WorldWideScience

Sample records for reductase-activating glycohydrolase drag

  1. Purification of NAD(+) glycohydrolase from human serum.

    Science.gov (United States)

    Coşkun, Ozlem; Nurten, Rüstem

    2013-07-01

    In the present study, NAD(+) glycohydrolase was purified from serum samples collected from healthy individuals using ammonium sulfate fractionation, Affi-Gel blue (Cibacron Blue F3GA) affinity chromatography, Sephadex G-100 column chromatography and isoelectric focusing. The final step was followed by a second Sephadex G-100 column chromatography assay in order to remove the ampholytes from the isoelectric focusing step. In terms of enhancement of specific activity, the NAD(+) glycohydrolase protein was purified ∼480-fold, with a yield of 1% compared with the initial serum fraction. The purified fraction appeared to be homogeneous, with a molecular weight of 39 kDa, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and also corresponded to the soluble (monomeric) form of surface antigen CD38.

  2. Soybean nitrate reductase activity influenced by manganese nutrition

    OpenAIRE

    Damien P., Heenan; Lindsay C., Campbell; Department of Agronomy and Horticultural Science, University of Sydney

    1980-01-01

    Nitrate assimilation by soybeans [Glycine max (L.) Merrill cvv. Lee and Bragg] was investigated in plants grown in solution culture at manganese concentrations of 0, 1.8 and 275 μM and at day-night temperatures of 33-28℃ and 22-17℃. Manganese deficiency occurred in plants of both cultivars grown at 0 μM Mn; under these conditions, leaf nitrate concentration increased in both cultivars and nitrate reductase activity in vivo but not in vitro was reduced. High solution Mn (275 μM) produced sympt...

  3. Distribution of Prx-linked hydroperoxide reductase activity among microorganisms.

    Science.gov (United States)

    Takeda, Kouji; Nishiyama, Yoshitaka; Yoda, Koji; Watanabe, Toshihiro; Nimura-Matsune, Kaori; Mura, Kiyoshi; Tokue, Chiyoko; Katoh, Tetzuya; Kawasaki, Shinji; Niimura, Youichi

    2004-01-01

    Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.

  4. Dynamic Changes of Nitrate Reductase Activity within 24 Hours

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The research aimed to study the circadian rhythm of nitrate re- ductase activity (NRA) in plant. [Method] The wheat plants at heading stage were used as the materials for the measurement of dynamic changes of nitrate reductase activity (NRA) within 24 h under the conditions of constant high temperature. [Resulti The fluctuation of NRA in wheat changed greatly from 20:00 pm to 11:00 am. The enzyme activity remained constant, but at 14:00 the enzyme activity was the high- est, higher than all the other time points except the enzyme activity measured at11:00. The enzyme activity was the lowest of 17:00, which was lower than all the other time points except the enzyme activity measured at 2:00. [Conclusion] There were autonomous rhythm changes of NRA in wheat in a certain degree.

  5. Determination of potential N2O-reductase activity in soil

    NARCIS (Netherlands)

    Qin, S.P.; Yuan, H.J.; Hu, C.S.; Oenema, O.; Zhang, Y.M.; Li, X.X.

    2014-01-01

    Determination of N2O-reductase activity in soil is important for understanding the microbial regulation of nitrous oxide (N2O) concentrations in soil. Unfortunately, there are no easily applicable and accurate methods for determining N2O-reductase activity, which frustrates the understanding of the

  6. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  7. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  8. Acid Glycohydrolases in Rat Spermatocytes, Spermatids and Spermatozoa: Enzyme Activities, Biosynthesis and Immunolocalization

    Directory of Open Access Journals (Sweden)

    Abou-Haila Aida

    2001-01-01

    Full Text Available Mammalian sperm acrosome contains several glycohydrolases thought to aid in the dispersion and digestion of vestments surrounding the egg. In this study, we have used multiple approaches to examine the origin of acrosome-associated glycohdyrdolases. Mixed spermatogenic cells, prepared from rat testis, were separated by unit gravity sedimentation. The purified germ cells (spermatocytes [SP], round spermatids [RS], and elongated/condensed spermatids [E/CS] contained several glycohydrolase activities. Metabolic labeling in the cell culture, immunoprecipitation, and autoradiographic approaches revealed that &bgr;-D-galactosidase was synthesized in SP and RS in 88/90 kDa forms which undergo processing in a cell-specific manner. Immunohistochemical approaches demonstrated that the enzyme was localized in Golgi membranes/vesicles, and lysosome-like structures in SP and RS, and forming/formed acrosome of E/CS.

  9. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  10. Gastronomiske drags

    DEFF Research Database (Denmark)

    Leer, Jonatan

    2013-01-01

    with Jennifer Parson and Clarissa Dickson Wright (1996-1999). I will argue that the two self-declared fat women can be read as “gastronomic drags” by their transgression of a “recognizable” feminine way of “doing food”. The article is theoretically informed by the reflections on drag as subversive practice...... of appearing either too radical or not radical enough. The article concludes with some reflections on the development of the cooking show as a site for gendered negotiation from the 90’s and today....

  11. A Modified Method for Measuring Root Iron Reductase Activity Under Normal Laboratory Conditions

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shao-Jian; HE Yun-Feng; TANG Cai-Xian; Y. MASAOKA

    2005-01-01

    Based on the strong chelating property of bathophenanthroline disulfonic acid (BPDS) with Fe(Ⅱ), root Fe(Ⅲ) chelate reductase activity is usually measured with a spectrophotometer using MES (2-morpholinoethanesulfonic acid) or HEPES (2-(4-(2-Hydroxyethyl)-1-piperazinyl) ethanesulfonic acid) buffer in the dark because of high autoreduction rate of Fe(Ⅲ)in the presence of light. However, the exclusion of light is inconvenient, especially when analyzing a large number of samples. The objective of this study was to develop a new method for determination of root reductase activity under normal laboratory conditions using a suitable buffer composition and Fe(Ⅲ) concentration to eliminate the autoreduction of Fe(Ⅲ). A modified method using a Tris (2-amino-2-hydroxymethyl-1,3-propanediol) buffer at pH 7.5 instead of MES or HEPES buffer and a decreased FeEDTA (Fe ethylene diamine tetraacetic acid) concentration of 50 μmol L-1 was developed. The autoreduction of Fe(Ⅲ) using the Tris buffer was undetectable for temperatures at 4 and 28 ℃ and was also much lower than that using the other buffers even with sunlight during measurement of Fe(Ⅲ) reduction.Furthermore, the differences in Fe(Ⅲ) reductase activity among 5 plant species and 14 red clover cultivars (Trifolium pratense L.) could be easily detected with the modified method. The method developed in this study to measure root Fe chelate reductase activity was not only effective and reliable but also easily managed under normal laboratory light conditions.

  12. Comparative azo reductase activity of red azo dyes through caecal and hepatic microsomal fraction in rats.

    Science.gov (United States)

    Singh, S; Das, M; Khanna, S K

    1997-09-01

    In order to study the rate of formation of toxic aromatic amines, anaerobic reduction of four red azo dyes viz. amaranth, carmoisine, fast Red E and ponceau 4R was investigated by incubating caecal content and hepatic microsomal fraction of rats with 37.5 microM concentration of dyes in sodium phosphate buffer pH 7.4 using NADPH generating system, glucose oxidase system and nitrogen as the gaseous phase. Caecal suspension exhibited higher azo reductase activity than that of hepatic microsomal fraction using any of the 4 azo dyes. Caecal microbes showed maximal azo reductase activity when ponceau 4R was used as a substrate followed by fast Red E and carmoisine, while with amaranth the activity was minimum. Similarly ponceau 4 R exhibited maximum hepatic microsomal azo reductase activity followed by fast Red E and carmoisine whereas, amaranth had minimum activity. Caecal flora possessed almost 17 fold higher degradative capability of ponceau 4 R and fast Red E colourants than the hepatic microsomal fraction. The higher reductive ability through caecal flora for ponceau 4R and fast Red E signifies the formation of more aromatic amines which may be re-absorbed through the intestine to be either eliminated through urine as conjugates or retained in the target tissues to elicit toxic effects.

  13. Variation in Streptococcus pyogenes NAD+ glycohydrolase is associated with tissue tropism.

    Science.gov (United States)

    Riddle, David J; Bessen, Debra E; Caparon, Michael G

    2010-07-01

    Streptococcus pyogenes is an important pathogen that causes a variety of diseases. The most common infections involve the throat (pharyngitis) or skin (impetigo); however, the factors that determine tissue tropism and severity are incompletely understood. The S. pyogenes NAD(+) glycohydrolase (SPN) is a virulence factor that has been implicated in contributing to the pathogenesis of severe infections. However, the role of SPN in determining the bacterium's tissue tropism has not been evaluated. In this report, we examine the sequences of spn and its endogenous inhibitor ifs from a worldwide collection of S. pyogenes strains. Analysis of average pairwise nucleotide diversity, average number of nucleotide differences, and ratio of nonsynonymous to synonymous substitutions revealed significant diversity in spn and ifs. Application of established models of molecular evolution shows that SPN is evolving under positive selection and diverging into NAD(+) glycohydrolase (NADase)-active and -inactive subtypes. Additionally, the NADase-inactive SPN subtypes maintain the characteristics of a functional gene while ifs becomes a pseudogene. Thus, NADase-inactive SPN continues to evolve under functional constraint. Furthermore, NADase activity did not correlate with invasive disease in our collection but was associated with tissue tropism. The ability to cause infection at both the pharynx and the skin ("generalist" strains) is correlated with NADase-active SPN, while the preference for causing infection at either the throat or the skin ("specialist" strains) is associated with NADase-inactive SPN. These findings suggest that SPN has a NADase-independent function and prompt a reevaluation of the role of SPN in streptococcal pathogenesis.

  14. Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn.

    Science.gov (United States)

    Reddy, Krishna N; Bellaloui, Nacer; Zablotowicz, Robert M

    2010-03-24

    When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) during two field seasons in the Mississippi delta region of the southeastern USA. Visual plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition were evaluated. Effects were also evaluated in GR corn and GR corn with stacked glufosinate-resistant gene at the recommended label rate at 3 and 6 WAP. Glyphosate at 105 g ae/ha was applied once at 3 or 6 weeks after planting to non-GR corn. Glyphosate at 840 (lower label limit) or 1260 (upper label limit) g ae/ha was applied twice at 3 and 6 WAP to transgenic corn. Glyphosate caused injury (45-55%) and increased shikimate levels (24-86%) in non-GR compared to nontreated corn. In non-GR corn, glyphosate drift did not affect starch content but increased seed protein 8-21% while reducing leaf nitrogen reductase activity 46-64%, leaf nitrogen 7-16%, grain yield 49-54%, and seed oil 18-23%. In GR and GR stacked with glufosinate-resistant corn, glyphosate applied at label rates did not affect corn yield, leaf and seed nitrogen, or seed composition (protein, oil, and starch content). Yet, nitrate reductase activity was reduced 5-19% with glyphosate at 840 + 840 g/ha rate and 8-42% with glyphosate at 1260 + 1260 g/ha rate in both GR and GR stacked corn. These results demonstrate the potential for severe yield loss in non-GR corn exposed to glyphosate drift.

  15. Cadmium and vanadate oligomers effects on methaemoglobin reductase activity from Lusitanian toadfish: in vivo and in vitro studies.

    Science.gov (United States)

    Soares, S S; Aureliano, M; Joaquim, N; Coucelo, J M

    2003-03-01

    Cadmium and two vanadate solutions as 'metavanadate' (containing ortho and metavanadate species) and 'decavanadate' (containing decameric species) (5 mM) were injected intraperitoneously in Halobatrachus didactylus (Lusitanian toadfish), in order to evaluate the effects of cadmium and oligomeric vanadate species on methaemoglobin reductase activity from fish red blood cells. Following short-term exposure (1 and 7 days), different changes were observed on enzyme activity. After 7 days of exposure, 'metavanadate' increased methaemoglobin reductase activity by 67% (P < 0.05), whereas, minor effects were observed on enzymatic activity upon cadmium and 'decavanadate' administration. However, in vitro studies indicate that decameric vanadate, in concentrations as low as 50 microM, besides strongly inhibiting methaemoglobin reductase activity, promotes haemoglobin oxidation to methaemoglobin. Although decameric vanadate species showed to be unstable in the different media used in this work, the rate of decameric vanadate deoligomerization is in general slow enough, making it possible to study its effects. It is concluded that the increase in H. didactylus methaemoglobin reductase activity is more pronounced upon exposition to 'metavanadate' than to cadmium and decameric species. Moreover, only decameric vanadate species promoted haemoglobin oxidation, suggesting that vanadate speciation is important to evaluate in vivo and in vitro effects on methaemoglobin reductase activity.

  16. Response to arsenate treatment in Schizosaccharomyces pombe and the role of its arsenate reductase activity.

    Directory of Open Access Journals (Sweden)

    Alejandro Salgado

    Full Text Available Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V to As (III. Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.

  17. Circadian variation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in swine liver and ileum.

    Science.gov (United States)

    Rogers, D H; Kim, D N; Lee, K T; Reiner, J M; Thomas, W A

    1981-07-01

    The temporal variation of HMG-CoA reductase activity in the liver and intestine of swine was investigated. The thin-layer chromatographic method widely used in the assay of the reductase was successfully applied to the porcine enzymes. Parallel circadian rhythms were demonstrated in both hepatic and ileal reductases from mash-fed animals. Peak activity occurred approximately 6 hr after feeding, 2.7-fold over the basal level in the liver, and 1.6-fold in the ileum. A milk-cholesterol diet caused a marked depression of both rhythms (90% in liver, 50% in ileum); however, the hourly variation in activity persisted in both organs. Cholestyramine was found to elevate hepatic activity (2.7-fold throughout the rhythm) without affecting that of the intestine. Clofibrate had no effect on either enzyme at any time during the cycle despite a 34% reduction in serum cholesterol concentrations.

  18. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    Science.gov (United States)

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  19. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  20. Impacts of Elevated CO2 Concentration on Biochemical Composition,Carbonic Anhydrase, and Nitrate Reductase Activity of Freshwater Green Algae

    Institute of Scientific and Technical Information of China (English)

    Jian-Rong XIA; Kun-Shan GAO

    2005-01-01

    To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations,Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2concentrations within the range 3-186 μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.

  1. [Kinetic characteristics of microsomal NAD-glycohydrolase natural and solubilized with a non-ionic surface-active substance].

    Science.gov (United States)

    Sestini, S; Cinci, G; Ricci, C

    1982-04-30

    Microsomal rat spleen NAD-glycohydrolase was solubilized by Nonidet P40. The solubilized enzyme shows Nicotinamide inhibition and pH dependence at the same extent as unsolubilized microsomal one. It differs from the latter in having a higher affinity for NAD and NADP, and in showing two peaks, instead of one, on electrofocusing: the former with a pH 5 pI without any activity, the latter with a pH 4, 1 pI with a high NAD-ase activity.

  2. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity.

    Science.gov (United States)

    Tian, Qiuying; Zhang, Xinxin; Yang, An; Wang, Tianzuo; Zhang, Wen-Hao

    2016-05-01

    Iron deficiency is one of the major limiting factors affecting quality and production of crops in calcareous soils. Numerous signaling molecules and transcription factors have been demonstrated to play a regulatory role in adaptation of plants to iron deficiency. However, the mechanisms underlying the iron deficiency-induced physiological processes remain to be fully dissected. Here, we demonstrated that the protein kinase CIPK23 was involved in iron acquisition. Lesion of CIPK23 rendered Arabidopsis mutants hypersensitive to iron deficiency, as evidenced by stronger chlorosis in young leaves and lower iron concentration than wild-type plants under iron-deficient conditions by down-regulating ferric chelate reductase activity. We found that iron deficiency evoked an increase in cytosolic Ca(2+) concentration and the elevated Ca(2+) would bind to CBL1/CBL9, leading to activation of CIPK23. These novel findings highlight the involvement of calcium-dependent CBL-CIPK23 complexes in the regulation of iron acquisition. Moreover, mutation of CIPK23 led to changes in contents of mineral elements, suggesting that CBL-CIPK23 complexes could be as "nutritional sensors" to sense and regulate the mineral homeostasis in Arabisopsis.

  3. Nitrate reductase activity and its diurnal variation rhythm for Camptotheca acuminata seedlings

    Institute of Scientific and Technical Information of China (English)

    SUNShi-qin; YANXiu-feng

    2004-01-01

    Nitrate reductase activity (NRA) in different plant organs and leaves in different positions of Camptotheca acuminata seedlings was determined by an In vivo assay, the diurnal variation rhythm of NRA in leaves of different positions was observed,and the correlations between leaf NRA, leaf area and lamina mass per unit area (LMA) were also examined. The results showed that NRA in the leaf was significantly highest, compared with that in other organs such as roots, stems and leaves. In this experiment, the 10 leaves were selected from the apex to the base of the seedlings in order. The different NRA occurred obviously in leaves of different positions of C. acuminata seedlings from the apex to the base, and NRA was higher in the 4th-6th leaves.The diurnal change rhythm of leaf NRA showed a one peak curve, and maximum NRA value appeared at about midday (at 12:30 or so). No obvious correlations between NRA and leaf area or lamina mass per unit area were observed. This study offered scientific foundation for the further research on nitrogen metabolism of C. acuminata.

  4. Drag on Sessile Drops

    Science.gov (United States)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  5. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Magini, Alessandro [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Polchi, Alice; Urbanelli, Lorena [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Cesselli, Daniela; Beltrami, Antonio [Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Tancini, Brunella [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Emiliani, Carla, E-mail: carla.emiliani@unipg.it [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy)

    2013-10-18

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane.

  6. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities

    DEFF Research Database (Denmark)

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne

    2008-01-01

    Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour...... nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation...... by autofluorescence and hexanal content, respectively. No significant direct effect of the Staphylococcus addition was observed, however, there was a clear correspondence between high initial amount of MbFeIINO in the different sausages and the colour stability during storage. Autofluorescence data correlated well...

  7. Potentiation of the reductase activity of protein disulphide isomerase (PDI) by 19-nortestosterone, bacitracin, fluoxetine, and ammonium sulphate.

    Science.gov (United States)

    Hassan, Maya Haj; Alvarez, Eva; Cahoreau, Claire; Klett, Danièle; Lecompte, François; Combarnous, Yves

    2011-10-01

    Protein disulphide isomerase (PDI) in the endoplasmic reticulum catalyzes the rearrangement of disulphide bridges during folding of secreted proteins. It binds various molecules that inhibit its activity. But here, we looked for molecules that would potentiate its activity. PDI reductase activity was measured in vitro using di-eosin-oxidized glutathione as substrate. Its classical inhibitor bacitracin was found to exert a biphasic effect: stimulatory at low concentrations (∼10(-6) M) and inhibitory only at higher concentrations (∼10(-4)-10(-3) M). The weak oestrogenic molecule bisphenol A was found to exert a weak inhibitory effect on PDI reductase activity relative to the strong oestrogens, ethynylestradiol, and diethylstilbestrol. Like 19-nortestosterone, fluoxetine was found to exert a potentiating effect on PDI reductase activity and their potentiating effects could be reversed by increasing concentrations of oestrogens. In conclusion, this paper provides the first identification of potentiators of PDI activity that are potential pharmaceuticals against pathologies affecting protein folding such as Alzheimer's disease.

  8. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    N. Aliasgharzad N. Aliasgharzad

    2014-01-01

    Full Text Available Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA. In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari were inoculated with these bacterial strains and three ranges of soil water potential (W1: -10 to -20, W2: -40 to -50 and W3: -65 to -75 kPa were applied to the pots. All strains were positive in NRA test and the highest (7.63mg NO2-N.L-1.48h-1 was recorded for AC49-VII and the least (0.23mg NO2-N.L-1.48h-1 was belong to AC51-VI. Leaf and root NRA, root and shoot nitrogen concentrations, and dry weights of root and shoot decreased by increasing water deficit stress. All four bacterial strains caused a significant enhancement in root NRA and in each water deficit level, the higher root NRA was recorded in AC46-I and AC49-VII inoculated plants. The highest leaf NRA was achieved by AC49-VII. The mean increment of root NRA by bacterial strains was 171% compared to the non-bacterial plants. Moreover, at the highest level of water deficit stress, the highest dry weight and nitrogen concentration in root and shoot were obtained by AC46-I and AC49-VII treatments.

  9. Nitrate reductase activity in cabbage (Brassica oleracae var. capitata seedlings affected by the different nitrogen fertilizer forms

    Directory of Open Access Journals (Sweden)

    Metin Turan

    2013-12-01

    Full Text Available The effect of different nitrogen fertilizer (potassium nitrate, ammonium nitrate, ammonium sulphate, urea and farmyard manure on nitrate reductase activity in cabbage (Brassica oleracea var. capitata seedlings were studied. pH of the plant growth niedia was higher in the nitrate fertilizer treatment than the ammonium and other fertilizer forms. NO3--N application increased NRA in plant, but NH4+-N decreased NRA in plant. Harvesting date and different fertilizer doses increased NRA while NH4+-N decreased plant nitrate uptake. There was a significant relationship between NRA and fertilizer types.

  10. IN-VIVO NITRATE REDUCTASE ACTIVITY IN THE MYRICA ESCULENTA BUCH. HAM. D.DON SEEDLINGS UNDER NURSERY CONDITIONS

    Directory of Open Access Journals (Sweden)

    S.P. Chaukiyal

    2015-06-01

    Full Text Available Myrica esculenta locally known as kafal, is a dioecious, moderate sized, evergreen tree species. It is a characteristic associate of Quercus leucotrichophora and Rhododendron species between 1000-2200 m above sea level and valued for its wild edible fruits used in different preparations. An experiment was conducted under pot culture conditions to study the effects of different nitrogen fertilizer doses (i.e. 20; 40; 20 and control without fertilizer on the in-vivo nitrate reductase activity (NRA in different plant parts. Nitrogen doses were applied in two equal split between fifteen days intervals. Monthly nitrate reductase activity was estimated in different plant parts viz., leaf, stem and root for a period of twelve months. It was observed that maximum NRA was recorded in the 80 kg N/ha followed by 40 kg N/ha, 20 kg N/ha and minimum in control treatment in different plant parts as well as in total plant also. On the seasonal NRA a higher NR activity was recorded during rainy followed by summer and lowest in winter season. Seasonal effects were significantly different as compared to seasons x treatments. However, on monthly analysis basis, months and treatment effects in leaf, stem, root and total plant NR activity was significantly different among each other. However, for all the parameters studied months x treatments were found significantly different at 5% level.

  11. Sphere Drag and Heat Transfer.

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  12. ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG.

    Science.gov (United States)

    Huergo, Luciano F; Souza, Emanuel M; Araujo, Mariana S; Pedrosa, Fábio O; Chubatsu, Leda S; Steffens, Maria B R; Merrick, Mike

    2006-01-01

    Nitrogen fixation in some diazotrophic bacteria is regulated by mono-ADP-ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the P(II) proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH-modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane-associated after an ammonium shock, and both this membrane sequestration and ADP-ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP-ribosyl-removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a P(II) family member. They also suggest a model for control of ADP-ribosylation that is likely to be applicable to all diazotrophs that exhibit such post-translational regulation of nitrogenase.

  13. Coulomb drag in quantum circuits

    OpenAIRE

    Levchenko, Alex; Kamenev, Alex

    2008-01-01

    We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit,...

  14. Gravity Tunnel Drag

    CERN Document Server

    Concannon, Thomas

    2016-01-01

    The time it takes to fall down a tunnel through the center of the Earth to the other side takes approximately 42 minutes, but only when given several simplifying assumptions: a uniform density Earth; a gravitational field that varies linearly with radial position; a non-rotating Earth; a tunnel evacuated of air; and zero friction along the sides of the tunnel. Though several papers have singularly relaxed the first three assumptions, in this paper we relax the final two assumptions and analyze the motion of a body experiencing these types of drag forces in the tunnel. Under such drag forces, we calculate the motion of a transport vehicle through a tunnel of the Earth under uniform density, under constant gravitational acceleration, and finally under the more realistic Preliminary Reference Earth Model (PREM) density data. We find the density profile corresponding to a constant gravitational acceleration better models the motion through the tunnel compared to the PREM density profile, and the uniform density m...

  15. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Nakadate, Yusuke [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kodera, Yasuo; Kitamura, Yuka [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tachibana, Taro [Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tamura, Tomohide [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Koizumi, Fumiaki, E-mail: fkoizumi@ncc.go.jp [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  16. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    Science.gov (United States)

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  17. When superfluids are a drag

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David C [Los Alamos National Laboratory

    2008-01-01

    The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.

  18. De novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities.

    Science.gov (United States)

    Yu, Fangting; Penner-Hahn, James E; Pecoraro, Vincent L

    2013-12-04

    Enzymatic reactions involving redox processes are highly sensitive to the local electrostatic environment. Despite considerable effort, the complex interactions among different influential factors in native proteins impede progress toward complete understanding of the structure-function relationship. Of particular interest is the type 2 copper center Cu(His)3, which may act as an electron transfer center in peptidylglycine α-hydroxylating monooxygenase (PHM) or a catalytic center in copper nitrite reductase (CuNiR). A de novo design strategy is used to probe the effect of modifying charged amino acid residues around, but not directly bound to, a Cu(His)3 center embedded in three-stranded coiled coils (TRI-H)3 [TRI-H = Ac-G WKALEEK LKALEEK LKALEEK HKALEEK G-NH2]. Specifically, the peptide TRI-EH (=TRI-HK22E) alters an important lysine to glutamate just above the copper binding center. With a series of TRI-EH peptides mutated below the metal center, we use a variety of spectroscopies (EPR, UV-vis, XAS) to show a direct impact on the protonation equilibria, copper binding affinities, reduction potentials, and nitrite reductase activities of these copper-peptide complexes. The potentials at a specific pH vary by 100 mV, and the nitrite reductase activities range over a factor of 4 in rates. We also observe that the affinities, potentials, and catalytic activities are strongly influenced by the pH conditions (pH 5.8-7.4). In general, Cu(II) affinities for the peptides are diminished at low pH values. The interplay among these factors can lead to a 200 mV shift in reduction potential across these peptides, which is determined by the pH-dependent affinities of copper in both oxidation states. This study illustrates the strength of de novo protein design in elucidating the influence of ionizable residues on a particular redox system, an important step toward understanding the factors that govern the properties of this metalloenzyme with a goal of eventually improving the

  19. The roles of tissue nitrate reductase activity and myoglobin in securing nitric oxide availability in deeply hypoxic crucian carp

    DEFF Research Database (Denmark)

    Hansen, Marie N; Lundberg, Jon O; Filice, Mariacristina;

    2016-01-01

    In mammals, treatment with low doses of nitrite has a cytoprotective effect in ischemia/reperfusion events, as a result of nitric oxide formation and S-nitrosation of proteins. Interestingly, anoxia-tolerant lower vertebrates possess an intrinsic ability to increase intracellular nitrite concentr......In mammals, treatment with low doses of nitrite has a cytoprotective effect in ischemia/reperfusion events, as a result of nitric oxide formation and S-nitrosation of proteins. Interestingly, anoxia-tolerant lower vertebrates possess an intrinsic ability to increase intracellular nitrite...... concentration during anoxia in tissues with high myoglobin and mitochondria content, such as the heart. Here, we tested the hypothesis that red and white skeletal muscles develop different nitrite levels in crucian carp exposed to deep hypoxia and assessed whether this correlates with myoglobin concentration....... We also tested whether liver, muscle and heart tissue possess nitrate reductase activity that supplies nitrite to the tissues during severe hypoxia. Crucian carp exposed to deep hypoxia (1

  20. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L. and association with seed iron accumulation QTL

    Directory of Open Access Journals (Sweden)

    Fernandez Andrea C

    2010-10-01

    Full Text Available Abstract Background Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L. take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 × G19833, to identify quantitative trait loci (QTL for this trait, and to assess possible associations with seed iron levels. Results The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Conclusions Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity

  1. Structures of the human poly (ADP-ribose glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    Directory of Open Access Journals (Sweden)

    Julie A Tucker

    Full Text Available Poly(ADP-ribose glycohydrolase (PARG is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG. Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR, adenosine 5'-diphosphate (hydroxymethylpyrrolidinediol (ADP-HPD and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  2. The Effect of Nitrate Levels and Harvest Times on Fe, Zn, Cu, and K, Concentrations and Nitrate Reductase Activity in Lettuce and Spinach

    Directory of Open Access Journals (Sweden)

    Z. Gheshlaghi

    2015-09-01

    Full Text Available Leafy vegetables are considered as the main sources of nitrate in the human diet. In order to investigate the effect of nitrate levels and harvest times on nitrate accumulation, nitrate reductase activity, concentrations of Fe, Zn, Cu and K in Lettuce and Spinach and their relation to nitrate accumulation in these leafy vegetables, two harvest times (29 and 46 days after transplanting, two vegetable species of lettuce and spinach and two concentrations of nitrate (10 and 20 mM were used in a hydroponics greenhouse experiment with a completely randomized design and 3 replications. Modified Hoagland and Arnon nutrient solutions were used for the experiment. The results indicated that by increasing nitrate concentration of solution, nitrate accumulation in roots and shoots of lettuce and spinach increased significantly (P ≤ 0.05, and the same trend was observed for the nitrate reductase activity in the shoots of the two species. Increasing the nitrate concentrations of solution, reduced the shoot dry weight and the concentration of Fe and Cu in both species, where as it increased the K and Zn concentrations in the shoots of the two species in each both harvest times, the nitrate accumulation increased, but the nitrate reductase activity decreased in the shoots of the two species over the course of the growth. The Concentration of Fe, Cu and K decreased in the shoots of lettuce and the spinach with the time, despite the increase in Zn concentration in the shoots. The results also indicated that increasing nitrate concentrations of solution to the levels greater than the plant capacity for reduction and net uptake of nitrate, leads to the nitrate accumulation in the plants. Nitrate accumulation in plant tissue led to decreases in fresh shoot yield and Fe and Cu concentrations and nitrate reductase activities in both lettuce and spinach.

  3. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis.

    Science.gov (United States)

    Li, Li-Ya; Cai, Qiu-Yi; Yu, Dian-Si; Guo, Chang-Hong

    2011-08-01

    The Arabidopsis gene FRO6(AtFRO6) encodes ferric chelate reductase and highly expressed in green tissues of plants. We have expressed the gene AtFRO6 under the control of a 35S promoter in transgenic tobacco plants. High-level expression of AtFRO6 in transgenic plants was confirmed by northern blot analysis. Ferric reductase activity in leaves of transgenic plants grown under iron-sufficient or iron-deficient conditions is 2.13 and 1.26 fold higher than in control plants respectively. The enhanced ferric reductase activity led to increased concentrations of ferrous iron and chlorophyll, and reduced the iron deficiency chlorosis in the transgenic plants, compared to the control plants. In roots, the concentration of ferrous iron and ferric reductase activity were not significantly different in the transgenic plants compared to the control plants. These results suggest that FRO6 functions as a ferric chelate reductase for iron uptake by leaf cells, and overexpression of AtFRO6 in transgenic plants can reduce iron deficiency chlorosis.

  4. Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components

    Energy Technology Data Exchange (ETDEWEB)

    Destarac, D. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Van der Vooren, J. [Senior research scientist, retired, Hoekse Waard (Netherlands)

    2004-09-01

    Drag/thrust analysis of jet-propelled transonic transport aircraft on the basis of calculated viscous flow is discussed. Unique definitions for viscous drag plus wave drag and for induced drag are established. The concept of additive through flow drag is introduced. Drag/thrust bookkeeping is given attention. All drag components can be calculated in the flow region adjacent to the aircraft, where numerical accuracy is expectingly highest. Uniform handling of complex aircraft configurations is brought within reach. Near-field/far-field drag balances are exact. Computational aspects are discussed, in particular the elimination of spurious drag sources. Numerical examples are given for a wing-body and for a wing-body-pylon-nacelle configuration. In either case, the spurious drag sources are eliminated. Acceptable agreement is obtained for the total drag in the first case, and for the installation drag in the second case. Extension of the analysis presented to propeller-driven transport aircraft is straightforward. (author)

  5. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite

    Directory of Open Access Journals (Sweden)

    Célio Damacena-Angelis

    2017-08-01

    Full Text Available Nitrite and nitrate restore deficient endogenous nitric oxide (NO production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite (15N-nitrite by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS. Nitrate exerted no effect on aortic accumulation of 15N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in

  6. Density functional theory study of model complexes for the revised nitrate reductase active site in Desulfovibrio desulfuricans NapA.

    Science.gov (United States)

    Hofmann, Matthias

    2009-09-01

    [Mo(SSCH3)(S2C2(CH3)2)2](x) complexes with charges x between -3 and +3 were investigated by density functional theory computations as minimal nitrate reductase active-site models. The strongly reduced species (x = -2, -3) exist preferentially as pentacoordinate sulfo complexes separated from a thiolate anion. The oxidized extremes (x > 0) clearly prefer hexacoordinate complexes with an eta(2)-MeSS ligand. Among the neutral and especially for the singly negatively charged species structures with eta(2)-MeSS and eta(1)-MeSS ligands are energetically close to the sulfo methyl sulfide complex without SS bonding. For x = -1 the three isomers lie in a 1.5 kcal mol(-1) energy range. Putative mechanistic pathways for nitrate reduction from the literature were investigated computationally: (1) reduction at a pentacoordinate sulfo complex, (2) reduction at the ligand, and (3) reduction at the molybdenum center with an R-S-S ligand. All three pathways could be traced at least for some overall charges but no definite conclusion can be drawn about the mechanism. Complexes with larger dithiolato ligands were also computed in order to model the tricyclic metallopterin framework more accurately: the first heterocyclus (5,6-dihydro-2H-pyran) stabilizes the nitrate complex and the molybdenum oxo product complex by approximately 10 kcal mol(-1) and also reduces the activation barrier (by approximately 5 kcal mol(-1)). The effect of the second (1,2,3,4-tetrahydropyrazin) and third heterocyclus (2-amino-3H-pyrimidin-4-one) on the relative energies is relatively small. For bigger models derived from an experimental protein structure, nitrate reduction at a persulfo molybdenum(IV) complex fragment (mechanism 3) is clearly favored over the oxidation of a molybdenum-bound sulfur atom (mechanism 2). Mechanism 1 could not be investigated for the big models but seems the least favorable on the basis of the results from smaller models.

  7. Aerodynamic Drag and Gyroscopic Stability

    CERN Document Server

    Courtney, Elya R

    2013-01-01

    This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relati...

  8. Drag Reduction of Bacterial Cellulose Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata

    2011-01-01

    Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.

  9. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  10. High-resolution crystal structure of Streptococcus pyogenes β-NAD{sup +} glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin [Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Hyoun Sook [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Sang Jae [Seoul National University, Seoul 151-742 (Korea, Republic of); Im, Ha Na; Jang, Jun Young [Seoul National University, Seoul 151-747 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-747 (Korea, Republic of)

    2013-11-01

    The crystal structure of the complex between the C-terminal domain of Streptococcus pyogenes β-NAD{sup +} glycohydrolase and an endogenous inhibitor for SPN was determined at 1.70 Å. It reveals that the interface between the two proteins is highly rich in water molecules. One of the virulence factors produced by Streptococcus pyogenes is β-NAD{sup +} glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPN{sub ct}–IFS complex, which consists of the SPN C-terminal domain (SPN{sub ct}; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPN{sub ct} and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.

  11. Analytical calculation of the drag force near drag crisis of a falling sphere

    CERN Document Server

    Assis, Armando V D B; Branco, N S

    2010-01-01

    We obtain analitically the $v^2$ dependence of the drag force on a falling sphere close to the drag crisis, as well as the drag coefficient at the drag crisis, with excellent agreement with experiment. We take into account the effects of viscosity in creating a turbulent boundary layer and perform the calculations using the Navier-Stokes equation.

  12. The Effects of Dose Rhizoctonia Binucleat (BNR and Phosphorus to Nitrate Reductase Activity (NRA and Chlorophyll of Vanilla Seedling (Vanilla planifolia Andrews

    Directory of Open Access Journals (Sweden)

    Haryuni Haryuni

    2016-09-01

    Full Text Available Vanilla (Vanilla planifolia Andrews is one of the important exported commodities in Indonesia. Indonesia is one of top five major vanilla exporters in the world, that produce the high quality of Indonesian vanilla with high vanillin content (2.75%. The aims of this research were to determine the effects of dose binukleat Rhizoctonia (BNR and phosphorus as well as the interaction of the nitrate reductase activity (NRA and chlorophyll of the vanilla seedling (Vanilla planifolia Andrew. Method in this research used completely randomized factorial design, by involving two factors (dose of BNR inoculation and Phosphor. The first factor is without inoculation and inoculation BNR (M0, M1, M2, M3 wich consists of (0,5, 10, 15 g/polybag, the second factor is the dose of phosphorus fertilizer (P0, P1, P2, P3 which consists of (0, 3, 6, 9 g/polibag. The results showed that the inoculation dose of BNR and doses of phosphorus not significant and lower levels of NRA and chlorophyll while the interaction dose of BNR and phosphorus significantly and increase levels of NRA and chlorophyll of vanilla seedling. Nitrate Reductase Activity and chlorophyll has important role in metabolism process as a plant growth indicator.How to CiteHaryuni, H., & Dewi, T. S. K. (2016. The Effects of Dose Rhizoctonia Binucleat (BNR and Phosphorus to Nitrate Reductase Activity (NRA and Chlorophyll of Vanilla Seedling (Vanilla planifolia Andrews. Biosaintifika: Journal of Biology & Biology Education, 8(2, 141-147.

