/taxa-dependent and time-dependent.

  18. Effects of bleaching wastewater irrigation on soil quality of constructed reed wetlands

    Directory of Open Access Journals (Sweden)

    Cheng Ding

    2016-10-01

    Full Text Available Constructed reed wetland microcosms (CRWs in a lab of east China have been irrigated with bleaching wastewater per month for a reed growth season. The soil physicochemical properties, enzyme activities (i.e. urease, invertase, polyphenol oxidase, alkaline phosphatase and cellulase and soil microbial diversity were assayed before and after the exposure experiment. Compared to the river water irrigated controls (CKs, bleaching wastewater application has no marked influence on soil pH, but significantly increased soil Na+, total halogen and absorbable organic halogen (AOX contents, which induced the increasing of soil electrical conductivity. Furthermore, soil enzyme activities displayed significant variation (except for polyphenol oxidase. Bleaching wastewater irrigation decreased Sorenson’s pairwise similarity coefficient (Cs, which indicated the changes of the structure of bacterial and fungal communities. However, only the diversity of bacterial community was inhibited and has no effect on the diversity of fungal community, as evidenced by the calculated Shannon–Wiener index (H.

  19. Origins of mineral matter in peat marsh and peat bog deposits, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Buendia, A.M. [Unidad Tecnica del Marmol, AIDICO, Cami de Castella, 4, 03660 Novelda, Alicante (Spain); Whateley, M.K.G. [Rio Tinto Technical Services, Castlemead, Lower Castlemead, BS99 7YR Bristol (United Kingdom); Bastida, J.; Urquiola, M.M. [Dpto. Geologia, Univ. Valencia, Dr. Moliner 50. 46100 Burjasot, Valencia (Spain)

    2007-07-02

    The mineralogy of three back-barrier peat marshes (Torreblanca, Benicasim and Moncofar marshes) from Eastern Spain and one peat bog (Orihuela del Tremedal bog) from central east Spain have been investigated, using X-ray diffraction (XRD) and scanning electronic microscope (SEM) techniques. A combination of XRD methods was used to quantify the mineralogy of dried bulk peat samples. The water source in the peat marshes is both continental and marine. Water is highly mineralised. Water flow is both low and slow (accumulative system). The water source in the peat bog is continental, draining from the hill. The higher concentration of ions in the water of the back-barrier peat marshes leads to a higher concentration of authigenic minerals in the peat marshes compared to the peat bog. Three main mineral origins have been recognized, namely: detrital, syngenetic-epigenetic and biogenic. The more important contribution comes from the detrital system. Biogenic and bio-influenced minerals are the main non-detrital minerals in the peatlands. This paper discusses the biogenic origin of halite (and other minor halides and sulphates, such as, sylvite, carnalite, epsomite, glauberite, mirabilite and anhydrite?) from halophytic plants, as well as amorphous silica (opal-A) from sponge spicules and phytoliths of several plants. Pyrite in the peat bog has both syngenetic and epigenetic origins from plant decomposition and sulphur release. In the peat marsh the pyrite has a syngenetic origin from sulphate reduction (S{sub sulphate} {yields} S{sub pyritic}), and an epigenetic origin in the older peat, from plant decomposition (S{sub organic} {yields} S{sub pyritic}). (author)

  20. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.)

    Science.gov (United States)

    Danilo Scordia; Salvatore L. Cosentino; Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Biomass pretreatment is essential to overcome recalcitrance of lignocellulose for ethanol production. In the present study we pretreated giant reed (Arundo donax L.), a perennial, rhizomatous lignocellulosic grass with dilute oxalic acid. The effects of temperature (170-190 ºC), acid loading (2-10% w/w) and reaction time (15-40 min) were handled as a single...

  1. Gulf-Wide Information System, Environmental Sensitivity Index Brackish Marsh, Geographic NAD83, LDWF (2001) [esi_brackish_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) brackish marshes data of coastal Louisiana. The ESI is a classification and ranking system, which...

  2. Gulf-Wide Information System, Environmental Sensitivity Index Intermediate Marsh, Geographic NAD83, LDWF (2001) [esi_intermediate_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) intermediate marshes data of coastal Louisiana. The ESI is a classification and ranking system, which...

  3. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay

    Science.gov (United States)

    Yuan, Hong-Wei; Chen, Jian-Fang; Ye, Ying; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Jiang, Zong-Pei; Lin, Yu-Shih; Chen, Chen-Tung Arthur; Loh, Pei Sun

    2017-10-01

    Lignin oxidation products, δ13C values, C/N ratios and particle size were used to investigate the sources, distribution and chemical stability of sedimentary organic matter (OM) along the Andong salt marsh located in the southwestern end of Hangzhou Bay, China. Terrestrial OM was highest at the upper marshes and decreased closer to the sea, and the distribution of sedimentary total organic carbon (TOC) was influenced mostly by particle size. Terrestrial OM with a C3 signature was the predominant source of sedimentary OM in the Spartina alterniflora-dominated salt marsh system. This means that aside from contributions from the local marsh plants, the Andong salt marsh received input mostly from the Qiantang River and the Changjiang Estuary. Transect C, which was situated nearer to the Qiantang River mouth, was most likely influenced by input from the Qiantang River. Likewise, a nearby creek could be transporting materials from Hangzhou Bay into Transect A (farther east than Transect C), as Transect A showed a signal resembling that of the Changjiang Estuary. The predominance of terrestrial OM in the Andong salt marsh despite overall reductions in sedimentary and terrestrial OM input from the rivers is most likely due to increased contributions of sedimentary and terrestrial OM from erosion. This study shows that lower salt marsh accretion due to the presence of reservoirs upstream may be counterbalanced by increased erosion from the surrounding coastal areas.

  4. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    Science.gov (United States)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  5. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Science.gov (United States)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  6. Coastal Marsh Longevity, Ecological Succession, and Organic Carbon Dynamics During Early Holocene Sea-Level Rise

    Science.gov (United States)

    Vetter, L.; Schreiner, K. M.; Rosenheim, B. E.; Tornqvist, T. E.

    2016-02-01

    Coastal marsh environments perform essential ecosystem services, including nutrient filtering, soil organic matter storage, and storm surge abatement, yet much is still unknown about their formation and fate under periods of sea-level change. During the early Holocene (7-10 ka), rapid sea-level rise in coastal Louisiana was one of the primary controls over marsh development and longevity. Here, we investigate plant community composition and succession and soil organic matter storage in early Holocene coastal marshes in Louisiana using bulk elemental ratios, lignin phenol biomarkers and stable isotopes from peat layers. Sediment cores were collected in southeastern Louisiana and contain a record of an early Holocene transgressive sea-level sequence 16-25 m below present sea-level. The sedimentary record consists of an immature paleosol overlain by basal peat that accumulated in an estuarine marsh, overlain by marine lagoonal muds. A re-established marsh peat is present 1-4 m above the initial transition to marine conditions, indicating a sequence of marsh development, sea-level rise and onset of marine conditions, and then further marsh development as the rate of relative sea-level rise decelerated. Plant community composition in coastal marshes was determined through cupric oxide oxidation and lignin-phenol and non-lignin-phenol biomarker abundances. The degradation state of soil organic matter and the specific source of stabilized organic matter within the sedimentary peats were determined through lignin-phenol biomarker ratios. Organic matter sources ranged from terrestrial to marine over the course of sea-level rise, and different sites showed different amounts of marine organic matter influence and different levels of terrestrial organic matter degradation. These results have important implications for reconstructing the response of coastal marshes and their plant communities to accelerated rates of sea-level rise projected through 2100.

  7. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    Science.gov (United States)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  8. Past and Present Resource Disputes in the South China Sea: The Case of Reed Bank

    Directory of Open Access Journals (Sweden)

    Micah S. Muscolino

    2013-09-01

    Full Text Available In 2012, tensions flared between China and the Philippines over plans to drill for oil in the Reed Bank, a disputed shoal in the South China Sea, rekindling fears about the possibility of military conflict over the area’s energy resources. This article shows that international controversy centering on the Reed Bank’s hydrocarbon reserves initially emerged during the oil crisis of the 1970s, when the pursuit of energy resources transformed the islets into a hotly contested area. As in recent years, oil exploration by multinational corporations in conjunction with the Philippines catalyzed international disputes. Vigorous protests from China and other nations that lay claim to territories in the South China Sea prompted the Philippines to assert its own jurisdictional claims. The territorial dispute pushed claimants to the brink of military confrontation in the 1970s, yet armed conflict failed to materialize. By examining the initial round of tensions surrounding oil exploration at Reed Bank, this article situates the current international competition for the South China Sea’s energy resources in historical perspective. Analyzing past disputes and their ultimate resolution offers insights into the dynamics of present tensions, while making it possible to critically engage with arguments predicting future “resource wars” in the South China Sea.

  9. Giant reed (Arundo donax L. for biogas production: land use saving and nitrogen utilisation efficiency compared with arable crops

    Directory of Open Access Journals (Sweden)

    Federico Dragoni

    2015-12-01

    Full Text Available Aiming to improve the sustainability of biogas supply chains, the research for alternative feedstocks is a key issue and giant reed (Arundo donax L. is a promising no-food crop to be used in anaerobic digestion. In fact, giant reed is a perennial species characterised by low nutrient requirements and is able to provide promising biogas yields. Its suitability for anaerobic digestion is influenced by harvest time, since plant characteristics vary noticeably along the season. Moreover, ensiling is a storage technique that can assure a good preservation of the biomass over time, but also influence the methane yields. Therefore, the aim of this study was to assess the suitability for biogas production of giant reed silage, according to different cutting regimes, and to evaluate the efficiency in saving land and nitrogen for fuelling biogas plants, in comparison with maize and two sorghum varieties. Methane yields per hectare (Nm3 CH4 ha–1 were determined by multiplying the biochemical methane potential of each substrate by the aboveground biomass of the corresponding crop. The land use coefficient (LU, namely the land needed to fuel one kW power (ha kWe–1, was calculated from the estimated methane yields per hectare. Finally, nitrogen utilisation efficiency (NUtE, which is the ratio between the estimated methane yield and the nitrogen uptake per hectare (Nm3 CH4 kgN–1, was determined for each crop species and according to the harvest time and frequency of giant reed. Overall, a good suitability for ensiling was observed in giant reed. When harvested in September, the crop yielded about 9900 Nm3 CH4 ha–1, while in double harvest systems biomethane was about 12,000 Nm3 CH4 ha–1, +35% and +70% than maize and sorghum respectively. Moreover, giant reed under double harvest management was the most land-conservative option, as LU was about 0.22 ha kWe–1, while in annual crops it was about 0.35 ha kWe–1. The higher NUtE was observed in single

  10. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  11. Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion.

    Science.gov (United States)

    Coverdale, Tyler C; Brisson, Caitlin P; Young, Eric W; Yin, Stephanie F; Donnelly, Jeffrey P; Bertness, Mark D

    2014-01-01

    Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions.