  13. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    , such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  14. Vapor layers reduce drag without the crisis

    Science.gov (United States)

    Vakarelski, Ivan; Berry, Joseph; Chan, Derek; Thoroddsen, Sigurdur

    2016-11-01

    The drag of a solid sphere moving in fluid is known to be only a function of the Reynolds number, Re and diminishes rapidly at the drag crisis around Re 3 ×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect, can occur over a wide range of Re, from as low as 600. The Navier slip model with a viscosity dependent slip length captures the observed drag reduction and wake shape.

  15. Turbulent drag reduction by polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Daniel [Van der Waals-Zeeman Instituut, University of Amsterdam, Valckenierstraat 65 1018, XE Amsterdam (Netherlands); Amarouchene, Yacine [CPMOH, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence cedex (France); Wagner, Christian [Institut fuer Experimentalphysik, Universitaet des Saarlandes, Saarbruecken (Germany); Douady, Stephane [Laboratoire de Physique Statistique de l' ENS, 24 rue Lhomond, 75231 Paris cedex 05 (France); Cadot, Olivier [ENSTA, Chemin de la Huniere, 91761 Palaiseau cedex (France)

    2005-04-13

    The reduction of turbulent energy dissipation by addition of polymers is studied experimentally. We first address the question of where the action of the polymers is taking place. Subsequently, we show that there is a direct correlation of drag reduction with the elongational viscosity of the polymers. For this, the reduction of turbulent energy dissipation by addition of the biopolymer DNA is studied. These results open the way for a direct visualization study of the polymer conformation in a turbulent boundary layer.

  16. Drag Effects in Charm Photoproduction

    CERN Document Server

    Norrbin, E

    1999-01-01

    We have refined a model for charm fragmentation at hadron colliders. This model can also be applied to the photoproduction of charm. We investigate the effect of fragmentation on the distribution of produced charm quarks. The drag effect is seen to produce charm hadrons that are shifted in rapidity in the direction of the beam remnant. We also study the importance of different production mechanisms such as charm in the photon and from parton showers.

  17. Effects of over-expression of the regulatory enzymes DraT and DraG on the ammonium-dependent post-translational regulation of nitrogenase reductase in Azospirillum brasilense.

    Science.gov (United States)

    Huergo, Luciano F; Souza, Emanuel M; Steffens, Maria B R; Yates, M Geoffrey; Pedrosa, Fábio O; Chubatsu, Leda S

    2005-03-01

    Nitrogen fixation in Azospirillum brasilense is regulated at transcriptional and post-translational levels. Post-translational control occurs through the reversible ADP-ribosylation of dinitrogenase reductase (Fe Protein), mediated by the dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase glycohydrolase (DraG). Although the DraT and DraG activities are regulated in vivo, the molecules responsible for such regulation remain unknown. We have constructed broad-host-range plasmids capable of over-expressing, upon IPTG induction, the regulatory enzymes DraT and DraG as six-histidine-N-terminal fused proteins (His). Both DraT-His and DraG-His are functional in vivo. We have analyzed the effects of DraT-His and DraG-His over-expression on the post-translational modification of Fe Protein. The DraT-His over-expression led to Fe Protein modification in the absence of ammonium addition, while cells over-expressing DraG-His showed only partial ADP-ribosylation of Fe Protein by adding ammonium. These results suggest that both DraT-His and DraG-His lose their regulation upon over-expression, possible by titrating out negative regulators.

  18. Salicylic Acid Protects Nitrate Reductase Activity, Growth and Proline in Amaranth and Tomato Plants during Water Deficit

    Directory of Open Access Journals (Sweden)

    C. E. Umebese

    2009-01-01

    Full Text Available Problem statement: Seedlings of Amaranthus hybridus cv. NHAC-3 (large green, amaranth and Lycopersicum esculentum cv. Roma (tomato were subjected to 7 days water stress at Early Vegetative (EV, Late Vegetative (LV, Early Flowering (EF and Late Flowering (LF stages of growth to study the impact on leaf water potential (ψw, Nitrate Reductase Activity (NRA, growth (plant height, shoot and root biomass and proline content of both plants. Approach: Two concentrations of salicylic acid (1 and 3 mM SA were applied to stressed plants to study the level of protection given by SA to the plants. Leaf ψw was significantly reduced (p = 0.05 during stress treatment at nearly all stages of growth in both plants. Leaf ψw was in the range -0.25 to -1.42 (unstressed and -1.45 to -2.02 (stressed in tomato plants while in amaranth it was -0.7 to -1.62 (unstressed and -1.62 to -2.68 (stressed. As 3 mM SA increased leaf ψw to values close to the control (unstressed plants. NRA was significantly (p = 0.05 reduced by stress treatment at the LV stage of amaranth, EF stage of tomato and LF stage of both plants. Results: Thus, the reduction of NRA was more pronounced at the reproductive stage of both plants. As 3 mM SA was effective in maintaining NRA at levels similar to the control in both plants. Stress treatment reduced plant height significantly (p = 0.05 at the vegetative stages of both plants and 3 mM was also effective in keeping plant height similar to the control. Though shoot biomass was affected by water stress, SA treatment was not very effective in preserving the biomass during stress. Root biomass of plants was reduced by stress treatment at the reproductive stage and only tomato plants responded positively to 3 mM SA. Proline content was only slightly increased at all stages of growth in stressed plants but 3 mM SA induced a two-fold increase in proline content at the vegetative stage of tomato (EV and LV and significant increases (p = 0.05 at almost

  19. Relationship of changing delta 4-steroid 5 alpha-reductase activity to (125I)iododeoxyuridine uptake during regeneration of involuted rat prostates

    Energy Technology Data Exchange (ETDEWEB)

    Kitahara, S.; Higashi, Y.; Takeuchi, S.; Oshima, H. (Tokyo Medical and Dental Univ. (Japan))

    1989-04-01

    To elucidate the phenotypic expression of proliferating prostatic cells, rats were castrated, and the regenerating process of involuted ventral prostates during testosterone propionate (TP) administration was investigated by examining morphology, (5-{sup 125}I)iododeoxyuridine ({sup 125}I-UdR) uptake, DNA content, weight, acid phosphatase, and delta 4-steroid 5 alpha-reductase (5 alpha-reductase) activities. Morphologically, TP treatment initially increased the number of epithelial cells lining glandular lobules and subsequently restored the shape of epithelial cells. {sup 125}I-UdR uptake peaked on Day 3 of TP treatment and stayed at higher levels than for uncastrated controls until Day 14 of treatment. Prostatic weight, protein content, acid phosphatase, and DNA content returned to uncastrated control levels by Day 14 of TP treatment. TP administration markedly stimulated prostatic 5 alpha-reductase activity, which peaked on the Day 5 of treatment and decreased to uncastrated control levels by Day 14 of treatment. It is concluded that TP administration to castrated rats initially induced active mitotic division of the remaining stem cells, followed by formation of differentiated functional epithelial cells. Prostatic 5 alpha-reductase was highly active at the initial phase of active mitotic cell division. The major portion of the increased enzyme activity can be regarded as a phenotypic expression of stem or transient cells of prostatic epithelium.

  20. [Nitrogenase, hydrogenase and nitrate reductase activities, oxygen consumption, and ATP content in nodules formed by strains of Rhizobium leguminosarum 128C53 and 300 in symbiosis with pea plants].

    Science.gov (United States)

    Bedmar, E J; Olivares, J

    1986-10-01

    The nitrogenase activity, nitrate reductase activity and oxygen uptake as well as the hydrogen incorporation and ATP content were examined in the root nodules and bacteroids, respectively, formed by Rhizobium leguminosarum strains 128C53 (hydrogenase positive) and 300 (hydrogenase negative) in symbiosis with Pisum sativum plants grown in the presence of 2 mM KNO3. The strain 128C53 showed the greatest values for all parameters analyzed, except for the nitrate reductase activity, which was higher for the strain 300. Similarly, nodule nitrate reductase activity in strain 300 was greater than that in strain 128C53 when plants grew in the absence of combined nitrogen. In general, the highest values were obtained when determinations were made after 7 hours of plant illumination. However, the hydrogenase activity of strain 128C53 and the nitrate reductase activities of both strains increased with the light period, reaching a maximum after 14 hours of illumination. These results suggest that the benefits derived from the superior symbiotic properties and from the presence of hydrogenase activity in strain 128C53 could be counteracted by the higher rates of the nodule nitrate reductase activity in strain 300.

  1. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  2. Transformance: reading the gospel in drag.

    Science.gov (United States)

    McCune, Jeffrey Q

    2004-01-01

    Despite the large body of scholarship on drag and its performance of misogyny, mimicry, and masculinity, little attention has been paid to the role of musical genres in Black drag performance and its reception. This essay explores drag performances of gospel music and its relationship with the spectator at the Biology Bar, a Black gay drag site in Chicago. By examining the shift from the club "space" to the church "place," this research locates several possibilities for queer gospel performances. Through the introduction of a theory of transformance, this essay highlights the contradictions, complications, and complexities of the relationship between the Black church and the Black gay community.

  3. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  4. Extensibility enables locomotion under isotropic drag

    CERN Document Server

    Pak, On Shun

    2011-01-01

    Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number locomotion of slender bodies such as flagella and cilia. Here we show that locomotion under isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of freedom could be useful for some complex swimmer geometries and locomotion in complex fluid environments where drag anisotropy is weak or even absent.

  5. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  6. Improvements of evaporation drag model

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; XU Ji-Jun

    2004-01-01

    A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water.

  7. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    Energy Technology Data Exchange (ETDEWEB)

    Whatcott, Clifford J. [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States); Meyer-Ficca, Mirella L.; Meyer, Ralph G. [Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, NBC Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, PA 19348 (United States); Jacobson, Myron K., E-mail: mjacobson@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States)

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  8. ADP-ribosylhydrolase 3 (ARH3), Not Poly(ADP-ribose) Glycohydrolase (PARG) Isoforms, Is Responsible for Degradation of Mitochondrial Matrix-associated Poly(ADP-ribose)*

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-01-01

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3−/− mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism. PMID:22433848

  9. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-05-11

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism.

  10. The dependence of nitrate reductase activity on the level of soluble sugars in wheat and cucumber roots growing in the presence of simazine, in light or in darkness

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available At concentrations of 25 and 5 µM, simazine inhibited nitrate reductase activity in wheat and cucumber roots, respectively. It also lowered the content of soluble sugars and decreased the activities of NADH malate dehydrogenase and NADP+ glucose-6-phosphate dehydrogenase. The inclusion of 50 mM glucose into the medium partially reversed the inhibitory effect of simazine on the activity of nitrate reductase in cucumber roots and slightly increased the activity of this enzyme in wheat roots These results suggest a complex influence of the herbicide on the activity of nitrate reductase: simazine lowers the level of soluble sugars in roots and decreases the activity of the dehydrogenases supplying the reduced nucleotides indispensable for reduction of nitrates.

  11. Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of dekkera/brettanomyces: application for dekkera/brettanomyces control in red wine making.

    Science.gov (United States)

    Benito, S; Palomero, F; Morata, A; Calderón, F; Suárez-Lepe, J A

    2009-01-01

    The growth of Dekkera/Brettanomyces yeasts during the ageing of red wines-which can seriously reduce the quality of the final product-is difficult to control. The present study examines the hydroxycinnamate decarboxylase/vinylphenol reductase activity of different strains of Dekkera bruxellensis and Dekkera anomala under a range of growth-limiting conditions with the aim of finding solutions to this problem. The yeasts were cultured in in-house growth media containing different quantities of growth inhibitors such as ethanol, SO(2), ascorbic acid, benzoic acid and nicostatin, different sugar contents, and at different pHs and temperatures. The reduction of p-coumaric acid and the formation of 4-ethylphenol were periodically monitored by HPLC-PDA. The results of this study allow the optimization of differential media for detecting/culturing these yeasts, and suggest possible ways of controlling these organisms in wineries.

  12. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A.

    Science.gov (United States)

    Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira

    2016-01-25

    This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury.

  13. Resolution of two native monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina and the sequence of two napA genes

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Philippa J.L. [School of Chemistry, University of Sydney, NSW 2006 (Australia); McKinzie, Audra A. [School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, NSW 2006 (Australia); Codd, Rachel, E-mail: rachel.codd@sydney.edu.au [School of Chemistry, University of Sydney, NSW 2006 (Australia); School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, NSW 2006 (Australia)

    2010-07-16

    Research highlights: {yields} Two monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina. {yields} Sequence of napA from napEDABC-type operon and napA from NapDAGHB-type operon. {yields} Isolation of NAP as NapA or NapAB correlated with NapA P47E amino acid substitution. -- Abstract: The reduction of nitrate to nitrite in the bacterial periplasm occurs in the 90 kDa NapA subunit of the periplasmic nitrate reductase (NAP) system. Most Shewanella genomes contain two nap operons: napEDABC and napDAGHB, which is an unusual feature of this genus. Two native, monomeric, 90 kDa nitrate reductase active proteins were resolved by hydrophobic interaction chromatography from aerobic cultures of Shewanella gelidimarina replete with reduced nitrogen compounds. The 90 kDa protein obtained in higher yield was characterized as NapA by electronic absorption and electron paramagnetic resonance spectroscopies and was identified by LC/MS/MS and MALDI-TOF/TOF MS as NapA from the napEDABC-type operon. The other 90 kDa protein, which was unstable and produced in low yields, was posited as NapA from the napDAGHB-type operon. Two napA genes have been sequenced from the napEDABC-type and napDAGHB-type operons of S. gelidimarina. Native NAP from S. putrefaciens was resolved as one NapA monomer and one NapAB heterodimer. Two amino acid substitutions in NapA correlated with the isolation of NAP as a NapA monomer or a NapAB heterodimer. The resolution of native, redox-active NapA isoforms in Shewanella provides new insight into the respiratory versatility of this genus, which has implications in bioremediation and the assembly of microbial fuel cells.

  14. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Background Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). Methodology/Principal Findings The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001), 54% of Low Density Lipoprotein (LDL)-cholesterol (p<0.001) and 34.5% of triglycerides (p<0.001). Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Conclusions Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent

  15. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (pcholesterol (ptriglycerides (pcholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent and merits further evaluation.

  16. Drag Coefficient of Thin Flexible Cylinder

    Science.gov (United States)

    Subramanian, Chelakara; Gurram, Harika

    2015-11-01

    Measurements of drag coefficients of thin flexible cylindrical wires are described for the Reynolds number range between 250 - 1000. Results indicate that the coefficient values are about 20 to 30 percent lower than the reported laminar flow values for rigid cylinders. Possible fluid dynamics mechanism causing the reduction in drag will be discussed.

  17. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...

  18. Polymer flexibility and turbulent drag reduction

    NARCIS (Netherlands)

    Gillissen, J.J.J.

    2008-01-01

    Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag redu

  19. DRAG ON SUBMICRON NANOPARTICLE AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    F.; Einar; Kruis

    2005-01-01

    A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.

  20. Ultrafast photon drag detector for intersubband spectroscopy

    Science.gov (United States)

    Sigg, Hans; Graf, Stephan; Kwakernaak, Martin H.; Margotte, Bernd; Erni, Daniel; Van Son, Peter; Köhler, Klaus

    1996-03-01

    The photon drag effect of a 2D electron gas is measured using the ps infrared pulses of the wavelength-tunable free electron laser source FELIX. The pulsed photon drag response is found to depend critically on the coupling characteristics of the electrical circuit. We therefore developed an impedance and velocity matched photon drag detector. It consists of a GaAs/AlGaAs multi quantum well sample which forms an integral part of a microstrip line. A Ge-prism enables incoupling at the critical total reflection angle. This novel transmission line integrated photon drag detector (TIP-detector) generates signal transients below 10 ps rise and fall times. Its continuous spectral response through the intersubband resonance is investigated at room temperature and at T=100 K. An analysis of the spectral lineshape of the photon drag current response yields information about the momentum relaxation times of the electrons in the ground and excited subbands.

  1. Turbulent drag in a rotating frame

    CERN Document Server

    Campagne, Antoine; Gallet, Basile; Cortet, Pierre-Philippe; Moisy, Frédéric

    2016-01-01

    What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at constant angular velocity $\\omega$ in a water tank mounted on a platform rotating at a rate $\\Omega$. We report a dramatic reduction in drag as $\\Omega$ increases, down to values as low as $12$\\% of the non-rotating drag. At small Rossby number $Ro = \\omega/\\Omega$, the decrease in drag coefficient $K$ follows the approximate scaling law $K \\sim Ro$, which is predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction rather originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.

  2. Drag Reduction by Microvortexes in Transverse Microgrooves

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2014-07-01

    Full Text Available A transverse microgrooved surface was employed here to reduce the surface drag force by creating a slippage in bottom layer in turbulent boundary layer. A detailed simulation and experimental investigation on drag reduction by transverse microgrooves were given. The computational fluid dynamics simulation, using RNG k-ε turbulent model, showed that the vortexes were formed in the grooves and they were a main reason for the drag reduction. On the upside of the vortex, the revolving direction was consistent with the main flow, which decreased the flow shear stress by declining the velocity gradient. The experiments were carried out in a high-speed water tunnel with flow velocity varying from 17 to 19 m/s. The experimental results showed that the drag reduction was about 13%. Therefore, the computational and experimental results were cross-checked and consistent with each other to prove that the presented approach achieved effective drag reduction underwater.

  3. DIETARY-CHOLESTEROL INDUCED DOWN-REGULATION OF INTESTINAL 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE-ACTIVITY IS DIMINISHED IN RABBITS WITH HYPERRESPONSE OF SERUM-CHOLESTEROL TO DIETARY-CHOLESTEROL

    NARCIS (Netherlands)

    MEIJER, GW; SMIT, MJ; VANDERPALEN, JGP; KUIPERS, F; VONK, RJ; VANZUTPHEN, BFM; BEYNEN, AC

    Key enzymes of cholesterol metabolism were studied in two inbred strains of rabbits with hyper- or hyporesponse of serum cholesterol to dietary cholesterol. Baseline 3-hydroxy-3-methylglutaryl (HMG)CoA reductase activity in liver was similar in hypo- and hyperresponders, but that in intestine was

  4. Giant Frictional Drag in Double Bilayer Graphene Heterostructures

    Science.gov (United States)

    Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel

    2016-07-01

    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.

  5. On the Minimum Induced Drag of Wings

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  6. The role of drag in insect hovering.

    Science.gov (United States)

    Wang, Z Jane

    2004-11-01

    Studies of insect flight have focused on aerodynamic lift, both in quasi-steady and unsteady regimes. This is partly influenced by the choice of hovering motions along a horizontal stroke plane, where aerodynamic drag makes no contribution to the vertical force. In contrast, some of the best hoverers--dragonflies and hoverflies--employ inclined stroke planes, where the drag in the down- and upstrokes does not cancel each other. Here, computation of an idealized dragonfly wing motion shows that a dragonfly uses drag to support about three quarters of its weight. This can explain an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be small. To investigate force generation and energy cost of hovering flight using different combination of lift and drag, I study a family of wing motion parameterized by the inclined angle of the stroke plane. The lift-to-drag ratio is no longer a measure of efficiency, except in the case of horizontal stroke plane. In addition, because the flow is highly stalled, lift and drag are of comparable magnitude, and the aerodynamic efficiency is roughly the same up to an inclined angle about 60 degrees , which curiously agrees with the angle observed in dragonfly flight. Finally, the lessons from this special family of wing motion suggests a strategy for improving efficiency of normal hovering, and a unifying view of different wing motions employed by insects.

  7. Coulomb drag between helical Luttinger liquids

    Science.gov (United States)

    Kainaris, N.; Gornyi, I. V.; Levchenko, A.; Polyakov, D. G.

    2017-01-01

    We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag is particularly interesting because it specifically probes the inelastic interactions that break the conductance quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T ,ρD vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast to Coulomb drag in conventional quantum wires, where ρD diverges at T →0 irrespective of the strength of repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp scattering only available in the presence of a Dirac point in the electron spectrum.

  8. Orographic drag uncertainties impact forecast skill

    Science.gov (United States)

    Sandu, Irina; Zadra, Ayrton; Wedi, Nils; Bacmeister, Julio

    2017-04-01

    Despite their importance for the large-scale circulation, to date the representation of drag processes remains a major source of uncertainty in global models. Among the different drag processes the representation of orographic drag is particularly challenging. This has been recently highlighted by the WMO Working Group on Numerical Experimentation (WGNE) 'Drag project' which demonstrated that the main NWP and climate models differ significantly in representation of the total parameterized surface stress and in the partitioning of surface stress among various physical processes, particularly in regions with orography. Here we discuss how uncertain is the representation of orographic drag in models, and we illustrate how this uncertainty affects the skill of medium range weather forecasts. Namely we show how different is the representation of the resolved orography even in models with similar headline horizontal resolution. We also use the results of the WGNE 'Drag project' to illustrate how much models differ in terms of the total parameterized surface stress and its partition among various processes. Finally, we use the Integrated Forecasting System of ECMWF to demonstrate how much these intermodel differences either in the resolved orography or the representation subgrid drag affect the forecast skill.

  9. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  10. Drag Reduction by Leidenfrost Vapor Layers

    Science.gov (United States)

    Vakarelski, Ivan U.; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2011-05-01

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  11. Frame-Dragging from Charged Rotating Body

    CERN Document Server

    Dubey, Anuj Kumar

    2016-01-01

    In the present paper, we have considered the three parameters: mass, charge and rotation to discuss their combined effect on frame dragging for a charged rotating body. If we consider the ray of light which is emitted radially outward from a rotating body then the frame dragging shows a periodic nature with respect to coordinate $\\phi$ (azimuthal angle). It has been found that the value of frame dragging obtains a maximum at, $ \\phi =\\frac{\\pi}{2}$ and a minimum at $ \\phi =\\frac{3 \\pi}{2}$.

  12. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  13. Drag bias feedback for the analytic drag control entry guidance system. [for the space shuttle orbiter

    Science.gov (United States)

    Kyle, H. C.

    1976-01-01

    The Analytic Drag Control (ADC) entry guidance has been developed and baselined for the space shuttle orbiter entry. A method is presented which corrects the orbiter entry guidance commanded bank angle for biases between navigated drag and guidance computed reference drag. This is accomplished by an integral feedback technique, which uses the drag bias information to adjust the difference between navigated and reference altitude rate used by the ADC guidance. The method improves the capability of the ADC guidance system by compensating for any error source which causes a bias between the navigated drag and reference drag profile. These errors include navigated altitude rate errors, atmosphere dispersions, and roll attitude deadband effects. A discussion of the method and results of digital computer entry simulations is presented.

  14. Bubble Drag Reduction Requires Large Bubbles

    Science.gov (United States)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  15. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  16. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  17. Methods of reducing vehicle aerodynamic drag

    Energy Technology Data Exchange (ETDEWEB)

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  18. Drag sails for space debris mitigation

    Science.gov (United States)

    Visagie, Lourens; Lappas, Vaios; Erb, Sven

    2015-04-01

    The prudence for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Drag augmentation is a potentially passive method for de-orbiting in LEO but its collision risk mitigation efficiency is sometimes underestimated by not taking all the relevant factors into account. This paper shows that using drag augmentation from a deployable drag-sail to de-orbit a satellite in LEO will lead to a reduction in collision risk. In order to support this finding, the models that are needed in order to evaluate the collision risk of a decaying object under drag conditions are presented. A comparison is performed between the simpler Area-Time-Product (ATP) and more precise collision risk analysis, and the effects that are overlooked in the simple ATP calculation are explained.

  19. IMPACT OF SALINITY AND SODICITY ON BIOMASS, TOTAL NITROGEN, NITRATE REDUCTASE ACTIVITY, LEAF AREA, AND CHLOROPHYLL CONTENTS IN MAIZE (ZEA MAYS L.

    Directory of Open Access Journals (Sweden)

    M. GUFRAN KHAN*, SHIMELIS*, G., ALEMU, H.* AND KEBENU, F**

    2014-11-01

    Full Text Available ABSTRACT: Salinity and sodicity are major constraint in increasing crop production at global level. Millions of the hectares of the land are too saline to produce economic yield.  In Ethiopia, 11 million ha of land is salt affected, about half of these soils are saline and remaining half are saline - sodic and sodic soil. As most of the arable land and quality water resources have already been exploited, the use of saline or urban/industrial waste water may be a viable alternative for further agro production. In view of such perspectives, an investigation was conducted to examine the effect of salinity (NaCl and sodicity (Na2CO3 on  biomass, total nitrogen, nitrate reductase activity, leaf area, and chlorophyll contents in Maize (Zea mays L. plants. The appropriate amount of NaCl and Na2CO3  was  dissolved in distilled water for appraisal of artificial  salinity and sodicity levels ( 0 , 4, 8,  and 12  and  mScm-1 in soil medium. Plants were also supplied with potassium (0 and 5mM KNO3 as remedial treatment. Maize plants were analyzed for germination, early growth, biomass, total nitrogen, Nitrate reductase activity, Leaf area, and chlorophyll contents as grown under different ECe levels of salinity and sodicity. The extent of salinity and sodicity effects was compared on the basis of different parameters. It was observed that plants showed substantial reduction in all parameters due to imposition of salinity and sodicity in root medium and it was more so due to sodicity. However, the use of additional potassium brought about an enhancement in these parameters.  It is suggested that plants may be raised in saline soil and saline water however; the extent of success depends upon salinity and sodicity levels, remedial treatments and plant species. The outcome of the present work may contribute towards viable utilization of saline soil and water for enhancing agro production of suitable crops, a desired goal to achieve food security.

  20. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.

    Directory of Open Access Journals (Sweden)

    Ioanna Vallianou

    Full Text Available BACKGROUND: Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO. METHODOLOGY/PRINCIPAL FINDINGS: The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001, 54% of Low Density Lipoprotein (LDL-cholesterol (p<0.001 and 34.5% of triglycerides (p<0.001. Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. CONCLUSIONS: Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid

  1. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  2. Integrated lift/drag controller for aircraft

    Science.gov (United States)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  3. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    Science.gov (United States)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2017-02-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  4. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    Science.gov (United States)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2016-05-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  5. Bioinspired surfaces for turbulent drag reduction.

    Science.gov (United States)

    Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish

    2016-08-06

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  6. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Brix, Hans

    2010-01-01

    The effects of inorganic nitrogen (N) source (NH4+, NO3- or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g-1 d-1), biomass allocatio...... as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands....... and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3- fed plants suggesting a slight advantage of NH4+ nutrition...... had intermediate NRA suggesting that C. indica takes up and assimilate NO3- in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils...

  7. Inhibition of Rat 5α-Reductase Activity and Testosterone-Induced Sebum Synthesis in Hamster Sebocytes by an Extract of Quercus acutissima Cortex

    Directory of Open Access Journals (Sweden)

    Junichi Koseki

    2015-01-01

    Full Text Available Objective. Bokusoku (BK is an extract from the Quercus cortex used in folk medicine for treatment of skin disorders and convergence, and is present in jumihaidokuto, a traditional Japanese medicine that is prescribed for purulent skin diseases like acne vulgaris. The excess of sebum production induced by androgen is involved in the development of acne. Our aim is to examine whether BK and its constituents inhibit testosterone metabolism and testosterone-induced sebum synthesis. Methods. Measurements of 5α-reductase activity and lipogenesis were performed using rat liver microsomes and hamster sebocytes, respectively. Results. BK dose-dependently reduced the conversion of testosterone to a more active androgen, dihydrotestosterone in a 5α-reductase enzymatic reaction. Twenty polyphenols in BK categorized as gallotannin, ellagitannin, and flavonoid were identified by LC-MS/MS. Nine polyphenols with gallate group, tetragalloyl glucose, pentagalloyl glucose, eugeniin, 1-desgalloyl eugeniin, casuarinin, castalagin, stenophyllanin C, (−-epicatechin gallate, and (−-epigallocatechin gallate, inhibited testosterone metabolism. In particular, pentagalloyl glucose showed the strongest activity. BK and pentagalloyl glucose suppressed testosterone-induced lipogenesis, whereas they weakly inhibited the lipogenic action of insulin. Conclusions. BK inhibited androgen-related pathogenesis of acne, testosterone conversion, and sebum synthesis, partially through 5α-reductase inhibition, and has potential to be a useful agent in the therapeutic strategy of acne.

  8. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.

  9. Effects of Iron on Hydrogen-producing Capacity,Hydrogenase and NADH-fd Reductase Activities of a Fermentative Hydrogen-producing Bacterial Strain B49

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangjing(王相晶); Ren Nanqi; Xiang Wensheng

    2004-01-01

    Iron plays an important role in hydrogen production, cell growth, hydrogenase and NADH-fd reductase activities of hydrogen-producing bacterial strain B49 (AF481148 in EMBL). At the end of fermentation from 10 g/L glucose, for the culture containing 10 mg/L FeSO4*7H2O the cell growth in terms of optical density (OD) at 600nm was 1.13, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was 1.55, and the accumulated hydrogen volume was 1816.3 ml H2/L culture; whereas for the culture of 80 mg/L FeSO4*7H2O OD600nm was increased to 1.34, the accumulated hydrogen volume was increased to 2360.5 ml H2/L culture, and the ratio of ethanol amount (mg/L) to acetate amount (mg/L) decreased to 1.31. Moreover, the iron addition to the medium at different fermentation time could affect hydrogen-producing ability. However, the later the addition time of FeSO4*7H2O was postponed, the less the effect on hydrogen evolution was. In the course of fermentation, the specific activities of hydrogenase and NADH-fd reductase of hydrogen-producing bacterial strain B49 decreased with the consumption of iron.

  10. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    Science.gov (United States)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  11. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  12. Solute drag on perfect and extended dislocations

    Science.gov (United States)

    Sills, R. B.; Cai, W.

    2016-04-01

    The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.

  13. Drag Coefficient and Foam in Hurricane Conditions.

    Science.gov (United States)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  14. Fine-tuning of Smad protein function by poly(ADP-ribose polymerases and poly(ADP-ribose glycohydrolase during transforming growth factor β signaling.

    Directory of Open Access Journals (Sweden)

    Markus Dahl

    Full Text Available BACKGROUND: Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose polymerase 1 (PARP-1 negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose glycohydrolase (PARG can remove poly(ADP-ribose chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling. METHODS: A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference. RESULTS: TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7 and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1. CONCLUSION

  15. Lift and Drag Measurements of Superhydrophobic Hydrofoils

    Science.gov (United States)

    Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000hydrofoil is made superhydrophobic. The hydrofoils are coated Teflon that has been hot embossed with a 325grit stainless steel woven mesh to produce a regular pattern of microposts. In addition to fully superhydrophobic hydrofoils, selectively coated symmetrical hydrofoils will also be examined to study the effect that asymmetries in the surface properties can have on lift and drag. Partially funded by NSF CBET-1334962.

  16. Induce Drag Reduction of an Airplane Wing

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available This work describes the aerodynamic characteristics for aircraft wing model with and without slotted winglet. When an aircraft moves forward with a high speed then a small circulatory motion of air is created at the wingtip due to the pressure difference between the upper and lower surface of the wing is called vortices. This circulatory fluid tends to leak from lower to upper surface of wing which causes downward motion is called “downwash” and generates a component of the local lift force in the direction of the free stream called induced drag. Downwash causes reduction of lift and contribute induced drag to the total drag. Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption, larger operational range, greater endurance and higher achievable speeds. An experimental study is conducted to examine the potentiality of slotted winglet for the reduction of induced drag, and for the improvement of lift coefficient without increasing the span of aircraft wing. The model composed of a swept wing built from NACA 0012 airfoil. The test conducted in subsonic wind tunnel of 1m×1m rectangular test section at flow speed 25m/s placing the wing without winglet, wing with winglet at 30° inclination, wing with winglet at 60° inclination, and wing with winglet at 70° inclination at angle of attack ranging from 0 to 16 degree. The test result shows 20- 25% reduction in drag coefficient and 10-20% increase in lift coefficient by using slotted winglet.

  17. Atividade da redutase do nitrato e fluorescência da clorofila a em mamoeiro Nitrate reductase activity and chlorophyll a fluorescence in papaya

    Directory of Open Access Journals (Sweden)

    Renata Venturim Fontes

    2008-03-01

    Full Text Available O objetivo do presente trabalho foi correlacionar a atividade da redutase do nitrato e a eficiência fotoquímica máxima do fotossistema II (FSII, expressa pela razão F V/F M (F V = fluorescência variável e F M = fluorescência máxima, em mamoeiro (Carica papaya L. cv. Tainung 01 e Sunrise Solo 72/12 em condições de campo. O potencial fotoquímico do FSII foi medido in situ em folhas adaptadas ao escuro. Depois, nas mesmas folhas, foi medida a atividade da enzima. Não houve diferença significativa entre a eficiência fotoquímica máxima do FSII entre as cultivares Tainung 01 e Sunrise Solo 72/12, porém a atividade da redutase do nitrato foi notoriamente maior na primeira. A atividade da redutase do nitrato foi altamente correlacionada à eficiência fotoquímica máxima do FS II tanto na cv. Tainung 01 (coeficiente de correlação r= 0,740 e coeficiente de determinação r²= 0,706 quanto na Sunrise Solo 72/12 (coeficiente de correlação r= 0,960 e coeficiente de determinação r²= 0,945. Esses resultados sugerem que há uma correlação entre a fluorescência da clorofila a e a atividade da redutase do nitrato nessas plantas.The objective of the present work was to connect the nitrate reductase activity and the photochemical efficiency of the photosystem II (PSII, measured as F V/F M, in papaya (Carica papaya L. cv. Tainung 01 and Sunrise Solo 72/12 in field conditions. The photochemical potential of PSII was measured in situ on attached leaves that had been dark adapted, prior to the fluorescence measurement. After, in same leaves, the enzyme activity was measured. There was not significant difference among the photochemical efficiency of PSII between cv. Tainung 01 and Sunrise Solo 72/12, even so, the activity of the enzyme was markedly higher in cv. Tainung 01 than in cv. Sunrise Solo 72/12. The nitrate redutase activity was highly correlated with the photochemical efficiency of the PSII in both cv. Tainung 01 (coefficient of

  18. Resolution of two native monomeric 90kDa nitrate reductase active proteins from Shewanella gelidimarina and the sequence of two napA genes.

    Science.gov (United States)

    Simpson, Philippa J L; McKinzie, Audra A; Codd, Rachel

    2010-07-16

    The reduction of nitrate to nitrite in the bacterial periplasm occurs in the 90kDa NapA subunit of the periplasmic nitrate reductase (NAP) system. Most Shewanella genomes contain two nap operons: napEDABC and napDAGHB, which is an unusual feature of this genus. Two native, monomeric, 90kDa nitrate reductase active proteins were resolved by hydrophobic interaction chromatography from aerobic cultures of Shewanella gelidimarina replete with reduced nitrogen compounds. The 90kDa protein obtained in higher yield was characterized as NapA by electronic absorption and electron paramagnetic resonance spectroscopies and was identified by LC/MS/MS and MALDI-TOF/TOF MS as NapA from the napEDABC-type operon. The other 90kDa protein, which was unstable and produced in low yields, was posited as NapA from the napDAGHB-type operon. Two napA genes have been sequenced from the napEDABC-type and napDAGHB-type operons of S. gelidimarina. Native NAP from S. putrefaciens was resolved as one NapA monomer and one NapAB heterodimer. Two amino acid substitutions in NapA correlated with the isolation of NAP as a NapA monomer or a NapAB heterodimer. The resolution of native, redox-active NapA isoforms in Shewanella provides new insight into the respiratory versatility of this genus, which has implications in bioremediation and the assembly of microbial fuel cells.

  19. Balancing acts: drag queens, gender and faith.

    Science.gov (United States)

    Sullivan-Blum, Constance R

    2004-01-01

    While engaged in research on the same-sex marriage debate in mainline denominations, I interviewed 23 LGBT Christians, four of whom were drag queens. While it is not possible to generalize from such a small sample, the drag queens in this study insist on maintaining their identity as Christians despite the hegemonic discourse that renders faith and LGBT identities mutually exclusive. They developed innovative approaches to reconciling their gender and sexual identities with their spirituality. Their innovations are potentially liberating not just for them personally, but for LGBT people generally because they challenge Christianity's rigid dichotomies of gender and sexuality.

  20. New drag laws for flapping flight

    Science.gov (United States)

    Agre, Natalie; Zhang, Jun; Ristroph, Leif

    2014-11-01

    Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.

  1. Judicial civil procedure dragging out in Kosovo

    Directory of Open Access Journals (Sweden)

    Rrustem Qehaja

    2016-03-01

    Full Text Available This article tends to deal with one of the most worrying issues in the judicial system of Kosovo the problem of judicial civil procedure dragging out. The article analyses the reasons of these dragging outs of the judicial civil procedure focusing on the context of one of the basic procedural principles in civil procedure-the principle of economy or efficiency in the courts. Dragging out of civil procedure in Kosovo has put in question not only the basic principles of civil procedure, but it also challenges the general principles related to human rights and freedoms sanctioned not only by the highest legal act of the country, but also with international treaties. The article tends to give a reflection to the most important reasons that effect and influence in these dragging outs of civil procedure, as well as, at the same time aims to give the necessary alternatives to pass through them by identifying dilemmas within the judicial practice. As a result, the motives of this scientific paper are exactly focused at the same time on identifying the dilemmas, as well as presenting ideas, to overstep them, including the judicial practice of the European Court of Human Rights on Article 6 of the European Convention on Human Rights, by which it is given the possibility to offering people efficient and within a reasonable time legal protection of their rights before national courts. For these reasons, the paper elaborates this issue based on both, the legal theory and judicial practice.

  2. ABM Drag_Pass Report Generator

    Science.gov (United States)

    Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.

  3. Turbulent drag reduction in dilute polymer solutions

    Science.gov (United States)

    Sreenivasan, K. R.; White, Christopher M.

    1998-11-01

    It is well known that the addition of small amounts of flexible polymers reduces drag in turbulent pipe flows. However, the underlying physics is still poorly understood. This paper will consider two aspects: The dependence of the onset of drag reduction on polymer concentration, and the so-called maximum drag reduction asymptote. The latter defines the maximum drag reduction possible for any polymer at a given Reynolds number, independent of the polymer concentration and detailed polymeric structure [1]. It is shown tentatively that a modest reworking of de Gennes' theory [2] is compatible with available experimental data. The principal element of the theory is that the polymers do not get stretched fully, but that the partially extended polymers store elastic energy and interfere with cascade mechanisms in turbulence. A conclusive understanding requires experiments in which the polymer properties that go into the theory are directly measured. [1] P.S. Virk, AIChE J., 21, 625 (1975) [2] P.G. de Gennes, Introduction to Polymer Dynamics, University of Cambridge (1990)

  4. Wind speed scaling and the drag coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Wind speed scaling in similarity law in wind-generated waves and the drag coefficient are studied. In analyzing the data in the wind wave channel, it is found that the u. scaling greatly reduces the scatter in the U10 scaling. The u. scaling has much less scatter than the scaling using other wind speeds. The friction velocity seems to play a distinctive role in wave growth. The result is important in the applications of the similarity law and in wave modeling. In theory it gives an insight into the mechanism of wind wave interaction. It is found that wave steepness is important in influencing the drag coefficient. The variability of the coefficients in the currently widely used drag form can be explained by the differences in wave steepness in the observations. A drag coefficient model with wind speed and wave steepness as parameters is proposed. An explanation for Kahma' s result that the u. scaling does not reduce the scatter in the U10 scaling is given.

  5. Drag reduction using slippery liquid infused surfaces

    Science.gov (United States)

    Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang

    2013-11-01

    A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  6. Significance of relative velocity in drag force or drag power estimation for a tethered float

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sastry, J.S.

    There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...

  7. Nacelle drag reduction: An analytically-guided experimental program

    Science.gov (United States)

    Smetana, F. O.

    1975-01-01

    Modifications are proposed to standard estimating procedures, as well as the BODY computer program, which predict that the drag of two nacelles will equal the drag of the fuselage. A preliminary computer analysis that considers increased dimensions for the nacelle forebody so that the noise is relatively less blunt indicates a reduction in form drag much greater than the increase in skin friction drag attributable to increased surface area.

  8. Navier slip model of drag reduction by Leidenfrost vapour layers

    OpenAIRE

    Berry, Joseph D; Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2016-01-01

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapour layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number shows substantial deviation from the characteristic drag crisis behavior at high Reynolds numbers. Results obtained with liqiuds of different viscosities show that onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. The key feature o...

  9. Investigation into the Mechanism of Polymer Thread Drag Reduction

    Science.gov (United States)

    1990-01-01

    drag reducers than polyacrylamides of equal molecular weight. The drag reduction increases as the Re or Cm increases. The concentrations of polymer...wall region, 10 < y’ < 100, for drag reduction to occur. The normalized distance from the wall is defined as y* = yut/v; u, is the friction velocity...AP 30, a polyacrylamide solution, with a 5000 ppm concentration on the centerline of a water flow in a glass tube, they achieved drag reduction up to

  10. 14 CFR 25.697 - Lift and drag devices, controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by an...

  11. 14 CFR 25.699 - Lift and drag device indicator.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In addition...

  12. Innovative Flow Control Concepts for Drag Reduction

    Science.gov (United States)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  13. Research on Drag Torque Prediction Model for the Wet Clutches

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reasonable and it performs well for predicting the drag torque peak.

  14. The other optimal Stokes drag profile

    CERN Document Server

    Montenegro-Johnson, Thomas D

    2014-01-01

    The lowest drag shape of fixed volume in Stokes flow has been known for some 40 years. It is front-back symmetric and similar to an American football with ends tangent to a cone of 60 degrees. The analogous convex axisymmetric shape of fixed surface area, which may be of interest for particle design in chemistry and colloidal science, is characterized in this paper. This "other" optimal shape has a surface vorticity proportional to the mean surface curvature, which is used with a local analysis of the flow near the tip to show that the front and rear ends are tangent to a cone of angle 30.8 degrees. Using the boundary element method, we numerically represent the shape by expanding its tangent angle in terms decaying odd Legendre modes, and show that it has 11.3% lower drag than a sphere of equal surface area, significantly more pronounced than for the fixed-volume optimal.

  15. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  16. Drag Reduction by Polymeric and Nonpolymeric Additives

    Science.gov (United States)

    White, Christopher; Sreenivasan, K. R.

    1997-11-01

    To investigate the ``self-healing'' property of drag reducing surfactant micelles we have conducted a comparative study between high polymers and surfactants in six turbulent pipe flows (Reynolds numbers between 2000 and 90,000) with varying intensities o f secondary flow. Friction factor values are measured in a straight pipe of 185 diameters; three pipes, each turning through four 90 degree elbows, of lengths 1085 diameters, 875 diameters, and 600 diameters; and a twice-turned coiled pipe, radius of curv ature of 24 diameters and length of 290 diameters. All the flows are gravity driven to prevent degradation effects caused by pump impellers. The large stresses set up by the secondary flows degrade the fragile polymers, thus reducing their effectivness as a drag reducer. The ``self-healing'' of the micelles enables the surfactant to maintain its effectivness. We will present the ``self-healing'' characteristics of the surfactant micelles using the polymer data as the datum.

  17. Investigation on Drag Reduction of Trucks

    Institute of Scientific and Technical Information of China (English)

    QI Xiao-ni; LIU Zhen-yan

    2008-01-01

    A study of the mechanism of fences was given to reduce drag by means of theoretical analysis, numerical simulation and experimental research. A 3D mathematical model has been developed based on computational fluid dynamics software Phoenics that was capable of handling steady state, 3D flow to simulate the flow field around the truck. The experiment made in a low speed wind tunnel is used as references for validation. By analyzing the results of calculation and experiment, the flowing mechanism of the flow field around the container truck and the drag-reducing mechanism of #-shaped fences on the truck are unveiled, which provides theoretical guidance to the aerodynamic formation designing and amelioration.

  18. A Note on Disk Drag Dynamics

    CERN Document Server

    Gunther, Neil J

    2012-01-01

    The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis for this relationship is neither well-known nor readily accessible in the literature, we show how these exponents arise from aerodynamic disk drag and discuss their import for green storage capacity planning.

  19. Satellite Formation Control Using Atmospheric Drag

    Science.gov (United States)

    2007-03-01

    all cases tested, and the eccentricity-minimizing control law was able to maintain the position within 4.17 feet. More recently, Wedekind considered...three different formations, in-plane, in-track, and circular, was considered. Wedekind achieved favorable results for these three formations when the...and Kluwer Academic Publishers, 2004. 23. Wedekind , James T. Characterizing and Controlling the Effects of Differential Drag on Satellite Formations

  20. Drag Reduction, from Bending to Pruning

    CERN Document Server

    Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel

    2013-01-01

    Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.

  1. Satellite Attitude Control Using Atmospheric Drag

    Science.gov (United States)

    2007-03-01

    Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In...yaw axes and provide magnetic damping on both the pitch and yaw axes. The satellite resem- bles a shuttlecock used in badminton (see Figure 2.2). The...Control Using Atmospheric Drag Guettler, David B., Captain, USAF Air Force Institute of Technology Graduate School of Engineering and Management (AFIT

  2. Phonon-drag effects on thermoelectric power

    OpenAIRE

    Wu, M. W.; Horing, N. J. M.; Cui, H. L.

    1995-01-01

    We carry out a calculation of the phonon-drag contribution $S_g$ to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at hi...

  3. Stokes’ and Lamb's viscous drag laws

    Science.gov (United States)

    Eames, I.; Klettner, C. A.

    2017-03-01

    Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8-106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem.

  4. Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.

    Science.gov (United States)

    Perchellet, Jean-Pierre H; Perchellet, Elisabeth M; Crow, Kyle R; Buszek, Keith R; Brown, Neil; Ellappan, Sampathkumar; Gao, Ge; Luo, Diheng; Minatoya, Machiko; Lushington, Gerald H

    2009-11-01

    Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive. Although the correlation between the concentration-dependent inhibitions of HMG-CoA reductase activity over 10 min in the cell-free assay and L1210 tumor cell proliferation over 4 days in culture is unclear, some bioactive MRLs elicit interesting combinations of statin-like (IC50: 7.4-8.0 microM) and anti-tumor (IC50: 1.4-2.3 microM) activities. The HMG-CoA reductase-inhibiting activities of pravastatin and an MRL persist in the presence of increasing concentrations of NADPH. But increasing concentrations of HMG-CoA block the HMG-CoA reductase-inhibiting activity of pravastatin without altering that of an MRL, suggesting that MRLs and existing statins may have different mechanisms of enzyme interaction and inhibition. When tested together, suboptimal concentrations of synthetic MRLs and existing statins have additive inhibitory effects on HMG-CoA reductase activity. Preliminary molecular docking studies with MRL-based inhibitors indicate that these ligands fit sterically well into the HMG-CoA reductase statin-binding receptor model and, in contrast to mevastatin, may occupy a narrow channel housing the pyridinium moiety on NADP+.

  5. Space Age Swimsuit Reduces Drag, Breaks Records

    Science.gov (United States)

    2008-01-01

    A space shuttle and a competitive swimmer have a lot more in common than people might realize: Among other forces, both have to contend with the slowing influence of drag. NASA s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and generally on fluid dynamics, especially the forces of pressure and viscous drag, which are the same for bodies moving through air as for bodies moving through water. Viscous drag is the force of friction that slows down a moving object through a substance, like air or water. NASA uses wind tunnels for fluid dynamics research, studying the forces of friction in gasses and liquids. Pressure forces, according to Langley Research Center s Stephen Wilkinson, dictate the optimal shape and performance of an airplane or other aero/hydro-dynamic body. In both high-speed flight and swimming, says Wilkinson, a thin boundary layer of reduced velocity fluid surrounds the moving body; this layer is about 2 centimeters thick for a swimmer.

  6. Modelling LARES temperature distribution and thermal drag

    CERN Document Server

    Nguyen, Phuc H

    2015-01-01

    The LARES satellite, a laser-ranged space experiment to contribute to geophysics observation, and to measure the general relatistic Lense-Thirring effect, has been observed to undergo an anomalous along-track orbital acceleration of -$0.4\\ pm/s^2$ (pm := picometer). This "drag" is not surprising; along track drag has previously been observed with the related LAGEOS satellites (-$3.4\\ pm/s^2$). It is hypothesized that the drag is due to anisotropic thermal radiation from the satellite's exterior. We report the results of numerical computations of the along-track orbital decay of the LARES satellite during the first 105 days after launch. The results depend to a significant degree on the visual and IR absorbance $\\alpha$ and emissivity $\\epsilon$ of the fused silica cube-cornered laser retroreflectors (CCRs). We present results for two values of $\\alpha_{IR}$ = $\\epsilon_{IR}$: 0.82, a standard number for "clean" fused silica; and 0.60, a possible value for silica with slight surface contamination subjected to ...

  7. Picosecond response of a photon drag detector

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, M.F. [Univ. of Essex (United Kingdom)

    1995-12-31

    The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.

  8. Effects of Polymer Parameters on Drag Reduction.

    Science.gov (United States)

    Safieddine, Abbas Mohammad

    The effects of polymer parameters on fluid drag reduction using polyethylene oxide (PEO), polyacrylamide (PAM), guar gum (GG) and hydroxyethyl cellulose (HEC) were investigated. Due to the unavailability of high molecular weight (MW) water-soluble polymers having narrow molecular weight distribution (MWD), an aqueous preparative size exclusion chromatography (SEC) system capable of fractionating over wide MW ranges was constructed. An online low shear viscometer, coupled to the SEC, measured the instantaneous intrinsic viscosity of the eluting polymer solution and, therefore, served as a MW detector since Mark-Houwink "K" and "a" values for all four polymers were known. With the aid of the viscometer, the SEC system was calibrated. The preparative nature of the chromatography system allowed the collection of large volumes of nearly monodisperse fractions (MWD SEC approach allowed drag reduction (DR) experiments using well-characterized, narrowly dispersed polymer solutions under controlled tube flow conditions. Correlations of drag reduction performance with primary polymer parameters (i.e., concentration, intrinsic viscosity ((eta)), volume fraction (c(eta)), number of chain links (N), and combinations thereof) were used to test the validity of several theoretical DR models. Walsh's energy model, as well as the Deborah argument, did not completely account for drag reduction behavior under all experimental conditions. Within each of the flexible or rigid polymer groups, the extensional viscosity model was successful in correlating c(eta) N with DR under all turbulent conditions. However, it failed to account for the differences in chemical structure between the two polymer groups. However, when the cellulosic repeat unit was used instead of the carbon-carbon bond as the chain link for the rigid polymers (GG and HEC), all DR versus c (eta) N curves under all turbulent conditions collapsed into a single function. This has been predicted by the recent "yo-yo" model of

  9. Afterbody Drag. Volume 3. Literature Survey.

    Science.gov (United States)

    1980-06-01

    34 AGARD, Otta- wa, June 1955. 34. Faru, I., "Experimental Determination of Base Pressures at Supersonic Velocities." Bumblebee Report 106, Johns ...Taylor Model Basin Aero Report 857, January 1954. 68. Pietrangeli, G.J., "The Determination of Afterbody Drag at Transonic Speeds." Johns Hopkins...34 NASATND-7095, 1972. Coltrane , L.C., "Investigation of Two Bluff Shapes in Axial Free Flight Over a Mach Number Range from 0.35 to 2.15." NACARM L58A16

  10. Coulombic dragging of molecular assemblies on nanotubes

    Science.gov (United States)

    Kral, Petr; Sint, Kyaw; Wang, Boyang

    2009-03-01

    We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).

  11. Gravitational Capture of Asteroids by Gas Drag

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2009-01-01

    captured by the planet got its velocity reduced and could been trapped as an irregular satellite. It is well known that, depending on the time scale of the gas envelope, an asteroid will spiral and collide with the planet. So, we simulate the passage of the asteroid in the gas envelope with its density decreasing along the time. Using this approach, we found effective captures, and have a better understanding of the whole process. Finally, we conclude that the origin of the irregular satellites cannot be attributed to the gas drag capture mechanism alone.

  12. Drag phenomena from holographic massive gravity

    Science.gov (United States)

    Baggioli, Matteo; Brattan, Daniel K.

    2017-01-01

    We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally, we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.

  13. Drag phenomena from holographic massive gravity

    CERN Document Server

    Baggioli, Matteo

    2015-01-01

    We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.

  14. On Nature of Plasmonic Drag Effect

    CERN Document Server

    Durach, Maxim

    2016-01-01

    Light-matter momentum transfer in plasmonic materials is theoretically discussed in context of the modified plasmonic pressure mechanism, taking into account electron thermalization process. We show that our approach explains the observed in experiments relationship between the photoinduced electromotive force and absorption, emphasizes the quantum nature of plasmon-electron interaction, and allows one to correctly calculate the magnitude of the plasmon drag emf in flat metal films for the first time. We extend our theory on the films with modulated profiles and show that simple relationship between plasmonic energy and momentum transfer holds for the case of laminar electron drift and relatively small amplitudes of height modulation.

  15. Evaluation of nacelle drag using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Luis Gustavo Trapp

    2010-08-01

    Full Text Available Thrust and drag components must be defined and properly accounted in order to estimate aircraft performance, and this hard task is particularty essential for propulsion system where drag components are functions of engine operating conditions. The present work describes a numerical method used to calculate the drag in different nacelles, long and short ducted. Two- and three-dimensional calculations were performed, solving the Reynolds Averaged Navier-Stokes (RANS equations with a commercial Computational Fluid Dynamics (CFD code. It is then possible to obtain four drag components: wave, induced, viscous and spurious drag using a far-field formulation. An expression in terms of entropy variations was shown and drag for different nacelle geometries was estimated.

  16. Rotating systems, universal features in dragging and anti-dragging effects, and bounds onto angular momentum

    CERN Document Server

    Karkowski, Janusz; Malec, Edward; Pirog, Michal; Xie, Naqing

    2016-01-01

    We consider stationary, axially symmetric toroids rotating around spinless black holes, assuming the general-relativistic Keplerian rotation law, in the first post-Newtonian approximation. Numerical investigation shows that the angular momentum accumulates almost exclusively within toroids. It appears that various types of dragging (anti-dragging) effects are positively correlated with the ratio $M_\\mathrm{D}/m$ ($M_\\mathrm{D}$ is the mass of a toroid and $m$ is the mass of the black hole) - moreover, their maxima are proportional to $M_\\mathrm{D}/m$. The horizontal sizes of investigated toroids range from c. 50 to c. 450 of Schwarzschild radii $R_\\mathrm{S}$ of the central black hole; their mass $M_\\mathrm{D} \\in (10^{-4}m, 40m)$ and the radial size of the system is c. 500 $R_\\mathrm{S}$. We found that the relative strength of various dragging (anti-dragging) effects does not change with the mass ratio, but it depends on the size of toroids. Several isoperimetric inequalities involving angular momentum are s...

  17. Drag prediction method of powered-on civil aircraft based on thrust drag bookkeeping

    Directory of Open Access Journals (Sweden)

    Zhang Yufei

    2015-08-01

    Full Text Available A drag prediction method based on thrust drag bookkeeping (TDB is introduced for civil jet propulsion/airframe integration performance analysis. The method is derived from the control volume theory of a powered-on nacelle. Key problem of the TDB is identified to be accurate prediction of velocity coefficient of the powered-on nacelle. Accuracy of CFD solver is validated by test cases of the first AIAA Propulsion Aerodynamics Workshop. Then the TDB method is applied to thrust and drag decomposing of a realistic aircraft. A linear relation between the computations assumed free stream Mach number and the velocity coefficient result is revealed. The thrust losses caused by nozzle internal drag and pylon scrubbing are obtained by the isolated nacelle and mapped on to the in-flight whole configuration analysis. Effects of the powered-on condition are investigated by comparing through-flow configuration with powered-on configuration. The variance on aerodynamic coefficients and pressure distribution is numerically studied.

  18. Drag kings in the new wave: gender performance and participation.

    Science.gov (United States)

    Surkan, Kim

    2002-01-01

    In an examination of Midwestern drag king performers and communities that have emerged since the study by Volcano and Halberstam of king cultures in London, New York, and San Francisco, this article considers traditional and alternative ways of "doing drag," both performative and participatory, as a means of interrogating the proximity of a "new wave" of king culture to academic theory. Tracing the evolution of drag king performance in the Twin Cities from the 1996 workshop by Diane Torr to the formation of two distinct king troupes in the late 1990s demonstrates a particular trajectory in kinging that reflects a new consciousness and enactment of gender theory through artistic praxis. Participation plays a key role in breaking down the distance between spectator and performer in venues such as the First International Drag King Extravaganza in Columbus, Ohio, and Melinda Hubman's art installation "Performing Masculinities: Take a Chance on Gender" in Minneapolis. By engaging the "audience" in drag, the Extravaganza "Science Fair" successfully referenced drag kings' shared history with early American freak shows in a clever and critical way. Moving beyond the contest framework of early king shows, new drag king troupes like Minneapolis' Dykes Do Drag are "mixing it up" in an attempt to complicate notions of butch/femme gender roles, sexuality, and drag stereotypes.

  19. An Analytical Method for Positioning Drag Anchors in Seabed Soils

    Institute of Scientific and Technical Information of China (English)

    张炜; 刘海笑; 李新仲; 李清平; 曹静

    2015-01-01

    Positioning drag anchors in seabed soils are strongly influenced not only by the properties of the anchor and soil, but also by the characteristics of the installation line. The investigation on the previous prediction methods related to anchor positioning demonstrates that the prediction of the anchor position during dragging has inevitably introduced some key and unsubstantiated hypotheses and the applicability of these methods is limited. In the present study, the interactional system between the drag anchor and installation line is firstly introduced for the analysis of anchor positioning. Based on the two mechanical models for embedded lines and drag anchors, the positioning equations for drag anchors have been derived both for cohesive and noncohesive soils. Since the drag angle at the shackle is the most important parameter in the positioning equations, a novel analytical method that can predict both the variation and the exact value of the drag angle at the shackle is proposed. The analytical method for positioning drag anchors which combines the interactional system between the drag anchor and the installation line has provided a reasonable theoretic approach to investigate the anchor behaviors in soils. By comparing with the model flume experiments, the sensitivity, effectiveness and veracity of the positioning method are well verified.

  20. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling....... Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments...

  1. Bionic Research on Bird Feather for Drag Reduction

    Directory of Open Access Journals (Sweden)

    Beibei Feng

    2015-02-01

    Full Text Available To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously due to the elastic-plastic deformation of PVC in high temperature and high pressure environment. Comparative experiments between micro-structured bionic surface and smooth surface were performed in a wind tunnel to evaluate the effect of bionic surface on drag reduction, and significant drag reduction efficiency was obtained. Numerical simulation results show that microvortex induced in the solid-gas interface of bionic surface has the effect of shear stress reduction and the small level of an additional pressure drag resulting from pressure distribution deviation on bird feather like surface, hence reducing the skin friction drag significantly. Therefore, with remarkable drag reduction performance and simple fabrication technology, the proposed drag reduction technique shows the promise for practical applications.

  2. Drag reduction properties of superhydrophobic mesh pipes

    Science.gov (United States)

    Geraldi, Nicasio R.; Dodd, Linzi E.; Xu, Ben B.; Wells, Gary G.; Wood, David; Newton, Michael I.; McHale, Glen

    2017-09-01

    Even with the recent extensive study into superhydrophobic surfaces, the fabrication of such surfaces on the inside walls of a pipe remains challenging. In this work we report a convenient bi-layered pipe design using a thin superhydrophobic metallic mesh formed into a tube, supported inside another pipe. A flow system was constructed to test the fabricated bi-layer pipeline, which allowed for different constant flow rates of water to be passed through the pipe, whilst the differential pressure was measured, from which the drag coefficient (ƒ) and Reynolds numbers (Re) were calculated. Expected values of ƒ were found for smooth glass pipes for the Reynolds number (Re) range 750-10 000, in both the laminar and part of the turbulent regimes. Flow through plain meshes without the superhydrophobic coating were also measured over a similar range (750  superhydrophobic coating, ƒ was found for 4000  superhydrophobic mesh can support a plastron and provide a drag reduction compared to a plain mesh, however, the plastron is progressively destroyed with use and in particular at higher flow rates.

  3. The drag force during the transient regime

    CERN Document Server

    Souza, P V S; de Oliveira, P M C

    2015-01-01

    In this paper, we analyze the drag force acting on a cylinder in a wind tunnel. The inspiration comes from an experimental result: a small, light ball falls on air; its speed increases, reaches a maximum, decreases and finally stabilizes. This surprising breaking behavior is due to the gradual formation of the so-called von K\\'arm\\'an street of air vortices behind the ball: while it is not completely formed, the transient drag force is smaller than the known steady state value and the ball can reach speeds higher than its final value. To show it, we treat the similar problem of a cylinder inside a wind tunnel suddenly switched on, by solving the Navier-Stokes dynamic equation. We use a finite difference method with successive relaxations on a grid. We also treat the case of a rotating cylinder, leading to the Magnus force. The novelty is the method we use to calculate these forces, which avoids the traditional surface integration of velocity gradients; the latter demands a very precise determination of the ve...

  4. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  5. Covariance analysis of differential drag-based satellite cluster flight

    Science.gov (United States)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  6. Simplified Models for the Drag Coefficient of a Pitched Baseball

    Science.gov (United States)

    Kagan, David; Nathan, Alan M.

    2014-01-01

    The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!

  7. Drag reduction through self-texturing compliant bionic materials

    Science.gov (United States)

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  8. Bionic Research on Fish Scales for Drag Reduction

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Dou; Jiadao Wang; Darong Chen

    2012-01-01

    To reduce friction drag with bionic method in a more feasible way,the surface microstructure of fish scales was analyzed attempting to reveal the biologic features responding to skin friction drag reduction.Then comparable bionic surface mimicking fish scales was fabricated through coating technology for drag reduction.The paint mixture was coated on a substrate through a self-developed spray-painting apparatus.The bionic surface with micron-scale caves formed spontaneously due to the interfacial convection and deformation driven by interfacial tension gradient in the presence of solvent evaporation.Comparative experiments between bionic surface and smooth surface were performed in a water tunnel to evaluate the effect of bionic surface on drag reduction,and visible drag reduction efficiency was obtained.Numerical simulation results show that gas phase develops in solid-liquid interface of bionic surface with the effect of surface topography and partially replaces the solid-liquid shear force with gas-liquid shear force,hence reducing the skin friction drag effectively.Therefore,with remarkable drag reduction performance and simple fabrication technology,the proposed drag reduction technique shows the promise for practical applications.

  9. Drag reduction in turbulent MHD pipe flows

    Science.gov (United States)

    Orlandi, P.

    1996-01-01

    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.

  10. Lift and drag of cetacean flippers

    Science.gov (United States)

    Murray, Mark; Weber, Paul; Howle, Laurens; Fish, Frank

    2008-11-01

    Field observation and collection of biological samples has resulted in cetacean (whales, dolphins and porpoises) flipper geometry being known for most species. However, the hydrodynamic properties of cetacean flippers have not been rigorously tested and thus their performance characteristics are unknown. Here, conducting water tunnel testing using scale models of cetacean flippers derived via computed tomography (CT) scans, as well as computational fluid dynamic (CFD) simulations, we present a baseline work to determine the hydrodynamic characteristics of cetacean flippers. We found that flippers of similar planform shape had similar hydrodynamic performance characteristics. Furthermore, one group of flippers of planform shape similar to a modern swept wing was found to have lift coefficient versus angle of attack curves that were biphasic rather than linear in nature, which was caused by the onset of vortex-dominated lift. Drag coefficient versus angle of attack curves were found to be less dependant on planform shape.

  11. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  12. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  13. Air Flows in Gravity Sewers - Determination of Wastewater Drag Coefficient

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Østertoft, Kristian; Vollertsen, Jes

    2016-01-01

    of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water......Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results...... surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient...

  14. Collisional Effects on Nonlinear Ion Drag Force for Small Grains

    CERN Document Server

    Hutchinson, I H

    2013-01-01

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  15. Methods for Accurate Free Flight Measurement of Drag Coefficients

    CERN Document Server

    Courtney, Elya; Courtney, Michael

    2015-01-01

    This paper describes experimental methods for free flight measurement of drag coefficients to an accuracy of approximately 1%. There are two main methods of determining free flight drag coefficients, or equivalent ballistic coefficients: 1) measuring near and far velocities over a known distance and 2) measuring a near velocity and time of flight over a known distance. Atmospheric conditions must also be known and nearly constant over the flight path. A number of tradeoffs are important when designing experiments to accurately determine drag coefficients. The flight distance must be large enough so that the projectile's loss of velocity is significant compared with its initial velocity and much larger than the uncertainty in the near and/or far velocity measurements. On the other hand, since drag coefficients and ballistic coefficients both depend on velocity, the change in velocity over the flight path should be small enough that the average drag coefficient over the path (which is what is really determined)...

  16. ACCUMULATION OF NITROGEN COMPOUNDS AND NITRATE REDUCTASE ACTIVITY IN LETTUCE CULTIVATED IN DIFFERENT CROP SYSTEMS ACÚMULO DE COMPOSTOS NITROGENADOS E ATIVIDADE DA REDUTASE DO NITRATO EM ALFACE PRODUZIDA EM DIFERENTES SISTEMAS DE CULTIVO

    Directory of Open Access Journals (Sweden)

    Fernanda Nunes Ibrahim

    2008-09-01

    Full Text Available

    Nitrate content determination is important for food quality evaluation, therefore when ingested nitrate is reduced the nitrite, which can generate harmful compounds to the human organism. Ahead of this, the present work had as objective to study the transport and accumulation of nitrogen compounds and the nitrate reductase activity in lettuce cultivar 'Vera' produced in Registro (SP in different cropping systems. Were collected samples of the xylem sap, aerial part and root for quantification of nitrogen compounds and of the reductase activity in vivo. The nitrate concentration in the xylem sap, the nitrate and amino acids contents, as well as the nitrate reductase activity, demonstrated more intense transport, accumulation and assimilation in plants cultivated in in hydroponic solution, followed of the conventional system and finally, of the organic. The stem of the plant in the three systems of culture presented high capacity of accumulation and assimilation the nitrogen compounds. The nitrate reductase activity in leaves was superior of the root. The content nitrate, independent of the culture system, varied of 24.32 the 800.06 mg kg-1 of FW in the different parts of the plant. However, it did not exceed the maximum

  17. Experimental investigation of drag coefficients of gobi surfaces

    Institute of Scientific and Technical Information of China (English)

    董治宝; 屈建军; 刘小平; 张伟民; 王训明

    2002-01-01

    The response of gobi surfaces to the near-surface air flow can be characterized quantitatively by drag coefficients. By using wind tunnel tests, an attempt is made to define the relationship between the drag coefficients of gobi surfaces and gravel size and coverage. It is concluded that the drag coefficients of gobi surfaces tend to be constants when gravel coverage is over 40%-50%. Consequently, we think that the gobi deflation planes expanding vastly in the arid Northwestern China are aerodynamically stable, at least not the supplying sources of current dust storms, and therefore the emphasis on dust storm control should be paid on the so-called "earth gobi" that has low gravel coverage. The prediction model for drag coefficients of gobi surfaces has been developed by regressing drag coefficients on gravel size and coverage, the predicted results are in reasonably good agreement with wind tunnel results (R 2 = 0.94). The change of drag coefficients with gravel friction Reynolds number implies that the development extent of drag effect increases with gravel size and coverage.

  18. Variability of Bed Drag on Cohesive Beds under Wave Action

    Directory of Open Access Journals (Sweden)

    Ilgar Safak

    2016-04-01

    Full Text Available Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law, a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 - 4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  19. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  20. Drag reduction in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.

    2009-08-01

    In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.

  1. Characterization of aerodynamic drag force on single particles: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  2. Low-drag events in transitional wall-bounded turbulence

    Science.gov (United States)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  3. Does Polishing a Rifle Bore Reduce Bullet Drag?

    Science.gov (United States)

    2012-01-17

    thus lower drag. A Remington 700 5R Mil-Spec chambered in 300 Winchester Magnum was used. The bullets used were a 155.5 grain Berger Fullbore Boat...drag on the bullets. 15. SUBJECT TERMS Ballistic coefficient, aerodynamic drag, rifle bore, bore polishing, Remington 700 5R 16. SECURITY...A Remington 700 5R Mil-Spec chambered in 300 Winchester Magnum was used. The bullets used were a 155.5 grain Berger Fullbore Boat Tail and a 125

  4. The Digital Drag and Drop Pillbox

    Science.gov (United States)

    Granger, Bradi B.; Locke, Susan C.; Bowers, Margaret; Sawyer, Tenita; Shang, Howard; Abernethy, Amy P.; Bloomfield, Richard A.; Gilliss, Catherine L.

    2017-01-01

    Objective: We present the design and feasibility testing for the “Digital Drag and Drop Pillbox” (D-3 Pillbox), a skill-based educational approach that engages patients and providers, measures performance, and generates reports of medication management skills. Methods: A single-cohort convenience sample of patients hospitalized with heart failure was taught pill management skills using a tablet-based D-3 Pillbox. Medication reconciliation was conducted, and aptitude, performance (% completed), accuracy (% correct), and feasibility were measured. Results: The mean age of the sample (n = 25) was 59 (36–89) years, 50% were women, 62% were black, 46% were uninsured, 46% had seventh-grade education or lower, and 31% scored very low for health literacy. However, most reported that the D-3 Pillbox was easy to read (78%), easy to repeat-demonstrate (78%), and comfortable to use (tablet weight) (75%). Accurate medication recognition was achieved by discharge in 98%, but only 25% reported having a “good understanding of my responsibilities.” Conclusions: The D-3 Pillbox is a feasible approach for teaching medication management skills and can be used across clinical settings to reinforce skills and medication list accuracy. PMID:28282304

  5. Turbulent drag reduction through oscillating discs

    CERN Document Server

    Wise, Daniel J

    2014-01-01

    The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...

  6. The 'W' prawn-trawl with emphasised drag-force transfer to its centre line to reduce overall system drag.

    Directory of Open Access Journals (Sweden)

    Cheslav Balash

    Full Text Available For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.

  7. Electromagnetically-Induced Frame-Dragging around Astrophysical Objects

    CERN Document Server

    Ruiz, Andrés F Gutiérrez

    2015-01-01

    Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

  8. Rotating cylinder drag balance with application to riblets

    Science.gov (United States)

    Hall, T.; Joseph, D.

    2000-12-01

    Experimental results are reported and discussed for a rotating cylinder drag balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, that is set in motion by the controlled rotation of the outer cylinder. The instrument was validated by calibration for laminar flow and comparison of turbulent flow results to the those of G. I. Taylor. The ability to predict drag reduction was demonstrated by testing 114 m symmetric sawtooth riblets, which gave a maximum reduction of about 5% and an overall drag reduction range of 5

  9. Jet Lag a Drag on Pro Baseball Players

    Science.gov (United States)

    ... 163187.html Jet Lag a Drag on Pro Baseball Players Study found traveling across time zones linked ... might be more than just tiring for pro baseball players: The resulting jet lag may actually harm ...

  10. Constraining the Drag Coefficients of Meteors in Dark Flight

    Science.gov (United States)

    Carter, R. T.; Jandir, P. S.; Kress, M. E.

    2011-01-01

    Based on data in the aeronautics literature, we have derived functions for the drag coefficients of spheres and cubes as a function of Mach number. Experiments have shown that spheres and cubes exhibit an abrupt factor-of-two decrease in the drag coefficient as the object slows through the transonic regime. Irregularly shaped objects such as meteorites likely exhibit a similar trend. These functions are implemented in an otherwise simple projectile motion model, which is applicable to the non-ablative dark flight of meteors (speeds less than .+3 km/s). We demonstrate how these functions may be used as upper and lower limits on the drag coefficient of meteors whose shape is unknown. A Mach-dependent drag coefficient is potentially important in other planetary and astrophysical situations, for instance, in the core accretion scenario for giant planet formation.

  11. Experimental study of drag reduction in flumes and spillway tunnels

    Institute of Scientific and Technical Information of China (English)

    Ying-kui WANG; Chun-bo JIANG

    2010-01-01

    Experiments in an open flume model and spillway tunnel model were carried out using drag reduction techniques.Two drag reduction techniques were adopted in the experiments:polymer addition and coating.The drag reduction effect of a polyacrylamide(PAM)solution and dimethyl silicone oil coating were studied in the flume model experiments,and the results were analyzed.Experiments were then carried out with a model of the Xiluodu Hydropower Station,the second largest dam in China.In order to reduce the resistance,the spillway tunnels were internally coated with dimethyl silicone oil.This is the first time that these drag reduction techniques have been applied to so large a hydraulic model.The experimental results show that the coating technique can effectively increase flood discharge.The outlet velocity and the jet trajectory distance are also increased,which enhances the energy dissipation of the spillway tunnel.

  12. Shell selection of hermit crabs is influenced by fluid drag

    Science.gov (United States)

    Casillas, Barbara; Ledesma, Rene; Alcaraz, Guillermina; Zenit, Roberto

    2010-11-01

    The flow around gastropod shells used by hermit crabs (Calcinus californiensis) was visualized experimentally. These crabs choose their shells according to many factors; we found that the choice of shell (shape and weight) is directly related to the drag caused over them by the exposure to wave action. Tests were conducted in a wind tunnel to investigate flow differences for shells of various shapes. A particle image velocimetry (PIV) system was used to visualize the flow field. The images above show the flow field around two types of shells (Thais speciosa and Nerita scabircosta) for Reynolds numbers of O(10^5). Using a control volume analysis, the drag coefficient was inferred. Several shell geometries, orientations and mean flow velocities were tested. In this talk, the flow and drag force will be shown for the different arrangements. A discussion of the relation between drag and shape will be presented.

  13. Development of Drag Reducing Polymer of FDR-SPC

    Science.gov (United States)

    Lee, Inwon; Park, Hyun; Chun, Ho Hwan

    2015-11-01

    In this study, a novel FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer) is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The release mechanism of drag reducing radical is accounted for the hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. A significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface for PRD3-1.