  12. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion

    International Nuclear Information System (INIS)

    McClenachan, Giovanna; Eugene Turner, R; Tweel, Andrew W

    2013-01-01

    Oil can have long-term detrimental effects on marsh plant health, both above- and belowground. However, there are few data available that quantify the accelerated rate of erosion that oil may cause to marshes and the trajectory of change. Between November 2010 and August 2012, we collected data on shoreline erosion, soil strength, per cent cover of Spartina alterniflora, and marsh edge overhang at 30 closely spaced low oil and high oil sites in Bay Batiste, Louisiana. Surface oil samples were taken one meter into the marsh in February 2011. All high oiled sites in Bay Batiste were contaminated with Macondo 252 oil (oil from the Deepwater Horizon oil spill, 20 April–15 July 2010). The results suggest that there is a threshold where soil parameters change dramatically with a relatively small increase in oil concentration in the soil. Heavy oiling weakens the soil, creating a deeper undercut of the upper 50 cm of the marsh edge, and causing an accelerated rate of erosion that cascades along the shoreline. Our results demonstrate that it could take at least 2 yr to document the effects heavy oiling has had on the marsh shoreline. The presence of aboveground vegetation alone may not be an appropriate indicator of recovery. (letter)

  13. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    Science.gov (United States)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  14. Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico.

    Science.gov (United States)

    Heard, Richard W.

    The major groups of marine and estuarine macroinvertebrates of the tidal marshes of the northern Gulf of Mexico are described in this guide for students, taxonomists and generalists. Information on the recognition characteristics, distribution, habitat, and biology of salt marsh species from the coelenterate, annelid, mollusk and arthropod phyla…

  15. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France

    Directory of Open Access Journals (Sweden)

    J. F. Breilh

    2013-06-01

    Full Text Available This study aims to assess the performance of raster-based flood modeling methods on a wide diversity of coastal marshes. These methods are applied to the flooding associated with the storm Xynthia, which severely hit the western coast of France in February 2010. Static and semi-dynamic methods are assessed using a combination of LiDAR data, post-storm delineation of flooded areas and sea levels originating from both tide gauge measurements and storm surge modeling. Static methods are applied to 27 marshes showing a wide geomorphological diversity. It appears that these methods are suitable for marshes with a small distance between the coastline and the landward boundary of the marsh, which causes these marshes to flood rapidly. On the contrary, these methods overpredict flooded areas for large marshes where the distance between the coastline and the landward boundary of the marsh is large, because the flooding cannot be considered as instantaneous. In this case, semi-dynamic methods based on surge overflowing volume calculations can improve the flooding prediction significantly. This study suggests that static and semi-dynamic flood modeling methods can be attractive and quickly deployed to rapidly produce predictive flood maps of vulnerable areas under certain conditions, particularly for small distances between the coastline and the landward boundary of the low-lying coastal area.

  16. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana

  17. Salt marsh construction costs and shrimp production

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Continuing wetland loss in Galveston Bay, Texas (USA) has led to the development of various salt marsh restoration projects. These constructed wetlands often attempt...

  18. "Managed Retreat" in Response to Superstorm Sandy: The Oakwood Beach Story

    Science.gov (United States)

    Tirone, J.

    2017-12-01

    This presentation shares lessons learned from firsthand experience of the home buyout process in New York City after Superstorm Sandy. Many have described Sandy as "the perfect storm" from a meteorological perspective, but it was also the perfect storm from a government-buyout perspective. For a buyout to work in New York City, with its high property values and dense housing and population, many conditions had to be in place before the storm. Before Sandy hit, Oakwood Beach on Staten Island had already had enough. Hurricane Isaac flooded streets and basements in 2010, followed by Hurricane Irene in 2011. Many residents of this multi-generational neighborhood had just finished fixing their homes. A few years before, a brush fire spread through the invasive and highly flammable Phragmites reeds, destroying a protective berm installed by the Army Corps of Engineers in 2000 and threatening to damage many homes. An aerial view would show how these homes incredulously sat in the middle of a marsh, a marsh designated as part of the Bluebelt wetlands storm water management system by New York City's Department of Environmental Protection. Even more incredulously, while New York City was buying up unimproved lots to expand the Bluebelt to improve drainage for inland homes, the City was also issuing building permits to developers - sometimes for lots directly in the Bluebelt's path. Welcome to Staten Island, where the political influence of developers made any effort to retreat from the waterfront especially difficult and contentious. Before the storm, no one knew what a buyout was, never mind how to go about seeking one. For the most part, this included local officials. Managed retreat is typically understood as a top-down directive, but in this case the buyout plan was initiated from the bottom up by eight ordinary citizens who used research, trust, and networking to get their voices heard and, against all odds, to drive a highly successful State-supported buyout program.

  19. Biofilms' contribution to organic carbon in salt marsh sediments

    Science.gov (United States)

    Valentine, K.; Quirk, T. E.; Mariotti, G.; Hotard, A.

    2017-12-01

    Coastal salt marshes are productive environments with high potential for carbon (C) accumulation. Organic C in salt marsh sediment is typically attributed to plant biomass. Recent field measurements, however, suggest that biofilms - mainly composed of benthic diatoms and their secretion - also contribute to basal C in these environments and can be important contributors to marsh productivity, C cycling, and potentially, C sequestration. The potential for biofilms to soil organic C and the influence of mineral sedimentation of biofilm-based C accumulation is unknown. We conducted controlled laboratory experiments to test (1) whether biofilms add measurable amounts of organic C to the sediment and (2) the effect of mineral sedimentation rate on the amount of biofilm-based C accumulation. Settled beds of pure bentonite mud were created in 10-cm-wide cylinders. Each cylinder was inoculated with biofilms collected from a marsh in Louisiana. A small amount of mud was added weekly for 11 weeks. Control experiments without biofilms were also performed. Biofilms were grown with a 12/12 hours cycle, with a gentle mixing of the water column that did not cause sediment resuspension, with a nutrient-rich medium that was exchanged weekly, and in the absence of metazoan grazing. At the end of the experiment, the sediment columns were analyzed for depth-integrated chl-a, loss on ignition (LOI), and total organic carbon (TOC). Chl-a values ranged from 26-113 mg/cm2, LOI values ranged from 86-456 g/m2/yr, and TOC values ranged from 31-211 g/m2/yr. All three of these metrics (chl-a, LOI, and TOC) increased with the rate of mineral sedimentation. These results show that biofilms, in the absence of erosion and grazing, can significantly contribute to C accumulation in salt marshes, especially with high rates of mineral sedimentation. Given the short time scale of the experiment, the increase in organic C accumulation with the rate of sedimentation is attributed to stimulated biofilm

  20. Automated Detection of Salt Marsh Platforms : a Topographic Method

    Science.gov (United States)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method

  1. Pre-study - mobile briquetting plant for reed canary grass in inland Northern Sweden; Foerstudie - mobil briketteringsanlaeggning foer roerflen i norrlands inland

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Lundmark, Bo

    2009-07-01

    The aim of this preliminary study was to summarize existing information and to develop an outline plan for a mobile briquette plant based on the conditions and requirements of reed canary grass production on forestry land. The results of the study show that there is potential to build up small-scale briquette production from reed canary grass in the areas around Arvidsjaur, Lycksele and Malaa. Important conclusions from the study are that there are potential users for reed canary grass briquettes in all three areas studied, but that profitability for mobile briquette plants is dependent on the willingness of the users to pay well for the briquettes. These briquette plants would need a relatively high degree of automation for commercial operation to be profitable. The first plant should therefore be collocated with another business so that staff, machinery (e.g. loader) and storage space can be shared with other operations. One appropriate location would be to build up activities for a mobile reed canary grass briquette plant around Glommers Miljoeenergi's pellet plant in Glommerstraesk. Thus, the plant could be used as a demonstration mobile unit, with a stationary 'home production base'CO{sub 2} Glommerstraesk

  2. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone.

    Science.gov (United States)

    Peterson, Jennifer M; Bell, Susan S

    2012-07-01

    Field experiments were conducted at a black mangrove-salt-marsh ecotone in southwest Florida (U.S.A.) to investigate retention of propagules of the black mangrove, Avicennia germinans, by salt-marsh plants as a mechanism of facilitation operating on recruitment success at landward boundaries. Buoyant A. germinans propagules are dispersed by tides, and stranding is required for establishment; therefore, processes that enable stranding should facilitate mangrove recruitment. We expected the physical structure of salt-marsh vegetation to define propagule retention capacity, and we predicted that salt-marsh plants with distinct growth forms would differentially retain propagules. Experimental monoculture plots (1 m2) of salt-marsh plants with different growth forms (Sporobolus virginicus [grass], Sesuvium portulacastrum [succulent forb], and Batis maritima [succulent scrub]) were created, and A. germinans propagules were emplaced into these plots and monitored over time. For comparison, propagules were also placed into natural polyculture plots (1 m2). Polyculture plots contained at least two of the salt-marsh plant taxa selected for monoculture treatments, and S. virginicus was always present within these polyculture plots. Natural polyculture plots retained 59.3% +/- 11.0% (mean +/- SE) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% +/- 11.5% of transplanted propagules compared to 7.2% +/- 1.8% by B. maritima and 5.0% +/- 1.9% by S. portulacastrum. Plots containing S. virginicus retained a significantly greater percentage of emplaced propagules relative to the two succulent salt-marsh taxa. Furthermore, propagule entrapment, across all treatments, was strongly correlated with salt-marsh structure (r2 = 0.6253, P = 0.00001), which was estimated using an indirect quantitative metric (lateral obstruction) calculated from digital images of plots. Overall, our findings imply that

  3. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain

    International Nuclear Information System (INIS)

    Luque, Carlos J.; Vaca, Federico; García-Trapote, Ana; Hierro, Almudena; Bolívar, Juan P.; Castellanos, Eloy M.

    2015-01-01

    Estuaries are sinks of materials and substances which are released directly into them or transported from rivers that drain the basin. It is usual to find high organic matter loads and fine particles in the sediments. We analyzed radionuclide concentrations ("2"1"0Po, "2"3"0Th, "2"3"2Th, "2"3"4U, "2"3"8U, "2"2"6Ra, "2"2"8Th, "2"2"8Ra, "4"0K) in sediments and three different organs (roots, stems and leaves) of three species of halophytes plants (Spartina maritima, Spartina densiflora and Sarcocornia perennis). The study was carried out in two tidal salt marshes, one polluted by U-series radionuclides and another nearby that was unpolluted and was used as a control (or reference) area. The Tinto River salt marsh shows high levels of U-series radionuclides coming from mining and industrial discharges. On the contrary, the unperturbed Piedras River salt marsh is located about 25 km from the Tinto marsh, and shows little presence of contaminants and radionuclides. The results of this work have shown that natural radionuclide concentrations (specially the U-isotopes) in the Tinto salt marsh sediments are one order of magnitude higher than those in the Piedras marsh. These radionuclide enhancements are reflected in the different organs of the plants, which have similar concentration increases as the sediments where they have grown. Finally, the transfer factor (TF) of the most polluted radionuclides (U-isotopes and "2"1"0Po) in the Tinto area are one order of magnitude higher than in the Piedras area, indicating that the fraction of each radionuclide in the sediment originating from the pollution is more available for the plants than the indigenous fraction. This means that the plants of the salt marshes are unhelpful as bioindicators or for the phytoremediation of radionuclides. - Highlights: • Radionuclides were analyzed in sediments and plants in unpolluted salt marshes. • Plants uptake radionuclides in all organs in both salt marshes. • The transfer factors

  4. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design

    OpenAIRE

    Rochlin, Ilia; Iwanejko, Tom; Dempsey, Mary E; Ninivaggi, Dominick V

    2009-01-01

    Abstract Background In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control, marsh degradation and other environmental considerations compel a different approach. Targeted h...

  5. Delineation of marsh types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama, in 2010

    Science.gov (United States)

    Enwright, Nicholas M.; Hartley, Stephen B.; Couvillion, Brady R.; Michael G. Brasher,; Jenneke M. Visser,; Michael K. Mitchell,; Bart M. Ballard,; Mark W. Parr,; Barry C. Wilson,

    2015-07-23

    Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types (that is, fresh, intermediate, brackish, and saline) for modeling habitat capacities and needs of marsh dependent taxa (such as waterfowl and alligator). Detailed information on the extent and distribution of emergent marsh vegetation types throughout the northern Gulf of Mexico coast has been historically unavailable. In response, the U.S. Geological Survey, in collaboration with the Gulf Coast Joint Venture, the University of Louisiana at Lafayette, Ducks Unlimited, Inc., and the Texas A&M University-Kingsville, produced a classification of emergent marsh vegetation types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama.

  6. Biogeochemical features of aquatic plants in the Selenga River delta

    Science.gov (United States)

    Shinkareva, Galina; Lychagin, Mikhail

    2014-05-01

    The Selenga River system provides more than a half of the Lake Baikal total inflow. The river collects a significant amount of pollutants (e.g. heavy metals) from the whole basin. These substances are partially deposited within the Selenga delta, and partially are transported further to the lake. A generous amount of aquatic plants grow in the delta area according to its favorable conditions. This vegetation works as a specific biofilter. It accumulates suspended particles and sorbs some heavy metals from the water. The study aimed to reveal the species of macrophytes which could be mostly important for biomonitoring according to their chemical composition. The field campaign took place in the Selenga River delta in July-August of 2011 (high water period) and in June of 2012 (low water period). 14 species of aquatic plants were collected: water starwort Callitriche hermaphroditica, small yellow pond lily Nuphar pumila, pondweeds Potamogeton crispus, P. pectinatus, P. friesii, broadleaf cattail Typha latifolia, hornwort or coontail Ceratophyllum demersum, arrowhead Sagittaria natans, flowering rush (or grass rush) Butomus umbellatus, reed Phragmites australis, parrot's feather Myriophyllum spicatum, the common mare's tail Hippuris vulgaris, Batrachium trichophyllum, canadian waterweed Elodea canadensis. The samples were dried, grinded up and digested in a mixture of HNO3 and H2O2. The chemical composition of the plant material was defined using ICP-MS and ICP-AES methods. Concentrations of Fe, Mn, Cr, Ni, Cu, B, Zn, V, Co, As, Mo, Pb, and U were considered. The study revealed that Potamogeton pectinatus and Myriophyllum spicatum concentrate elements during both high and low water periods. Conversely the Butomus umbellatus and Phragmites australis contain small amount of heavy metals. The reed as true grasses usually accumulates fewer amounts of elements than other macrophytes. To compare biogeochemical specialization of different species we suggest to use

  7. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing.

    Science.gov (United States)

    Altieri, Andrew H; Bertness, Mark D; Coverdale, Tyler C; Herrmann, Nicholas C; Angelini, Christine

    2012-06-01

    Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing.

  8. Interagency partnership to assess and restore a degraded urban riverine wetland: Dyke Marsh Wildlife Preserve, Virginia

    Science.gov (United States)

    Steury, Brent W.; Litwin, Ronald J.; Oberg, Erik T.; Smoot, Joseph P.; Pavich, Milan J.; Sanders, Geoffrey; Santucci, Vincent L.

    2014-01-01

    The narrow-leaved cattail wetland known as Dyke Marsh formally became a land holding of George Washington Memorial Parkway (GWMP, a unit of the national park system) in 1959, along with a congressional directive to honor a newly-let 30-year commercial sand and gravel dredge-mining lease at the site. Dredging continued until 1974 when Public Law 93-251 called for the National Park Service and the United States Army Corps of Engineers to “implement restoration of the historical and ecological values of Dyke Marsh.” By that time, about 83 acres of the marsh remained, and no congressional funding accompanied the passage of the law to effect any immediate conservation or restoration. Decades of dredge mining had severely altered the surface area of Dyke Marsh, the extent of its tidal creek system, and the shallow river bottom of the Potomac River abutting the marsh. Further, mining destabilized the marsh, causing persistent erosion, shoreline retreat, and tidal channel widening after mining ceased. Erosion has continued unchecked until the present; approximately 50 acres of the original marsh are now estimated to remain. The specific cause of persistent erosion had been unknown prior to this collaborative study but previously was assumed to be due to flooding by the Potomac River.

  9. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    Science.gov (United States)

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  10. Comparison of Bottomless Lift Nets and Breder Traps for Sampling Salt-Marsh Nekton

    Science.gov (United States)

    Vegetated salt-marsh surfaces provide refuge, forage, and spawning habitat for estuarine nekton, yet are threatened by accelerating rates of sea-level rise in southern New England and elsewhere. Nekton responses to ongoing marsh surface changes need to be evaluated with effective...

  11. Maintenance of salt barrens inhibited landward invasion of Spartina species in salt marshes

    NARCIS (Netherlands)

    Qi, Man; Sun, Tao; Zhang, Heyue; Zhu, Meisha; Yang, Ying-Wei; Shao, Dongdong; Voinov, Alexey

    2017-01-01

    Spartina spp. (cordgrasses) often dominates intertidal mudflats and/or low marshes. The landward invasion of these species was typically thought to be restrained by low tidal inundation frequencies and interspecific competition. We noticed that the reported soil salinity levels in some salt marshes

  12. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    Energy Technology Data Exchange (ETDEWEB)

    Sigrin, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibanez, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  13. Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes

    Science.gov (United States)

    Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.

    2013-01-01

    The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.

  14. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    Science.gov (United States)

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  15. How is the chlorophyll count affected by burned and unburned marsh areas?

    Science.gov (United States)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  16. Tritium behaviour in aquatic plants and animals in a freshwater marsh ecosystem

    International Nuclear Information System (INIS)

    Adams, L.W.; Peterle, T.J.; White, G.C.

    1979-01-01

    Ten curies of tritium as tritiated water (HTO) were experimentally added to an enclosed 2-ha Lake Erie marsh on 20 October 1973. Tritium kinetics in selected plants and animals were determined over a one-year period. Tritium levels in the marsh bottom sediment averaged 1.8 times the marsh water levels, with little evidence of tritium concentration above the marsh water tritium levels in the flora and fauna. The unbound tritium: marsh water tritium ratios in smartweed (Polygonum lapathifolium) and pickerelweed (Pontederia cordata) (both emergents) were lower than the same ratio for pondweed (Potamogeton crispus) (a submergent). There was some evidence of bound tritium buildup in midsummer, particularly in the pondweed. Tritium uptake into the unbound compartments of crayfish (Procambarus blandingi), carp (Cyprinus carpio) and bluegills (Lepomis macrochirus) was rapid. For crayfish, maximum HTO levels were observed on days 2 and 3 following treatment for muscle and viscera respectively. Unbound HTO in carp muscle peaked in 4 hours and the level in carp viscera reached a maximum in 2 days, in bluegill muscle and viscera on day 1. Unbound HTO in all species decreased following peak levels, paralleling marsh water HTO activity. Tritium uptake into the bound compartments was not as rapid nor were the levels as high as for unbound HTO in the fauna. The peak bound level in crayfish muscle was observed on day 10 (bound : unbound ratio of 0.34) and the maximum level in viscera was noted on day 20 (bound : unbound ratio of 0.23). Bound tritium in carp muscle and viscera reached maximum levels on day 20 (bound : unbound ratios of 0.25 and 0.39 respectively). In bluegills, peaks were reached on days 5 and 7 (bound : unbound ratios of 0.35 and 0.38 for muscle and viscera respectively). Bound tritium in all species decreased following maximum levels

  17. Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant.

    Science.gov (United States)

    Guo, Hongyu; Pennings, Steven C

    2012-11-01

    Oysters are ecosystem engineers in marine ecosystems, but the functions of oyster shell deposits in intertidal salt marshes are not well understood. The annual plant Suaeda linearis is associated with oyster shell deposits in Georgia salt marshes. We hypothesized that oyster shell deposits promoted the distribution of Suaeda linearis by engineering soil conditions unfavorable to dominant salt marsh plants of the region (the shrub Borrichia frutescens, the rush Juncus roemerianus, and the grass Spartina alterniflora). We tested this hypothesis using common garden pot experiments and field transplant experiments. Suaeda linearis thrived in Borrichia frutescens stands in the absence of neighbors, but was suppressed by Borrichia frutescens in the with-neighbor treatment, suggesting that Suaeda linearis was excluded from Borrichia frutescens stands by interspecific competition. Suaeda linearis plants all died in Juncus roemerianus and Spartina alterniflora stands, regardless of neighbor treatments, indicating that Suaeda linearis is excluded from these habitats by physical stress (likely water-logging). In contrast, Borrichia frutescens, Juncus roemerianus, and Spartina alterniflora all performed poorly in Suaeda linearis stands regardless of neighbor treatments, probably due to physical stresses such as low soil water content and low organic matter content. Thus, oyster shell deposits play an important ecosystem engineering role in influencing salt marsh plant communities by providing a unique niche for Suaeda linearis, which otherwise would be rare or absent in salt marshes in the southeastern US. Since the success of Suaeda linearis is linked to the success of oysters, efforts to protect and restore oyster reefs may also benefit salt marsh plant communities.

  18. The sedimentological characteristics and geochronology of the marshes of Dauphin Island, Alabama

    Science.gov (United States)

    Ellis, Alisha M.; Smith, Christopher G.; Marot, Marci E.

    2018-03-22

    In August 2015, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 11 push cores from the marshes of Dauphin Island and Little Dauphin Island, Alabama. Sample site environments included high marshes, low salt marshes, and salt flats, and varied in distance from the shoreline. The sampling efforts were part of a larger study to assess the feasibility and sustainability of proposed restoration efforts for Dauphin Island, Alabama, and to identify trends in shoreline erosion and accretion. The data presented in this publication can provide a basis for assessing organic and inorganic sediment accumulation rates and temporal changes in accumulation rates over multiple decades at multiple locations across the island. This study was funded by the National Fish and Wildlife Foundation, via the Gulf Environmental Benefit Fund. This report serves as an archive for the sedimentological and geochemical data derived from the marsh cores. Downloadable data are available and include Microsoft Excel spreadsheets (.xlsx), comma-separated values (.csv) text files, JPEG files, and formal Federal Geographic Data Committee metadata in a U.S. Geological Survey data release.