  14. Collecting responses through Web page drag and drop.

    Science.gov (United States)

    Britt, M Anne; Gabrys, Gareth

    2004-02-01

    This article describes how to collect responses from experimental participants using drag and drop on a Web page. In particular, we describe how drag and drop can be used in a text search task in which participants read a text and then locate and categorize certain elements of the text (e.g., to identify the main claim of a persuasive paragraph). Using this technique, participants respond by clicking on a text segment and dragging it to a screen field or icon. We have successfully used this technique in both the argument element identification experiment that we describe here and a tutoring system that we created to teach students to identify source characteristics while reading historical texts (Britt, Perfetti, Van Dyke, & Gabrys, 2000). The implementation described here exploits the capability of recent versions of Microsoft's Internet Explorer Web browser to handle embedded XML documents and drag and drop events.

  15. Separability of drag and thrust in undulatory animals and machines

    National Research Council Canada - National Science Library

    Bale, Rahul; Shirgaonkar, Anup A; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01

    .... Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust...

  16. Automated design of minimum drag light aircraft fuselages and nacelles

    Science.gov (United States)

    Smetana, F. O.; Fox, S. R.; Karlin, B. E.

    1982-01-01

    The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body.

  17. Drag force in a charged N = 4 SYM plasma

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico); Gueijosa, Alberto [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares, Universidad Autonoma de Mexico, Apdo. Postal 70-543, D.F. 04510 (Mexico)

    2006-11-15

    Following recent developments, we employ the AdS/CFT correspondence to determine the drag force exerted on an external quark that moves through an N = 4 super-Yang-Mills plasma with a non-zero R-charge density (or, equivalently, a non-zero chemical potential). We find that the drag force is larger than in the case where the plasma is neutral, but the dependence on the charge is non-monotonic.

  18. Separability of drag and thrust in undulatory animals and machines

    OpenAIRE

    Bale, R; Shirgaonkar, AA; Neveln, ID; Bhalla, APS; MacIver, MA; Patankar, NA

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers...

  19. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  20. TURBULENCE TRANSPORT OF SURFACTANT SOLUTION FLOW DURING DRAG REDUCTION DEGENERATION

    Institute of Scientific and Technical Information of China (English)

    GU Wei-guo; WANG De-zhong

    2012-01-01

    Turbulence transport of surfactant solution flow during drag reduction degeneration is investigated experimentally in a two-dimensional channel.Particle Image Velocimetry (P1V) system is used to take two-dimensional velocity frames in the streamwise and wall-normal plane.The additive of surfactant is cetyltrimethyl ammonium chloride (CTAC) with the mass concentration of 25 ppm.Drag reduction degeneration happens in the CTAC solution flow,exhibiting the maximal drag reduction at Re =25000and losing drag reduction completely at Re =40 000.The velocity frames are statistically analyzed in four quadrants which are divided by the u -axis and v-axis.It is found that the phenomenon of“Zero Reynolds shear stress” is caused by the decrease of wallnormal fluctuations and its symmetrical distribution in quadrants.The increase of Reynolds number leads to the enhancement of turbulence burst phenomenon.During thc drag reduction degeneration,the CTAC solution flow contains both high turbulence intensity and drag reduction states.

  1. CME propagation: Where does the solar wind drag take over?

    CERN Document Server

    Sachdeva, Nishtha; Colaninno, Robin; Vourlidas, Angelos

    2015-01-01

    We investigate the Sun-Earth dynamics of a set of eight well observed solar coronal mass ejections (CMEs) using data from the STEREO spacecraft. We seek to quantify the extent to which momentum coupling between these CMEs and the ambient solar wind (i.e., the aerodynamic drag) influences their dynamics. To this end, we use results from a 3D flux rope model fit to the CME data. We find that solar wind aerodynamic drag adequately accounts for the dynamics of the fastest CME in our sample. For the relatively slower CMEs, we find that drag-based models initiated below heliocentric distances ranging from 15 to 50 $R_{\\odot}$ cannot account for the observed CME trajectories. This is at variance with the general perception that the dynamics of slow CMEs are influenced primarily by solar wind drag from a few $R_{\\odot}$ onwards. Several slow CMEs propagate at roughly constant speeds above 15--50 $R_{\\odot}$. Drag-based models initiated above these heights therefore require negligible aerodynamic drag to explain their...

  2. Drag Torque Prediction Model for the Wet Clutches

    Institute of Scientific and Technical Information of China (English)

    HU Jibin; PENG Zengxiong; YUAN Shihua

    2009-01-01

    Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.

  3. Experimental investigation of drag force, Magnus force and drag torque acting on rough sphere moving in calm water

    OpenAIRE

    Lukerchenko, N. (Nikolay); Keita, I. (Ibrahima); Chára, Z. (Zdeněk); Vlasák, P. (Pavel)

    2010-01-01

    The paper describes the results of experiments with a rotating golf ball moving quasi-steadily in calm water. The motion of the ball was recorded on a digital video camera. The dimensionless drag force, Magnus force, and drag torque coefficients were determined from the comparison of the calculated translational and angular velocities and trajectory with experimental ones for the rough particle. The proper value of the correction coefficients were established from condition of the best fittin...

  4. Experimental evaluation of the drag torque, drag force and Magnus force acting on a rotating prolate spheroid

    OpenAIRE

    Lukerchenko, N. (Nikolay); Keita, I. (Ibrahima); Kvurt, Y.; Miles, J.

    2010-01-01

    The drag torque, drag force and Magnus force acting on a spheroid rotating around its axis of symmetry and moving perpendicularly to this axis in initially quiescent water were studied using experimental data and numerical simulation. The prolate spheroid with ratio of the axes 4/3 was speeded up in special device, which ensured the required rotational and translational velocity in the given plane. A video system was used to record the spheroid motion in water. Using the video records the sph...

  5. Nation Drag: Uses of the Exotic

    Directory of Open Access Journals (Sweden)

    Micol Seigel

    2009-02-01

    Full Text Available In Uneven Encounters, the forthcoming book from which this article is excerpted, Micol Seigel chronicles the exchange of popular culture between Brazil and the United States in the years between the World Wars, and she demonstrates how that exchange affected ideas of race and nation in both countries. From Americans interpreting advertisements for Brazilian coffee or dancing the Brazilian maxixe, to Rio musicians embracing the “foreign” qualities of jazz, Seigel traces a lively, cultural back-and-forth. Along the way, she shows how race and nation are constructed together, by both non-elites and elites, and gleaned from global cultural and intellectual currents as well as local, regional, and national ones. Seigel explores the circulation of images of Brazilian coffee and of maxixe in the United States during the period just after the imperial expansions of the early twentieth century. Exoticist interpretations structured North Americans’ paradoxical sense of self as productive “consumer citizens.” Some people, however, could not simply assume the privileges of citizenship. In their struggles against racism, Afro-descended citizens living in the cities of Rio de Janeiro, São Paulo, New York, and Chicago encountered images and notions of each other, and found them useful. Seigel introduces readers to cosmopolitan Afro-Brazilians and African Americans who rarely traveled far but who absorbed ideas from abroad nonetheless. African American vaudeville artists saw the utility of pretending to “be” Brazilian to cross the color line on stage. Putting on “nation drag,” they passed not from one race to another but out of familiar racial categories entirely. Afro-Brazilian journalists reported intensively on foreign, particularly North American, news and eventually entered into conversation with the U.S. black press in a collaborative but still conflictual dialogue. Seigel suggests that projects comparing U.S. and Brazilian racial

  6. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Drag characteristics of competitive swimming children and adults.

    Science.gov (United States)

    Kjendlie, Per-Ludvik; Stallman, Robert Keig

    2008-02-01

    The aims of this study were to compare drag in swimming children and adults, quantify technique using the technique drag index (TDI), and use the Froude number (Fr) to study whether children or adults reach hull speed at maximal velocity (vmax). Active and passive drag was measured by the perturbation method and a velocity decay method, respectively, including 9 children aged 11.7+/-0.8 and 13 adults aged 21.4+/-3.7. The children had significantly lower active (kAD) and passive drag factor (kPD) compared with the adults. TDI (kAD/kPD) could not detect any differences in swimming technique between the two groups, owing to the adults swimming maximally at a higher Fr, increasing the wave drag component, and masking the effect of better technique. The children were found not to reach hull speed at vmax, and their Fr were 0.37+/-0.01 vs. the adults 0.42+/-0.01, indicating adults' larger wave-making component of resistance at vmax compared with children. Fr is proposed as an evaluation tool for competitive swimmers.

  8. A Clustering Genetic Algorithm for Cylinder Drag Optimization

    Science.gov (United States)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A real coded genetic algorithm is implemented for the optimization of actuator parameters for cylinder drag minimization. We consider two types of idealized actuators that are allowed either to move steadily and tangentially to the cylinder surface (“belts”) or to steadily blow/suck with a zero net mass constraint. The genetic algorithm we implement has the property of identifying minima basins, rather than single optimum points. The knowledge of the shape of the minimum basin enables further insights into the system properties and provides a sensitivity analysis in a fully automated way. The drag minimization problem is formulated as an optimal regulation problem. By means of the clustering property of the present genetic algorithm, a set of solutions producing drag reduction of up to 50% is identified. A comparison between the two types of actuators, based on the clustering property of the algorithm, indicates that blowing/suction actuation parameters are associated with larger tolerances when compared to optimal parameters for the belt actuators. The possibility of using a few strategically placed actuators to obtain a significant drag reduction is explored using the clustering diagnostics of this method. The optimal belt-actuator parameters obtained by optimizing the two-dimensional case is employed in three-dimensional simulations, by extending the actuators across the span of the cylinder surface. The three-dimensional controlled flow exhibits a strong two-dimensional character near the cylinder surface, resulting in significant drag reduction.

  9. Agitator tank device and drag reduction agent evaluation

    Institute of Scientific and Technical Information of China (English)

    张帆; 肖博元; 汤养浩; 罗旗荣

    2008-01-01

    The device that consists of tank and disk agitator for evaluation drag reduction agents(DRA) was established.The effect of DRA was defined by testing the changes of agitator torque that drives the disk rotation.The HG-DRA for oil pipeline from Linyi to Puyang was studied by agitator tank device.The relationships between the drag reduction rate and Reynolds number,concentration,balance time were studied.The best concentration and the highest Renords number for the best drag reduction rate were confirmed.The results show that the drag reduction rate tested in agitator tank is close to that in pipeline.The maximum error of drag reduction rate between pipeline and agitator tank is 18.3%,which indicates that the agitator tank device is available to evaluate the effect of DRA for pipeline and it also has the advantages of simple,easy to be operated and using small volume of oil.Those are very helpful for operaters to know the properties of DRA and operate pipeline well.

  10. Why fibers are better turbulent drag reducing agents than polymers

    Science.gov (United States)

    Boelens, Arnout; Muthukumar, Murugappan

    2016-11-01

    It is typically found in literature that fibers are not as effective as drag reducing agents as polymers. However, for low concentrations, when adding charged polymers to either distilled or salt water, it is found that polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. In this study, using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we are able to explain why charged polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. Additionally, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers. This research was supported by NSF Grant No. DMR-1404940 and AFOSR Grant No. FA9550-14-1-0164.

  11. Drag reduction of flow boiling with polymer additives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The drag-reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×106 and 8.55×106. The frictional pressure drop was calculated according to the measured total pressure drop. The results show that the flow drag of flow boiling is reduced by adding a small amount of PAM to water when heat flux is in the range of 15.1 kW*m-2 to 47.0 kW*m-2, when the mass fraction of PAM is higher than 2.0×10-5, the drag-reducing effect is obvious. Drag-reducing effect of PAM, whose relative molecular mass is 8.55×106, is slightly better than that of 2.56×106 at the same mass fraction, and the greater the flow rate of the additive solution, the better the effect of the drag reduction.

  12. Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather

    Institute of Scientific and Technical Information of China (English)

    Huawei Chen; Fugang Rao; Xiaopeng Shang; Deyuan Zhang; Ichiro Hagiwara

    2013-01-01

    Birds have gradually formed various excellent structures such as streamlined shape and hollow shaft of feather to improve their flying performance by millions of years of natural selection.As typical property of bird feather,herringbone riblets align along the shaft of each feather,which is caused by perfect link of barbs,especially for the primary and secondary feathers of wings.Such herringbone riblets of feather are assumed to have great impact on drag reduction.In this paper,microstructures of secondary feathers of adult pigeons are investigated by SEM,and their structural parameters are statistically obtained.Based on quantitative analysis of feather structure,novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag.In comparison with traditional microgroove riblets and other drag reduction structures,the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 16%,much higher than others.Moreover,the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.

  13. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; Morrison, Joseph H.; Mavriplis, Dimitri J.; Murayama, Mitcuhiro

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  14. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  15. Nonlocal Drag of Magnons in a Ferromagnetic Bilayer

    Science.gov (United States)

    Liu, Tianyu; Vignale, G.; Flatté, Michael E.

    2016-06-01

    Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.

  16. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  17. CubeSat testing of Coulomb drag propulsion

    CERN Document Server

    Janhunen, Pekka; Toivanen, Petri; Rauhala, Timo; Haeggström, Edward; Grönland, Tor-Arne

    2016-01-01

    In Coulomb drag propulsion, a long high voltage tether or system of tethers gathers momentum from a natural plasma stream such as solar wind or ionospheric plasma ram flow. A positively polarised tether in the solar wind can be used for efficient general-purpose interplanetary propellantless propulsion (the electric solar wind sail or E-sail), whereas a negatively polarised tether in LEO can be used for efficient deorbiting of satellites (the plasma brake). Aalto-1 is a 3-U cubesat to be launched in May 2016. The satellite carries three scientific experiments including 100 m long Coulomb drag tether experiment. The tether is made of four 25 and 50 micrometre diameter aluminium wires that are ultrasonically bonded together every few centimetre intervals. The tether can be charged by an onboard voltage source up to one kilovolt positive and negative. The Coulomb drag is measured by monitoring the spin rate.

  18. Fatal truck-bicycle accident involving dragging for 45 km.

    Science.gov (United States)

    Klintschar, M; Darok, M; Roll, P

    2003-08-01

    Vehicle-bicycle accidents with subsequent dragging of the rider over long distances are extremely rare. The case reported here is that of a 16-year-old mentally retarded bike rider who was run over by a truck whose driver failed to notice the accident. The legs of the victim became trapped by the rear axle of the trailer and the body was dragged over 45 km before being discovered under the parked truck. The autopsy revealed that the boy had died from the initial impact and not from the dragging injuries which had caused extensive mutilation. The reports of the technical expert and the forensic pathologist led the prosecutor to drop the case against the truck driver for manslaughter.

  19. Does an active adjustment of aerodynamic drag make sense?

    Science.gov (United States)

    Maciejewski, Marek

    2016-09-01

    The article concerns evaluation of the possible impact of the gap between the tractor and semitrailer on the aerodynamic drag coefficient. The aim here is not to adjust this distance depending on the geometrical shape of the tractor and trailer, but depending solely on the speed of articulated vehicle. All the tests have form of numerical simulations. The method of simulation is briefly explained in the article. It considers various issues such as the range and objects of tests as well as the test conditions. The initial (pre-adaptive) and final (after adaptation process) computational meshes have been presented as illustrations. Some of the results have been presented in the form of run chart showing the change of value of aerodynamic drag coefficients in time, for different geometric configurations defined by a clearance gap between the tractor and semitrailer. The basis for a detailed analysis and conclusions were the averaged (in time) aerodynamic drag coefficients as a function of the clearance gap.

  20. Separability of drag and thrust in undulatory animals and machines

    CERN Document Server

    Bale, Rahul; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal- istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation fram...

  1. Self-burrowing seeds: drag reduction in granular media

    Science.gov (United States)

    Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.

  2. EFFECT OF AERATOR ON HYDRAULIC DRAG ACTING ON A CHUTE

    Institute of Scientific and Technical Information of China (English)

    NI Han-gen; LI Xin; ZHOU Jing; JIN Qiao

    2005-01-01

    The formulae used to calculate the friction in the non-uniform flow chute were examined with the experimental data, and the results show that the accuracy of the formula is enough for engineering applications. A comparison between the results of friction respectively from the uniform flow assumption and the non-uniform flow approximation indicates that the former is an order of magnitude larger than the latter in the case of steep chute. The hydraulic drag on a steep chute with aerators was measured on the hydraulic model directly and the coefficient of the aerator effect on the drag was obtained. The variation patterns of the wall shear just downstream of the aerators were investigated and the mechanism of the increase in the drag by aerator were analyzed qualitatively with the measured water-depths just downstream the aerators.

  3. A framework for understanding drag parameterizations for coral reefs

    Science.gov (United States)

    Rosman, Johanna H.; Hench, James L.

    2011-08-01

    In a hydrodynamic sense, a coral reef is a complex array of obstacles that exerts a net drag force on water moving over the reef. This drag is typically parameterized in ocean circulation models using drag coefficients (CD) or roughness length scales (z0); however, published CD for coral reefs span two orders of magnitude, posing a challenge to predictive modeling. Here we examine the reasons for the large range in reported CD and assess the limitations of using CD and z0 to parameterize drag on reefs. Using a formal framework based on the 3-D spatially averaged momentum equations, we show that CD and z0 are functions of canopy geometry and velocity profile shape. Using an idealized two-layer model, we illustrate that CD can vary by more than an order of magnitude for the same geometry and flow depending on the reference velocity selected and that differences in definition account for much of the range in reported CD values. Roughness length scales z0 are typically used in 3-D circulation models to adjust CD for reference height, but this relies on spatially averaged near-bottom velocity profiles being logarithmic. Measurements from a shallow backreef indicate that z0 determined from fits to point measurements of velocity profiles can be very different from z0 required to parameterize spatially averaged drag. More sophisticated parameterizations for drag and shear stresses are required to simulate 3-D velocity fields over shallow reefs; in the meantime, we urge caution when using published CD and z0 values for coral reefs.

  4. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  5. The no-drag frame for anomalous chiral fluid

    CERN Document Server

    Stephanov, Mikhail A

    2015-01-01

    We show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the anomalous chiral currents do transport entropy in this frame. We show that the second law of thermodynamics completely determines the amounts of these anomalous non-dissipative currents in the "no-drag frame" as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and quark-gluon plasma at high temperature.

  6. Drag reduction in electro-osmosis of polymer solutions

    Science.gov (United States)

    Chang, Feng-Ming; Tsao, Heng-Kwong

    2007-05-01

    Electro-osmosis is the preferred transport mechanism in microfluidic systems. Drag reduction in electro-osmosis of polymer solutions is observed due to polymer depletion in the electric double layer (EDL). The well-known Helmholtz-Smoluchowski (HS) equation indicates that the electro-osmosis mobility is inversely proportional to the solution viscosity. For low molecular weight the polymer size (R) is smaller than the EDL thickness (λ) and the HS equation is valid. For high molecular weight (R>λ) the chains in the EDL are partially sheared and the effective viscosity is smaller than the solution viscosity. Salt addition reduces λ and can enhance drag reduction substantially.

  7. Rotation of slender swimmers in isotropic-drag media

    CERN Document Server

    Koens, Lyndon

    2016-01-01

    The drag anisotropy of slender filaments is a critical physical property allowing swimming in low-Reynolds number flows, and without it linear translation is impossible. Here we show that, in contrast, net rotation can occur under isotropic drag. We first demonstrate this result formally by considering the consequences of the force- and torque-free conditions on swimming bodies and we then illustrate it with two examples (a simple swimmers made of three rods and a model bacterium with two helical flagellar filaments). Our results highlight the different role of hydrodynamic forces in generating translational vs.~rotational propulsion.

  8. Drag and lift coefficients evolution of a Savonius rotor

    Science.gov (United States)

    Chauvin, A.; Benghrib, D.

    1989-10-01

    The lift and drag coefficients of the rotating Savonius wind machine are determined from the pressure difference measured between the upper plane and the lower plane of a blade. Pressure measurements have been performed for two sets of experiments; the first one for U ∞ = 10 m/s and the second one for U ∞ = 12.5 m/s. In each case it is to be noted that a negative lift effect is present for low values of the tip speed ratio λ. The lift coefficient becomes positive when λ increases. The drag coefficient is of course always negative.

  9. Development of reduced drag concepts for acoustic liners using experimental methods

    Science.gov (United States)

    Jasinski, Christopher

    2016-11-01

    Commercial aircraft have used acoustic liners to reduce engine noise for many years, although their drag production has been largely unstudied. The next generation of aircraft may benefit from additional surface area covered by acoustic liner, thus understanding their drag production mechanism is crucial for future designs. An accurate direct aerodynamic drag measurement technique has been developed using a force balance with linear air bearings. Using 3D-printed and conventional liners, low-drag designs are being developed. This paper will investigate the underlying fluid mechanics governing the drag production in acoustic liners and describe new attempts to reduce aerodynamic drag.

  10. Effect of Radiation Drag on Hoyle-Lyttleton Accretion

    CERN Document Server

    Nio, T; Fukue, J; Nio, Tomomi; Matsuda, Takuya; Fukue, Jun

    1998-01-01

    Hoyle-Lyttleton type accretion is investigated, by taking account of not only the effect of radiation pressure but the effect of radiation drag. We calculate the trajectories of particles for three cases: only the effect of gravity is considered (case A); the effect of radiation pressure is taken into account (case B); the effect of radiation drag as well as radiation pressure is taken into account (case C). The accretion radii for former two cases are $2GM/v_{\\infty}^2$ for case A and $2GM(1-\\Gamma)/v_{\\infty}^2$ for case B, where M is the mass of the accreted object, $v_{\\infty}$ the relative velocity, and Gamma the normalized luminosity of the accreted object. We found that the accretion radius for case C is in between those of cases A and B under the present approximation; i.e., the accretion radius decreases due to radiation pressure while it increases due to radiation drag. In addition, the accretion radius for case C becomes larger as the incident velocity becomes fast. The effect of radiation drag bec...

  11. Spacecraft Re-Entry Impact Point Targeting Using Aerodynamic Drag

    Science.gov (United States)

    Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.

  12. Towards unified drag laws for inertial flow through fibrous materials

    NARCIS (Netherlands)

    Yazdchi, K.; Luding, S.

    2012-01-01

    We give a comprehensive survey of published experimental, numerical and theoretical work on the drag law correlations for fluidized beds and flow through porous media, together with an attempt of systematization. Ranges of validity as well as limitations of commonly used relations (i.e. the Ergun an

  13. Rheological and drag reduction properties of hydroxypropyl xanthan gum solutions☆

    Institute of Scientific and Technical Information of China (English)

    Meng Tian; Bo Fang; Leiping Jin; Yongjun Lu; Xiaohui Qiu; Hao Jin; Kejing Li

    2015-01-01

    Hydroxypropyl xanthan gum (HXG) was prepared from xanthan gum (XG) and propylene oxide under alkaline condition. Rheological and drag reduction properties of different concentrations of aqueous HXG and XG solution were studied. The micro-structure network of HXG and XG solutions was investigated by Cryo-FESEM. The re-sults showed that HXG and XG solutions could exhibit shear thinning property. The apparent viscosity of 6 g·L−1 HXG solution was 1.25 times more than that of 6 g·L−1 XG solution. The storage modulus G′and the loss modulus G″of HXG solutions were greater than those of XG solutions, and thixotropic and viscoelastic prop-erties were more significant in HXG solutions. The HXG and XG solutions reduced the pressure drop of straight pipe, and the maximum drag reduction of 1 g·L−1 HXG and XG in smooth tube reached 72.8%and 68.1%, respec-tively. Drag reduction rate was increased as the concentration increased. The HXG solution may become a new polymeric drag reducer.

  14. Superhydrophobic drag reduction in laminar flows: a critical review

    Science.gov (United States)

    Lee, Choongyeop; Choi, Chang-Hwan; Kim, Chang-Jin

    2016-12-01

    A gas in between micro- or nanostructures on a submerged superhydrophobic (SHPo) surface allows the liquid on the structures to flow with an effective slip. If large enough, this slippage may entail a drag reduction appreciable for many flow systems. However, the large discrepancies among the slippage levels reported in the literature have led to a widespread misunderstanding on the drag-reducing ability of SHPo surfaces. Today we know that the amount of slip, generally quantified with a slip length, is mainly determined by the structural features of SHPo surfaces, such as the pitch, solid fraction, and pattern type, and further affected by secondary factors, such as the state of the liquid-gas interface. Reviewing the experimental data of laminar flows in the literature comprehensively and comparing them with the theoretical predictions, we provide a global picture of the liquid slip on structured surfaces to assist in rational design of SHPo surfaces for drag reduction. Because the trapped gas, called plastron, vanishes along with its slippage effect in most application conditions, lastly we discuss the recent efforts to prevent its loss. This review is limited to laminar flows, for which the SHPo drag reduction is reasonably well understood.

  15. A Phenomenological Drag Law in Blast-Soil Interaction

    Science.gov (United States)

    2013-01-16

    mentioned work coming from the sedimentation and fluidization UNCLASSIFIED: Distribution Statement A. Approved for public release 4 studies [Gidaspow, 1994...with Fluidization . Academic Press. [Loth, 2008] Loth, E. (2008). Compressibility and rarefaction effects on drag of a spherical particle. AIAA, 46(9

  16. Exploring the Aerodynamic Drag of a Moving Cyclist

    Science.gov (United States)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  17. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved...

  18. Interactive point cloud blending by drag-and-drop

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for advanced point-based processing and editing. In this paper, we present an interactive method for blending point-based geometries by dragging-anddropping one point-based model onto another model's surface metaphor. We first calculate a blending region based on the polygon of interest when the user drags-and-drops the model. Radial basis function is used to construct an implicit surface which smoothly interpolates with the transition regions. Continuing the drag-and-drop operation will make the system recalculate the blending regions and reconstruct the transition regions. The drag-and-drop operation can be compound in a constructive solid geometry (CSG) manner to interactively construct a complex point-based model from multiple simple ones. Experimental results showed that our method generates good quality transition regions between two raw point clouds and can effectively reduce the rate of overlapping during the blending.

  19. DRAG REDUCTION EFFECT OF COUPLING FLEXIBLE TUBES WITH TURBULENT FLOW

    Institute of Scientific and Technical Information of China (English)

    CAI Shu-peng; JIN Guo-yu; LI Da-mei; Yang Lin

    2008-01-01

    To analyze the mechanism of drag reducing effect by coupling flexible tubes with turbulent flow, based on experimental examination of more obvious turbulent drag reduction effect in flexible tubes than in rigid tubes, experimental investigation was performed on the effect of turbulent drag reduction, fluctuating vibration characteristics of flexible tube and the correlations by using a double-tube system and laser displacement sensor. The results are as follows: with the decrease of the thickness of the flexible tubes, the root mean square of fluctuating amplitude of the outer wall of the tubes increases, and the non-dimensional burst period increases, resulting in the increase of the reduction rate of drag coefficient by coupling flexible tubes with turbulent flow. At applied pressure-balanced air on the outer wall and the Reynolds number of about 1.75 104, the non-dimensional burst periods of the flexible tubes with the thickness of 2 mm, 3 mm, 4 mm are 141, 126, 105, respectively.

  20. Some Remarks on CFD Drag Prediction of an Aircraft Model

    Science.gov (United States)

    Peng, S. H.; Eliasson, P.

    Observed in CFD drag predictions for the DLR-F6 aircraft model with various configurations, some issues are addressed. The emphasis is placed on the effect of turbulence modeling and grid resolution. With several different turbulence models, the predicted flow feature around the aircraft is highlighted. It is shown that the prediction of the separation bubble in the wing-body junction is closely related to the inherent modeling mechanism of turbulence production. For the configuration with an additional fairing, which has effectively removed the separation bubble, it is illustrated that the drag prediction may be altered even for attached turbulent boundary layer when different turbulence models are used. Grid sensitivity studies are performed with two groups of subsequently refined grids. It is observed that, in contrast to the lift, the drag prediction is rather sensitive to the grid refinement, as well as to the artificial diffusion added for solving the turbulence transport equation. It is demonstrated that an effective grid refinement should drive the predicted drag components monotonically and linearly converged to a finite value.

  1. Frictional drag between quantum wells mediated by phonon exchange

    DEFF Research Database (Denmark)

    Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1998-01-01

    lattice imperfections or electronic excitations is accounted for. In the case of GaAs quantum wells, we find that for a phonon mean free path l(ph) smaller than a critical value, imperfection scattering dominates and the drag rate varies as ln(l(ph)/d) over many orders of magnitude of the layer separation...

  2. A coating of passively oscillating flexible cilia to reduce drag

    Science.gov (United States)

    Revell, Alistair; Harwood, Adrian; O'Connor, Joseph; Sanchez, Jonathan; Favier, Julien

    2016-11-01

    We present results related to the reduction of wake drag by the coordinated action of a layer of passively oscillating flexible cilia. Inspired by the pop-up of bird feathers, this configuration is shown to self-adapt to the surrounding flow, leading to a stabilization of the wake, a reduction of the mean drag and of lift oscillations. The study is performed using Lattice Boltzmann method, coupled to a recent version of the immersed boundary method. We will present the physical analysis of the coupling between multiple beating cilia and an incoming fluid flow. The modal behaviour of the cilia dynamics will be discussed, as well as their effect on an archetype of unsteady separated boundary layer (first the oscillating channel flow and then the circular cylinder). In the latter case results demonstrate an optimal drag occurs for a particular stiffness, compared to the control case where the same cilia are fixed. It appears that the optimal results are due to a reconfiguration of the elastic coating according to the local vorticity of the flow, and a frequency lock-in, which leads to more stable wake and reduced drag. The structural parameters of the layer will be varied. Results from the PEL-SKIN project: funded by EU Grant #334954.

  3. Effect of swim cap model on passive drag.

    Science.gov (United States)

    Gatta, Giorgio; Zamparo, Paola; Cortesi, Matteo

    2013-10-01

    Hydrodynamics plays an important role in swimming because even small decreases in a swimmer's drag can lead to performance improvements. During the gliding phases of a race, the head of a swimmer is an important point of impact with the fluid, and the swim cap, even if it covers only a small portion of the swimmer's body, can have an influence on drag. The purpose of this study was to investigate the effects on passive drag (Dp) of wearing 3 different types of swim caps (LSC: a lycra cap; CSC: a silicone cap; HSC: a silicone helmet cap without seams). Sixteen swimmers were tested at 3 velocities (1.5, 1.7, 1.9 m·s), and the Dp measurements were repeated at each condition 5 times. A statistical analysis revealed significant differences in drag (p swim cap is the most rigid, the most adherent to the swimmer's head, and does not allow the formation of wrinkles compared with the other 2 investigated swim caps. Therefore, the following conclusions can be made: (a) swimmers should take care when selecting their swim cap if they want to improve the fluid dynamics at the "leading edge" of their body and (b) because Dp is affected by the swim cap model, care should be taken when comparing data from different studies, especially at faster investigated speeds.

  4. The Mercury-Drag Effect, a Demonstration of Transport Phenomena

    Science.gov (United States)

    Martin, D. H.; Teese, R. B

    1969-01-01

    The mercury-drag effect is demonstrated when mercury vapor diffuses through nitrogen gas at low pressure, passing through tubes of different radii to liquid nitrogen-cooled cold traps. The pressure changes of the nitrogen gas on the mercury-deficient side of the cold traps are observed and compared with theoretical and experimental valves from the…

  5. Separability of drag and thrust in undulatory animals and machines.

    Science.gov (United States)

    Bale, Rahul; Shirgaonkar, Anup A; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-12-10

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  6. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    Science.gov (United States)

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  7. Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces

    Science.gov (United States)

    Ou, Jia; Perot, Blair; Rothstein, Jonathan

    2003-11-01

    In devices where the fluid flow is laminar, there are currently no methods for reducing drag. We will present a series of experiments which demonstrate a 20-30% drag reduction for the flow of water through microchannels using hydrophobic surfaces with micron sized roughness. These 'ultrahydrophobic' surfaces are fabricated using photolithography to etch microposts and microridges with specific size, spacing and arrangement into silicon. The surfaces are then reacted with an organosilane to make them hydrophobic. The resulting surfaces have contact angles greater than 150 degrees. Pressure drop measurements are made for a series of ultrahydrophobic surface patterns, flow rates and microchannel heights. Pressure drop measurements across hydrophobic smooth surfaces are found to correlate precisely with theory while the drag reduction observed for the flow across these ultrahydrophobic surfaces is found to increase with increasing micropost spacing and decreasing micropost area. A physical model will be presented which explains the drag reduction in terms of a shear-free air-water interface between microposts supported by surface tension. Confirmation of the model will be presented with optical measurements of the displacement of the air-water interface under flow.

  8. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  9. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  10. FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2003-10-24

    Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.

  11. Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution

    Institute of Scientific and Technical Information of China (English)

    FUHui-ping; LUChuan-jing; LIJie

    2004-01-01

    Drag reduction characteristics of supercavitating body of revolution was researched numerically with a bubble two-phase flow model embodied in commercial CFD code Fluent 6.0.The work included the effects of body shape on drag coefficient and supercavity sizes; supercavity control; drag coefficient Cd as a function of cavitation number; and the effect of the ratio of length L to diameter D on drag reduction rate. Research on drag reduction mechanism of supercavitation shows that supercavitation can reduce not only the friction drag coefficient but also the pressure drag coefficient. There may be a best combination among body shape, the ratio L/D, cavitation number, engineering feasibility and so on, which makes the drag reduction ratehighest.

  12. Quantifying drag on wellbore casings in moving salt sheets

    Science.gov (United States)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  13. Reducing drag of a commuter train, using engine exhaust momentum

    Science.gov (United States)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  14. Aerodynamic drag from two tubes in side-by-side arrangement for different tube shapes

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович Терех

    2016-06-01

    Full Text Available Experimental investigations of aerodynamic drag from two tubes in side-by-side arrangement for different tube shapes in the range of Reynolds numbers from 4000 to16000 are performed. Comparison of experimental data is executed. It is set, that the tubes of drop-shaped form have less aerodynamic drag and the tubes of flat-oval and dumb-bell forms have greater drag as compared to drag of circular tubes

  15. On the parameterization scheme of gravity wave drag effect on the mean zonal flow of mesosphere

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on McFarlane's parameterization scheme of gravity wave drag, a refined gravity-wave-drag scheme is presented. Both the drag effect of the momentum flux and the dissipation effect of gravity wave breaking on the mean zonal flow are included in the refined parameterization scheme. The dissipation effect can be formulated with the gravity wave numbers and the mean quantities. The refined parameterization scheme may represent a complete drag effect of stationary gravity wave breaking on the mean zonal flow.

  16. 76 FR 52263 - Special Local Regulation for Marine Events; Mattaponi Madness Drag Boat Race, Mattaponi River...

    Science.gov (United States)

    2011-08-22

    ... Madness Drag Boat Race, Mattaponi River, Wakema, VA AGENCY: Coast Guard, DHS. ACTION: Temporary Final rule. SUMMARY: The Coast Guard will establish special local regulations during the Mattaponi Madness Drag ] Boat... events titled the ``Mattaponi Madness Drag Boat Event.'' The power boat races will be held on the...

  17. Drag-free Small Satellite Platforms for Future Geodesy Missions

    Science.gov (United States)

    Conklin, J. W.; Hong, S.; Nguyen, A.; Serra, P.; Balakrishnan, K.; Buchman, S.; De Bra, D. B.; Hultgren, E.; Zoellner, A.

    2013-12-01

    Continuous satellite geodesy measurements lasting into the foreseeable future are critical for the understanding of our changing planet. It is therefore imperative that we explore ways to reduce costs, while maintaining science return. Small satellite platforms represent a promising path forward if ways can be found to reduce the size, weight, and power of the necessary instrumentation. One key enabling technology is a precision small-scale drag-free system under development at the University of Florida and Stanford University. A drag-free satellite (a) contains and shields a free-floating test mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the satellite. A feedback control system commands thrusters to fly the 'tender' spacecraft with respect to the test mass. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the relative positions of low Earth orbiting drag-free satellites, using laser interferometry for example, the detailed shape of geodesics, and through analysis, the higher order harmonics of the Earth's geopotential can be determined. Drag-free systems can be orders of magnitude more accurate that accelerometer-based systems because they fundamentally operate at extremely low acceleration levels, and are therefore not limited by dynamic range like accelerometers. Since no test mass suspension force is required, larger gaps between the test mass and satellite are possible, which reduces the level of unwanted disturbing forces produced by the satellite itself. The small satellite platform also enables cost-effective constellations, which can increase the temporal resolution of gravity field maps by more-frequently observing given locations on the Earth. Mixed-orbit constellations can also markedly enhance observational strength, decorrelate gravity coefficient estimates, and help address the fundamental aliasing problem that exists with previous missions. The

  18. Acceleration Noise Considerations for Drag-free Satellite Geodesy Missions

    Science.gov (United States)

    Hong, S. H.; Conklin, J. W.