  19. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    Energy Technology Data Exchange (ETDEWEB)

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  20. Changing Sediment Dynamics of a Mature Backbarrier Salt Marsh in Response to Sea-Level Rise and Storm Events

    Directory of Open Access Journals (Sweden)

    Mark Schuerch

    2018-05-01

    Full Text Available Our study analyses the long-term development of a tidal backbarrier salt marsh in the northern German Wadden Sea. The focus lies on the development of the high-lying, inner, mature part of the salt marsh, which shows a striking history of changing sediment dynamics. The analysis of high-resolution old aerial photographs and sampled sediment cores suggests that the mature part of the marsh was shielded by a sand barrier from the open sea for decades. The supply with fine-grained sediments occurred from the marsh inlet through the tidal channels to the inner salt marsh. Radiometric dating (210Pb and 137Cs reveals that the sedimentation pattern changed fundamentally around the early-mid 1980s when the sedimentation rates increased sharply. By analyzing the photographic evidence, we found that the sand barrier was breached during storm events in the early 1980s. As a result, coarse-grained sediments were brought directly through this overwash from the sea to the mature part of the salt marsh and increased the sedimentation rates. We show that the overwash and the channels created by these storm events built a direct connection to the sea and reduced the distance to the sediment source which promoted salt marsh growth and a supply with coarse-grained sediments. Consequently, the original sediment input from the tidal channels is found to play a minor role in the years following the breach event. The presented study showcases the morphological development of a mature marsh, which contradicts the commonly accepted paradigm of decreasing sedimentation rates with increasing age of the marsh. We argue that similar trends are likely to be observed in other backbarrier marshes, developing in the shelter of unstabilized sand barriers. It further highlights the question of how resilient these salt marshes are toward sea level rise and how extreme storm events interfere in determining the resilience of a mature salt marsh.

  1. Annual net ecosystem exchanges of carbon dioxide and methane from a temperate brackish marsh: should the focus of marsh restoration be on brackish environments?

    Science.gov (United States)

    Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.; Ferner, M. C.; Schile, L. M.; Spinelli, G.

    2015-12-01

    The exchange and transport of carbon in tidally driven, saline marsh ecosystems provide habitat and trophic support for coastal wildlife and fisheries, while potentially accumulating and storing carbon at some of the highest rates compared to other ecosystems. However, due to the predicted rise in sea level over the next century, the preservation and restoration of estuarine habitats is necessary to compensate for their expected decline. In addition, restoration of these marsh systems can also reduce the impacts of global climate change as they assimilate as much carbon as their freshwater counterparts, while emitting less methane due to the higher concentrations of sulfate in seawater. Unfortunately, in brackish marshes, with salinity concentrations less than 18 parts per thousand (ppt), simple relationships between methane production, salinity and sulfate concentrations are not well known. Here we present the net ecosystem exchange (NEE) of carbon dioxide and methane, as calculated by the eddy covariance method, from a brackish marsh ecosystem in the San Francisco Estuary where salinity ranges from oligohaline (0.5-5 ppt) to mesohaline (5-18 ppt) conditions. Daily rates of carbon dioxide and methane NEE ranged from approximately 10 gC-CO2 m-2 d-1 and 0 mgC-CH4 m-2 d-1, during the winter to -15 gC-CO2 m-2 d-1 and 30 mgC-CH4 m-2 d-1, in the summer growing season. A comparison between similar measurements made from freshwater wetlands in the Sacramento-San Joaquin Delta found that the daily rates of carbon dioxide NEE were similar, but daily rates of methane NEE were just a small fraction (0-15%). Our research also shows that the daily fluxes of carbon dioxide and methane at the brackish marsh were highly variable and may be influenced by the tidal exchanges of seawater. Furthermore, the observed decline in methane production from summer to fall may have resulted from a rise in salinity and/or a seasonal decline in water and air temperatures. Our research goals are

  2. Intercropping of reed canary grass, phalaris arundinacea l., with legumes can cut costs for n-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Palmborg, Cecilia; Lindvall, Eva (Swedish Univ. of Agricultural Sciences, Dept. of Agricultural Research for Northern Sweden, Umeaa (Sweden)), e-mail: eva.lindvall@njv.slu.se

    2010-07-15

    In a field experiment close to Oestersund in mid Sweden reed canary grass was intercropped with barley, Alsike clover, Trifolium hybridum L., red clover, T. pratense L., goats rue, Galega orientalis L. or a combination of red clover and goats rue. There were also three fertilization treatments: A: Recommended amounts of N, P and K. B: Recommended amounts of P and K and half amount of N. C: Sewage sludge application before sowing (establishment year) and recommended amounts of P and K and half amount of N. The biomass was lower where reed canary grass had been undersown in barley, and higher with full N-fertilization than with half N-fertilization. However there were no significant differences between legume intercrops with half N-fertilization and pure reed canary grass with full Nfertilization. Alsike clover was the most productive legume, followed by red clover. The amount of nitrogen fixed by the legumes was less with full N-fertilization (29 kg/ha as a mean) than with half N-fertilization (38 kg/ha). Intercropping with legumes could substitute half of the N in fertilization but similar experiments in other parts of Sweden has shown that there is a higher risk of weed problems

  3. Reduction of the suction losses through reed valves in hermetic reciprocating compressors using a magnet coil

    Science.gov (United States)

    Hopfgartner, J.; Posch, S.; Zuber, B.; Almbauer, R.; Krischan, K.; Stangl, S.

    2017-08-01

    Reed valves are widely used in hermetic reciprocating compressors and are responsible for a large part of the thermodynamic losses. Especially, the suction valve, which is opened nearly during the whole suction stroke, has a big potential for improvement. Usually, suction valves are opened only by vacuum created by the moving piston and should be closed before the compression stroke starts to avoid a reversed mass-flow through the valve. Therefore, the valves are prestressed, which results on the other hand in a higher flow resistance. In this work, a suction valve is investigated, which is not closed by the preload of the valve but by an electromagnetic coil located in the suction muffler neck. Shortly before the piston reaches its bottom dead centre, voltage is applied to the coil and a magnetic force is generated which pulls the valve shut. Thereby, the flow resistance through the valve can be reduced by changing the preload on the reed valve because it is no longer needed to close the valve. The investigation of this adapted valve and the electromagnetic coil is firstly done by numerical simulations including fluid structure interactions of the reed valves of a reciprocating compressor and secondly by experiments made on a calorimeter test bench.

  4. Traits of estuarine marsh plants affect wave dissipation

    Science.gov (United States)

    Schulte Ostermann, Tilla; Heuner, Maike; Bouma, Tjeerd

    2017-04-01

    Estuarine vegetation can attenuate hydrodynamic forces such as waves or flow velocities and therefore has an important role in natural tidal bank protection. This function depends on the degree of hydrodynamic forces, bank morphology and on plant traits of the dominant species. The traits vary between the species but also between different marsh sites. Biomass, stem density and biomechanical properties are crucial factors that influence the rate of wave dissipation. These properties illustrate the trade-offs a species is facing in such a dynamic habitat and highlight the ability of dominant species such as Bolboschoenus maritimus and Schoenoplectus tabernaemontani to protect the tidal bank. Along the Elbe estuary, traits of dominant marsh plant species were measured on different sites. The sites vary e.g. in their elevation, salt levels and inundation periods. To analyse the role that plant traits can play in wave dissipation, the structure of the vegetation as well as the composition was recorded. Biomechanical tests helped to understand the species traits regarding stem flexibility and to determine the effects of plant traits on wave dynamics and vice versa. On the conference, we will present how plant traits affect the wave dissipation on tidal marshes and why they vary.

  5. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    Science.gov (United States)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2

  6. Salt marsh stability modelled in relation to sea level rise

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Bartholdy, Anders; Kroon, Aart

    2010-01-01

    thickness. Autocompaction was incorporated in the model, and shown to play a major role for the translation of accretion rates measured as length per unit time to accumulation rates measured as mass per area per unit time. This is important, even for shallow salt marsh deposits for which it is demonstrated...... that mass depth down core can be directly related to the bulk dry density of the surface layer by means of a logarithmic function. The results allow for an evaluation of the use of marker horizons in the topmost layers and show that it is important to know the level of the marker in relation to the salt...... marsh base. In general, deeper located markers will indicate successively smaller accretion rates with the same sediment input. Thus, stability analysis made on the basis of newly established marker horizons will be biased and indicate salt marsh stabilities far above the correct level. Running...

  7. Common Marsh Plants of the United States and Canada. Resource Publication 93.

    Science.gov (United States)

    Hotchkiss, Neil

    Described in this guide are the emergent and semiemergent plants most likely to be found in inland and coastal marshes. The guide is intended for field identification of marsh plants without resources to technical botanical keys. The plants are discussed in seven groups. Within each group the kinds which resemble one another most closely are next…

  8. Supercritical fluid extraction of reed (thypa)

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, M.; Genel, Y. [YYU Educational Faculty, Van (Turkey); Demir, H. [YYU Science and Art Faculty, Van (Turkey)

    2005-04-15

    Reed (typha) mill was converted to liquid products by using organic solvents (methanol, ethanol and acetone) with catalysts (% 10 NaOH and ZnCl{sub 2}) and without catalyst in an autoclave at temperatures of 533, 553, and 573 K. The liquid products were extracted by liquid-liquid extraction [DSA1] (benzene and diethyl ether). The yields from supercritical methanol, ethanol and acetone conversions were 36.2, 24.5, and 55.1%, respectively, at 573 K. In the catalytic runs with methanol and ethanol extracts were 46.3 and 35.5% (for NaOH catalyst) and 51.8 and 38.5% (for ZnCl{sub 2} catalyst) respectively, at 573 K. The yields from supercritical methanol were increased from 38.2 to 52.4% as the temperature was increased from 533 to 573 K in the catalytic run. (Author)

  9. Using aerial photography and image analysis to measure changes in giant reed populations

    Science.gov (United States)

    A study was conducted along the Rio Grande in southwest Texas to evaluate color-infrared aerial photography combined with supervised image analysis to quantify changes in giant reed (Arundo donax L.) populations over a 6-year period. Aerial photographs from 2002 and 2008 of the same seven study site...

  10. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  11. Polychlorinated biphenyls in two salt marsh sediments of the Venice Lagoon.

    Science.gov (United States)

    Mugnai, Cristian; Giuliani, Silvia; Bellucci, Luca G; Carraro, Claudio; Favotto, Maurizio; Frignani, Mauro

    2011-10-01

    Polychlorinated biphenyls (PCBs) were measured in two dated salt marsh cores of the Venice Lagoon to assess their input chronology and to evaluate the importance of atmospheric deposition as a source. Sampling sites were chosen in order to evidence the differences between areas located leeward and windward with respect to inputs originating in both the city of Venice and the industrial area. Concentrations of PCB indicators (0.13-15.6 ng g⁻¹) increased gradually from the 1930s, reached maxima from the 1950s to the late 1970s, and then decreased. PCB loadings to marshes are driven by both the atmospheric deposition and the resuspension of subtidal sediments, this latter being more important for heavier congeners. The downwind marsh recorded higher fluxes (0.06-9.72 ng cm⁻² year⁻¹) than the upwind one (0.01-0.53 ng cm⁻² year⁻¹). Recent fluxes are rather consistent with bulk deposition measurements. A higher contribution of CB-101 and CB-118 was detected in the intermediate layers of the downwind site, suggesting a different PCB source for the corresponding time interval. In the other marsh, PCBs showed a rather constant composition at all levels (mostly CB-153, CB-138 and CB-180), accounting for a regional influence. Deep layers showed an enrichment of higher chlorinated congeners at both sites, whereas recent samples conserve the patterns typical of surficial and subsurficial subtidal sediments. The scientific approach adopted in this research can be considered as a sort of methodological procedure for the determination of fluxes and pathways of PCBs through the study of marsh cores.

  12. Habitat differentiation vs. isolation-by-distance : the genetic population structure of Elymus athericus in European salt marshes

    NARCIS (Netherlands)

    Bockelmann, AC; Reusch, TBH; Bijlsma, R; Bakker, JP

    We investigated genetic differentiation among populations of the clonal grass Elymus athericus, a common salt-marsh species occurring along the Wadden Sea coast of Europe. While E. athericus traditionally occurs in the high salt marsh, it recently also invaded lower parts of the marsh. In one of the

  13. Phenotypic plasticity in response to the social environment: effects of density and sex ratio on mating behaviour following ecotype divergence.

    Directory of Open Access Journals (Sweden)

    Kristina Karlsson

    Full Text Available The ability to express phenotypically plastic responses to environmental cues might be adaptive in changing environments. We studied phenotypic plasticity in mating behaviour as a response to population density and adult sex ratio in a freshwater isopod (Asellus aquaticus. A. aquaticus has recently diverged into two distinct ecotypes, inhabiting different lake habitats (reed Phragmites australis and stonewort Chara tomentosa, respectively. In field surveys, we found that these habitats differ markedly in isopod population densities and adult sex ratios. These spatially and temporally demographic differences are likely to affect mating behaviour. We performed behavioural experiments using animals from both the ancestral ecotype ("reed" isopods and from the novel ecotype ("stonewort" isopods population. We found that neither ecotype adjusted their behaviour in response to population density. However, the reed ecotype had a higher intrinsic mating propensity across densities. In contrast to the effects of density, we found ecotype differences in plasticity in response to sex ratio. The stonewort ecotype show pronounced phenotypic plasticity in mating propensity to adult sex ratio, whereas the reed ecotype showed a more canalised behaviour with respect to this demographic factor. We suggest that the lower overall mating propensity and the phenotypic plasticity in response to sex ratio have evolved in the novel stonewort ecotype following invasion of the novel habitat. Plasticity in mating behaviour may in turn have effects on the direction and intensity of sexual selection in the stonewort habitat, which may fuel further ecotype divergence.

  14. Maine belowground marsh destruction from the European green crab documented by computer-aided tomography

    Science.gov (United States)

    Invasive European green crab (Carcinus maenus) populations have exploded with devastating losses to Maine’s intertidal resources including soft-shell clams, eelgrass beds, and salt marshes. This project quantified the green crab abundance in three different marsh locations ...

  15. Salt-marsh restoration : evaluating the success of de-embankments in north-west Europe

    NARCIS (Netherlands)

    Wolters, M; Garbutt, A; Bakker, JP

    De-embankment of historically reclaimed salt marshes has become a widespread option for re-creating salt marshes, but to date little information exists on the success of de-embankments. One reason is the absence of pre-defined targets, impeding the measurement of success. In this review, success has

  16. The Reed & Kellogg System of Sentence Diagramming and Its Implementation in Higher Education

    Science.gov (United States)

    Coats, Judith Ruth

    2012-01-01

    The purpose of this study was to research whether or not the intervention of the Reed & Kellogg System of sentence diagramming would make a significant difference in the acquisition, retention, and comprehension of the basic grammatical skills, including parts of speech, complements, phrases, clauses, and sentence structures, on the higher…

  17. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    Science.gov (United States)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  18. Vegetation engineers marsh morphology through multiple competing stable states

    Science.gov (United States)

    Marani, Marco; Da Lio, Cristina; D’Alpaos, Andrea

    2013-01-01

    Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological–biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes. PMID:23401529

  19. Seasonal variation in apparent conductivity and soil salinity at two Narragansett Bay salt marshes

    Science.gov (United States)

    Measurement of the apparent conductivity of salt marsh sediments using electromagnetic induction (EMI) is a rapid alternative to traditional methods of salinity determination that can be used to map soil salinity across a marsh surface. Soil salinity measures can provide informat...

  20. Aquatic Insects of New York Salt Marsh Associated with Mosquito Larval Habitat and their Potential Utility as Bioindicators

    OpenAIRE

    Rochlin, Ilia; Dempsey, Mary E.; Iwanejko, Tom; Ninivaggi, Dominick V.

    2011-01-01

    The aquatic insect fauna of salt marshes is poorly characterized, with the possible exception of biting Diptera. Aquatic insects play a vital role in salt marsh ecology, and have great potential importance as biological indicators for assessing marsh health. In addition, they may be impacted by measures to control mosquitoes such as changes to the marsh habitat, altered hydrology, or the application of pesticides. Given these concerns, the goals of this study were to conduct the first taxonom...

  1. Oscillation thresholds for "striking outwards" reeds coupled to a resonator

    OpenAIRE

    Silva , Fabrice; Kergomard , Jean; Vergez , Christophe

    2007-01-01

    International audience; This paper considers a "striking outwards" reed coupled to a resonator. This expression, due to Helmholtz, is not discussed here : it corresponds to the most common model of a lip-type valve, when the valve is assumed to be a one degree of freedom oscillator. The presented work is an extension of the works done by Wilson and Beavers (1974), Tarnopolsky (2000). The range of the playing frequencies is investigated. The first results are analytical : when no losses are pr...

  2. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    Science.gov (United States)

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  3. Community structure and abundance of benthic infaunal invertebrates in Maine fringing marsh ecosystems

    Science.gov (United States)

    Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan

    2015-01-01

    Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared...

  4. Monitoring duration and extent of storm-surge and flooding in Western Coastal Louisiana marshes with Envisat ASAR data

    Science.gov (United States)

    Ramsey, E.; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D.

    2011-01-01

    Inundation maps of coastal marshes in western Louisiana were created with multitemporal Envisat Advanced Synthetic Aperture (ASAR) scenes collected before and during the three months after Hurricane Rita landfall in September 2005. Corroborated by inland water-levels, 7 days after landfall, 48% of coastal estuarine and palustrine marshes remained inundated by storm-surge waters. Forty-five days after landfall, storm-surge inundated 20% of those marshes. The end of the storm-surge flooding was marked by an abrupt decrease in water levels following the passage of a storm front and persistent offshore winds. A complementary dramatic decrease in flood extent was confirmed by an ASAR-derived inundation map. In nonimpounded marshes at elevations ;80 cm during the first month after Rita landfall. After this initial period, drainage from marshes-especially impounded marshes-was hastened by the onset of offshore winds. Following the abrupt drops in inland water levels and flood extent, rainfall events coinciding with increased water levels were recorded as inundation re-expansion. This postsurge flooding decreased until only isolated impounded and palustrine marshes remained inundated. Changing flood extents were correlated to inland water levels and largely occurred within the same marsh regions. Trends related to incremental threshold increases used in the ASAR change-detection analyses seemed related to the preceding hydraulic and hydrologic events, and VV and HH threshold differences supported their relationship to the overall wetland hydraulic condition.

  5. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  6. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    Science.gov (United States)

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    Salt marshes are ecosystems that provide many important ecological functions in the Gulf of Maine. The U.S. Geological Survey investigated salt marshes in and around Acadia National Park from Penobscot Bay to the Schoodic Peninsula to map the potential for landward migration of marshes using a static inundation model of a sea-level rise scenario of 60 centimeters (cm; 2 feet). The resulting inundation contours can be used by resource managers to proactively adapt to sea-level rise by identifying and targeting low-lying coastal areas adjacent to salt marshes for conservation or further investigation, and to identify risks to infrastructure in the coastal zone. For this study, the mapping of static inundation was based on digital elevation models derived from light detection and ranging (LiDAR) topographic data collected in October 2010. Land-surveyed control points were used to evaluate the accuracy of the LiDAR data in the study area, yielding a root mean square error of 11.3 cm. An independent accuracy assessment of the LiDAR data specific to salt-marsh land surfaces indicated a root mean square error of 13.3 cm and 95-percent confidence interval of ± 26.0 cm. LiDAR-derived digital elevation models and digital color aerial photography, taken during low tide conditions in 2008, with a pixel resolution of 0.5 meters, were used to identify the highest elevation of the land surface at each salt marsh in the study area. Inundation contours for 60-cm of sea-level rise were delineated above the highest marsh elevation for each marsh. Confidence interval contours (95-percent,± 26.0 cm) were delineated above and below the 60-cm inundation contours, and artificial structures, such as roads and bridges, that may present barriers to salt-marsh migration were mapped. This study delineated 114 salt marshes totaling 340 hectares (ha), ranging in size from 0.11 ha (marshes less than 0.2 ha were mapped only if they were on Acadia National Park property) to 52 ha, with a median

  7. Final report: Initial ecosystem response of salt marshes to ditch plugging and pool creation: Experiments at Rachel Carson National Wildlife Refuge (Maine)

    Science.gov (United States)

    Adamowicz, S.C.; Roman, C.T.

    2002-01-01

    This study evaluates the response of three salt marshes, associated with the Rachel Carson National Wildlife Refuge (Maine), to the practice of ditch plugging. Drainage ditches, originally dug to drain the marsh for mosquito control or to facilitate salt hay farming, are plugged with marsh peat in an effort to impound water upstream of the plug, raise water table levels in the marsh, and increase surface water habitat. At two study sites, Moody Marsh and Granite Point Road Marsh, ditch plugs were installed in spring 2000. Monitoring of hydrology, vegetation, nekton and bird utilization, and marsh development processes was conducted in 1999, before ditch plugging, and then in 2000 and 2001 (all parameters except nekton), after ditch plugging. Each study site had a control marsh that was monitored simultaneously with the plugged marsh, and thus, we employed a BACI study design (before, after, control, impact). A third site, Marshall Point Road Marsh, was plugged in 1998. Monitoring of the plugged and control sites was conducted in 1999 and 2000, with limited monitoring in 2001, thus there was no ?before? plug monitoring. With ditch plugging, water table levels increased toward the marsh surface and the areal extent of standing water increased. Responding to a wetter substrate, a vegetation change from high marsh species (e.g., Spartina patens) to those more tolerant of flooded conditions (e.g., Spartina alterniflora) was noted at two of the three ditch plugged sites. Initial response of the nekton community (fishes and decapod crustaceans) was evaluated by monitoring utilization of salt marsh pools using a 1m2 enclosure trap. In general, nekton species richness, density, and community structure remained unchanged following ditch plugging at the Moody and Granite Point sites. At Marshall Point, species richness and density (number of individuals per m2) were significantly greater in the experimental plugged marsh than the control marsh (<2% of the control marsh was

  8. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits

  9. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits.

  10. Improving salt marsh digital elevation model accuracy with full-waveform lidar and nonparametric predictive modeling

    Science.gov (United States)

    Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.

    2018-03-01

    Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.