    2016-12-01

    The GRACE mission, which launched in 2002, opened a new era of satellite geodesy by providing monthly mass variation solutions with spatial resolution of less than 200 km. GRACE proved the usefulness of a low-low satellite-to-satellite tracking formation. Analysis of the GRACE data showed that the K-Band ranging system, which is used to measure the range between the two satellites, is the limiting factor for the precision of the solution. Consequently, the GRACE-FO mission, schedule for launch in 2017, will continue the work of GRACE, but will also test a new, higher precision laser ranging interferometer compared with the K-Band ranging system. Beyond GRACE-FO, drag-free systems are being considered for satellite geodesy missions. GOCE tested a drag-free attitude control system with a gravity gradiometer and showed improvements in the acceleration noise compensation compared to the electrostatic accelerometers used in GRACE. However, a full drag-free control system with a gravitational reference sensor has not yet been applied to satellite geodesy missions. More recently, this type of drag-free system was used in LISA Pathfinder, launched in 2016, with an acceleration noise performance two orders of magnitude better than that of GOCE. We explore the effects of drag-free performance in satellite geodesy missions similar to GRACE-FO by applying three different residual acceleration noises from actual space missions: GRACE, GOCE and LISA Pathfinder. Our solutions are limited to degree 60 spherical harmonic coefficients with biweekly time resolution. Our analysis shows that a drag-free system with acceleration noise performance comparable to GOCE and LISA-Pathfinder would greatly improve the accuracy of gravity solutions. In addition to these results, we also present the covariance shaping process used in the estimation. In the future, we plan to use actual acceleration noise data measured using the UF torsion pendulum. This apparatus is a ground facility at

  19. An active attitude control system for a drag sail satellite

    Science.gov (United States)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  20. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Brotherton D.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is reported. The Fresnel "drag" in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the consequence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  1. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    Science.gov (United States)

    Vakarelski, Ivan U.; Berry, Joseph D.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2016-09-01

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re ˜3 ×1 05 . A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ˜600 to 1 05. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape.

  2. Wind tunnel experiment of drag of isolated tree models in surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.

  3. Mechanically Robust Superhydrophobic Surfaces for Turbulent Drag Reduction

    Science.gov (United States)

    Golovin, Kevin; Boban, Mathew; Xia, Charlotte; Tuteja, Anish

    2014-11-01

    Superhydrophobic surfaces (SHS) resist wetting by keeping a thin air layer within their texture. Such surfaces have been shown to reduce skin friction during laminar and transitional flows. However, turbulent boundary layer flows exhibit high shear stresses that damage the fragile microstructure of most SHS, and it is yet unclear to what extent these surfaces can reduce drag. Moreover, the increasing pressure fluctuations and decreasing wall unit length experienced during turbulent flow makes designing mechanically robust SHS with the correct roughness scales a challenge. In this work we evaluate many different SHS in terms of their hydrophobicity, mechanical durability and roughness. Whereas even commercially available SHS lose their superhydrophobic properties after slight mechanical abrasion, our novel coatings survive up to 200x longer. Moreover, we evaluate how the roughness of such surfaces changes with mechanical abrasion, and we design SHS with the correct roughness to display optimal drag reduction in turbulent boundary layer flows. Funding from ONR.

  4. Detection of gravitational frame dragging using orbiting qubits

    Science.gov (United States)

    Lanzagorta, Marco; Salgado, Marcelo

    2016-05-01

    In this paper we propose information theoretic and interferometric techniques to detect the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-\\tfrac{1}{2} qubits moving in equatorial circular orbits. We ignore the { O }({\\hslash }) order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-\\tfrac{1}{2} particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle’s trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose’s cosmic censorship hypothesis. Finally we propose how the Wigner rotation strictly due to frame dragging could be observed using interferometry and other quantum metrology techniques.

  5. Drag-shield drop tower residual acceleration optimisation

    Science.gov (United States)

    Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.

    2016-07-01

    Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.

  6. Ion drag force in plasmas at high electronegativity.

    Science.gov (United States)

    Denysenko, I; Yu, M Y; Stenflo, L; Xu, S

    2005-07-01

    The electric as well as the positive- and negative-ion drag forces on an isolated dust grain in an electronegative plasma are studied for large negative-ion densities, when the negative ions are not Boltzmann distributed. The investigation is carried out for submicrometer dust particles, so that the theory of Coulomb scattering is applicable for describing ion-dust interaction. Among the forces acting on the dust grain, the negative-ion drag force is found to be important. The effects of the negative-ion density, neutral-gas pressure, and dust-grain size on the forces are also considered. It is shown that by increasing the density of the negative ions one can effectively manipulate the dust grains. Our results imply that both dust voids and balls can be formed.

  7. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    Science.gov (United States)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  8. Simultaneous drag and flow measurements of Olympic skeleton athletes

    Science.gov (United States)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

  9. Substructure drag effects and recrystallization textures in aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, R. [Univ. of Sheffield (United Kingdom). Dept. of Engineering Materials; Bate, P. [Doncasters plc, Melbourne (United Kingdom)

    1999-03-10

    Many important recrystallization texture components in metals such as aluminium originate from nuclei in which the mobile high-angle boundary exists prior to, or is formed in the early stages of, annealing. Nucleation can then occur by a process known as strain-induced boundary migration (SIBM). It is possible that this process will involve several growing subgrains, and the drag from that substructure can then have a significant effect. A simple model is used to demonstrate how changes in the overall driving force for recrystallization and Zener drag can affect recrystallization textures when SIBM is involved. This is discussed in relation to experimental observations and the evidence for this process is reviewed.

  10. Observation of light dragging in rubidium vapor cell

    CERN Document Server

    Strekalov, D V; Yu, N; Maleki, L; Strekalov, Dmitry; Matsko, Andrey B.; Yu, Nan; Maleki, Lute

    2003-01-01

    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\\bf 86}, 628 (2001)].

  11. Lift and Drag Performance of Odontocete Cetacean Flippers

    Science.gov (United States)

    2009-01-01

    Cooper et al., 2008). The cross-section of a typical flipper is similar to that of a modern engineered air/ hydrofoil (Fish, 2004; Miklosovic et al., 2004...to modern engineered hydrofoils , which have hydrodynamic properties such as lift coefficient, drag coefficient and associated efficiency. Field...study are differentiated by whether or not their lift curves are linear. An engineered hydrofoil with linear behavior in the non-stall region was also

  12. Alleviation of fuselage form drag using vortex flows: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, A.

    1987-09-15

    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  13. Measuring the Effects of Lift and Drag on Projectile Motion

    Science.gov (United States)

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  14. Drag force in wind tunnels: A new method

    Science.gov (United States)

    Souza, P. V. S.; Girardi, D.; de Oliveira, P. M. C.

    2017-02-01

    A rigid object of general shape is fixed inside a wind tunnel. The drag force exerted on it by the wind is determined by a new method based on simple basic Physics concepts, provided one has a solver, any solver, for the corresponding dynamic Navier-Stokes equation which determines the wind velocity field around the object. The method is completely general, but here we apply it to the traditional problem of a long cylinder perpendicular to the wind.

  15. Thermal lift generation and drag reduction in rarefied aerodynamics

    Science.gov (United States)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  16. Reducing Aerodynamic Drag on Empty Open Cargo Vehicles

    Science.gov (United States)

    Ross, James C.; Storms, Bruce L.; Dzoan, Dan

    2009-01-01

    Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.

  17. Asymptotic analytical methods in fluid mechanics related to drag prediction

    Science.gov (United States)

    Inger, G. R.

    1975-01-01

    Some recent theoretical work of a purely analytical nature is described which promises to provide engineering predictions for the important drag-related phenomena of flow in the stall regime. This analytical work deals with rigorous asymptotic studies of the complete Navier-Stokes equations that govern the viscous flow around any aerodynamic body under conditions where boundary layer separation takes place from the body surface.

  18. Simulation of the Clustering Phenomenon in a Fast Fluidized Bed: The Importance of Drag Correlation

    Institute of Scientific and Technical Information of China (English)

    李佑楚

    2004-01-01

    Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.

  19. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  20. 5th Drag Reduction in Engineering Flows Meeting

    CERN Document Server

    1991-01-01

    The European Drag Reduction Meeting has been held on 15th and 16th November 1990 in London. This was the fifth of the annual European meetings on drag reduction in engineering flows. The main objective of this meeting was to discuss up-to-date results of drag reduction research carried out in Europe. The organiser has adopted the philosophy of discussing the yesterday's results rather than the last year's results. No written material has therefore been requested for the meeting. It was only after the meeting the submission of papers was requested to the participants, from which 16 papers were selected for this proceedings volume. The meeting has attracted a record number of participants with a total of 52 researchers from seven European countries, U. K. , France, Germany, the Netherlands, Italy, Switzerland and U. S. S. R. as well as from Japan, Canada and Australia. The subjects covered in this proceedings volume include riblets, LEBUs (Large Eddy Break-Up device), surface roughness, compliant surfaces and p...

  1. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  2. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  3. Frame-dragging Effect in Strong Gravity Regime

    CERN Document Server

    Chakraborty, Chandrachur

    2016-01-01

    The exact frame-dragging (or Lense-Thirring (LT) precession) rates for Kerr, Kerr-Taub-NUT (KTN) and Taub-NUT spacetimes have been derived. Remarkably, in the case of the `zero angular momentum' Taub-NUT spacetime, the frame-dragging effect is shown not to vanish, when considered for spinning test gyroscope. In the case of the interior of the pulsars, the exact frame-dragging rate monotonically decreases from the center to the surface along the pole and but it shows an `anomaly' along the equator. Moving from the equator to the pole, it is observed that this `anomaly' disappears after crossing a critical angle. The `same' anomaly can also be found in the KTN spacetime. The resemblance of the anomalous LT precessions in the KTN spacetimes and the spacetime of the pulsars could be used to identify a role of Taub-NUT solutions in the astrophysical observations or equivalently, a signature of the existence of NUT charge in the pulsars.

  4. Effects of drag factor on physiological aspects of rowing.

    Science.gov (United States)

    Kane, D A; Jensen, R L; Williams, S E; Watts, P B

    2008-05-01

    This study examined the effects of two resistances, or "drag factors" on selected physiological variables during incremental progressive rowing tests (seven 3-min stages) on a Concept2 ergometer. Subjects were seven male and seven female university club rowers. Their mean age, body mass and height were 19.6 +/- 1.5 years, 72.7 +/- 8.0 kg, and 172.2 +/- 7.5 cm, respectively. Progressive tests were conducted using drag factors 100 (D100) and 150 (D150) before the spring racing season. Values were determined for the following physiological variables: ventilation (V.E), oxygen uptake (V.O2), heart rate (HR), blood lactate concentration (BLC), respiratory exchange ratio (R) and rowing economy (W/V.O2). Comparisons across all six submaximal stages showed no significant difference between D(100) and D(150) for any of the variables measured (p > .05). Maximal V.E(max) was significantly greater at D100 than D150 (p D100 than at D150, though not significantly so. The mean D100-D150 differences in V.E and SR for each stage were significantly correlated (r = 0.76, p < .01), suggesting drag factor may affect V.E via SR.

  5. Effect of The Swimmer's Head Position on Passive Drag.

    Science.gov (United States)

    Cortesi, Matteo; Gatta, Giorgio

    2015-12-22

    The aim of this study was to investigate the effect of the head position on passive drag with a towing-line experiment in a swimming pool. The tests were performed on ten male swimmers with regional level swimming skills and at least 10 years of competitive swimming experience. They were towed underwater (at a depth of 60 cm) at three speeds (1.5, 1.7 and 1.9 m/s) and in two body positions (arms above the swimmer's head and arms alongside the body). These two body positions were repeated while the swimmer's head was positioned in three different ways: head-up, head-middle and head-down in relation to the body's horizontal alignment. The results showed a reduction of 4-5.2% in the average passive drag at all speeds when the head was down or aligned to the swimmer's arms alongside the body, in comparison to the head-up position. A major significant decrease of 10.4-10.9% (p < 0.05) was shown when the head was down or aligned at the swimmer's arms above the swimmer's head. The passive drag tended to decrease significantly by a mean of 17.6% (p < 0.001) for all speeds examined with the arms alongside the body position rather than with the arms above the head position. The swimmer's head location may play an important role in reducing hydrodynamic resistance during passive underwater gliding.

  6. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.

    Science.gov (United States)

    Bhushan, Bharat

    2011-01-01

    The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  7. A Comparison of Experimental and Analytical Procedures to Measure Passive Drag in Human Swimming.

    Directory of Open Access Journals (Sweden)

    Tiago M Barbosa

    Full Text Available The aim of this study was to compare the swimming hydrodynamics assessed with experimental and analytical procedures, as well as, to learn about the relative contributions of the friction drag and pressure drag to total passive drag. Sixty young talented swimmers (30 boys and 30 girls with 13.59±0.77 and 12.61±0.07 years-old, respectively were assessed. Passive drag was assessed with inverse dynamics of the gliding decay speed. The theoretical modeling included a set of analytical procedures based on naval architecture adapted to human swimming. Linear regression models between experimental and analytical procedures showed a high correlation for both passive drag (Dp = 0.777*Df+pr; R2 = 0.90; R2a = 0.90; SEE = 8.528; P<0.001 and passive drag coefficient (CDp = 1.918*CDf+pr; R2 = 0.96; R2a = 0.96; SEE = 0.029; P<0.001. On average the difference between methods was -7.002N (95%CI: -40.480; 26.475 for the passive drag and 0.127 (95%CI: 0.007; 0.247 for the passive drag coefficient. The partial contribution of friction drag and pressure drag to total passive drag was 14.12±9.33% and 85.88±9.33%, respectively. As a conclusion, there is a strong relationship between the passive drag and passive drag coefficient assessed with experimental and analytical procedures. The analytical method is a novel, feasible and valid way to gather insight about one's passive drag during training and competition. Analytical methods can be selected not only to perform race analysis during official competitions but also to monitor the swimmer's status on regular basis during training sessions without disrupting or time-consuming procedures.

  8. 富营养条件下酸雨对两种湿生植物硝酸还原酶活性的影响%The effects of simulated acid rain on the nitrate reductase activities of Acorus gramineus and Saururus chinensis under eutrophication

    Institute of Scientific and Technical Information of China (English)

    尹璐; 薛建辉; 罗英

    2014-01-01

    Based on a hydroponic experiment, the effect of the simulated acid rain( pH2.0 and pH3.5) was investigated on the nitrate reductase activities of leaves in Acorus gramineus and Saururus chinensis. The main results were described as follows:( 1) There existed extremely significant impact on the leaf nitrate reductase activity for both aquatic plants caused by eutrophication treatment( three levels);with the increase of eutrophication level the leaf nitrate reductase ac-tivity increased first and then decreased afterwards. ( 2) There was no significant impact on the leaf nitrate reductase ac-tivity for both aquatic plants caused by the simulated acid rain ( pH2�0 and pH3.5) . With the increase of acid rain con-centration level. The leaf nitrate reductase activity represented a decreasing trend; the leaf nitrate reductase activity of Acorus gramineus and Saururus chinensis reduced with increase of acid rain processing times.%采用水培试验法,研究模拟酸雨( pH=2.0,pH=3.5)在富营养条件下对石菖蒲及三白草叶片的硝酸还原酶活性的影响。结果表明:富营养化对石菖蒲及三白草叶片硝酸还原酶活性产生极显著影响(p<0.01),随着富营养化水平的提高,植物叶片硝酸还原酶活性呈现先上升后下降趋势;酸雨处理对石菖蒲及三白草叶片硝酸还原酶活性影响未达显著水平,但随酸雨浓度的增加,石菖蒲及三白草硝酸还原酶活性呈现逐渐降低的趋势;另外,随着酸雨次数的增加,石菖蒲及三白草叶片硝酸还原酶活性逐渐降低。

  9. A design and analysis approach for drag reduction on aircraft with adaptive lifting surfaces

    Science.gov (United States)

    Cusher, Aaron Anthony

    Adaptive lifting surfaces, which can be tailored for different flight conditions, have been shown to be beneficial for drag reduction when compared with conventional non-adaptive surfaces. Applying multiple trailing-edge flaps along the wing span allows for the redistribution of lift to suit different flight conditions. The current approach uses the trailing-edge flap distribution to reduce both induced- and profile- components of drag with a trim constraint. Induced drag is reduced by optimally redistributing the lift between the lifting surfaces and along the span of each surface. Profile drag is reduced through the use of natural laminar flow airfoils, which maintain distinct low-drag-ranges (drag buckets) surrounding design lift values. The low-drag-ranges can be extended to include off-design values through small flap deflections, similar to cruise flaps. Trim is constrained for a given static margin by considering longitudinal pitching moment contributions from changes in airfoil section due to individual flap deflections, and from the redistribution of fore-and-aft lift due to combination of flap deflections. The approach uses the concept of basic and additional lift to linearlize the problem, which allows for standard constrained-minimization theory to be employed for determining optimal flap-angle solutions. The resulting expressions for optimal flap-angle solutions are presented as simple matrix equations. This work presents a design and analysis approach which is used to produce flap-angle solutions that independently reduce induced, profile, and total drag. Total drag is defined to be the sum of the induced- and profile-components of drag. The general drag reduction approach is adapted for each specific situation to develop specific drag reduction schemes that are applied to single- and multiple-surface configurations. Successful results show that, for the application of the induced drag reduction schemes on a tailless aircraft, near-elliptical lift

  10. Collisions and drag in debris discs with eccentric parent belts

    Science.gov (United States)

    Löhne, T.; Krivov, A. V.; Kirchschlager, F.; Sende, J. A.; Wolf, S.

    2017-08-01

    Context. High-resolution images of circumstellar debris discs reveal off-centred rings that indicate past or ongoing perturbation, possibly caused by secular gravitational interaction with unseen stellar or substellar companions. The purely dynamical aspects of this departure from radial symmetry are well understood. However, the observed dust is subject to additional forces and effects, most notably collisions and drag. Aims: To complement the studies of dynamics, we therefore aim to understand how the addition of collisional evolution and drag forces creates new asymmetries and strengthens or overrides existing ones. Methods: We augmented our existing numerical code Analysis of Collisional Evolution (ACE) by an azimuthal dimension, the longitude of periapse. A set of fiducial discs with global eccentricities ranging from 0 to 0.4 was evolved over gigayear timescales. Size distribution and spatial variation of dust were analysed and interpreted. We discuss the basic impact of belt eccentricity on spectral energy distributions and images. Results: We find features imposed on characteristic timescales. First, radiation pressure defines size cut-offs that differ between periapse and apoapse, resulting in an asymmetric halo. The differences in size distribution make the observable asymmetry of the halo depend on wavelength. Second, collisional equilibrium prefers smaller grains on the apastron side of the parent belt, reducing the effect of pericentre glow and the overall asymmetry. Third, Poynting-Robertson drag fills the region interior to an eccentric belt such that the apastron side is more tenuous. Interpretation and prediction of the appearance in scattered light is problematic when spatial and size distribution are coupled.

  11. Studies of compressible shear flows and turbulent drag reduction

    Science.gov (United States)

    Orszag, S. A.

    1981-04-01

    Compressible shear flows and drag reduction were examined and three methods are addressed: (1) the analytical and numerical aspects of conformal mapping were summarized and a new method for computation of these maps is presented; (2) the computer code SPECFD for solution of the three dimensional time dependent Navier-Stokes equations for compressible flow on the CYBER 203 computer is described; (3) results of two equation turbulence modeling of turbulent flow over wavy walls are presented. A modified Jones-Launder model is used in two dimensional spectral code for flow in general wavy geometries.

  12. Drag flow analysis of Oldroyd eight constant fluid

    Directory of Open Access Journals (Sweden)

    A.M. Siddiqui

    2016-09-01

    Full Text Available This article presents the steady drag flow problems. The incompressible Oldroyd eight constant fluid flow is considered between two infinite parallel plates. Three flow problems including the Couette flow, Poiseuille flow and Couette–Poiseuille flow are modeled. The source term appearing in the nonlinear differential equation for each case is simplified with the application of modified homotopy perturbation method, and thus the general solution is obtained. The validity of second order approximate analytic solutions is tested with the aid of a numerical technique. The order of accuracy has been obtained in tabular form and the graphs are presented to demonstrate the difference between the three flow regimes.

  13. The drag of inflatable rubber de-icers

    Science.gov (United States)

    Robinson, Russell G

    1938-01-01

    Force tests on rubber de-icer models of several different profiles, at approximately one-third full scale, been carried out in the NACA 8-foot high speed wind tunnel. The conventional de-icer installation, deflated, added about 15 percent to the smooth-wing drag and, inflated, added about 100 percent. An improved installation with flash attaching strips added about 10 percent, deflated. The bulging, or ballooning, of de-icers from the wing surface is described and some remedies are discussed.

  14. Giant Surface-Plasmon-Induced Drag Effect in Metal Nanowires

    Science.gov (United States)

    Durach, Maxim; Rusina, Anastasia; Stockman, Mark I.

    2009-10-01

    Here, for the first time we predict a giant surface-plasmon-induced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. In nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to ˜105-106V/cm. The giant SPIDER is an ultrafast effect whose bandwidth for nanometric wires is ˜20THz. It opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine.

  15. Giant surface plasmon induced drag effect (SPIDEr) in metal nanowires

    Science.gov (United States)

    Durach, Maxim; Rusina, Anastasia; Stockman, Mark I.

    2009-08-01

    Here, for the first time we predict a giant surface plasmon-induced drag effect (SPIDEr), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions, in nanowires, this giant SPIDEr generates rectified THz potential differences up to 10 V and extremely strong electric fields up to ~ 105 ~ 106 V/cm. The SPIDEr is an ultrafast effect whose bandwidth for nanometric wires is ~ 20 THz. The giant SPIDEr opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine.

  16. Variation of the drag coefficient with wind and wave state

    OpenAIRE

    Byars, Beverly J.

    1985-01-01

    Approved for public release; distribution unlimited The dissipation method is used to obtain estimates for the friction velocity, U>t, as well as values for the neutral drag coefficient, C-^jj, for data collected from a coastal tower off San Diego, California. C-q-^ is found to be independent of the ten-meter height windspeed, U-j^q, for velocities between 4-9 m/sec. Its value is estimated to be (0.94+0.4)10 which compares well with values by Smith (1980) and Large and...

  17. Ad/dressing the nation: drag and authenticity in post-apartheid South Africa.

    Science.gov (United States)

    Spruill, Jennifer

    2004-01-01

    This paper examines a style of drag in South Africa that features "traditional African" clothing. In a region in which homosexuality is denigrated as a colonial, European import and "unAfrican," the meaning of "traditional drag" is deeply inflected by the question of cultural authenticity. This dragging practice fits within a distinctly post-colonial production of tradition and its self-conscious display--in the form of attire--of a decidedly "gay" one. Traditional drag also responds to ongoing politics within and between lesbian and gay communities about racial "representivity" and "transformation." The paper focuses on displays of traditional drag at Johannesburg's Gay and Lesbian Pride Parade but also explores the complex politics of publicity and address suggested by varying contexts in which traditional dress and drag are mobilized.

  18. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J; Hong, Y J; Li, Q; Huang, H, E-mail: fangjuan314@163.com [Academy of Equipment Command and Technology, Post Box 3380-86, Huairou Dis. Beijing 101416 (China)

    2011-02-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  19. Spatially distributed control for optimal drag reduction of the flow past a circular cylinder

    Science.gov (United States)

    Poncet, Philippe; Hildebrand, Roland; Cottet, Georges-Henri; Koumoutsakos, Petros

    We report high drag reduction in direct numerical simulations of controlled flows past circular cylinders at Reynolds numbers of 300 and 1000. The flow is controlled by the azimuthal component of the tangential velocity of the cylinder surface. Starting from a spanwise-uniform velocity profile that leads to high drag reduction, the optimization procedure identifies, for the same energy input, spanwise-varying velocity profiles that lead to higher drag reduction. The three-dimensional variations of the velocity field, corresponding to modes A and B of three-dimensional wake instabilities, are largely responsible for this drag reduction. The spanwise wall velocity variations introduce streamwise vortex braids in the wake that are responsible for reducing the drag induced by the primary spanwise vortices shed by the cylinder. The results demonstrate that extending two-dimensional controllers to three-dimensional flows is not optimal as three-dimensional control strategies can lead efficiently to higher drag reduction.

  20. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  1. Drag force in a string model dual to large-N QCD

    CERN Document Server

    Talavera, P

    2007-01-01

    We compute the drag force exerted on a quark and a di-quark systems in a background dual to large-N QCD at finite temperature. We find that appears a drag force in the former setup with flow of energy proportional to the mass of the quark while in the latter there is no dragging as in other studies. We also review the screening length.

  2. Drag force in a string model dual to large-N QCD

    Energy Technology Data Exchange (ETDEWEB)

    Talavera, Pere [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Jordi Girona 1-3, E-08034 Barcelona (Spain)

    2007-01-15

    We compute the drag force exerted on a quark and a di-quark systems in a background dual to large-N QCD at finite temperature. We find that appears a drag force in the former setup with flow of energy proportional to the mass of the quark while in the latter there is no dragging as in other studies. We also review the screening length.

  3. Invariant Type-B characteristics of drag-reducing microalgal biopolymer solutions

    Science.gov (United States)

    Gasljevic, K.; Hall, K.; Chapman, D.; Matthys, E. F.

    2017-05-01

    The drag-reducing properties of polysaccharides from marine microalgae were investigated. They were compared to two drag-reducing additives studied extensively in the past, synthetic poly(ethylene) oxide, one of the most effective drag-reducing additives; and Xanthan Gum, another biopolymer often considered a model polymer for chemical and rheological research. Compared to Xanthan Gum, the most effective polymers from our microalgae show a higher drag-reducing efficiency in terms of necessary concentration to achieve a given level of drag reduction. In addition, they show a striking Type-B drag reduction behavior, which may be a very useful quality in most drag reduction applications, thanks to the independence of the drag reduction level on flow conditions such as velocity, shear stress, and tube diameter. With these polymers from microalgae we did not see evidence of Type-A behavior over the wide range of conditions studied (including pipe diameters up to 52 mm). Importantly, this suggests that the Drag Reduction coefficient in pipe flow for ideal drag-reducing solutions such as the polysaccharides investigated here is invariant at a given additive concentration of flow or solution parameters like ionic strength and can be used as a solution property to predict its drag reduction effectiveness over a wide range of conditions. On the contrary, Xanthan Gum showed evidence of both Type-A behavior in large diameter pipes and Type-B behavior in smaller ones. The polymers from microalgae also showed high resistance to degradation. Considering that these microalgae are very effective producers of polysaccharides (both extracellular and intracellular), they appear to be very promising additives for drag reduction applications.

  4. Retrieval of ocean surface wind stress and drag coefficient from spaceborne SAR

    Institute of Scientific and Technical Information of China (English)

    杨劲松; 黄韦艮; 周长宝

    2001-01-01

    A model for retrieval of wind stress and drag coefficient on the sea surface with the data measured by spacebome synthetic aperture radar (SAR) has been developed based on the SAR imaging mechanisms of ocean surface capillary waves and short gravity waves. This model consists of radiometric calibration, wind speed retrieval and wind stress and drag coefficient calculation. A Radarsat SAR image has been used to calculate wind stress and drag coeffi cient. Good results have been achieved.

  5. Estimating the Instantaneous Drag-Wind Relationship for a Horizontally Homogeneous Canopy

    Science.gov (United States)

    Pan, Ying; Chamecki, Marcelo; Nepf, Heidi M.

    2016-07-01

    The mean drag-wind relationship is usually investigated assuming that field data are representative of spatially-averaged metrics of statistically stationary flow within and above a horizontally homogeneous canopy. Even if these conditions are satisfied, large-eddy simulation (LES) data suggest two major issues in the analysis of observational data. Firstly, the streamwise mean pressure gradient is usually neglected in the analysis of data from terrestrial canopies, which compromises the estimates of mean canopy drag and provides misleading information for the dependence of local mean drag coefficients on local velocity scales. Secondly, no standard approach has been proposed to investigate the instantaneous drag-wind relationship, a critical component of canopy representation in LES. Here, a practical approach is proposed to fit the streamwise mean pressure gradient using observed profiles of the mean vertical momentum flux within the canopy. Inclusion of the fitted mean pressure gradient enables reliable estimates of the mean drag-wind relationship. LES data show that a local mean drag coefficient that characterizes the relationship between mean canopy drag and the velocity scale associated with total kinetic energy can be used to identify the dependence of the local instantaneous drag coefficient on instantaneous velocity. Iterative approaches are proposed to fit specific models of velocity-dependent instantaneous drag coefficients that represent the effects of viscous drag and the reconfiguration of flexible canopy elements. LES data are used to verify the assumptions and algorithms employed by these new approaches. The relationship between mean canopy drag and mean velocity, which is needed in models based on the Reynolds-averaged Navier-Stokes equations, is parametrized to account for both the dependence on velocity and the contribution from velocity variances. Finally, velocity-dependent drag coefficients lead to significant variations of the calculated

  6. Drag Coefficients of Low Altitude Stationary Flight Test Airship Estimated from Flight Tests

    Science.gov (United States)

    Okuyama, Masahiro; Matsumoto, Takashi

    Flight tests were carried out to obtain aerodynamic characteristics of the low altitude stationary flight test airship. The deceleration test method was used in a flight experiment to obtain the drag coefficient. Combining with the deceleration test result, the minimum drag coefficient was acquired by equating a thrust force with the corresponding drag force at the steady level flight. As a result, 0.044±0.002 were obtained on the minimum drag coefficient of the airship. Modifications of the deceleration test data analysis are proposed to be applicable to test data obtained under non-zero attack angle etc. in the paper.

  7. Cyclist drag in team pursuit: influence of cyclist sequence, stature, and arm spacing.

    Science.gov (United States)

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Verboven, Pieter; Nicolai, Bart; Carmeliet, Jan

    2014-01-01

    In team pursuit, the drag of a group of cyclists riding in a pace line is dependent on several factors, such as anthropometric characteristics (stature) and position of each cyclist as well as the sequence in which they ride. To increase insight in drag reduction mechanisms, the aerodynamic drag of four cyclists riding in a pace line was investigated, using four different cyclists, and for four different sequences. In addition, each sequence was evaluated for two arm spacings. Instead of conventional field or wind tunnel experiments, a validated numerical approach (computational fluid dynamics) was used to evaluate cyclist drag, where the bicycles were not included in the model. The cyclist drag was clearly dependent on his position in the pace line, where second and subsequent positions experienced a drag reduction up to 40%, compared to an individual cyclist. Individual differences in stature and position on the bicycle led to an intercyclist variation of this drag reduction at a specific position in the sequence, but also to a variation of the total drag of the group for different sequences. A larger drag area for the group was found when riding with wider arm spacing. Such numerical studies on cyclists in a pace line are useful for determining the optimal cyclist sequence for team pursuit.

  8. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    Science.gov (United States)

    Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2015-07-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re ˜2 ×104- 3 ×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  9. Drag reduction by linear viscosity model in turbulent channel flow of polymer solution

    Institute of Scientific and Technical Information of China (English)

    吴桂芬; 李昌烽; 黄东升; 赵作广; 冯晓东; 王瑞

    2008-01-01

    A further numerical study of the theory that the drag reduction in the turbulence is related to the viscosity profile growing linearly with the distance from the wall was performed.The constant viscosity in the Navier-Stokes equations was replaced using this viscosity model.Some drag reduction characteristics were shown comparing with Virk’s phenomenology.The mean velocity and Reynolds stress profiles are consistent with the experimental and direct numerical simulation results.A drag reduction level of 45% was obtained.It is reasonable for this linear viscosity model to explain the mechanism of turbulence drag reduction in some aspects.

  10. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re- ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse- quence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  11. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  12. Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows

    Science.gov (United States)

    Yoon, Min; Ahn, Junsun; Hwang, Jinyul; Sung, Hyung Jin

    2016-08-01

    The relationship between the frictional drag and the velocity-vorticity correlations in wall-bounded turbulent flows is derived from the mean vorticity equation. A formula for the skin friction coefficient is proposed and evaluated with regards to three canonical wall-bounded flows: turbulent boundary layer, turbulent channel flow, and turbulent pipe flow. The frictional drag encompasses four terms: advective vorticity transport, vortex stretching, viscous, and inhomogeneous terms. Drag-reduced channel flow with the slip condition is used to test the reliability of the formula. The advective vorticity transport and vortex stretching terms are found to dominate the contributions to the frictional drag.

  13. Locomotion and drag in wet and dry granular media

    Science.gov (United States)

    Goldman, Daniel; Kuckuk, Robyn; Sharpe, Sarah

    2015-03-01

    Many animals move within substrates such as soil and dry sand; the resistive properties of such granular materials (GM) can depend on water content and compaction, but little is known about how such parameters affect locomotion or the relevant physics of drag and penetration. We developed a system to create homogeneous wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus) a desert-generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (~ 30 seconds) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics (and ``slip'') were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ~ 3 × more resistive than dry GM, suggesting that during burial the lizard operated near its maximum force producing capability and was thus constrained by environmental properties. work supported by NSF PoLS.

  14. Drag material change in hot runner injection molding

    Institute of Scientific and Technical Information of China (English)

    蒋炳炎; 黄伯云

    2001-01-01

    Quick material change is often encountered for the different colors or kinds of polymer in hot runner injecting molding process. Time-costing and incompleteness of material change process often affects the quality and productivity of products. In the practical production, multi-injection or white material as the transition material is often adopted for quick material change. Based on the rheological behavior of the new and the previous plastic melt, the researches on the related problems were carried out. The concept of drag material change was originally presented. The physical and mathematical model on the simultaneous flow process of the new and the previous plastic melt in hot runner were built up, which can well explain the influence of the injection speed, pressure, viscosity difference, temperature and mold structure on the drag material change efficiency. When temperature in different position in the mold was increased and adjusted, the viscosity difference between the two kinds of melt can be controlled. Therefore the material change ability can be greatly improved during the whole material change process, getting rid of more and more difficult changing in the late stage.

  15. Data base for the prediction of inlet external drag

    Science.gov (United States)

    Mcmillan, O. J.; Perkins, E. W.; Perkins, S. C., Jr.

    1980-01-01

    Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features are given, and their accuracy is assessed by means of comparison to experimental data.

  16. Lift and drag performance of odontocete cetacean flippers.

    Science.gov (United States)

    Weber, Paul W; Howle, Laurens E; Murray, Mark M; Fish, Frank E

    2009-07-01

    Cetaceans (whales, dolphins and porpoises) have evolved flippers that aid in effective locomotion through their aquatic environments. Differing evolutionary pressures upon cetaceans, including hunting and feeding requirements, and other factors such as animal mass and size have resulted in flippers that are unique among each species. Cetacean flippers may be viewed as being analogous to modern engineered hydrofoils, which have hydrodynamic properties such as lift coefficient, drag coefficient and associated efficiency. Field observations and the collection of biological samples have resulted in flipper geometry being known for most cetacean species. However, the hydrodynamic properties of cetacean flippers have not been rigorously examined and thus their performance properties are unknown. By conducting water tunnel testing using scale models of cetacean flippers derived via computed tomography (CT) scans, as well as computational fluid dynamic (CFD) simulations, we present a baseline work to describe the hydrodynamic properties of several cetacean flippers. We found that flippers of similar planform shape had similar hydrodynamic performance properties. Furthermore, one group of flippers of planform shape similar to modern swept wings was found to have lift coefficients that increased with angle of attack nonlinearly, which was caused by the onset of vortex-dominated lift. Drag coefficient versus angle of attack curves were found to be less dependent on planform shape. Our work represents a step towards the understanding of the association between performance, ecology, morphology and fluid mechanics based on the three-dimensional geometry of cetacean flippers.

  17. Evidence of sublaminar drag naturally occurring in a curved pipe

    Science.gov (United States)

    Noorani, A.; Schlatter, P.

    2015-03-01

    Steady and unsteady flows in a mildly curved pipe for a wide range of Reynolds numbers are examined with direct numerical simulation. It is shown that in a range of Reynolds numbers in the vicinity of Reb ≈ 3400, based on bulk velocity and pipe diameter, a marginally turbulent flow is established in which the friction drag naturally reduces below the laminar solution at the same Reynolds number. The obtained values for friction drag for the laminar and turbulent (sublaminar) flows turn out to be in excellent agreement with experimental measurements in the literature. Our results are also in agreement with Fukagata et al. ["On the lower bound of net driving power in controlled duct flows," Phys. D 238, 1082 (2009)], as the lower bound of net power required to drive the flow, i.e., the pressure drop of the Stokes solution, is still lower than our marginally turbulent flow. A large-scale traveling structure that is thought to be responsible for that behaviour is identified in the instantaneous field. This mode could also be extracted using proper orthogonal decomposition. The effect of this mode is to redistribute the mean flow in the circular cross section which leads to lower gradients at the wall compared to the laminar flow.