  11. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed

    International Nuclear Information System (INIS)

    Bragato, Claudia; Brix, Hans; Malagoli, Mario

    2006-01-01

    A recently constructed wetland, located in the Venice lagoon watershed, was monitored to investigate growth dynamics, nutrient and heavy metal shoot accumulation of the two dominating macrophytes: Phragmites australis and Bolboschoenus maritimus. Investigations were conducted over a vegetative season at three locations with different distance to the inlet point to assess effects on vegetation. The distance from the inlet did not affect either shoot biomass or nutrients (N, P, K and Na) and heavy metals (Cr, Ni, Cu and Zn) shoot content. With the exception of Na, nutrient and heavy metal concentrations were higher in shoots of P. australis than in B. maritimus. Heavy metal concentration in the incoming water and in the soil was not correlated to the plant content of either species. Shoot heavy metal concentrations were similar to those reported in the current literature, but accumulation generally increased towards the end of the growing season. - Heavy metal shoot concentration in Phragmites australis and Bolboschoenus maritimus increased significantly at the end of the growing season

  12. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all

  13. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure

    Science.gov (United States)

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wa...

  14. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Lewis, C. J. Ewers; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, Carlos M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    ) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor

  15. Salt Marsh--Estuarine Ecosystem: A Liquid Asset

    Science.gov (United States)

    Steever, E. Zell

    1977-01-01

    A comprehensive description of the salt marsh-estuarine ecosystem is provided. Topics discussed include: the general geologic history and formation of this ecosystem; physical and chemical parameters; variety; primary productivity; tidal zones; kind, sizes and abundance of vegetation; and the environmental factors influencing vegetation. (BT)

  16. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI design

    Directory of Open Access Journals (Sweden)

    Dempsey Mary E

    2009-06-01

    Full Text Available Abstract Background In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control, marsh degradation and other environmental considerations compel a different approach. Targeted habitat modification and biological control methods known as Open Marsh Water Management (OMWM had been proposed as a viable alternative to marsh-wide physical alterations and chemical control. However, traditional larval sampling techniques may not adequately assess the impacts of marsh management on mosquito larvae. To assess the effectiveness of integrated OMWM and marsh restoration techniques for mosquito control, we analyzed the results of a 5-year OMWM/marsh restoration project to determine changes in mosquito larval production using GIS and geostatistical methods. Methods The following parameters were evaluated using "Before-After-Control-Impact" (BACI design: frequency and geographic extent of larval production, intensity of larval production, changes in larval habitat, and number of larvicide applications. The analyses were performed using Moran's I, Getis-Ord, and Spatial Scan statistics on aggregated before and after data as well as data collected over time. This allowed comparison of control and treatment areas to identify changes attributable to the OMWM/marsh restoration modifications. Results The frequency of finding mosquito larvae in the treatment areas was reduced by 70% resulting in a loss of spatial larval clusters compared to those found in the control areas. This effect was observed directly following OMWM treatment and remained significant throughout the study period. The greatly reduced frequency of finding larvae in the treatment

  17. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design.

    Science.gov (United States)

    Rochlin, Ilia; Iwanejko, Tom; Dempsey, Mary E; Ninivaggi, Dominick V

    2009-06-23

    In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control, marsh degradation and other environmental considerations compel a different approach. Targeted habitat modification and biological control methods known as Open Marsh Water Management (OMWM) had been proposed as a viable alternative to marsh-wide physical alterations and chemical control. However, traditional larval sampling techniques may not adequately assess the impacts of marsh management on mosquito larvae. To assess the effectiveness of integrated OMWM and marsh restoration techniques for mosquito control, we analyzed the results of a 5-year OMWM/marsh restoration project to determine changes in mosquito larval production using GIS and geostatistical methods. The following parameters were evaluated using "Before-After-Control-Impact" (BACI) design: frequency and geographic extent of larval production, intensity of larval production, changes in larval habitat, and number of larvicide applications. The analyses were performed using Moran's I, Getis-Ord, and Spatial Scan statistics on aggregated before and after data as well as data collected over time. This allowed comparison of control and treatment areas to identify changes attributable to the OMWM/marsh restoration modifications. The frequency of finding mosquito larvae in the treatment areas was reduced by 70% resulting in a loss of spatial larval clusters compared to those found in the control areas. This effect was observed directly following OMWM treatment and remained significant throughout the study period. The greatly reduced frequency of finding larvae in the treatment areas led to a significant decrease (approximately 44%) in

  18. Development of control rod position indicator using seismic-resistance reed switches for integral reactor

    International Nuclear Information System (INIS)

    Yu, Je Yong; Kim, Ji Ho; Huh, Hyung; Choi, Myoung Hwan; Sohn, Dong Seong

    2008-01-01

    The Reed Switch Position Transmitter (RSPT) is used as a position indicator for the control rod in commercial nuclear power plants made by ABB-CE. But this position indicator has some problems when directly adopting it to the integral reactor. The Control Element Drive Mechanism (CEDM) for the integral reactor is designed to raise and lower the control rod in steps of 2mm in order to satisfy the design features of the integral reactor which are the soluble boron free operation and the use of a nuclear heating for the reactor start-up. Therefore the resolution of the position indicator for the integral reactor should be achieved to sense the position of the control rod more precisely than that of the RSPT of the ABB-CE. This paper adopts seismic resistance reed switches to the position indicator in order to reduce the damages or impacts during the handling of the position indicator and earthquake

  19. Sears Point Tidal Marsh Restoration Project: Phase II

    Science.gov (United States)

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase II, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. Avian communities in tidal salt marshes of San Francisco Bay: a review of functional groups by foraging guild and habitat association

    Science.gov (United States)

    Takekawa, John Y.; Woo, Isa; Gardiner, Rachel J.; Casazza, Michael L.; Ackerman, Joshua T.; Nur, Nadav; Liu, Leonard; Spautz, Hildie; Palaima, Arnas

    2011-01-01

    The San Francisco Bay estuary is highly urbanized, but it supports the largest remaining extent of tidal salt marshes on the west coast of North America as well as a diverse native bird community. San Francisco Bay tidal marshes are occupied by more than 113 bird species that represent 31 families, including five subspecies from three families that we denote as tidal-marsh obligates. To better identify the niche of bird species in tidal marshes, we present a review of functional groups based on foraging guilds and habitat associations. Foraging guilds describe the method by which species obtain food from tidal marshes, while habitat associations describe broad areas within the marsh that have similar environmental conditions. For example, the ubiquitous song sparrows (Alameda Melospiza melodia pusillula, Suisun M. m. maxillaris, and San Pablo M. m. samuelis) are surface-feeding generalists that consume prey from vegetation and the ground, and they are found across the entire marsh plain into the upland–marsh transition. In contrast, surface-feeding California black rails (Laterallus jamaicensis coturniculus) are cryptic, and generally restricted in their distribution to the mid- and high-marsh plain. Although in the same family, the endangered California clapper rail (Rallus longirostris obsoletus) has become highly specialized, foraging primarily on benthic fauna within marsh channels when they are exposed at low tide. Shorebirds such as the black-necked stilt (Himantopus mexicanus) typically probe in mud flats to consume macroinvertebrate prey, and are generally restricted to foraging on salt pans within the marsh plain, in ponds, or on mud flats during transitional stages of marsh evolution. The abundance and distribution of birds varies widely with changing water depths and vegetation colonization during different stages of restoration. Thus, tidal-marsh birds represent a rich and diverse community in bay marshes, with niches that may be distinguished by the

  1. Akkumulation von L-Malat und D-Lactat in Arabidopsis thaliana und Laccase/HBT-vermittelte Delignifizierung von Spartina alterniflora und Phragmites australis

    OpenAIRE

    Heil, Alexander

    2016-01-01

    The current work contains two projects "Accumulation of L-malate and D-lactate in Arabidopsis thaliana" (A) "Laccase/HBT mediated delignification of Spartina alterniflora and Phragmites australis" (B). In project A, L-malate and D-lactate accumulated in A. thaliana plants. The accumulation of L-malate is carried out by modification of the plant metabolism with the enzymes PEPC, MDH and the tonoplast dicarboxylate transporter (TDT). Gene pepci2 (Hydrilla verticillata), mdh5 (Zea mays) and tdt ...

  2. Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four

  3. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh

    NARCIS (Netherlands)

    Nolte, S.; Weyde, van der C.; Esselink, P.; Smit, C.; Wieren, van S.E.; Bakker, J.P.

    2017-01-01

    Livestock grazing has been practiced in salt marshes in the Wadden Sea area since 600 B.C. Currently livestock grazing is also applied for conservation management. However, effects of such grazing management on salt marshes are likely to vary depending on the species of livestock and stocking

  4. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh

    NARCIS (Netherlands)

    Nolte, S.; Van der Weyde, C; Esselink, Peter; Smit, C.; Van Wieren, S.E.; Bakker, Jan P.

    Livestock grazing has been practiced in salt marshes in the Wadden Sea area since 600 B.C. Currently livestock grazing is also applied for conservation management. However, effects of such grazing management on salt marshes are likely to vary depending on the species of livestock and stocking

  5. POTENTIAL FOR THE DEVELOPMENT OF MARSH VEGETATION FROM THE SEED BANK AFTER A DRAWDOWN

    NARCIS (Netherlands)

    TERHEERDT, GNJ; DROST, HJ

    1994-01-01

    In the inundated part of the Oostvaardersplassen, a marsh in The Netherlands, most of the emergent vegetation disappeared due to herbivory and erosion, resulting in a shallow lake. The emergent vegetation was successfully re-established by means of a drawdown. A comparable flooded marsh was studied

  6. Sears Point Tidal Marsh Restoration Project: Phase I

    Science.gov (United States)

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase I project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  7. Delineation of marsh types of the Texas coast from Corpus Christi Bay to the Sabine River in 2010

    Science.gov (United States)

    Enwright, Nicholas M.; Hartley, Stephen B.; Brasher, Michael G.; Visser, Jenneke M.; Mitchell, Michael K.; Ballard, Bart M.; Parr, Mark W.; Couvillion, Brady R.; Wilson, Barry C.

    2014-01-01

    Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types for modeling habitat capacities and needs of marsh-reliant wildlife (such as waterfowl and alligator). Detailed information on the extent and distribution of marsh vegetation zones throughout the Texas coast has been historically unavailable. In response, the U.S. Geological Survey, in cooperation and collaboration with the U.S. Fish and Wildlife Service via the Gulf Coast Joint Venture, Texas A&M University-Kingsville, the University of Louisiana-Lafayette, and Ducks Unlimited, Inc., has produced a classification of marsh vegetation types along the middle and upper Texas coast from Corpus Christi Bay to the Sabine River. This study incorporates approximately 1,000 ground reference locations collected via helicopter surveys in coastal marsh areas and about 2,000 supplemental locations from fresh marsh, water, and “other” (that is, nonmarsh) areas. About two-thirds of these data were used for training, and about one-third were used for assessing accuracy. Decision-tree analyses using Rulequest See5 were used to classify emergent marsh vegetation types by using these data, multitemporal satellite-based multispectral imagery from 2009 to 2011, a bare-earth digital elevation model (DEM) based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables believed to be important for delineating the extent and distribution of marsh vegetation communities. Image objects were generated from segmentation of high-resolution airborne imagery acquired in 2010 and were used to refine the classification. The classification is dated 2010 because the year is both the midpoint of the multitemporal satellite-based imagery (2009–11) classified and the date of the high-resolution airborne imagery that was used to develop image objects. Overall accuracy corrected for bias (accuracy

  8. Transport of mecoprop from agricultural soils to an adjacent salt marsh

    International Nuclear Information System (INIS)

    Fletcher, Caroline A.; Scrimshaw, Mark D.; Lester, John N.

    2004-01-01

    Salt marshes are important ecological areas and play a significant role in coastal flood defence schemes. In many areas of the UK they are adjacent to agricultural areas utilised for the growth of cereal crops, for which mecoprop is used as a selective herbicide in the control of broad-leafed weeds. This study measured concentrations of mecoprop in soils, drainage ditch waters and sediments and salt marsh sediments over a period of 138 days following spring application. Soil concentrations of up to 1827 μg/g were recorded after application, which demonstrated a half life for mecoprop of from 9 to 12 days, with first order kinetics. However, a major rainfall event 9 days after application resulted in significant transport of herbicide to the salt marsh via subsurface field drains, drainage ditches and discharge sluice. Mecoprop concentrations of up to 386 μg/l observed in water samples were above UK guidelines

  9. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    Science.gov (United States)

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  10. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    Science.gov (United States)

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations

  11. Where in the Marsh is the Water (and When)?: Measuring and modeling salt marsh hydrology for ecological and biogeochemical applications

    Science.gov (United States)

    Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...

  12. Mangrove expansion into salt marshes alters associated faunal communities

    Science.gov (United States)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  13. Strong tidal modulation of net ecosystem exchange in a salt marsh in North Inlet, South Carolina

    Science.gov (United States)

    O'Halloran, T. L.; Smith, E. M.; Bogoev, I.

    2017-12-01

    Along the southeastern US, intertidal salt marshes represent a critical habitat at the interface of the terrestrial and marine environments and perform a variety of ecological functions and services that make them of great economic importance for coastal communities They provide essential fish and shellfish habitat, with a majority of all commercially- and recreationally important fish species being dependent on intertidal marsh habitat during some portion of their life cycle. The penaeid shrimp industry, South Carolina's most economically important fishery, would cease to exist without the critical nursery function provided by intertidal salt marshes. Smooth cordgrass (Spartina alterniflora) is a keystone species in the high salinity marshes of the southeastern U.S., and its functioning is essential to the health and survival of salt marshes under rising sea levels. To better quantify and facilitate prediction of future salt marsh productivity, in May of 2017, we established a new integrated eddy covariance tower system to measure the net ecosystem exchange of carbon in a salt marsh in coastal South Carolina. The tower site is co-located with long-term, ongoing measurements as part of the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR). Current sampling conducted within the eddy flux footprint includes: annual measures of the vegetation community at the time of peak biomass; bi-monthly measures of sediment elevation at Sediment Elevation Tables (SETs) located at the upper and lower ends of the flux footprint; monthly sediment porewater salinity and nutrient (ammonium, orthophosphate) and sulfide concentrations; and biannual sediment elevation surveys by RTK-GPS. A suite of water quality measurements are made every 15 minutes in the main creek that floods the marsh platform in the flux footprint. Here we present our first six months of observations investigating the abiotic drivers of productivity on daily (intratidal) to monthly timescales

  14. Influence of Black Mangrove Expansion on Salt Marsh Food Web Dynamics in Coastal Louisiana

    Science.gov (United States)

    Powell, C.; Baustian, M. M.; Polito, M. J.

    2017-12-01

    The range of black mangroves (Avicennia germinans) is projected to expand in the northern Gulf of Mexico due to reduced winter freeze events and an increased rate of droughts. The colonization of mangroves in salt marshes alters habitat structure and creates a novel basal carbon source for consumers. This addition may modify trophic linkages and the structure of estuarine food webs. To understand the implications of mangrove expansion on food web dynamics of traditional Spartina alterniflora marshes, two sites in coastal Louisiana with three habitat types, marsh-dominated, mangrove-dominated, and a transition or mix of the two, were studied. Community composition of juvenile nekton was sampled using fyke nets, minnow traps, and suction sampling and analyzed for abundance and diversity. Primary carbon sources (emergent vegetation, phytoplankton, macroalgae, benthic microalgae, submerged aquatic vegetation, and soil organic matter) and consumers ((blue crabs (Callinectes sapidus), brown shrimp (Farfantepenaeus aztecus), grass shrimp (Palaemonetes spp.), Gulf killifish (Fundulus grandis), periwinkle snails (Littoraria irrorata), eastern oysters (Crassostrea virginica), and southern ribbed mussels (Geukensia granosissima)) collected at each habitat type were measured using stable isotope analysis (δ13C, δ15N, δ34S) to identify trophic level, basal carbon sources, and assess how mangrove carbon is incorporated into salt marsh food webs. While data analysis is ongoing, preliminary results indicate that basal carbon sources supporting some marsh consumers (e.g., periwinkle snails) shift between habitat types, while others remain static (e.g., grass shrimp). This research will further develop our understanding of how climate induced shifts in vegetation influences valued marsh-dependent consumers in the estuarine ecosystems of northern Gulf of Mexico.

  15. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay.

    Directory of Open Access Journals (Sweden)

    Diana Stralberg

    Full Text Available Tidal marshes will be threatened by increasing rates of sea-level rise (SLR over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities.Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios.Model results indicated that under a high rate of SLR (1.65 m/century, short-term restoration of diked subtidal baylands to mid marsh elevations (-0.2 m MHHW could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss. Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats.Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas

  16. Monitoring Phragmites australis increases from 1937 to 1976 in the Siyai Lagoon (Natal, South Africa by means of air photo interpretation

    Directory of Open Access Journals (Sweden)

    P. J. Weisser

    1981-11-01

    Full Text Available The colonization o f the Siyai Lagoon on the north coast of Natal by Phragmites australis was studied by means of  air photo interpretation. It was possible to locate and estimate P. australis areas for 1957 (0,74 ha, 1965 (1,65 ha, 1969 (1,93 ha and 1976 (2,94 ha. Phragmites australis first inhabited the shores of the middle section o f the lagoon followed by rapid expansion in the lower section. The upper section was colonized only at its lower end by expansion from the middle section. It is suggested that P. australis was unsuccessful in this section because of competition by the  Hibiscus tiliaceus—Barringtonia racemosa  Lagoon Fringe Forest. This same community is shading out  P. australis in some places. The notable increase in the rate of advance of land and littoral vegetation into the Siyai Lagoon was caused by sugar farming activities leading to erosion and sedimentation in the lagoon. A vegetation age gradient was observed from the upper section to the mouth region. The colonization of most of the Siyai Lagoon except the immediate mouth zone by  P. australis Reedswamp and  Hibiscus tiliaceus—Barringtonia racemosa Lagoon Fringe Forest, can be expected before the turn of the century. Dredging and mechanical control of vegetation will become necessary if major open water spaces are to be maintained.

  17. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    Science.gov (United States)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and

  18. Vegetation - Suisun Marsh, Change 1999 to 2000 [ds163

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  19. Vegetation - Suisun Marsh, Change 1999 to 2003 [ds164

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  20. Marsh soil responses to tidal water nitrogen additions contribute to creek bank fracturing and slumping

    Science.gov (United States)

    Large-scale dissolved nutrient enrichment can cause a reduction in belowground biomass, increased water content of soils, and increased microbial decomposition, which has been linked with slumping of low marsh Spartina vegetation into creeks, and ultimately marsh loss. Our study ...

  1. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-01-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had

  2. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China.

    Science.gov (United States)

    Hu, Minjie; Ren, Hongchang; Ren, Peng; Li, Jiabing; Wilson, Benjamin J; Tong, Chuan

    2017-02-01

    Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide (CO 2 ), methane (CH 4 ) emission, and environmental factors, with respect to estuarine marshes, has not been clarified thoroughly. This study investigated the crucial factors controlling the emission of CO 2 and CH 4 from a freshwater marsh and a brackish marsh located in a subtropical estuary in southeastern China, as well as their magnitude. The duration of the study period was November 2013 to October 2014. Relevant to both the field and incubation experiments, the CO 2 and CH 4 emissions from the two marshes showed pronounced seasonal variations. The CO 2 and CH 4 emissions from both marshes demonstrated significant positive correlations with the air/soil temperature (pemissions between the freshwater and brackish marshes in the subtropical estuary, whereas there was a difference in the CH 4 emissions between the two sites (pemissions from the estuarine freshwater marshes, these factors had little effect on the CO 2 emissions with respect to an increase in salinity of less than 5‰. The findings of this study could have important implications for estimating the global warming contributions of estuarine marshes along differing salinity gradients. Copyright © 2016. Published by Elsevier B.V.

  3. Decoding of interleaved Reed-Solomon codes using improved power decoding

    DEFF Research Database (Denmark)

    Puchinger, Sven; Rosenkilde ne Nielsen, Johan

    2017-01-01

    We propose a new partial decoding algorithm for m-interleaved Reed-Solomon (IRS) codes that can decode, with high probability, a random error of relative weight 1 − Rm/m+1 at all code rates R, in time polynomial in the code length n. For m > 2, this is an asymptotic improvement over the previous...... state-of-the-art for all rates, and the first improvement for R > 1/3 in the last 20 years. The method combines collaborative decoding of IRS codes with power decoding up to the Johnson radius....

  4. Implementasi Dan Evaluasi Kinerja Encoder-Decoder Reed Solomon Pada M-Ary Quadrature Amplitude Modulation (M-Qam Mengunakan Wireless Open-Access Research Platform (WARP

    Directory of Open Access Journals (Sweden)

    Nadya Noor Oktarini

    2015-12-01

    Full Text Available Teknik modulasi multilevel seperti M-ary Quadrature Amplitude Modulation (M-QAM memiliki kelemahan yaitu semakin tinggi level modulasi yang digunakan, maka semakin tinggi pula nilai BER yang dihasilkan. Hal ini menyebabkan kinerja sistem menjadi tidak maksimal karena sistem semakin tidak tahan terhadap noise.  Salah satu teknik error control coding yang digunakan untuk mendeteksi kesalahan sekaligus memperbaiki kesalahan yaitu kode Reed Solomon. Kelebihan dari kode Reed Solomon adalah sifatnya yang non-binary artinya data diolah dalam simbol sehingga kemampuan koreksi data lebih banyak. WARP merupakan salah satu jenis dari teknologi SDR yang bisa diprogram untuk membuat prototype sistem komunikasi nirkabel. Pengimplementasian encoder dan decoder reed solomon dengan menggunakan perangkat WARP bertujuan untuk membandingkan modulasi M-QAM dengan dan tanpa kode reed solomon, kemudian mengetahui kinerja code rate yang berbeda pada modulasi M-QAM, serta mengetahui pengaruh besarnya daya pancar dan jarak pada sistem komunikasi. Hasil implementasi terbaik terdapat pada sistem RS (15,9 yang mana dapat memperbaiki kesalahan di semua level modulasi karena memiliki kemampuan koreksi error ganda (t=3 dengan ukuran k yang sama. Dari hasil implementasi juga didapatkan kesimpulan bahwa nilai BER akan semakin besar terhadap bertambahnya jarak antar node untuk daya pancar tetap, ini menandakan jarak sangat mempengaruhi kualitas kinerja suatu sistem komunikasi.