  18. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    Science.gov (United States)

    Tucker, V A

    2000-12-01

    Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously

  19. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-09-28

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  20. Effects of surface drag on low-level frontogenesis within baroclinic waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; TAN ZheMin

    2007-01-01

    Using a three-dimensional nonhydrostatic mesoscale numerical model (MM5), the evolution and structures of baroclinic waves with and without surface drag in case of dry and moist atmosphere are simulated, with special emphases on the effects of surface drag on the low-level frontal structure and frontogenesis. There are two different effects of surface drag on the low-level frontogenesis in the dry case. On one hand, the surface drag weakens the low-level frontogenesis and less inclined to develop the baroclinic wave due to the dissipation. But on the other hand, the surface drag induces a strong ageostrophic flow, which prolongs the low-level frontogenesis and finally leads to the enhancement of cold front. Compared with the no surface drag case, the surface drag increases the frontal slope especially in the boundary layer, where the front is almost vertical to the surface, and then enhances the prefrontal vertical motion. All these conclusions expanded the analytical theory of Tan and Wu (1990). In the moist atmosphere, the influence of surface drag on frontal rainbands is also obvious. The surface drag weakens the convection, and reduces the energy dissipation near the surface when the initial relative humidity is relatively weak. At this time, the confluence induced post-frontal updrafts moves across the cold front and reinforces the prefrontal convection, which is beneficial to the maintenance of the rainband in cold sector. Given the enhancement of relative humidity, the moist convection dominates the low-level frontogenesis while the retardation of surface drag on energy dissipation is not obvious, therefore the effects of surface drag on the low-level frontogenesis and precipitation are reduced.

  1. Effects of surface drag on low-level frontogenesis within baroclinic waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using a three-dimensional nonhydrostatic mesoscale numerical model (MM5), the evolution and structures of baroclinic waves with and without surface drag in case of dry and moist atmosphere are simulated, with special emphases on the effects of surface drag on the low-level frontal structure and frontogenesis. There are two different effects of surface drag on the low-level frontogenesis in the dry case. On one hand, the surface drag weakens the low-level frontogenesis and less inclined to develop the baroclinic wave due to the dissipation. But on the other hand, the surface drag induces a strong ageostrophic flow, which prolongs the low-level frontogenesis and finally leads to the enhancement of cold front. Compared with the no surface drag case, the surface drag increases the frontal slope espe- cially in the boundary layer, where the front is almost vertical to the surface, and then enhances the prefrontal vertical motion. All these conclusions expanded the analytical theory of Tan and Wu (1990). In the moist atmosphere, the influence of surface drag on frontal rainbands is also obvious. The surface drag weakens the convection, and reduces the energy dissipation near the surface when the initial relative humidity is relatively weak. At this time, the confluence induced post-frontal updrafts moves across the cold front and reinforces the prefrontal convection, which is beneficial to the maintenance of the rainband in cold sector. Given the enhancement of relative humidity, the moist convection domi- nates the low-level frontogenesis while the retardation of surface drag on energy dissipation is not obvious, therefore the effects of surface drag on the low-level frontogenesis and precipitation are re- duced.

  2. Drag reduction by wing tip slots in a gliding Harris' hawk, Parabuteo unicinctus

    Science.gov (United States)

    Tucker

    1995-01-01

    The anterior-most primary feathers of many birds that soar over land bend upwards and separate vertically to form slotted wing tips during flight. The slots are thought to reduce aerodynamic drag, although drag reduction has never been demonstrated in living birds. Wing theory explains how the feathers that form the tip slots can reduce induced drag by spreading vorticity horizontally along the wing and by acting as winglets, which are used on aircraft to make wings non-planar and to spread vorticity vertically. This study uses the induced drag factor to measure the induced drag of a wing relative to that of a standard planar wing with the same span, lift and speed. An induced drag factor of less than 1 indicates that the wing is non-planar. The minimum drag of a Harris' hawk gliding freely in a wind tunnel was measured before and after removing the slots by clipping the tip feathers. The unclipped hawk had 70­90 % of the drag of the clipped hawk at speeds between 7.3 and 15.0 m s-1. At a wing span of 0.8 m, the unclipped hawk had a mean induced drag factor of 0.56, compared with the value of 1.10 assumed for the clipped hawk. A Monte Carlo simulation of error propagation and a sensitivity analysis to possible errors in measured and assumed values showed that the true mean value of the induced drag factor for the unclipped hawk was unlikely to be more than 0.93. These results for a living bird support the conclusions from a previous study of a feathered tip on a model wing in a wind tunnel: the feathers that form the slotted tips reduce induced drag by acting as winglets that make the wings non-planar and spread vorticity both horizontally and vertically.

  3. Studies of drag on the nanocomposite superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brassard, Jean-Denis [Anti-icing Materials International Laboratory (AMIL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Centre Universitaire de Recherche sur l’Aluminium (CURAL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Sarkar, D.K., E-mail: dsarkar@uqac.ca [Centre Universitaire de Recherche sur l’Aluminium (CURAL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Perron, Jean [Anti-icing Materials International Laboratory (AMIL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada)

    2015-01-01

    Graphical abstract: - Highlights: • The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. • SA-functionalization of ZnO nanoparticles in the thin films was confirmed by XRD and FTIR. • The measured rms roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on glass. • The wetting property shows that the surface of the film is superhydrophobic with the CA of 156 ± 4° and CAH of 4 ± 2°. • The drag reduction on the surface of superhydrophobic glass sphere is 16% lower than as-received glass sphere. - Abstract: The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  4. Electron and phonon drag in thermoelectric transport through coherent molecular conductors

    DEFF Research Database (Denmark)

    Lü, Jing-Tao; Wang, Jian-Sheng; Hedegård, Per

    2016-01-01

    there are at least two phonon degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation, we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related to two other phenomena: (1) adiabatic charge pumping through...

  5. Turbulent Taylor-Couette flow over riblets: drag reduction and the effect of bulk fluid rotation

    Science.gov (United States)

    Greidanus, A. J.; Delfos, R.; Tokgoz, S.; Westerweel, J.

    2015-05-01

    A Taylor-Couette facility was used to measure the drag reduction of a riblet surface on the inner cylinder. The drag on the surfaces of the inner and outer cylinders is determined from the measured torque when the cylinders are in exact counter-rotation. The three velocity components in the instantaneous flow field were obtained by tomographic PIV and indicate that the friction coefficients are strongly influenced by the flow regimes and structures. The riblet surface changes the friction at the inner-cylinder wall, which generates an average bulk fluid rotation. A simple model is proposed to distinguish drag changes due to the rotation effect and the riblet effect, as a function of the measured drag change and shear Reynolds number . An uncorrected maximum drag reduction of 5.3 % was found at that corresponds to riblet spacing Reynolds number . For these conditions, the model predicts an azimuthal bulk velocity shift of 1.4 %, which is confirmed by PIV measurements. This shift indicates a drag change due to a rotation effect of -1.9 %, resulting in a net maximum drag reduction of 3.4 %. The results correspond well with earlier reported results and demonstrate that the Taylor-Couette facility is a suitable and accurate measurement tool to characterize the drag performance of surfaces.

  6. Sign reversal of drag in bilayer systems with in-plane periodic potential modulation

    DEFF Research Database (Denmark)

    Alkauskas, A.; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    2002-01-01

    We develop a theory for describing frictional drag in bilayer systems with in-plane periodic potential modulations, and use it to investigate the drag between bilayer systems in which one of the layers is modulated in one direction. At low temperatures, as the density of carriers in the modulated...

  7. Coulomb Drag as a Probe of Coupled Plasmon Modes in Parallel Quantum Wells

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang

    1994-01-01

    parameters. The acoustic mode causes a sharp upturn in the scaled drag rate with increasing temperature at T≈0.2TF. Other experimental signatures of the plasmon-dominated drag rate are a d-3 dependence on the well separation d and a peak as a function of relative densities at matched Fermi velocities....

  8. The form drag due to vegetated weir-like obstacles interpreted as expansion losses

    NARCIS (Netherlands)

    Ali, S.; Uijttewaal, W.S.J.

    2009-01-01

    The Objective of this study is to estimate the form drag due to vegetated weir- like obstacles. Head loss due to submerged vegetated dikes and groins has been modeled by expansion loss form drag model (Energy and momentum balance principles) and it has been compared with experimental data. An experi

  9. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.

    Science.gov (United States)

    Polidori, G; Taïar, R; Fohanno, S; Mai, T H; Lodini, A

    2006-01-01

    This study deals with skin-friction drag analysis in underwater swimming. Although lower than profile drag, skin-friction drag remains significant and is the second and only other contribution to total drag in the case of underwater swimming. The question arises whether varying the thermal gradient between the underwater swimmer and the pool water may modify the surface shear stress distribution and the resulting skin-friction drag acting on a swimmer's body. As far as the authors are aware, such a question has not previously been addressed. Therefore, the purpose of this study was to quantify the effect of this thermal gradient by using the integral formalism applied to the forced convection theory. From a simplified model in a range of pool temperatures (20-30 degrees C) it was demonstrated that, whatever the swimming speeds, a 5.3% reduction in the skin-friction drag would occur with increasing average boundary-layer temperature provided that the flow remained laminar. However, as the majority of the flow is actually turbulent, a turbulent flow analysis leads to the major conclusion that friction drag is a function of underwater speed, leading to a possible 1.5% reduction for fast swimming speeds above 1m/s. Furthermore, simple correlations between the surface shear stress and resulting skin-friction drag are derived in terms of the boundary-layer temperature, which may be readily used in underwater swimming situations.

  10. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  11. Experimental Study of Drag Resistance using a Laboratory Scale Rotary Set-Up

    DEFF Research Database (Denmark)

    Weinell, Claus Erik; Olsen, Kenneth N.; Christoffersen, Martin W.;

    2003-01-01

    This work covers an experimental study of the drag resistance of different painted surfaces and simulated large-scale irregularities, viz. dry spraying, weld seams, barnacle fouling and paint remains. A laboratory scale rotary set-up was used to determine the drag resistance, and the surface...

  12. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  13. Lateral-drag Casimir forces induced by anisotropy

    CERN Document Server

    Nefedov, Igor S

    2016-01-01

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement or in quantum noncontact friction where it is caused by the mutual motion of the bodies, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  14. Lateral-drag propulsion forces induced by anisotropy.

    Science.gov (United States)

    Nefedov, Igor S; Rubi, J Miguel

    2017-07-21

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab made of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  15. The Drag Induced Resonant Capture for Kuiper Belt Objects

    CERN Document Server

    Jiang, I G; Jiang, Ing-Guey; Yeh, Li-Chin

    2004-01-01

    It has been an interesting question that why there are one-third of Kuiper Belt Objects (KBOs) trapped into the 3:2 resonance but, in contrast, only several KBOs are claimed to be associated with the 2:1 resonance. In a model proposed by Zhou et al. (2002), the stochastic outward migration of the Neptune could reduce the number of particles in the 2:1 resonance and thus the objects in the 3:2 resonance become more distinct. As a complementary study, we investigate the effect of proto-stellar discs on the resonance capture. Our results show that the gaseous drag of a proto-stellar disc can trap KBOs into the 3:2 resonance rather easily. In addition, no objects are captured into the 2:1 resonance in our simulation.

  16. Intertial Frame Dragging in an Acoustic Analogue spacetime

    CERN Document Server

    Chakraborty, Chandrachur; Majumdar, Parthasarathi

    2015-01-01

    We report an incipient exploration of the Lense-Thirring precession effect in a rotating {\\it acoustic analogue black hole} spacetime. An exact formula is deduced for the precession frequency of a gyroscope due to inertial frame dragging, close to the ergosphere of a `Draining Bathtub' acoustic spacetime which has been studied extensively for acoustic Hawking radiation of phonons and also for `superresonance'. The formula is verified by embedding the two dimensional spatial (acoustic) geometry into a three dimensional one where the similarity with standard Lense-Thirring precession results within a strong gravity framework is well known. Prospects of experimental detection of this new `fixed-metric' effect in acoustic geometries, are briefly discussed.

  17. Computational analysis of methods for reduction of induced drag

    Science.gov (United States)

    Janus, J. M.; Chatterjee, Animesh; Cave, Chris

    1993-01-01

    The purpose of this effort was to perform a computational flow analysis of a design concept centered around induced drag reduction and tip-vortex energy recovery. The flow model solves the unsteady three-dimensional Euler equations, discretized as a finite-volume method, utilizing a high-resolution approximate Riemann solver for cell interface flux definitions. The numerical scheme is an approximately-factored block LU implicit Newton iterative-refinement method. Multiblock domain decomposition is used to partition the field into an ordered arrangement of blocks. Three configurations are analyzed: a baseline fuselage-wing, a fuselage-wing-nacelle, and a fuselage-wing-nacelle-propfan. Aerodynamic force coefficients, propfan performance coefficients, and flowfield maps are used to qualitatively access design efficacy. Where appropriate, comparisons are made with available experimental data.

  18. Turbulent drag reduction with liquid-infused surfaces

    Science.gov (United States)

    Smits, Alexander; van Buren, Tyler

    2016-11-01

    We present turbulent skin friction reduction over liquid-impregnated surfaces in Taylor-Couette flow. The surface of the inner cylinder of the facility contains square grooves, with widths from 100 μm to 800 μm and a fixed liquid area of half the total area. Alkane liquids are infused in the surface with viscosities from 1/3 to 2 times that of water. For Reynolds numbers up to Red =10,500 corresponding to a flow shear of τ=50 Pa, we achieve drag reduction exceeding 30%, three times higher than ever reported for liquid-infused surfaces. Supported by the ONR through MURI Grant Nos. N00014-12-1-0875 and N00014-12-1-0962.

  19. Bluff body drag manipulation using pulsed jets and Coanda effect

    CERN Document Server

    Barros, Diogo; Noack, Bernd R; Spohn, Andreas; Ruiz, Tony

    2015-01-01

    We analyze the effects of unsteady forcing on the wake and drag of a square back blunt body. In combination with a Coanda effect, shear-layer forcing by periodic blowing of wall bounded jets allows to recover over 30 % of the base pressure. The actuation frequency is an order of magnitude higher than the natural shear-layer instabilities. High frequency Coanda blowing leads to a thinner time-averaged wake. The effect of this form shaping is analyzed by pressure taps on the rear side of the model in combination with PIV measurements. Velocity components of the mean field indicate a pressure recovery and favorable mean curvature effects across the separated shear layers in the region close to the rear end of the blunt body when actuation is applied. The wake dynamics further downstream, however, remains very similar to the unforced oscillatory wake mode.

  20. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-spin...... species. This "spin drag" effect enhances the resistivity of the system. The enhancement is stronger the lower the dimension is, and should be measurable in, for example, a two-dimensional electron gas with ferromagnetic contacts. We also include spin-flip scattering, which has two effects......: it equilibrates the spin density imbalance and, provided it has a non-s-wave component, also a current imbalance....

  1. Effect of Gravitational Frame Dragging on Orbiting Qubits

    CERN Document Server

    Lanzagorta, Marco

    2012-01-01

    In this paper we discuss the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-1/2 qubits moving in an equatorial radial fall with zero angular momentum and equatorial circular orbits. We ignore the ${\\cal O}(\\hbar)$ order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-1/2 particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle's trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose's cosmic censorship hypothesis.

  2. Drag and propulsive forces in electric sails with negative polarity

    Science.gov (United States)

    Sanchez-Torres, Antonio

    2016-02-01

    An electric solar sail (E-sail) is a recent propellantless propulsion concept for a direct exploration of the Solar System. An E-sail consists of a set of bare, conductive tethers at high positive/negative bias, prone to extract solar wind momentum by Coulomb deflection of protons. Additionally, a negatively biased E-sail has been proposed as a concept for de-orbiting space debris with drag forces produced in Low Earth Orbit (LEO). The present work focuses on the negative-bias case with a sheath that must be correctly modeled for a flowing plasma ambient. Ion scattering within the sheath and the resulting force are determined for several plasma conditions. Since the plasma flow does reduce the effective range for the ion scattering within the sheath, the resulting force is then reduced. Tethers at very high negative bias should be required for extremely high plasma flow.

  3. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  4. 渗透胁迫和盐胁迫对荞麦硝酸还原酶及亚硝酸还原酶活性的影响%Effects of Osmotic and Salt Stress on Nitrate Reductase and Nitrite Reductase Activities of Buckwheat

    Institute of Scientific and Technical Information of China (English)

    杨洪兵

    2013-01-01

    以盐敏感荞麦品种TQ-0808和耐盐荞麦品种川荞1号为试验材料,采用NaCl和等渗PEG-6000处理,研究渗透胁迫和盐胁迫对不同耐盐性荞麦品种硝酸还原酶(NR)及亚硝酸还原酶(NiR)活性的影响.结果表明,高浓度盐胁迫下盐敏感荞麦品种叶片NR及NiR活性显著降低,而耐盐荞麦品种降低幅度相对较小,且高浓度盐胁迫下盐敏感荞麦品种叶片NR及NiR活性的降低幅度明显大于渗透胁迫的,说明Na+毒害效应发挥了主要作用.另外,两个荞麦品种叶片NR活性高低与其叶片硝酸盐含量呈正相关.%The salt-sensitive buckwheat variety (TQ-0808) and salt-tolerant buckwheat variety (Chuanqiao No.1)were used as experimental materials,which were treated with NaCl and iso-osmotic PEG-6000.The effects of osmotic and salt stress on nitrate reductase and nitrite reductase activity of buckwheat varieties with different salt tolerance were studied.The results showed that the nitrate reductase and nitrite reductase activity of leaves in salt-sensitive buckwheat variety were decreased significantly under the salt stress of high concentration,while that in salt-tolerant buckwheat variety were decreased relatively small,and that in salt-sensitive buckwheat variety under the salt stress of high concentration were obviously more than those under the osmotic stress.It indicated that ion toxicity effects of Na + play the major role.In addition,the level of nitrate reductase activity of leaves in two buckwheat varieties was positively correlated with the nitrate content of leaves.

  5. Effect of Swim Cap Surface Roughness on Passive Drag.

    Science.gov (United States)

    Gatta, Giorgio; Cortesi, Matteo; Zamparo, Paola

    2015-11-01

    In the last decade, great attention has been given to the improvements in swimming performance that can be obtained by wearing "technical swimsuits"; the technological evolution of these materials only marginally involved swim caps production, even if several studies have pointed out the important role of the head (as main impact point with the fluid) on hydrodynamics. The aim of this study was to compare the effects on passive drag (Dp) of 3 swim cap models: a smooth silicon helmet cap (usually used during swimming competitions), a silicon helmet cap with "dimples," and a silicon helmet cap with "wrinkles." Experiments were performed on 10 swimmers who were towed underwater (at a depth of 60 cm) at 3 speeds (1.5, 1.7, and 1.9 m·s) and in 2 body positions: LA (arms above the swimmer's head) and SA (arms alongside the body). The Dp values obtained in each trial were divided by the square of the corresponding speed to obtain the speed-specific drag (the k coefficient = Dp/v). No differences in k were observed among swim caps in the LA position. No differences in k were observed between the smooth and dimpled helmets also in the SA position; however, the wrinkled swim cap helmet showed a significant larger k (4.4%) in comparison with the model with dimples, when the swimmers kept their arms alongside the body (in the SA position). These data suggest that wearing a wrinkled swim cap helmet can be detrimental to performance at least in this specific position.

  6. Experimental Study on Physical Mechanism of Drag Reduction of Hydrophobic Materials in Laminar Flow

    Institute of Scientific and Technical Information of China (English)

    YU Yong-Sheng; WEI Qin-Ding

    2006-01-01

    We experimentally study the physical mechanism of the drag reduction of hydrophobic materials in the macroscopic scale. The experiment includes the drag and velocity measurements of laminar boundary layer Sow over flat plates, and the observation of air bubbles on the surfaces. The plate surfaces have different wetting and roughness properties. In the drag measurements, the plates with bubbles on the surfaces lead to drag reduction, but not for those without bubbles. Velocity measurement confirms that the flow is laminar and gives apparent fluid slip on the plate wall with bubbles. In observation, air bubbles in macroscopic size emerge and enlarge on hydrophobic surfaces but not on hydrophilic surfaces. Therefore, the drag reduction of hydrophobic materials is explained by the generation of air bubbles of macroscopic size that cause the apparent velocity slip.

  7. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-09-08

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  8. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium

    CERN Document Server

    Kuan, Pei-Chen; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu

    2016-01-01

    As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material.

  9. Effect of Polymer Type and Mixing of Polymers on Drag Reduction in Turbulent Pipe Flow

    Directory of Open Access Journals (Sweden)

    Salam Hadi Hussein

    2017-05-01

    Full Text Available The paper reports on studies on effect of the type of polymer on drag reduction. The study conducted through circular pipe using Carboxy Methyl Cellulose (CMC, Xanthan gum (XG and their mixing in equal ratios as additives in pipe of diameter 0.0381m. The study covered range of parameters like concentration, mean velocity and angle of inclination of pipe. The maximum drag reduction observed was about 58%, 46% and 46% for the three polymers respectively. It is found that the drag reduction for the mixture is close to the drag reduction for XG polymer. The SPSS program has been used for correlate the data that have been obtained. The drag reduction percentage is correlated in terms of Reynolds number Re, additive concentration C (ppm and angle of inclination of pipe (deg, and the relations obtained is mentioned.

  10. Supervisor control strategy of synchronizer for wet DCT based on online estimation of clutch drag torque

    Science.gov (United States)

    Lu, Tongli; Li, Hongkui; Zhang, Jianwu; Hao, Hongtao

    2016-01-01

    The objective of this paper is to improve the performance of the synchronizer control strategy by considering the effect of clutch drag torque. The research of synchronization process in wet dual clutch transmission is performed in this paper. The significant effect of clutch drag torque is analyzed by adding a complex clutch drag torque module to synchronizer model. This paper focuses on the development of original estimation method of clutch drag torque. The estimation method offers an effective way to obtain accurate clutch drag torque, and it is applied to develop a new supervisor control strategy. Results have demonstrated that the estimation method has satisfied efficiency and accuracy and the control strategy improves the performance of the synchronizer mechanism significantly.

  11. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium

    Science.gov (United States)

    Kuan, Pei-Chen; Huang, Chang; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu

    2016-10-01

    As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material.

  12. DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J

    2005-11-14

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.

  13. Drag reduction by reconfiguration of a full tree in a wind tunnel

    Science.gov (United States)

    de Langre, Emmanuel; Tadrist, Loic; Leclercq, Tristan; Hemon, Pascal; Amandolese, Xavier; Saudreau, Marc; Marquier, Andre; Knapp, Graham; Flamand, Olivier

    2015-11-01

    The results of drag measurements performed on a full 3 m-tall cherry tree in an atmospheric wind tunnel are presented. The drag on the trunk alone is shown to increase quadratically with the velocity of the flow, as expected, but the drag on the whole tree with branches and leaves follows a smaller power law with velocity, after the reconfiguration of most leaves. The transition from the quadratic law to a linear increase of the drag of the leaves with the magnitude of the flow is observed. Data is also obtained on moment loading on the base of the tree showing also an effect of the reconfiguration. Finally, these results are compared with current models of drag reduction by reconfiguration.

  14. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium.

    Science.gov (United States)

    Kuan, Pei-Chen; Huang, Chang; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu

    2016-10-03

    As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material.

  15. Enzymology of biological nitrogen fixation. Final report, May 1, 1987--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Biological nitrogen fixation is of central importance in the earth`s nitrogen economy. Fixation of nitrogen is accomplished by a variety of microorganisms, all of them procaryotic. Some operate independently and some function symbiotically or associatively with photosynthesizing plants. Biological nitrogen fixation is accomplished via the reaction: N{sub 2} + 8H{sup +} + 8e{sup {minus}} {yields} 2NH{sub 3} + H{sub 2}. This reaction requires a minimum of 16 ATP under ideal laboratory conditions, so it is obvious that the energy demand of the reaction is very high. When certain nitrogen-fixing organisms are supplied fixed nitrogen (e.g., ammonium) the organisms use the fixed nitrogen and turn off their nitrogenase system, thus conserving energy. When the fixed nitrogen is exhausted, the organism reactivates its nitrogenase. The system is turned off by dinitrogenase reductase ADP-ribosyl transferase (DRAT) and turned back on by dinitrogenase reductase-activating glycohydrolase (DRAG). The authors have investigated the details of how DRAT and DRAG are formed, how they function, and the genetics of their formation and operation.

  16. Introduction of parameterized sea ice drag coefficients into ice free-drift modeling

    Institute of Scientific and Technical Information of China (English)

    LU Peng; LI Zhijun; HAN Hongwei

    2016-01-01

    Many interesting characteristics of sea ice drift depend on the atmospheric drag coefficient (Ca) and oceanic drag coefficient (Cw). Parameterizations of drag coefficients rather than constant values provide us a way to look insight into the dependence of these characteristics on sea ice conditions. In the present study, the parameterized ice drag coefficients are included into a free-drift sea ice dynamic model, and the wind factorα and the deflection angleθ between sea ice drift and wind velocity as well as the ratio ofCa toCw are studied to investigate their dependence on the impact factors such as local drag coefficients, floe and ridge geometry. The results reveal that in an idealized steady ocean,Ca/Cw increases obviously with the increasing ice concentration for small ice floes in the marginal ice zone, while it remains at a steady level (0.2–0.25) for large floes in the central ice zone. The wind factorα increases rapidly at first and approaches a steady level of 0.018 whenA is greater than 20%. And the deflection angleθ drops rapidly from an initial value of approximate 80° and decreases slowly asA is greater than 20% without a steady level likeα. The values of these parameters agree well with the previously reported observations in Arctic. The ridging intensity is an important parameter to determine the dominant contribution of the ratio of skin friction drag coefficient (Cs’/Cs) and the ratio of ridge form drag coefficient (Cr’/Cr) to the value of Ca/Cw,α, andθ, because of the dominance of ridge form drag for large ridging intensity and skin friction for small ridging intensity among the total drag forces. Parameterization of sea ice drag coefficients has the potential to be embedded into ice dynamic models to better account for the variability of sea ice in the transient Arctic Ocean.

  17. Using an Extended Dynamic Drag-and-Drop Assistive Program to Assist People with Multiple Disabilities and Minimal Motor Control to Improve Computer Drag-and-Drop Ability through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…

  18. Using an Extended Dynamic Drag-and-Drop Assistive Program to Assist People with Multiple Disabilities and Minimal Motor Control to Improve Computer Drag-and-Drop Ability through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…

  19. Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives

    Science.gov (United States)

    Dubief, Yves

    2003-01-01

    The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non

  20. Bag-breakup control of surface drag in hurricanes

    Science.gov (United States)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and

  1. CAN 8-WEEKS OF TRAINING AFFECT ACTIVE DRAG IN YOUNG SWIMMERS?

    Directory of Open Access Journals (Sweden)

    Daniel A. Marinho

    2010-03-01

    Full Text Available The aim of this study was to assess the effects of 8-weeks of training on active drag in young swimmers of both genders. Eight girls and twelve boys' belonging to the same swimming team and with regular competitive participation in national and regional events for the previous two seasons participated in this study. Active drag measurements were conducted in two different evaluation moments: at the beginning of the season and after 8 weeks of training (6.0 ± 0.15 training units per week, 21.00 ± 3.23 km per week and 3.50 ± 0.23 km per training unit. The maximal swimming velocity at the distance of 13 m, active drag and drag coefficient were measured on both trials by the method of small perturbations with the help of an additional hydrodynamic body. After 8 weeks of training, mean active drag (drag force and drag coefficient decreased in girls and boys, although no significant differences were found between the two trials. It seems that 8 weeks of swimming training were not sufficient to allow significant improvements on swimming technique

  2. Comparison of predicting drag methods using computational fluid dynamics in 2d/3d viscous flow

    Institute of Scientific and Technical Information of China (English)

    ZHU; ZiQiang; WANG; XiaoLu; LIU; Jie; LIU; Zhou

    2007-01-01

    As a result of the necessity of aircraft engineering design and the progress of computational fluid dynamics (CFD), techniques of accurately predicting aerodynamic drag are being increasingly explored. According to the momentum balance, the drag can be represented by an integral over a cross-flow plane (called wake integration method) at an arbitrary distance behind the configuration. A formulation to reduce the size of the wake cross plane region required for calculating the drag is developed by using cutoff parameters of vorticity and entropy. This increases the calculation accuracy and decreases the computation time required. Numerical experiments are made to obtain the threshold values of these cutoff parameters. The wake integration method is applied to predict drags of some examples including airfoil, a variety of wings and wing-body combination. Numerical results are compared with those of traditional surface integration method, showing that the predicting drag values with the wake integration method are closer to the experimental data. The results also show that drag prediction within engineering accuracy is possible by using CFD and the numerical drag optimization of complex aircraft configurations is possible, too.

  3. On the Minimum Induced Drag of Wings -or- Thinking Outside the Box

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  4. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.

    Science.gov (United States)

    Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng

    2015-02-25

    The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.

  5. Grafted natural polymer as new drag reducing agent: An experimental approach

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2012-01-01

    Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.

  6. Numerical simulation on drag reduction of revolution body through bionic riblet surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Numerical simulations of flow fields on the bionic riblet and the smooth revolution bodies were performed based on the SST k-ω turbulence model in order to explain the mechanisms of the skin friction drag reduction, base drag reduction on the riblet surface, and flow control behaviors of riblet surface near the wall. The simulation results show that the riblet surface arranged on the rearward of the revolution body can reduce the skin friction drag by 8.27%, the base drag by 9.91% and the total drag by 8.59% at Ma number 0.8. The riblet surface reduces the skin friction drag by reducing the velocity gradient and turbulent intensity, and reduces the base drag by weakening the pumping action on the dead water region which behind the body of revolution caused by the external flow. The flow control behavior on boundary layer shows that the riblet surface can cut the low-speed flow near the wall effectively, and restrain the low-speed flow concentrating in span direction, thus weaken the instability of the low speed steaks produced by turbulent flow bursting.

  7. Drag and Lift Force Acting on a Rotational Spherical Particle in a Logarithmic Boundary Flow

    Institute of Scientific and Technical Information of China (English)

    XU Wei-jiang; CHE De-fu; XU Tong-mo

    2006-01-01

    The drag and lift forces acting on a rotational spherical particle in a logarithmic boundary flow are numerically studied. The effects of the drag velocity and rotational speed of the sphere on the drag force are examined for the particle Reynolds number from 50 to 300 and for the dimensionless rotational angular speed of 0≤Ω≤1.0. The influence of dimensionless roughness height z0of the wall is also evaluated for z0≤10. The results show that the drag forces on a sphere both in a logarithmic flow and in a uniform unsheared flow increase with the increase of the drag velocity. For 50≤Rep≤300, the drag coefficient (-C)D increases with decreased roughness height z0. The time-averaged drag coefficient is also significantly affected by rotational speed of the sphere and roughness height z0 . The lift coefficient -CL increases with increased rotational speed and decreases with increased roughness height.

  8. Photon drag enhancement by a slow-light moving medium via electromagnetically-induced transparency amplification

    Science.gov (United States)

    Iqbal, Azmat; Khan, Naveed; Bacha, Bakht Amin; Rahman, Amin Ur; Ahmad, Afaq

    2017-09-01

    Recently, a considerable enhancement has been observed in the celebrated Fresnel-Fizeau light drag by innovative experimental and theoretical approaches because of its fundamental and practical interest in the emerging technology of quantum optics and photonics. We present a semiclassical density matrix approach on the demonstration of light drag in a slow-light moving medium comprising five-level single tripod atomic configuration. To accomplish this, we introduce Kerr-type nonlinearity that leads to electromagnetically-induced transparency amplification under resonance conditions. By switching ON Kerr-type nonlinearity effect, we observe a prominent transparency window in probe field's absorption spectrum whose width and amplitude can be controlled further by the intensity of Kerr field and control field. The incorporation of Kerr field also switches light propagation from superluminal to subluminal domain. We predict a significant enhancement both in the lateral and the rotary photon drag owing to drag of light linear polarization state subjected to translation and rotation of the host medium, respectively. Consistent with earlier results, light drag considerably depends on both transverse and angular velocity of the host medium. In regime of subluminal propagation, light polarization state drags along the medium motion while in the superluminal propagation region it drags opposite to the medium motion.

  9. Practical evaluation of the drag of a ship for design and optimization

    Institute of Scientific and Technical Information of China (English)

    YANG Chi; HUANG Fuxin

    2013-01-01

    We consider two major components of the drag of a ship, the“friction drag”and the“wave drag”, that are related to vis-cous friction at the hull surface and wavemaking, and mostly depend on the Reynolds number and the Froude number, respectively. We also consider the influence of sinkage and trim, viscosity, and nonlinearities on the drag. The sum of the friction drag given by the classical ITTC friction formula and the wave drag predicted by the modification, called Neumann-Michell (NM) theory, of the classical Neumann-Kelvin theory of ship waves is found to be within about 10%of experimental drag measurements for four ship hulls for which theoretical predictions and experimental measurements are compared. The sum of the ITTC friction drag and the NM wave drag can then be expected to yield realistic practical estimates that can be useful for routine applications to design and hull-form optimization of a broad range of displacement ships. Furthermore, we note several simple extensions of this highly simplified approach that can be expected to significantly improve accuracy.

  10. DOE's effort to reduce truck aerodynamic drag through joint experiments and computations.

    Energy Technology Data Exchange (ETDEWEB)

    Salari, Kambiz (Lawrence Livermore National Laboratory); Browand, Fred (University of Southern California); Sreenivas, Kidambi (University of Tennessee, Chattanooga); Pointer, W. David (Argonne National Laboratory); Taylor, Lafayette (University of Tennessee, Chattanooga); Pankajakshan, Ramesh (University of Tennessee, Chattanooga); Whitfield, David (University of Tennessee, Chattanooga); Plocher, Dennis (University of Southern California); Ortega, Jason M. (Lawrence Livermore National Laboratory); Merzel, Tai (University of Southern California); McCallen, Rose (Lawrence Livermore National Laboratory); Walker, Stephen M (NASA Ames Research Center); Heineck, James T (NASA Ames Research Center); Hassan, Basil; Roy, Christopher John (Auburn University); Storms, B. (NASA Ames Research Center); Ross, James (NASA Ames Research Center); Englar, Robert (Georgia Tech Research Institute); Rubel, Mike (Caltech); Leonard, Anthony (Caltech); Radovich, Charles (University of Southern California); Eastwood, Craig (Lawrence Livermore National Laboratory); Paschkewitz, John (Lawrence Livermore National Laboratory); Castellucci, Paul (Lawrence Livermore National Laboratory); DeChant, Lawrence Justin.

    2005-08-01

    Class 8 tractor-trailers are responsible for 11-12% of the total US consumption of petroleum. Overcoming aero drag represents 65% of energy expenditure at highway speeds. Most of the drag results from pressure differences and reducing highway speeds is very effective. The goal is to reduce aerodynamic drag by 25% which would translate to 12% improved fuel economy or 4,200 million gal/year. Objectives are: (1) In support of DOE's mission, provide guidance to industry in the reduction of aerodynamic drag; (2) To shorten and improve design process, establish a database of experimental, computational, and conceptual design information; (3) Demonstrate new drag-reduction techniques; and (4) Get devices on the road. Some accomplishments are: (1) Concepts developed/tested that exceeded 25% drag reduction goal; (2) Insight and guidelines for drag reduction provided to industry through computations and experiments; (3) Joined with industry in getting devices on the road and providing design concepts through virtual modeling and testing; and (4) International recognition achieved through open documentation and database.

  11. Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; Murayama, Mitsuhiro

    2008-01-01

    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.

  12. Investigation of drag reduction through a flapping mechanism on circular cylinder

    Science.gov (United States)

    Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan

    2016-07-01

    During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.

  13. Drag reduction by means of dimpled surfaces in turbulent boundary layers

    Science.gov (United States)

    van Nesselrooij, M.; Veldhuis, L. L. M.; van Oudheusden, B. W.; Schrijer, F. F. J.

    2016-09-01

    Direct force measurements and particle image velocimetry (PIV) were used to investigate the drag and flow structure caused by surfaces with patterns of shallow spherical dimples with rounded edges subject to turbulent boundary layers. Drag reduction of up to 4 % is found compared to a flat surface. The largest drag reduction was found at the highest tested Reynolds number of 40,000 (based on dimple diameter). A favorable trend promises further improvements at higher Reynolds numbers. PIV revealed the absence of significant separation inside the dimples but did show the existence of a converging/diverging flow in the upstream and downstream dimple half, respectively. This leads to the rejection of theories proposed by other authors concerning the mechanism responsible for drag reduction. Instead, a fundamental dependence on pattern orientation is observed. Furthermore, preliminary Reynolds-averaged Navier-Stokes (RANS) simulations have been compared with the PIV data. Although the large-scale mean flows show good agreement, the numerical simulation predicts no drag reduction. As the RANS approach is inherently incapable of resolving effects on the behavior of small-scale turbulence structure, the origin of drag reduction is attributed to effects on the small-scale turbulence, which is not resolved in the simulations. It is argued that dimples, when placed in well-designed patterns to create the necessary large-scale flow structure, lead to drag reduction by affecting the turbulent structures in the boundary layer, possibly in a way similar to spanwise oscillations of the wall.

  14. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit.

    Science.gov (United States)

    Stone, William C; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered.

  15. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  16. A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces

    Science.gov (United States)

    Fukagata, Koji; Kasagi, Nobuhide; Koumoutsakos, Petros

    2006-05-01

    We present a theoretical prediction for the drag reduction rate achieved by superhydrophobic surfaces in a turbulent channel flow. The predicted drag reduction rate is in good agreement with results obtained from direct numerical simulations at Reτ≃180 and 400. The present theory suggests that large drag reduction is possible also at Reynolds numbers of practical interest (Reτ˜105-106) by employing a hydrophobic surface, which induces a slip length on the order of ten wall units or more.

  17. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  18. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics

    Science.gov (United States)

    Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki

    2016-03-01

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

  19. Temperature dependence of coulomb drag between finite-length quantum wires.

    Science.gov (United States)

    Peguiron, J; Bruder, C; Trauzettel, B

    2007-08-24

    We evaluate the Coulomb drag current in two finite-length Tomonaga-Luttinger-liquid wires coupled by an electrostatic backscattering interaction. The drag current in one wire shows oscillations as a function of the bias voltage applied to the other wire, reflecting interferences of the plasmon standing waves in the interacting wires. In agreement with this picture, the amplitude of the current oscillations is reduced with increasing temperature. This is a clear signature of non-Fermi-liquid physics because for coupled Fermi liquids the drag resistance is always expected to increase as the temperature is raised.

  20. Drag coefficients of lattice masts from full-scale wind-tunnel tests

    DEFF Research Database (Denmark)

    Georgakis, Christos; Støttrup-Andersen, Ulrik; Johnsen, Marie;

    2009-01-01

    :5 scale section model tests performed at the National Physics Laboratory and the National Maritime Institute in the UK in the 1970´s. ESDU provides velocity-dependent drag coefficients equivalent to those obtained from the same series of tests. In all cases, the mast legs and diagonals are comprised......In this paper, the drag coefficients obtained from a series of full-scale section model wind-tunnel tests of several lattice mast configurations are presented and compared to those provided in Eurocode 3 and ESDU. The drag coefficients provided in Eurocode are conservative interpretations of 1...

  1. Drag and distribution measurements of single-element fuel injectors for supersonic combustors

    Science.gov (United States)

    Povinelli, L. A.

    1974-01-01

    The drag caused by several vortex generating fuel injectors for scramjet combustors was measured in a Mach 2 to 3.5 airstream. Injector drag was found to be strongly dependent on injector thickness ratio. The distribution of helium injected into the stream was measured both in the near field and the far field of the injectors for a variety of pressure ratios. The far field results differed appreciably from measurements in the near field. Injection pressure ratio was found to profoundly influence the penetration. One of the aerowing configurations tested yielded low drag consistent with desirable penetration and spreading characteristics.

  2. Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang

    1997-01-01

    We study the transresistivity rho(21) (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ''Hall drag'' (i.e., a non......-zero off-diagonal component in rho(21)). We show that these arguments are specious, and in fact Hall drag can be observed at sufficiently high temperatures when the intralayer transport time tau has significant energy-dependence around the Fermi energy epsilon(F). The ratio of the Hall to longitudinal...

  3. Techniques for determining propulsion system forces for accurate high speed vehicle drag measurements in flight

    Science.gov (United States)

    Arnaiz, H. H.

    1975-01-01

    As part of a NASA program to evaluate current methods of predicting the performance of large, supersonic airplanes, the drag of the XB-70 airplane was measured accurately in flight at Mach numbers from 0.75 to 2.5. This paper describes the techniques used to determine engine net thrust and the drag forces charged to the propulsion system that were required for the in-flight drag measurements. The accuracy of the measurements and the application of the measurement techniques to aircraft with different propulsion systems are discussed. Examples of results obtained for the XB-70 airplane are presented.

  4. Low rotational drag in high-temperature superconducting bearings

    Science.gov (United States)

    Hull, J. R.; Mulcahy, T. M.; Uherka, K. L.; Abboud, R. G.

    1994-10-01

    Bearings consisting of permanent magnets stably levitated over high-temperature superconductors exhibit low rotational drag and have the potential to enable high-efficiency flywheel energy storage. The coefficient of friction mu for such storage systems is derived as a function of bearing parameters and is shown to be an appropriate figure of merit to describe bearing losses. Analysis shows that values of mu 10(exp -6) enable flywheel standby losses less than 0.1 %/hr for high-speed flywheels. A vacuum-chamber experimental apparatus has been constructed to measure values of (mu) for various experimental bearing designs. Experimental values for mu at low velocity have been as low as 3 x 10(exp-7) for a 89-mm-diameter ring permanent magnet stably levitated over an array of melt-textured Y-Ba-Cu-O. An important loss mechanism occurs from eddy currents induced in the rotating magnet due to the discrete nature of the superconductor array.

  5. Octopus-inspired drag cancelation by added mass pumping

    Science.gov (United States)

    Weymouth, Gabriel; Giorgio-Serchi, Francesco

    2016-11-01

    Recent work has shown that when an immersed body suddenly changes its size, such as a deflating octopus during rapid escape jetting, the body experiences large forces due to the variation of added-mass energy. We extend this line of research by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. This system isolates the ability of the added-mass thrust to cancel the bluff body resistance (having no jet flow to confuse the analysis) and moves closer to studying how these effects would work in a sustained propulsion case by studying periodic shape-change instead of a "one-shot" escape maneuver. With a combination of analytical, numerical, and experimental results, we show that the recovery of added-mass kinetic energy can be used to completely cancel the drag of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius. Moreover, these results are fairly independent of the details of the shape-change kinematics as long as the Stokes number and shape-change number are large. In addition, the effective pumping frequency range based on parametric oscillator analysis is shown to predict large amplitude response region observed in the numerics and experiments.

  6. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  7. Surfactant aggregation and its application to drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Harwigsson, I.

    1995-09-01

    A number of different drag-reducing (DR) surfactants: nonionics, zwitterionics and ampholytics suitable for use in both cool and hot water solution are described. These surfactants have been tested under various conditions common in district energy distribution. The surfactants described are environmentally more acceptable than the organic salts of quaternary ammonium compounds which have so far dominated as DR surfactants. The micellar phase formed in water by the surfactant system cetylpyridinium chloride/sodium salicylate has been investigated with surfactant self-diffusion (NMR) measurements and cryo-transmission electron microscopy. Results from this study support the hypothesis that worm-like micellar systems form a network before the phase boundary, when the first liquid crystalline phase formed is a bicontinuous cubic phase. A series of surfactants similar to the one used in the DR experiments has been examined in dilute solutions. Critical micellar concentration and the size of these micelles are investigated as a function of the amphiphile concentration, the pH and salt concentration. Adsorption properties on silica of zwitterionic dodecyl-N,N-dimethylammonio alkanoates, with polymethylene interchange arms of different lengths, have been investigated with an in situ ellipsometry technique. The use of two-tone frequency modulation spectroscopy as a general method for the determination of water activity has been initiated. 173 refs, 6 figs

  8. Effect of wind-induced drag on leaf shapes

    Science.gov (United States)

    Louf, Jean-Francois; Ntoh Song, Pierre; Zehnbauer, Tim; Jung, Sunghwan

    2016-11-01

    Under windy conditions everyone can see leaves bending and twisting. From a geometrical point of view, a leaf is composed of two parts: a large flat plate called the lamina, and a small beam called the petiole, connecting the lamina to the branch/stem. While the wind is exerting forces (e.g. drag) on the lamina, the petiole undergoes twisting and bending stresses. To survive in harsh abiotic conditions, leaves might have evolved to form in many different shapes, resulting from a coupling between the lamina and the petiole. In this study we measure the twisting modulus (G) of the petiole using a twisting setup, and its Young modulus (E) by performing tensile tests. Micro-CT scan is used to precisely measure the cross section of the petiole allowing us to calculate the second moment of inertia (I) and the second moment of area (J). We then use the non-dimensional number EI/GJ and compare it to a geometrical non-dimensional number (Lpetiole +Llamina/2)/W, where Lpetiole is the length of the petiole, Llamina the length of the lamina, and W the width of the lamina. We found a linear relation between the ratio of the bending to twisting rigidity and the leaf geometry.

  9. Phonon-drag effect in FeGa3

    Science.gov (United States)

    Wagner-Reetz, Maik; Kasinathan, Deepa; Schnelle, Walter; Cardoso-Gil, Raul; Rosner, Helge; Grin, Yuri; Gille, Peter

    2014-11-01

    The thermoelectric properties of single-crystalline and polycrystalline FeGa3 are systematically investigated over a wide temperature range. At low temperatures, below 20 K, previously not known pronounced peaks in the thermal conductivity (400 -800 WK-1 m-1) with corresponding maxima in the thermopower (in the order of -16000 μ V K-1) were found in single-crystalline samples. Measurements in single crystals along [100] and [001] directions indicate only a slight anisotropy in both the electrical and thermal transports. From susceptibility and heat-capacity measurements, a magnetic or structural phase transition was excluded. Using density functional theory based calculations, we have revisited the electronic structure of FeGa3 and compared the magnetic (including correlations) and nonmagnetic electronic densities of states. Thermopower at fixed carrier concentrations is calculated using semiclassical Boltzmann transport theory, and the calculated results match fairly with our experimental data. The inclusion of strong electron correlations treated in a mean field manner (by LSDA + U ) does not improve this comparison, rendering strong correlations as the sole explanation for the low-temperature enhancement unlikely. Eventually, after a careful review, we assign the peaks in the thermopower as a manifestation of the phonon-drag effect, which is supported by thermopower measurements in a magnetic field.

  10. Fresnel-Fizeau drag: Invisibility conditions for all inertial observers

    Science.gov (United States)

    Halimeh, Jad C.; Thompson, Robert T.

    2016-03-01

    It was recently shown [J. C. Halimeh et al., Phys. Rev. A 93, 013850 (2016), 10.1103/PhysRevA.93.013850] that as a result of the Doppler effect, inherently dispersive single-frequency ideal free-space invisibility cloaks in relative motion to an observer can only cloak light whose frequency in the cloak frame coincides with the operational frequency of the cloak, although an infinite number of such rays exist for any cloak motion. In this article, we show analytically and through ray-tracing simulations that even though this relationship can be relaxed by simplifying the ideal invisibility cloak into a broadband amplitude cloak, Fresnel-Fizeau drag uncloaks the phase of light in the inertial frame of the cloak thereby compromising its amplitude cloaking in all other inertial frames. In other words, only an invisibility device that perfectly cloaks both the amplitude and the phase of light in its own inertial frame will also (perfectly) cloak this light in any other inertial frame. The same conclusion lends itself to invisible objects that are not cloaks, such as the invisible sphere.

  11. Fresnel-Fizeau drag: Invisibility conditions for all inertial observers

    CERN Document Server

    Halimeh, Jad C

    2016-01-01

    It was recently shown [Halimeh \\emph{et al.} arXiv:1510.06114 (to appear in Phys. Rev. A)] that as a result of the Doppler effect, inherently dispersive single-frequency ideal free-space invisibility cloaks in relative motion to an observer can only cloak light whose frequency in the cloak frame coincides with the operational frequency of the cloak, although an infinite number of such rays exist for any cloak motion. In this article, we show analytically and through ray-tracing simulations that even though this relationship can be relaxed by simplifying the ideal invisibility cloak into a broadband amplitude cloak, Fresnel-Fizeau drag uncloaks the phase of light in the inertial frame of the cloak thereby compromising its amplitude cloaking in all other inertial frames. In other words, only an invisibility device that perfectly cloaks both the amplitude and the phase of light in its own inertial frame will also (perfectly) cloak this light in any other inertial frame. The same conclusion lends itself to invisi...

  12. Coulomb drag and tunneling studies in quantum Hall bilayers

    Science.gov (United States)

    Nandi, Debaleena

    The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon. Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an over-damped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I -- V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.

  13. Estimated Drag Coefficients and Wind Structure of Hurricane Frances

    Science.gov (United States)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.

    2006-12-01

    As part of the Coupled Boundary Layers Air Sea Transfer (CBLAST) experiment, an array of drifters and floats was deployed from an aircraft just ahead of Hurricane Frances during it's passage to the northwest side of the Caribbean Island chain in August, 2004. The ocean and surface air conditions prior to, during, and after Hurricane Frances were documented by multiple sensors. Two independent estimates of the surface wind field suggest different storm structures. NOAA H*WINDS, an objectively analyzed product using a combination of data collected at the reconnaissance flight level, GPS profilers (dropwindsondes), satellites, and other data, suggest a 40km radius of maximum wind. A product based on the radial momentum equation balance using \\ital{in-situ} surface pressure data and wind direction measurements from the CBLAST drifter array suggests that the radius of maximum winds was 15km. We used a regional version of the MITGCM model with closed boundaries and realistic temperature and salinity fields which was forced with these wind field products to determine which wind field leads to circulation and SST structures that are most consistent with observed sea surface temperature fields and float profile data. Best estimates of the surface wind structure are then used to estimate the appropriate drag coefficient corresponding to the maximum velocity. Our results are compared with those obtained previously.

  14. Atmospheric Drag Perturbation in an Autonomous Orbit Determination for Satellite

    Institute of Scientific and Technical Information of China (English)

    XUE shen-fang; JIN Sheng-zhen; NING Shu-nian; SUN Cai-hong

    2005-01-01

    In this paper, an autonomous orbit determination method for satellite using a large field of view star sensor is presented. The simulation of orbit under atmospheric drag perturbation are given with expanded Kalman filtering.The large field of view star sensor has the same precision as star sensor and a sufficient filed of view. Therefore ,the refraction stars can be observed more accurately in real time. The geometric relation between the refracted starlight and the earth can be determined by tangent altitude of the refraction starlight. And then the earth enter can be determined in satellite body frame. The simulation shows that the precision of the mean square deviation of satellite's position and velocity is 5m and 0.01m/s respectively. The calculated decrement of the semi-major axis in one day is close to the theoretical result, and the absolute error is in the range of decimeter when the altitude of orbit is 750 km. The simulateion of orbit of different initial semi-major axis shows that the higher the altitude of orbit is, the smaller the decrement of the semi-major axis is, and when the altitude of orbit is 1700 km the decimeter of the semi-major axis is 10-7km.

  15. Drag reduction through wave-current interactions with a marine hydrofoil

    Science.gov (United States)

    Tully, Susan; Viola, Ignazio Maria; Ingram, David

    2015-11-01

    A hydrofoil exposed to oscillating flow experiences a reduction in drag due to the Knoller-Betz effect. This is experimentally identifiable by an increasingly inverted von Kármán wake and a corresponding thrust force on the foil. The rate of drag reduction, dependent on plunge amplitude and frequency, reduces with unsteady flow phenomena at higher reduced frequencies. For experimental ease, investigations of this effect have relied on actively plunging/pitching a foil within a steady current. However, one potential application is to drag reduction in high-speed ships adopting submerged foils. In this case the foil is travelling through wave-current induced oscillatory flow, resulting in an additional dynamic variation of hydrostatic pressure across the chord; a phenomena not fully addressed in previous experiments. Here we investigate the effects of this pressure gradient on drag reduction for a stationary foil in combined waves and current, through a combination of force measurements and particle image velocimetry.

  16. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  17. A Simple Method for Predicting Drag Characteristics of the Wells Turbine

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhong-zhou; YU Zhi; ZHENG Yong-hong

    2006-01-01

    The drag characteristics of the Wells turbine are difficult to be accurately predicted because of the influences of many variables. Detailed analyses about the effects of these variables on the drag characteristics educe that the most sensitive parameters to the drag characteristics are the turbine solidity of the turbine and incidence angle of airflow. In this paper, an experimental research is conducted on the pressure drop across the flat-plate rotor which is used to simulate the Wells turbine. After nondimensionalization and fitting of the experimental data, a common experiential formula is obtained. Compared with the experimental data from literature, the computational results are satisfactory. Thus, this report provides a simple and convenient method for predicting the drag characteristics of the Wells turbine and optimizing the match design between an oscillating water column and a chamber.

  18. Drag coefficient for the air-sea exchange in hurricane conditions

    CERN Document Server

    Golbraikh, E

    2013-01-01

    The physical model is proposed for prediction of the non-monotonic drag coefficient variation with the neutral stability 10-m wind speed, U10. The model is based upon measurements of the foam coverage fraction and characteristic size of foam bubbles with U10, and on the drag coefficient approximation by the linearly weighted averaging over alternating foam-free and foam-covered portions of the ocean surface. The obtained drag coefficient is in fair agreement with that obtained by field measurements of the vertical variation of mean wind speed in Powell et al. (Nature, 2003) which discover reduction of the sea-surface drag with U10 rising to hurricane conditions.

  19. Experimental Investigation of Tunnel Discharge Ability by Using Drag Reduction Techniques

    Directory of Open Access Journals (Sweden)

    Ying-kui WANG

    2010-06-01

    Full Text Available The experiments in an open flume model and in the spillway tunnel models were carried out by using drag reduction technique. The drag reduction experiments in open channel model adopted two techniques: polymer addition and coating. The drag reduction effect of polyacrylamide (PAM solution and the dimethyl silicone oil coating were studied by the flume model experiments, and the results were satisfied. Then the experiments were carried out in the model of a Hydropower station, which is the second largest dam in China. In order to reduce the resistance, the spillway tunnel models were coated inside with the dimethyl silicone oil. It is the first time that applying the drag reduction technique in the large hydraulic model. The experimental results show that the coating technique can effectively increase the ability of flood discharge. The outlet velocity and the jet trajectory distance were also increased, which is beneficial to the energy dissipation of the spillway tunnel.

  20. Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices

    Science.gov (United States)

    Lee, Sangseung; Kim, Myeongkyun; You, Donghyun

    2015-11-01

    Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.

  1. Preparation of microencapsulated α-olefin drag reducing polymer used in oil pipeline transportation

    National Research Council Canada - National Science Library

    Li, Bing; Xing, Wenguo; Dong, Guilin; Chen, Xiangjun; Zhou, Ningning; Qin, Zhanbo; Zhang, Changqiao

    2011-01-01

    Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax, in-situ polymerization of urea and formaldehyde, and interfacial...

  2. Principles of operation and data reduction techniques for the loft drag disc turbine transducer

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, S.

    1977-09-01

    An analysis of the single- and two-phase flow data applicable to the loss-of-fluid test (LOFT) is presented for the LOFT drag turbine transducer. Analytical models which were employed to correlate the experimental data are presented.

  3. Dynamic drag of edge dislocation by circular prismatic loops and point defects

    Energy Technology Data Exchange (ETDEWEB)

    Malashenko, V.V., E-mail: malashenko@kinetic.ac.donetsk.u [Donetsk Institute for Physics and Engineering of NASU, 83114 Donetsk (Ukraine); Donetsk National Technical University, 83000 Donetsk (Ukraine)

    2009-11-15

    Motion of edge dislocation in the presence of prismatic loops and point defects is studied analytically. It is shown that at certain conditions, the velocity dependence of the drag force has two maximums and two minimums.

  4. development of a new drag coefficient model for oil and gas

    African Journals Online (AJOL)

    eobe

    determination is critical to determination is critical to ensuring effective transportation of the particles. ... the fluid, and an upward diffusion of the particles, caused by a .... drag correction expression in multiphase flows since many particles are ...

  5. Scalable, Lightweight, Low-Cost Aero/Electrodynamic Drag Deorbit Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will develop the "Terminator Tape Deorbit Module", a lightweight, low-cost, scalable de-orbit module that will utilize both aerodynamic drag...

  6. A Novel Drag-Free Design for a Geostationary Gravitational Wave Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Given the large volume and additional mass available for scientific use on planned commercial geostationary platforms, we have conceived an alternative drag-free...

  7. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    Science.gov (United States)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  8. Estimation Methods for Determination of Drag Characteristics of Fly-by-Wire Aircraft

    Directory of Open Access Journals (Sweden)

    G. Girija

    2001-01-01

    Full Text Available "In this paper, several parameter/state estimation approaches for the determination of drag polars from flight data are described and evaluated for a fly-by-wire (FBW aircraft. Both model-based approaches (MBAs and non-model-based approaches (NMBAs are considered. Dynamic response data from roller coaster and wind- up-turn manoeuvres are generated in a FBW aircraft flight simulator at different flight conditions and the typical performance results are presented. A novel approach to estimate the drag polar has been evaluated. It has been found that the NMBAs perform better than the MBAs. Classically, the MBAs have been used for the determination of drag polars. The merits of an NMBA are that it does not require specification of the detailed model of the aerodynamic coefficients and it can be suitably used for online estimation of drag polars from the flight data of aerospace vehicles

  9. Application of numerical optimization to the design of supercritical airfoils without drag-creep

    Science.gov (United States)

    Hicks, R. M.; Vanderplaats, G. N.

    1977-01-01

    Recent applications of numerical optimization to the design of advanced airfoils for transonic aircraft have shown that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while the drag at the design Mach number is the objective function. Such a procedure doubles the computation time over that for single design-point problems, but the final result is worth the increased cost of computation. The ability to treat such multiple design-point problems by numerical optimization has been enhanced by the development of improved airfoil shape functions. Such functions permit a considerable increase in the range of profiles attainable during the optimization process.

  10. Drag &Drop, Multiphysics & Neural Net-based Lab-on-Chip Optimization Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this project is to develop a drag and drop, component library (fluidic lego) based, system simulation and optimization software for entire...

  11. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  12. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    Science.gov (United States)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  13. Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes

    CERN Document Server

    Zhang, Fan; Nichols, David A; Chen, Yanbei; Lovelace, Geoffrey; Matthews, Keith D; Owen, Robert; Thorne, Kip S

    2012-01-01

    When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field $E$, which produces tidal forces, and the frame-drag field $B$, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of $E$) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of $E$ and $B$ on the horizon). For Schwarzschil...

  14. Effect of Jet-nozzle-expansion Ratio on Drag of Parabolic Afterbodies

    Science.gov (United States)

    Englert, Gerald W; Vargo, Donald J; Cubbison, Robert W

    1954-01-01

    The interaction of the flow from one convergent and two convergent-divergent nozzles on parabolic afterbodies was studied at free-stream Mach numbers of 2.0, 1.6, and 0.6 over a range of jet pressure ratio. The influence of the jet on boattail and base drag was very pronounced. Study of the total external afterbody drag values at supersonic speeds indicated that, over most of the high-pressure-ratio range, increasing the nozzle design expansion ratio increased the drag even though the boattail area was reduced. Increasing the pressure ratio tended to increase slightly the total-drag increment caused by angle-of-attack operation.

  15. Drag &Drop, Mixed-Methodology-based Lab-on-Chip Design Optimization Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to develop a ?mixed-methodology?, drag and drop, component library (fluidic-lego)-based, system design and optimization tool for complex...

  16. CHARACTERISTICS OF WIND DEFLECTOR FOR REDUCING AERODYNAMIC DRAG OF VAN-BODY TRUCK

    Institute of Scientific and Technical Information of China (English)

    Du Guang-sheng; Lei Li; Zhou Lian-di

    2003-01-01

    In this paper, the differences in the characteristics of airflow around the van-body truck and of the aerodynamic drag, which were caused by the installation of a wind deflector, were studied by experimentally and numerically. The results show that after the installation of the deflector, the airflow around the top and bottom of the truck becoms smooth, the intensity of tail-vortex is weakened and its contribution area lessened. It also indicates that the aerodynamic characteristics of the airflow are changed distinctly and the aerodynamic drag is reduced considerably. The effect of the thin-wall deflector is better than the solid one in decreasing the drag. It is also concluded that proper design of the gap between the deflector bottom and the top of the driver cab can enhance the effect of the deflector in reducing drag.

  17. Experimental Measurements of Turbulent Drag Reduction Using Ultrahydrophobic Surfaces with Periodic Microfeatures

    Science.gov (United States)

    Daniello, Robert; Rothstein, Jonathan P.

    2007-11-01

    The experimental results of fully-developed turbulent channel flow past a series of ultrahydrophobic surfaces will be presented. We have shown previously that these surfaces can produce significant drag reduction in laminar channel flow by supporting a shear-free air-water interface between hydrophobic microridges or microposts. In this talk, we will experimentally demonstrate that it is possible to utilize these micropatterned surfaces as a passive technique for achieving significant drag reduction in fully-developed turbulent flows. Two-dimensional velocity profiles as well as shear and Reynolds stress fields generated from particle image velocimetry will be presented. These measurements clearly demonstrate a reduction in drag along the ultrahydrophobic wall when compared to a smooth surface. Pressure drop measurements along the channel will also be presented. Discussion will include the influence of Reynolds number and surface geometry on the velocity profiles, Reynolds stresses and the resulting drag reduction.

  18. Drag force of Anisotropic plasma at finite U(1) chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Long; Ge, Xian-Hui [Shanghai University, Department of Physics, Shanghai (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Yau Shing Tung Center, Hsinchu (China); National Center for Theoretical Science, Hsinchu (China)

    2016-05-15

    We perform the calculation of the drag force acting on a massive quark moving through an anisotropic N = 4 SU(N) Super Yang-Mills plasma in the presence of a U(1) chemical potential. We present the numerical results for any value of the anisotropy and arbitrary direction of the quark velocity with respect to the direction of the anisotropy. We find the effect of the chemical potential or charge density will enhance the drag force for our charged solution. (orig.)

  19. On Turbulent Contribution to Frictional Drag in Wall-Bounded Turbulent Flow

    Institute of Scientific and Technical Information of China (English)

    LI Feng-Chen; KAWAGUCHI Yasuo; HISHIDA Koichi; OSHIMA Marie

    2006-01-01

    @@ We propose a simple model for turbulent contribution to the frictional drag in a wall-bounded turbulent flow based on the characteristic parameters of turbulent bursting events. It is verified on water and drag-reducing surfactant solution flows investigated by particle image velocimetry in experiments. It is obtained that the turbulent contribution to the skin friction factor is linearly proportional to the product of the spatial frequency and strength of turbulent bursts originated from the wall.

  20. Continuum model for Couette-Poiseuille flow in a drag molecular pump

    CERN Document Server

    Skovorodko, P A

    2004-01-01

    A continuum one-dimensional model of the plane Couette-Poiseuille flow is developed to describe the pressure distribution in a drag stage of molecular pump of either the Gaede or Holweck type. In spite of its simplicity and approximate nature the model provides a good qualitative representation of the drag pump operation in the whole range of the regimes from the continuum to free molecular ones.

  1. Drag reduction by surface treatment in turbulent Taylor-Couette flow

    Science.gov (United States)

    Greidanus, A. J.; Delfos, R.; Westerweel, J.

    2011-12-01

    We use a Taylor-Couette facility to study the drag reducing effects of commercial surface products at high shear Reynolds numbers (Res) under perfect couter-rotating conditions (riwi = -rowo). The correlation between torque contribution of the von Kármán flow and shear Reynolds number is investigated. At this moment no significant drag changes are found for the commercial products. However, further research is needed to exclude uncertainties and errors from the torque measurements.

  2. Kevlar/PMR-15 reduced drag DC-9 reverser stang fairing

    Science.gov (United States)

    Kawai, R. T.

    1982-01-01

    A reduced drag fairing for the afterbody enclosing the thrust reverser actuators on the DC-9 has been developed with Kevlar-49/PMR-15 advanced composite material. The improved fairing reduces airplane drag 1% compared to the production baseline. Use of composites reduces weight 40% compared to an equivalent metal fairing. The Kevlar-49/PMR-15 advanced composite is an organic matrix material system that can be used at temperatures up to 500 F.

  3. Drag, but not buoyancy, affects swim speed in captive Steller sea lions

    Directory of Open Access Journals (Sweden)

    Ippei Suzuki

    2014-04-01

    Full Text Available Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumetopias jubatus that made 186 dives. Our study animals were trained to dive to feed at fixed depths (10–50 m under artificially controlled buoyancy and drag conditions. Buoyancy and drag were manipulated using a pair of polyvinyl chloride (PVC tubes attached to harnesses worn by the sea lions, and buoyancy conditions were designed to fall within the natural range of wild animals (∼12–26% subcutaneous fat. Drag conditions were changed with and without the PVC tubes, and swim speeds were recorded and compared during descent and ascent phases using an accelerometer attached to the harnesses. Generalized linear mixed-effect models with the animal as the random variable and five explanatory variables (body mass, buoyancy, dive depth, dive phase, and drag showed that swim speed was best predicted by two variables, drag and dive phase (AIC = −139. Consistent with a previous theoretical prediction, the results of our study suggest that the optimal swim speed of Steller sea lions is a function of drag, and is independent of dive depth and buoyancy.

  4. No Winglets: What a Drag...Argument for Adding Winglets to Large Air Force Aircraft

    Science.gov (United States)

    2008-01-01

    22134-5068 MASTER OF MILITARY STUDIES NO WINGLETS : WHAT A DRAG... ARGUMENT FOR ADDING WINGLETS TO LARGE AIR FORCE AIRCRAFT ,SUBMITTED IN PARTIAL...currently valid OMB control number. 1. REPORT DATE 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE No Winglets ...What a Drag...Argument for Adding Winglets to Large Air Force Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  5. [Application and development of suture-dragging therapy for anal fistula].

    Science.gov (United States)

    Wang, Chen; Yao, Yibo; Dong, Qingjun; Liang, Hongtao; Guo, Xiutian; Cao, Yongqing; Lu, Jingen

    2015-12-01

    Traditional Chinese surgical treatment "suture-dragging" therapy is based on medical thread therapy and tight seton drainage in combination of minimal invasive surgical principle. It can preserve the integrity of anal sphincter musculature involved in fistulous tract or abscess and maintain anal function. This article not only describes in detail about the operation points and mechanisms of "suture-dragging" therapy of anorectal fistula, but also reviews the application and modification of anorectal disease.

  6. WATER TUNNEL EXPERIMENTAL INVESTIGATION ON THE DRAG REDUCTION CHARACTERISTICS OF THE TRAVELING WAVY WALL

    Institute of Scientific and Technical Information of China (English)

    YAO Yan; LU Chuan-jing; SI Ting; ZHU Kun

    2011-01-01

    Drag reduction experiment of the traveling wavy wall at high Reynolds number is conducted. A suit of traveling wavy wall device is developed. The drag forces of the traveling wavy wall with various wave speeds ( c ) are measured under different water speeds (U) in the K15 cavitation water tunnel and are compared with that of the flat plate. The results show that the mean drag force of the traveling wavy wall have decreased and then increased with oscillation frequency increasing at the same flow speed.Under different flow speeds, when traveling wave wall reached to the minimum of drag force, the corresponding the ratio of the wall motion phase speed c to flow speed U, c/U is slightly different. Within the parameters of the experiment, when c/U reaches a certain value, the drag force of the traveling wavy wall can be less than that of the flat plate. The drag reduction can be up to 42%.Furthermore, as the value of c / U increases, the traveling wavy wall can restrain the separation and improve the quality of flow field.

  7. Numerical simulation for the influence of injected laser power on plasma drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z; Fang, J [Department of Postgraduates, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China); Dou, Z G; Huang, H, E-mail: liuzhun0@gmail.com [Department of Basic Theories, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China)

    2011-02-01

    Laser plasma drag reduction is a new method to reduce the wave drag of hypersonic flight. Inject laser power is an important parameter. An appropriate laser power should be chosen when laser power was injected to achieve the best drag reduction effect via the minimum laser power. The effect of inject laser power on the performance of laser plasma drag reduction when incoming flight Mach number is 6.5 and at 30km altitude was simulated numerically. The result indicates that the drag can be effectively reduced by energy injection in the upstream flow. The larger the inject power is, the smaller the drag of the blunt body obtained. The energy injection can also influence the pressure and temperature on the surface of blunt body. When laser energy injected, high pressure region on the surface moves to the back of the hemisphere, the pressure of stagnation point decreased. There are two peaks of temperature on the blunt surface, one is the stagnation point and the other is the high pressure region. Temperature of the surface after high pressure region is lower comparison to the condition that no energy injected.

  8. Compliant Materials for Drag Reduction of High-speed Submerged Bodies

    Directory of Open Access Journals (Sweden)

    N. Bane Jee

    2005-01-01

    Full Text Available This paper briefly discusses the possibility of employing the compliant materials on underwater bodies for the drag reduction. Recent studies in the area of hydrobionics all-over the world have drawn the attention of hydrodynamicists for using the compliant materials on underwater body surfaces, similar to that found in fast aquatic animals like dolphins, towards achieving drag reduction and increased speeds of underwater vehicles and weapons'. Some basic principles of hydrohionics in drag reduction have been presented with special emphasis on the control of turbulent boundary layer characteristics of flow over the compliant material surfaces and induce delay in transition. Various researchers have estimated that the use of such compliantmaterial surfaces can lead to an overall drag reductton of the order of 10-12 per cent over drag of the rigid surface. This is a considerable drag reduction and should arouse keen interest among the underwater weapon and vehicle designers as the next stage of technological advancement in underwater hydrodynamic technology.

  9. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Xianliang, E-mail: xianlianglei@mail.xjtu.edu.cn; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-05-15

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  10. Diffusivity and hydrodynamic drag of nanoparticles at a vapor-liquid interface

    Science.gov (United States)

    Koplik, Joel; Maldarelli, Charles

    2017-02-01

    Measurements of the surface diffusivity of colloidal spheres translating along a vapor-liquid interface show an unexpected decrease in diffusivity, or increase in surface drag (from the Stokes-Einstein relation), when the particles situate further into the vapor phase. However, direct measurements of the surface drag from the colloid velocity due to an external force find the expected decrease with deeper immersion into the vapor. We perform molecular dynamics simulations of the diffusivity and force experiments for a nanoparticle with a small surface roughness at a vapor-liquid interface to examine the effect of contact line fluctuations. The drag calculated from both calculations agree and decrease as the particle positions further into the vapor. The surface drag is smaller than the bulk liquid drag due to the partial submersion into the liquid and the finite thickness of the interfacial zone relative to the nanoparticle size. We observe weak contact line fluctuations and transient pinning events, but these do not give rise to an anomalous increase in drag in this system.

  11. EFFECTIVE DIFFUSION AND EFFECTIVE DRAG COEFFICIENT OF A BROWNIAN PARTICLE IN A PERIODIC POTENTIAL

    Institute of Scientific and Technical Information of China (English)

    Hongyun Wang

    2011-01-01

    We study the stochastic motion of a Brownian particle driven by a constant force over a static periodic potential.We show that both the effective diffusion and the effective drag coefficient are mathematically well-defined and we derive analytic expressions for these two quantities.We then investigate the asymptotic behaviors of the effective diffusion and the effective drag coefficient,respectively,for small driving force and for large driving force.In the case of small driving force,the effective diffusion is reduced from its Brownian value by a factor that increases exponentially with the amplitude of the potential.The effective drag coefficient is increased by approximately the same factor.As a result,the Einstein relation between the diffusion coefficient and the drag coefficient is approximately valid when the driving force is small.For moderately large driving force,both the effective diffusion and the effective drag coefficient are increased from their Brownian values,and the Einstein relation breaks down. In the limit of very large driving force,both the effective diffusion and the effective drag coefficient converge to their Brownian values and the Einstein relation is once again valid.

  12. Drag measurements in laterally confined 2D canopies: Reconfiguration and sheltering effect

    Science.gov (United States)

    Barsu, Sylvie; Doppler, Delphine; Jerome, J. John Soundar; Rivière, Nicolas; Lance, Michel

    2016-10-01

    Plants in aquatic canopies deform when subjected to a water flow and so, unlike a rigid bluff body, the resulting drag force FD grows sub-quadratically with the flow velocity U ¯ . In this article, the effect of density on the canopy reconfiguration and the corresponding drag reduction is experimentally investigated for simple 2D synthetic canopies in an inclinable, narrow water channel. The drag acting on the canopy, and also on individual sheets, is systematically measured via two independent techniques. Simultaneous drag and reconfiguration measurements demonstrate that data for different Reynolds numbers (400-2200), irrespective of sheet width (w) and canopy spacing (ℓ), collapse on a unique curve given by a bending beam model which relates the reconfiguration number and a properly rescaled Cauchy number. Strikingly, the measured Vogel exponent V and hence the drag reduction via reconfiguration is found to be independent of the spacing between sheets and the lateral confinement; only the drag coefficient decreases linearly with the sheet spacing since a strong sheltering effect exists as long as the spacing is smaller than a critical value depending on the sheet width.

  13. Drag reduction for external and internal boundary layers using riblets and polymers

    Science.gov (United States)

    Reidy, Laurel W.; Anderson, Greg W.

    1988-01-01

    The efficiency of riblets and a drag-reducing polymer solution (a polyacrylamide slurry) in high-speed water tunnels for reducing drag in turbulent boundary layers was investigated in two experiments. One was an external flow experiment, in which riblets were applied to a flat plate in a high-speed water tunnel and the skin friction drag was calculated from velocity profile data. The second was an internal flow experiment, in which riblets were applied to the inside of a 6-in diameter pipe and the friction factor was calculated from mass flow rate and pressure drop measurements. Both experiments used adhesive-backed vinyl riblet film with 0.003-in height and spacing of the symmetric V-grooves. For the flat plate test, free stream velocity and Re data indicated a maximum drag reduction of about 8.1 percent. With riblets in the pipe, however, there was about three times as much friction reduction. When the polymer slurry was used in conjunction with riblets in the pipe flow, the total drag reduction was approximately equal to the sum of the drag reductions of the two techniques used separately, with some dependence on Reynolds number.

  14. Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel

    Institute of Scientific and Technical Information of China (English)

    Tian Li-mei; Ren Lu-quan; Han Zhi-wu; Zhang Shi-cun

    2005-01-01

    The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.

  15. Summary of Data from the First AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.

    2002-01-01

    The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.