  5. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary

    Science.gov (United States)

    Zhang, Tianyu; Chen, Huaipu; Cao, Haobing; Ge, Zhenming; Zhang, Liquan

    2017-07-01

    Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh > S. alterniflora marsh > S. mariqueter marsh > bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.

  6. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France)

    Science.gov (United States)

    Laffaille, P.; Feunteun, E.; Lefeuvre, J.-C.

    2000-10-01

    At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt marshes) of Mont Saint-Michel Bay. These and other comparable shallow marine coastal waters, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has been paid to the value of tidal salt marshes for fishes. Between March 1996 and April 1999, 120 tides were sampled in a tidal creek. A total of 31 species were caught. This community was largely dominated by mullets ( Liza ramada represent 87% of the total biomass) and sand gobies ( Pomatoschistus minutus and P. lozanoi represent 82% of the total numbers). These species and also Gasterosteus aculeatus , Syngnathus rostellatus, Dicentrarchus labrax, Mugil spp., Liza aurata and Sprattus sprattus were the most frequent species (>50% of monthly frequency of occurrence). In Europe, salt marshes and their creeks are flooded only during high spring tides. So, fishes only invade this environment during short immersion periods, and no species can be considered as marsh resident. But, the salt marsh was colonized by fish every time the tide reached the creek, and during the short time of flood, dominant fishes fed actively and exploited the high productivity. Nevertheless, this study shows that there is little interannual variation in the fish community and there are three ' seasons ' in the fish fauna of the marsh. Marine straggler and marine estuarine dependent species colonize marshes between spring (recruitment period in the bay) and autumn before returning into deeper adjacent waters. Estuarine fishes are present all year round with maximum abundances in the end of summer. The presence of fishes confirms that this kind of wetland plays an important trophic and nursery role for these species. Differences in densities and stages distribution of these species into Mont Saint-Michel systems (tidal mudflats, estuaries and tidal salt marshes) can reduce the trophic

  7. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  8. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  9. Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding

    Science.gov (United States)

    Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.

    1977-01-01

    An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.

  10. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    Science.gov (United States)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  11. Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions

    Science.gov (United States)

    Yang, P.; Bastviken, D.; Lai, D. Y. F.; Jin, B. S.; Mou, X. J.; Tong, C.; Yao, Y. C.

    2017-12-01

    In this study, we compared the CH4 and N2O fluxes from a tidal brackish Cyperus malaccensis marsh ecosystem and nearby shrimp ponds, converted from C. malaccensis marsh in the last 3-4 years, in the Min River estuary of southeast China over the aquaculture period of the year. Significant differences in CH4 and N2O fluxes were observed in space (between brackish marsh and shrimp ponds) and in time (between sampling occasions that were distributed over the aquaculture period). CH4 fluxes from the shrimp ponds were on an average 10-fold higher than from the brackish marsh. N2O emissions, on the other hand, were lower from the shrimp pond (25% of the emissions from the brackish marsh). Accessory data indicates that these patterns were primarily linked to water level variability and temperature (all fluxes), sediment porewater sulfate concentrations (CH4 flux) and total nitrogen concentrations (N2O flux). Our research demonstrates that the coastal marsh ecosystem converted to aquaculture ponds considerably alter emissions of CH4 and N2O and provides input to the global discussion on how to account for emissions from various types of flooded land in greenhouse gas inventories.

  12. Natural and Anthropogenic Causes of Accelerated Sediment Accumulation Rates in Nehalem Bay Salt Marshes, Oregon

    Science.gov (United States)

    Molino, G. D.; Wheatcroft, R. A.; Peck, E. K.; Brophy, L.

    2016-12-01

    Vertical sediment accretion in estuarine salt marshes occurs as sediments settle out of the water column and onto marsh soils during periods of tidal inundation - thus accretion is influenced by both relative sea level rise (RSLR) and sediment flux to the estuary. Oregon estuaries are understudied compared to their East and Gulf Coast counterparts, but provide a unique opportunity to disentangle these effects. A broader study in three Oregon estuaries (Peck et al., this session) indicates RSLR as the dominant factor controlling sedimentation rates. Working in Nehalem Bay (northern Oregon coast), replicate sediment cores were taken along several transects across an elevation gradient for analysis of sediment and carbon accumulation using CT scans, gamma detection of Pb-210, X-Ray Fluorescence (XRF) and Loss-on-Ignition (LOI). Preliminary results indicate sediment accumulation rates over the past century are higher than rates seen in other comparable Oregon salt marshes; this is consistent with past studies and preliminary analysis of remote sensing data that show significant horizontal expansion of Nehalem marshes. A number of possible causes for the high sediment accumulation rates - hydroclimate of Nehalem River, extensive timber harvesting, forest fires such as the so-called Tillamook Burns, and diking of adjacent marshes - are being explored.

  13. Geochemical distribution of trace metals and organochlorine contaminants of a lake ontario shoreline marsh

    Energy Technology Data Exchange (ETDEWEB)

    Glooschenko, W A; Capocianco, J; Coburn, J; Glooschenko, V

    1981-02-01

    Rattray Marsh, an 8 ha marsh on the Lake Ontario shoreline at Mississauga, Ontario, is an important local habitat for waterfowl and shorebirds during spring and fall migration. A study was conducted to determine the distribution of nutrients (carbon, nitrogen, and phosphorus) and potential trace metal and organochlorine pollutants in the marsh as evidenced by the sedimentary concentrations of these compounds. Generally, copper, zinc, lead, and mercury were higher in concentration in local soils than in Lake Ontario sediments. Metals and organic carbon levels did not correlate, and the metals appeared to be associated with silts and clays. Organochlorine contaminants include p,p1-DDE, p,p1-DDD, p,p1-DDT, alpha-chlordane, PCB, mirex, and HCB.

  14. Coping with shifting nest predation refuges by European reed Warblers Acrocephalus scirpaceus.

    Directory of Open Access Journals (Sweden)

    Lucyna Halupka

    Full Text Available Predation, the most important source of nest mortality in altricial birds, has been a subject of numerous studies during past decades. However, the temporal dynamics between changing predation pressures and parental responses remain poorly understood. We analysed characteristics of 524 nests of European reed warblers monitored during six consecutive breeding seasons in the same area, and found some support for the shifting nest predation refuge hypothesis. Nest site characteristics were correlated with nest fate, but a nest with the same nest-site attributes could be relatively safe in one season and vulnerable to predation in another. Thus nest predation refuges were ephemeral and there was no between-season consistency in nest predation patterns. Reed warblers that lost their first nests in a given season did not disperse farther for the subsequent reproductive attempt, compared to successful individuals, but they introduced more changes to their second nest sites. In subsequent nests, predation risk remained constant for birds that changed nest-site characteristics, but increased for those that did not. At the between-season temporal scale, individual birds did not perform better with age in terms of reducing nest predation risk. We conclude that the experience acquired in previous years may not be useful, given that nest predation refuges are not stable.

  15. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NARCIS (Netherlands)

    van Damme, S.; Dehairs, F.; Tackx, M.; Beauchard, O.; Struyf, E.; Gribsholt, B.; van Cleemput, O.; Meire, P.

    2009-01-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a

  16. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    Science.gov (United States)

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future

  17. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds

    Science.gov (United States)

    Erwin, R. Michael; Cahoon, Donald R.; Prosser, Diann J.; Sanders, Geoffrey; Hensel, Philippe

    2006-01-01

    Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetated Spartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4-4.5 yr record with the long-term (> 50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, the Spartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh

  18. Modeling detection probability to improve marsh bird surveys in southern Canada and the Great Lakes states

    Directory of Open Access Journals (Sweden)

    Douglas C. Tozer

    2016-12-01

    Full Text Available Marsh birds are notoriously elusive, with variation in detection probability across species, regions, seasons, and different times of day and weather. Therefore, it is important to develop regional field survey protocols that maximize detections, but that also produce data for estimating and analytically adjusting for remaining differences in detections. We aimed to improve regional field survey protocols by estimating detection probability of eight elusive marsh bird species throughout two regions that have ongoing marsh bird monitoring programs: the southern Canadian Prairies (Prairie region and the southern portion of the Great Lakes basin and parts of southern Québec (Great Lakes-St. Lawrence region. We accomplished our goal using generalized binomial N-mixture models and data from ~22,300 marsh bird surveys conducted between 2008 and 2014 by Bird Studies Canada's Prairie, Great Lakes, and Québec Marsh Monitoring Programs. Across all species, on average, detection probability was highest in the Great Lakes-St. Lawrence region from the beginning of May until mid-June, and then fell throughout the remainder of the season until the end of June; was lowest in the Prairie region in mid-May and then increased throughout the remainder of the season until the end of June; was highest during darkness compared with light; and did not vary significantly according to temperature (range: 0-30°C, cloud cover (0%-100%, or wind (0-20 kph, or during morning versus evening. We used our results to formulate improved marsh bird survey protocols for each region. Our analysis and recommendations are useful and contribute to conservation of wetland birds at various scales from local single-species studies to the continental North American Marsh Bird Monitoring Program.

  19. Wind-Driven Sea-Level Variation Influences Dynamics of Salt Marsh Vegation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2011-01-01

    Long-term variation of mean sea level has been considered the primary exogenous factor of vegetation dynamics in salt marshes. In this study, we address the importance of short-term, wind-induced rise of the sea surface in such biogeographic changes. There was an unusual opportunity for examining......, waterlogging of marsh soils, which has retarded ecological succession. To conclude, we stress the need for a multitemporal perspective that recognizes the significance of short-term sea-level fluctuations nested within long-term trends......) continuous sedimentation with spatial variability (2.0–4.0 mm yr-1), (3) increased frequency of over-marsh flooding events, and (4) contemporary dominance of Halimione portulacoides, indicating little progressive succession toward a later phase. Conventionally, recent eustatic sea-level rise was believed...... to drive the increased frequency of flooding and such retarded succession. Skallingen, however, has showed more or less equilibrated yearly rates between sea-level rise and surface accretion. This implies that the long-term, gradual sea-level rise alone might not be enough to explain the increased...

  20. Fault-tolerant conversion between adjacent Reed-Muller quantum codes based on gauge fixing

    Science.gov (United States)

    Quan, Dong-Xiao; Zhu, Li-Li; Pei, Chang-Xing; Sanders, Barry C.

    2018-03-01

    We design forward and backward fault-tolerant conversion circuits, which convert between the Steane code and the 15-qubit Reed-Muller quantum code so as to provide a universal transversal gate set. In our method, only seven out of a total 14 code stabilizers need to be measured, and we further enhance the circuit by simplifying some stabilizers; thus, we need only to measure eight weight-4 stabilizers for one round of forward conversion and seven weight-4 stabilizers for one round of backward conversion. For conversion, we treat random single-qubit errors and their influence on syndromes of gauge operators, and our novel single-step process enables more efficient fault-tolerant conversion between these two codes. We make our method quite general by showing how to convert between any two adjacent Reed-Muller quantum codes \\overline{\\textsf{RM}}(1,m) and \\overline{\\textsf{RM}}≤ft(1,m+1\\right) , for which we need only measure stabilizers whose number scales linearly with m rather than exponentially with m obtained in previous work. We provide the explicit mathematical expression for the necessary stabilizers and the concomitant resources required.