  16. Ship Hull Form Optimization by Evolutionary Algorithm in Order to Diminish the Drag

    Institute of Scientific and Technical Information of China (English)

    Hassan Zakerdoost; Hassan Ghassemi; Mahmoud Ghiasi

    2013-01-01

    This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag.The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag.The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints.Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24,0.316 and 0.408.In one case the ES technique was ran for the initial hull form,where the main dimensions were fixed and the only variables were the hull offsets.In the other case in addition to hull offsets,the main dimensions were considered as variables that are optimized simultaneously.The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.

  17. Flight-measured lift and drag characteristics of a large, flexible, high supersonic cruise airplane

    Science.gov (United States)

    Arnaiz, H. H.

    1977-01-01

    Flight measurements of lift, drag, and angle of attack were obtained for the XB-70 airplane, a large, flexible, high supersonic cruise airplane. This airplane had a length of over 57 meters, a takeoff gross mass of over 226,800 kilograms, and a design cruise speed of Mach 3 at an altitude of 21,340 meters. The performance measurements were made at Mach numbers from 0.72 to 3.07 and altitudes from approximately 7620 meters to 21,340 meters. The measurements were made to provide data for evaluating the techniques presently being used to design and predict the performance of aircraft in this category. Such performance characteristics as drag polars, lift-curve slopes, and maximum lift-to-drag ratios were derived from the flight data. The base drag of the airplane, changes in airplane drag with changes in engine power setting at transonic speeds, and the magnitude of the drag components of the propulsion system are also discussed.

  18. Modeling Jupiter's Quasi Quadrennial Oscillation (QQO) with Wave Drag Parameterizations

    Science.gov (United States)

    Cosentino, Rick; Morales-Juberias, Raul; Greathouse, Thomas K.; Orton, Glenn S.

    2016-10-01

    The QQO in Jupiter's atmosphere was first discovered after 7.8 micron infrared observations spanning the 1980's and 1990's detected a temperature oscillation near 10 hPa (Orton et al. 1991, Science 252, 537, Leovy et. al. 1991, Nature 354, 380, Friedson 1999, Icarus 137, 34). New observations using the Texas Echelon cross-dispersed Echelle Spectrograph (TEXES), mounted on the NASA Infrared Telescope facility (IRTF), have been used to characterize a complete cycle of the QQO between January 2012 and January 2016 (Greathouse et al. 2016, DPS) . These new observations not only show the thermal oscillation at 10 hPa, but they also show that the QQO extends upwards in Jupiter's atmosphere to pressures as high as 0.4 hPa. We incorporated three different wave-drag parameterizations into the EPIC General Circulation Model (Dowling et al. 1998, Icarus 132, 221) to simulate the observed Jovian QQO temperature signatures as a function of latitude, pressure and time using results from the TEXES datasets as new constraints. Each parameterization produces unique results and offers insight into the spectra of waves that likely exist in Jupiter's atmosphere to force the QQO. High-frequency gravity waves produced from convection are extremely difficult to directly observe but likely contribute a significant portion to the QQO momentum budget. We use different models to simulate the effects of waves such as these, to indirectly explore their spectrum in Jupiter's atmosphere by varying their properties. The model temperature outputs show strong correlations to equatorial and mid-latitude temperature fields retrieved from the TEXES datasets at different epochs. Our results suggest the QQO phenomenon could be more than one alternating zonal jet that descends over time in response to Jovian atmospheric forcing (e.g. gravity waves from convection).Research funding provided by the NRAO Grote Reber Pre-Doctoral Fellowship. Computing resources include the NMT PELICAN cluster and the CISL

  19. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.

    Science.gov (United States)

    Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I; Zhang, Yong

    2009-06-01

    The transport of a Newtonian liquid through a smooth pipe or tube is dominated by the frictional drag on the liquid against the walls. The resistance to flow against a solid can, however, be reduced by introducing a layer of gas at or near the boundary between the solid and liquid. This can occur by the vaporization of liquid at a surface at a temperature above the Leidenfrost point, by a cushion of air (e.g. below a hovercraft), or by producing bubbles at the interface. These methods require a continuous energy input, but a more recent discovery is the possibility of using a superhydrophobic surface. Most reported research uses small sections of lithographically patterned surfaces and rarely considers pressure differences or varying flow rates. In this work we present a method for creating a uniform superhydrophobic nanoribbon layer on the inside of round copper tubes of millimetric internal radius. Two types of experiments are described, with the first involving a simultaneous comparison of four tubes with different surface finishes (as received, as received with hydrophobic coating, nanoribbon, and nanoribbon with a hydrophobic coating) under constant flow rate conditions using water and water-glycerol mixtures. The results show that the superhydrophobic nanoribbon with a hydrophobic coating surface finish allows greater flow at low pressure differences but that the effect disappears as the pressure at the inlet of the tube is increased. The second experiment is a simple visual demonstration of the low-pressure behavior using two nominally identical tubes in terms of length and cross-section, but with one tube possessing a superhydrophobic internal surface finish. In this experiment a reservoir is allowed to feed the two tubes with open ends via a T-piece and it is observed that, once flow commences, it preferentially occurs down the superhydrophobic tube.

  20. Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers

    Science.gov (United States)

    Lee-Rausch, E. M.; Frink, N. T.; Mavriplis, D. J.; Rausch, R. D.; Milholen, W. E.

    2004-01-01

    A second international AIAA Drag Prediction Workshop (DPW-II) was organized and held in Orlando Florida on June 21-22, 2003. The primary purpose was to inves- tigate the code-to-code uncertainty. address the sensitivity of the drag prediction to grid size and quantify the uncertainty in predicting nacelle/pylon drag increments at a transonic cruise condition. This paper presents an in-depth analysis of the DPW-II computational results from three state-of-the-art unstructured grid Navier-Stokes flow solvers exercised on similar families of tetrahedral grids. The flow solvers are USM3D - a tetrahedral cell-centered upwind solver. FUN3D - a tetrahedral node-centered upwind solver, and NSU3D - a general element node-centered central-differenced solver. For the wingbody, the total drag predicted for a constant-lift transonic cruise condition showed a decrease in code-to-code variation with grid refinement as expected. For the same flight condition, the wing/body/nacelle/pylon total drag and the nacelle/pylon drag increment predicted showed an increase in code-to-code variation with grid refinement. Although the range in total drag for the wingbody fine grids was only 5 counts, a code-to-code comparison of surface pressures and surface restricted streamlines indicated that the three solvers were not all converging to the same flow solutions- different shock locations and separation patterns were evident. Similarly, the wing/body/nacelle/pylon solutions did not appear to be converging to the same flow solutions. Overall, grid refinement did not consistently improve the correlation with experimental data for either the wingbody or the wing/body/nacelle pylon configuration. Although the absolute values of total drag predicted by two of the solvers for the medium and fine grids did not compare well with the experiment, the incremental drag predictions were within plus or minus 3 counts of the experimental data. The correlation with experimental incremental drag was not

  1. The photon drag effect: A fast FIR detector

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, H.C. [Paul Scherrer Institut, Zuerich (Switzerland); Son, P.C. van; Wenckebach, W.Th. [Delft Univ. of Technology (Netherlands)

    1995-12-31

    The photon drag (PD) effect in solids is the electrical current generated along the path of the absorbed photons. It is a very direct transducer which is also very fast because the momentum relaxation times of the electrons are involved. We studied the PD effect in the 2D electron gas (2DEG) of a GaAs/AlGaAs multi-quantum well system using the free-electron laser source FELIX. The temporal response on a ps timescale has been observed, and the continuous spectral response through the intersubband resonance (ISR) is investigated. For high excitation intensities we observe saturation of both the PD effect and the ISR absorption. The experiments are performed on an MBE grown GaAs/AlGaAs sample with 30 8-nm-wide quantum wells, each containing 0.8 10{sup 12} electrons/cm{sup 2}. The light is coupled to the 2DEG through a single-pass internal reflection in a Ge prism pressed onto the sample surface, and the electrical signal is capacitively coupled out to a microstrip line. The measured temporal response to the 2-ps-long infrared micropulses is limited by the 34 GHz bandwidth of the sampling oscilloscope. The spectral response (ISR at 120 meV) and the saturation of the PD effect and of the optical absorption are measured real-time on the timescale of the FELIX macropulse (typically 2 {mu}). Two contributions to the PD signal an be distinguished in the spectral response: One is proportional to the absorption and the other is proportional to its derivative with respect to frequency. The relative strength of the contributions is related to the momentum relaxation times of the electrons in the lowest and first excited subbands. At high excitation intensities, the relative strength of the two contributions stays surprisingly constant, despite the strongly increased ISR linewidth and the saturation of the signal. This indicates that the limiting relaxation time relevant for the saturation of the PD effect is longer than the sub-picosecond momentum relaxation times.

  2. Phonon and magnon heat transport and drag effects

    Science.gov (United States)

    Heremans, Joseph P.

    2014-03-01

    Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable

  3. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    Science.gov (United States)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  4. Offset of a Drag-Free Sensor from the Center of Gravity of Its Satellite

    Science.gov (United States)

    Starin, Scott R.

    2003-01-01

    The drag-free satellite is one that encloses a proof mass, shielding it from atmospheric drag and solar radiation pressure (SRP). By sensing the location of the proof mass in the body and using thrusters to force the spacecraft to follow the proof mass in a closed-loop fashion, the effects of drag and SRP may be eliminated from the spacecraft orbit. Thus, several benefits may be gained, including improved ephemeris propagation and reduced operational costs. The package including the proof mass and the location sensing equipment may be considered as a single sensor; if generalized, such a sensor could be manufactured and used more easily in satellite designs, similar to how current missions use, for example, rate gyros and magnetometers. The flight heritage of the technology has been such that the proof mass sensor is a primary facet of the mission, allowing it to dominate design considerations. In particular, this paper discusses the effects that may be expected if a generalized drag-free sensor is placed some distance away from the spacecraft center of gravity. The proof mass will follow a given gravitational orbit, and a separation from the spacecraft center of gravity places the spacecraft itself in a different orbit from the proof mass, requiring additional fuel just to maintain function of the drag- free sensor. Conclusions include some guiding principles for determining whether certain mission characteristics may restrict or preclude the use of drag-free sensors for that mission. These principles may be used both by mission planners considering drag-free missions and by hardware designers considering or pursuing the development of such generalized sensors.

  5. Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets

    Science.gov (United States)

    Choi, Haecheon

    The objective of this study is to explore concepts for control of turbulent boundary layers leading to skin -friction reduction using the direct numerical simulation technique. This report is divided into three parts where three different control methods are investigated; a passive control by longitudinal riblets, an active control by sensing and perturbing structures near the wall, and a feedback control procedure guided by control theory. In PART I significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region. The drag reduction is accompanied with significant reduction in the intensity of the wall -layer structures and reductions in the magnitude of Reynolds shear stress throughout the flow. Two essential drag reduction mechanisms are presented. In PART II mathematical methods of control theory are applied to the problem of control of fluid flow. The procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory is presented through the formalism and language of control theory. Then a suboptimal control and feedback procedure are presented using methods of calculus of variations through the adjoint state and gradient algorithms. This suboptimal feedback control procedure is applied to the distributed and boundary controls of the stochastic Burgers equation. Most cases considered show significant reductions of the costs. In PART III direct numerical simulation is performed to analyze turbulent flow over longitudinal riblets, and to educe the mechanism of drag reduction by riblets. The computed drags on the riblet surfaces are in good agreement with the existing experimental data. Differences in the mean-velocity profile and turbulence quantities are found to be limited to the inner region of the boundary layer. Velocity and vorticity fluctuations as well as the Reynolds shear stresses above the riblets are

  6. Sensitivity of Antarctic sea ice to form drag parameterization: model results and remote sensing observations

    Science.gov (United States)

    Tsamados, M.; Barbic, G.; Petty, A.; Schroeder, D.; Holland, P.; Feltham, D. L.

    2016-12-01

    A new drag parametrization accounting explicitly for form drag has been recently formulated and applied to the Arctic sea ice (Lupkes et al, 2012 and Tsamados et al, 2014). We summarizehere the fundamental elements of this formulation and we then adapt it to the Antarctic sea ice. Considering the general expression of the momentum balance of sea ice, we analyze thetotal (neutral) drag coefficients by studying separately air-ice and ocean-ice momentum fluxes, and by introducing the parameterization for both the atmospheric neutral drag coeffcient (ANDC)and the oceanic neutral drag coeffcient (ONDC). The two coefficients are calculated as a sum of their skin frictional contribution and form drag contribution, which comes from ridges and floeedges for the ANDC and keels and floe edges for the ONDC. Due to the contrasting geography of the two polar regions, there are important differences, both dynamic and thermodynamic, betweenArctic and Antarctic sea ice. In the Antarctic, sea ice is younger, less ridged (hence thinner and smoother). Due to the intense snowfalls, the snow cover is generally thicker than in theArctic, with values that vary significantly both seasonally and regionally and can affect the roughness of the surface and can lead to flooding of the ice. At the outer boundary of the SouthernOcean, the ice is unconstrained by land, divergent and subject to meridional advection, which leads to a much faster ice drift than in the Arctic. We show here how the new parameterization accountingfor form drag influences the Antarctic sea ice characteristics.

  7. Aerodynamic drag of a transiting sphere by large-scale tomographic-PIV

    Science.gov (United States)

    Terra, W.; Sciacchitano, A.; Scarano, F.

    2017-07-01

    A method is introduced to measure the aerodynamic drag of moving objects such as ground vehicles or athletes in speed sports. Experiments are conducted as proof-of-concept that yield the aerodynamic drag of a sphere towed through a square duct in stagnant air. The drag force is evaluated using large-scale tomographic PIV and invoking the time-average momentum equation within a control volume in a frame of reference moving with the object. The sphere with 0.1 m diameter moves at a velocity of 1.45 m/s, corresponding to a Reynolds number of 10,000. The measurements in the wake of the sphere are conducted at a rate of 500 Hz within a thin volume of approximately 3 × 40 × 40 cubic centimeters. Neutrally buoyant helium-filled soap bubbles are used as flow tracers. The terms composing the drag are related to the flow momentum, the pressure and the velocity fluctuations and they are separately evaluated. The momentum and pressure terms dominate the momentum budget in the near wake up to 1.3 diameters downstream of the model. The pressure term decays rapidly and vanishes within 5 diameters. The term due to velocity fluctuations contributes up to 10% to the drag. The measurements yield a relatively constant value of the drag coefficient starting from 2 diameters downstream of the sphere. At 7 diameters the measurement interval terminates due to the finite length of the duct. Error sources that need to be accounted for are the sphere support wake and blockage effects. The above findings can provide practical criteria for the drag evaluation of generic bluff objects with this measurement technique.

  8. "It Has No Color, It Has No Gender, It's Gender Bending": Gender and Sexuality Fluidity and Subversiveness in Drag Performance.

    Science.gov (United States)

    Egner, Justine; Maloney, Patricia

    2016-07-01

    Gender identity is a key question for drag performers. Previous research has shown a lack of consensus about the subversiveness and gender fluidity of drag performers. This article examines the question: How does the relationship between performers and their audience affect the subversive nature and gender representation of drag performers in this study? Furthermore, is this relationship complicated by sexuality? This study uses ethnographic and interview methods, examining experiences of 10 drag performers. Findings indicate mutuality in the relationship between performers and audience. The recursiveness of this relationship provides a constant feedback to the performers in their effort to displace the audience's previously held notions. The performers have fluid understandings of gender and sexuality, often presenting multiple genders in and out of drag. Interactions between performers and their audience indicate their belief in gender fluidity; moreover, the drag performers themselves desire to be subversive and gender and sexually fluid.

  9. DOE's effort to reduce truck aerodynamic drag : joint experiments and computations lead to smart design.

    Energy Technology Data Exchange (ETDEWEB)

    Yaste, David M (NASA Ames Research Center, Moffet Field, CA); Salari, Kambiz (Lawrence Livermore National Laboratory, Livermore, CA); Hammache, Mustapha (University of Southern California, Los Angeles, CA); Browand, Fred (University of Southern California, Los Angeles, CA); Pointer, W. David (Argonne National Laboratory, Argonne, IL); Ortega, Jason M. (Lawrence Livermore National Laboratory, Livermore, CA); McCallen, Rose (Lawrence Livermore National Laboratory, Livermore, CA); Walker, Stephen M (NASA Ames Research Center, Moffet Field, CA); Heineck, James T (NASA Ames Research Center, Moffet Field, CA); Hassan, Basil; Roy, Christopher John (Auburn University, Auburn, AL); Storms, B. (NASA Ames Research Center, Moffet Field, CA); Satran, D. (NASA Ames Research Center, Moffet Field, CA); Ross, James (NASA Ames Research Center, Moffet Field, CA); Englar, Robert (Georgia Tech Research Institute, Atlanta, GA); Chatalain, Philippe (Caltech, Pasadena, CA); Rubel, Mike (Caltech, Pasadena, CA); Leonard, Anthony (Caltech, Pasadena, CA); Hsu, Tsu-Ya (University of Southern California, Los Angeles, CA); DeChant, Lawrence Justin.

    2004-06-01

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  10. Reynolds-dependence of turbulent skin-friction drag reduction induced by spanwise forcing

    CERN Document Server

    Gatti, Davide

    2015-01-01

    This paper examines how increasing the value of the Reynolds number $Re$ affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The control strategy is the streamwise-travelling waves of spanwise wall velocity (Quadrio {\\em et al. J. Fluid Mech.}, vol. 627, 2009, pp. 161--178). The study builds upon an extensive drag-reduction database created with Direct Numerical Simulation of a turbulent channel flow for two, 5-fold separated values of $Re$, namely $Re_\\tau=200$ and $Re_\\tau=1000$. The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the traveling waves, and enables a detailed description of the changes occurring when $Re$ increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag reduction techniques, like ...

  11. Tuned liquid dampers with a Keulegan-Carpenter number-dependent screen drag coefficient

    Science.gov (United States)

    Hamelin, J. A.; Love, J. S.; Tait, M. J.; Wilson, J. C.

    2013-11-01

    The amplitude-dependent damping associated with a tuned liquid damper (TLD) equipped with slat-type screens produces a device that performs optimally at a targeted response amplitude. Increasing the slat height produces a screen whose drag coefficient is dependent on the Keulegan-Carpenter number (KC), which may improve the TLD performance. This new type of TLD is modeled as an equivalent mechanical model with damping that is dependent on both KC and the response amplitude. An experimental shake table testing program is undertaken to study the influence of KC on the TLD response and to validate the model. A power fit is performed on the experimentally determined screen drag coefficient and KC values to express the drag coefficient as a function of KC and the steady flow drag coefficient. Predicted frequency response plots of sloshing forces and energy dissipation per cycle are in agreement with experimental results. A structure-TLD system model is developed to theoretically study the performance of this new TLD. Nonlinear shallow water wave theory is used to validate the output of the mechanical model. Results indicate that a KC-dependent screen drag coefficient produces a more robust TLD whose performance is maintained over a broader range of structural response amplitudes.

  12. Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus

    Science.gov (United States)

    Hay, Hamish C. F. C.; Matsuyama, Isamu

    2017-01-01

    Icy satellites that contain subsurface oceans require sufficient thermal energy to prevent the liquid portion of their interiors from freezing. We develop a numerical finite difference model to solve the Laplace Tidal Equations on a sphere in order to simulate tidal flow and thermal energy dissipation in these oceans, neglecting the presence of an icy lid. The model is applied to Titan and Enceladus, where we explore how Rayleigh (linear) and bottom (quadratic) drag terms affect dissipation. The latter drag regime can only be applied numerically. We find excellent agreement between our results and recent analytical work. Obliquity tide Rossby-wave resonant features become independent of ocean thickness under the bottom drag regime for thick oceans. We show that for Titan, dissipation from this Rossby-wave resonance can act to dampen the rate of outward orbital migration by up to 40% for Earth-like values of bottom drag coefficient. Gravity-wave resonances can act to cause inward migration, although this is unlikely due to the thin oceans required to form such resonances. The same is true of all eccentricity tide resonances on Enceladus, such that dissipation becomes negligible for thick oceans under the bottom drag regime.

  13. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    Science.gov (United States)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  14. Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows

    CERN Document Server

    Horwitz, Jeremy

    2015-01-01

    In this work, we propose and test a method for calculating Stokes drag applicable to particle-laden fluid flows where two-way momentum coupling is important. In the point-particle formulation, particle dynamics are coupled to fluid dynamics via a source term that appears in the respective momentum equations. When the particle Reynolds number is small and the particle diameter is smaller than the fluid scales, it is common to approximate the momentum coupling source term as the Stokes drag. The Stokes drag force depends on the difference between the undisturbed fluid velocity evaluated at the particle location, and the particle velocity. However, owing to two-way coupling, the fluid velocity is modified in the neighborhood of a particle, relative to its undisturbed value. This causes the computed Stokes drag force to be underestimated in two-way coupled point-particle simulations. We develop estimates for the drag force error as function of the particle size relative to the grid size. We then develop a correct...

  15. Drag and Diffusion of Heavy Quarks in a hot and anisotropic QCD medium

    CERN Document Server

    Srivastava, P K

    2016-01-01

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Plank (FP) equation. Since the transport coefficients, related to drag and diffusion processes are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansion in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time therefore the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes advertently desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a ...

  16. The Mechanism of Drag Reduction around Bodies of Revolution Using Bionic Non-Smooth Surfaces

    Institute of Scientific and Technical Information of China (English)

    Li-mei Tian; Lu-quan Ren; Qing-ping Liu; Zhi-wu Han; Xiao Jiang

    2007-01-01

    Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been, well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.

  17. Evaluation of electroosmotic drag coefficient of water in hydrated sodium perfluorosulfonate electrolyte polymer.

    Science.gov (United States)

    Yan, Liuming; Shao, Changle; Ji, Xiaobo

    2009-07-15

    The electroosmotic drag coefficient of water molecules in hydrated sodium perfluorosulfonate electrolyte polymer is evaluated on the basis of the velocity distribution functions of the sodium cations and water molecules with an electric field applied using molecular dynamics simulations. The simulation results indicate that both velocity distribution functions of water molecules and of sodium cations agree well with the classic Maxwellian velocity distribution functions when there is no electric field applied. If an electric field is applied, the distribution functions of velocity component in directions perpendicular to the applied electric field still agree with the Maxwellian velocity distribution functions but with different temperature parameters. In the direction of the applied electric field, the electric drag causes the velocity distribution function to deviate from the Maxwellian velocity distribution function; however, to obey the peak shifted Maxwellian distribution function. The peak shifting velocities coincide with the average transport velocities induced by the electric field, and could be applied to the evaluation of the electroosmotic drag coefficient of water. By evaluation of the transport velocities of water molecules in the first coordination shells of sodium cations, sulfonate anion groups, and in the bulk, it is clearly shown that the water molecules in the first coordination shell of sodium cations are the major contribution to the electroosmotic drag and momentum transfer from water molecules within the first coordination shell to the other water molecules also contributes to the electroosmotic drag.

  18. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.

    Science.gov (United States)

    Jones, S K; Laurenza, R; Hedrick, T L; Griffith, B E; Miller, L A

    2015-11-01

    We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at Re<5; however, we are unaware of active fliers at this scale.

  19. Effects of surface drag on upper-level frontogenesis within a developing baroclinic wave

    Science.gov (United States)

    Zhang, Yi; Tan, Zhemin; Chu, Kekuan

    2016-08-01

    This paper investigates the effects of surface drag on upper-level front with a three-dimensional nonhydrostatic mesoscale numerical model (MM5). To this end, a new and simple potential vorticity intrusion (PVI) index is proposed to quantitatively describe the extent and path that surface drag affects upper-level front. From a PV perspective, the formation of the upper-level front is illustrated as the tropopause folding happens from the stratosphere. The PVI index shows a good correlation with the minimum surface pressure, and tends to increase with the deepening of the surface cyclone and upper-level front. The surface drag acts to damp and delay the development of upper-level front, which could reduce the growth rate of the PVI index. However, the damping presents different effects in different development stages. It is the most significant during the rapid development stage of the surface cyclone. Compared with no surface drag cases, the tropopause is less inclined to intrude into the troposphere due to the surface drag. Positive feedback between the surface cyclone and upper-level front could accelerate the development of the frontal system.

  20. Observation and numerical experiments for drag coefficient under typhoon wind forcing

    Science.gov (United States)

    Cao, Huiqiu; Zhou, Liangming; Li, Shuiqing; Wang, Zhifeng

    2017-02-01

    This paper presents a study on drag coefficients under typhoon wind forcing based on observations and numerical experiments. The friction velocity and wind speed are measured at a marine observation platform in the South China Sea. Three typhoons: SOULIK (2013), TRAMI (2013) and FITOW (2013) are observed at a buoy station in the northeast sea area of Pingtan Island. A new parameterization is formulated for the wind drag coefficient as a function of wind speed. It is found that the drag coefficient ( C d ) increases linearly with the slope of 0.083×10-3 for wind speed less than 24 m s-1. To investigate the drag coefficient under higher wind conditions, three numerical experiments are implemented for these three typhoons using SWAN wave model. The wind input data are objective reanalysis datasets, which are assimilated with many sources and provided every six hours with the resolution of 0.125°×0.125°. The numerical simulation results show a good agreement with wave observation data under typhoon wind forcing. The results indicate that the drag coefficient levels off with the linear slope of 0.012×10-3 for higher wind speeds (less than 34 m s-1) and the new parameterization improvese the simulation accuracy compared with the Wu (1982) default used in SWAN.

  1. Application Research on Drag Reduced Conductors for Electric Power Transmission Lines in Strong Wind Areas

    Directory of Open Access Journals (Sweden)

    Li Dong Qing

    2016-01-01

    Full Text Available The breeze vibration duration of conductors is long, the vibration amplitude is strong and the frequency range is wide for electric power transmission lines in strong wind areas, which seriously affects the safe and stable operation of transmission lines. There are two design schemes of conductors which can achieve the purpose of reducing wind-induced disaster. One is enhancing the structural strength of conductors to withstand wind load, but the investment is enormous and the effect is limited. The other is developing drag reduced conductors to reduce wind load by changing conductor structure. This paper started from application feasibility analysis of drag reduced conductors and designed four drag reduced conductors by structure optimization of the conventional aluminium conductor steel reinforced JL/G1A-630/45-45/7, denoted as DFY630/45(45°-R3.5, DFY630/45(60°-R3.5, DFY630/45(45°–R3.2 and DFY630/45(60°-R3.2, respectively. The wind tunnel test was performed and the wind resistance coefficients in unit length of five conductors were compared. Result showed that the wind resistance coefficients in unit length of four drag reduced conductors were obviously lower than that of the conventional conductor. By controlling the manufacturing process, popularization and application of drag reduced conductors for transmission lines in strong wind areas can be realized.

  2. On the horseshoe drag of a low-mass planet. I - Migration in isothermal disks

    CERN Document Server

    Casoli, J

    2009-01-01

    We investigate the unsaturated horseshoe drag exerted on a low-mass planet by an isothermal gaseous disk. In the globally isothermal case, we use a formal- ism, based on the use of a Bernoulli invariant, that takes into account pressure effects, and that extends the torque estimate to a region wider than the horse- shoe region. We find a result that is strictly identical to the standard horseshoe drag. This shows that the horseshoe drag accounts for the torque of the whole corotation region, and not only of the horseshoe region, thereby deserving to be called corotation torque. We find that evanescent waves launched downstream of the horseshoe U-turns by the perturbations of vortensity exert a feed-back on the upstream region, that render the horseshoe region asymmetric. This asymmetry scales with the vortensity gradient and with the disk's aspect ratio. It does not depend on the planetary mass, and it does not have any impact on the horseshoe drag. Since the horseshoe drag has a steep dependence on the width...

  3. Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer

    CERN Document Server

    Stroh, A; Schlatter, P; Frohnapfel, B

    2016-01-01

    A numerical investigation of two locally applied drag reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case whereas drag increase is found for the turbulence damping case. In order to account for this difference the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a finite length plate. Furthermore, it is shown that the far downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. B...

  4. Developing a methodology for estimating the drag in front-crawl swimming at various velocities.

    Science.gov (United States)

    Narita, Kenzo; Nakashima, Motomu; Takagi, Hideki

    2017-02-10

    We aimed to develop a new method for evaluating the drag in front-crawl swimming at various velocities and at full stroke. In this study, we introduce the basic principle and apparatus for the new method, which estimates the drag in swimming using measured values of residual thrust (MRT). Furthermore, we applied the MRT to evaluate the active drag (Da) and compared it with the passive drag (Dp) measured for the same swimmers. Da was estimated in five-stages for velocities ranging from 1.0 to 1.4ms(-1); Dp was measured at flow velocities ranging from 0.9 to 1.5ms(-1) at intervals of 0.1ms(-1). The variability in the values of Da at MRT was also investigated for two swimmers. According to the results, Da (Da=32.3 v(3.3), N=30, R(2)=0.90) was larger than Dp (Dp=23.5 v(2.0), N=42, R(2)=0.89) and the variability in Da for the two swimmers was 6.5% and 3.0%. MRT can be used to evaluate Da at various velocities and is special in that it can be applied to various swimming styles. Therefore, the evaluation of drag in swimming using MRT is expected to play a role in establishing the fundamental data for swimming.

  5. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades

    Science.gov (United States)

    Lee, J.K.; Roig, L.C.; Jenter, H.L.; Visser, H.M.

    2004-01-01

    Hydraulic data collected in a flume fitted with pans of sawgrass were analyzed to determine the vertically averaged drag coefficient as a function of vegetation characteristics. The drag coefficient is required for modeling flow through emergent vegetation at low Reynolds numbers in the Florida Everglades. Parameters of the vegetation, such as the stem population per unit bed area and the average stem/leaf width, were measured for five fixed vegetation layers. The vertically averaged vegetation parameters for each experiment were then computed by weighted average over the submerged portion of the vegetation. Only laminar flow through emergent vegetation was considered, because this is the dominant flow regime of the inland Everglades. A functional form for the vegetation drag coefficient was determined by linear regression of the logarithmic transforms of measured resistance force and Reynolds number. The coefficients of the drag coefficient function were then determined for the Everglades, using extensive flow and vegetation measurements taken in the field. The Everglades data show that the stem spacing and the Reynolds number are important parameters for the determination of vegetation drag coefficient. ?? 2004 Elsevier B.V. All rights reserved.

  6. Effect of the Size Distribution of Nanoscale Dispersed Particles on the Zener Drag Pressure

    Science.gov (United States)

    Eivani, A. R.; Valipour, S.; Ahmed, H.; Zhou, J.; Duszczyk, J.

    2011-04-01

    In this article, a new relationship for the calculation of the Zener drag pressure is described in which the effect of the size distribution of nanoscale dispersed particles is taken into account, in addition to particle radius and volume fraction, which have been incorporated in the existing relationships. Microstructural observations indicated a clear correlation between the size distribution of dispersed particles and recrystallized grain sizes in the AA7020 aluminum alloy. However, the existing relationship to calculate the Zener drag pressure yielded a negligible difference of 0.016 pct between the two structures homogenized at different conditions resulting in totally different size distributions of nanoscale dispersed particles and, consequently, recrystallized grain sizes. The difference in the Zener drag pressure calculated by the application of the new relationship was 5.1 pct, being in line with the experimental observations of the recrystallized grain sizes. Mathematical investigations showed that the ratio of the Zener drag pressure from the new equation to that from the existing equation is maximized when the number densities of all the particles with different sizes are equal. This finding indicates that in the two structures with identical parameters except the size distribution of nanoscale dispersed particles, the one that possesses a broader size distribution of particles, i.e., the number densities of particles with different sizes being equal, gives rise to a larger Zener drag pressure than that having a narrow size distribution of nanoscale dispersed particles, i.e., most of the particles being in the same size range.

  7. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  8. Effects of biofouling development on drag forces of hull coatings for ocean-going ships: a review

    DEFF Research Database (Denmark)

    Lindholdt, Asger; Dam-Johansen, Kim; Olsen, S. M.;

    2015-01-01

    This review presents a systematic overview of the literature and describes the experimental methods used to quantify the drag of hull coatings. It also summarizes the findings of hull coating's drag performance and identifies the main parameters impacting it. The advantages and disadvantages...... of the reported methods listed in this review provide an assessment of the most efficient methods to quantify the drag performance of hull coatings. This review determines that drag performance of hull coating technology varies depending on whether the coating condition is newly applied, after dynamic or static...

  9. The Influence of wave state and sea spray on drag coefficient from low to high wind speeds

    Science.gov (United States)

    Shi, Jian; Zhong, Zhong; Li, Xunqiang; Jiang, Guorong; Zeng, Wenhua; Li, Yan

    2016-02-01

    Ocean waves alter the roughness of sea surface, and sea spray droplets redistribute the momentum flux at the air-sea interface. Hence, both wave state and sea spray influence sea surface drag coefficient. Based on the new sea spray generation function which depends on sea surface wave, a wave-dependent sea spray stress is obtained. According to the relationship between sea spray stress and the total wind stress on the sea surface, a new formula of drag coefficient at high wind speed is acquired. With the analysis of the new drag coefficient, it is shown that the drag coefficient reduces at high wind speed, indicating that the sea spray droplets can limit the increase of drag coefficient. However, the value of high wind speed corresponding to the initial reduced drag coefficient is not fixed, and it depends on the wave state, which means the influence of wave cannot be ignored. Comparisons between the theoretical and measured sea surface drag coefficients in field and laboratory show that under different wave ages, the theoretical result of drag coefficient could include the measured data, and it means that the new drag coefficient can be used properly from low to high wind speeds under any wave state condition.

  10. Ultranarrow resonance in Coulomb drag between quantum wires at coinciding densities

    Science.gov (United States)

    Dmitriev, A. P.; Gornyi, I. V.; Polyakov, D. G.

    2016-08-01

    We investigate the influence of the chemical potential mismatch Δ (different electron densities) on Coulomb drag between two parallel ballistic quantum wires. For pair collisions, the drag resistivity ρD(Δ ) shows a peculiar anomaly at Δ =0 with ρD being finite at Δ =0 and vanishing at any nonzero Δ . The "bodyless" resonance in ρD(Δ ) at zero Δ is only broadened by processes of multiparticle scattering. We analyze Coulomb drag for finite Δ in the presence of both two- and three-particle scattering within the kinetic equation framework, focusing on a Fokker-Planck picture of the interaction-induced diffusion in momentum space of the double-wire system. We describe the dependence of ρD on Δ for both weak and strong intrawire equilibration due to three-particle scattering.

  11. Re-examination of compliant wall experiments in air with water substrates. [for drag reduction

    Science.gov (United States)

    Hefner, J. N.; Weinstein, L. M.

    1976-01-01

    A possible alternative explanation is proposed for compliant wall drag reductions measured in previous investigations. Standing waves were observed to form on the surfaces of compliant wall models in air with water substrates as the freestream velocity was increased from 15 to 30 m/s. These waves resembled sine waves with half of the wave protruding over the upstream portion of the model and the other half being recessed over the downstream end of the model. These data coupled with results of recent drag reduction experiments suggest that standing waves could have caused a shift in the model center of gravity creating a bending moment that was interpreted as a reduction in the skin friction drag.

  12. On drag forces and jet quenching in strongly-coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico); Gueijosa, Alberto [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares, Universidad Autonoma de Mexico, Apdo. Postal 70-543, Mexico D.F.04510 (Mexico)

    2006-12-15

    We compute the drag force experienced by a heavy quark that moves through plasma in a gauge theory whose dual description involves arbitrary metric and dilaton fields. As a concrete application, we consider the cascading gauge theory at temperatures high above the deconfining scale, where we obtain a drag force with a non-trivial velocity dependence. We compare our results with the jet-quenching parameter for the same theory, and find qualitative agreement between the two approaches. Conversely, we calculate the jet-quenching parameter for N = 4 super-Yang-Mills with an R-charge density (or equivalently, a chemical potential), and compare our result with the corresponding drag force.

  13. The Effects of Drag and Tidal Forces on the Orbits of High-Velocity Clouds

    Science.gov (United States)

    Fernandes, Alexandre; Benjamin, R. A.

    2013-06-01

    Over the past several years, orbital constraints have been obtained for several high velocity cloud complexes surrounding the Milky Way: Complex GCP (Smith Cloud), Complex A, Complex H, Complex GCN, and the Magellanic Stream. We summarize what is known about the orbits of these clouds and and discuss how well each of these complexes fits a balistic trajectory, and discuss how the length of a complex across the sky is related to the inital "fragmentation" and velocity dispersion of the clouds. We then introduce gas drag into the simulation of the orbits of these complexes. We present analytical tests of our numerical method and characterize the departure of the clouds from the ballistic trajectory as a function of drag parameters (ambient gas density and velocity and cloud column density). Using the results of these simulations we comment on the survivability and ultimate fate of HVC in the context of the different models of drag forces.

  14. FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2004-11-18

    The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.

  15. CFD Study of Drag and Lift of Sepak Takraw Ball at Different Face Orientations

    Directory of Open Access Journals (Sweden)

    Abdul Syakir Abdul Mubin

    2015-01-01

    Full Text Available There have been a significant number of researches on computational fluid dynamic (CFD analysis of balls used in sports such as golf balls, tennis balls, and soccer balls. Sepak takraw is a high speed court game predominantly played in Southeast Asia using mainly the legs and head. The sepak takraw ball is unique because it is not enclosed and made of woven plastic. Hence a study of its aerodynamicswould give insight into its behaviour under different conditions of play. In this study the dynamics of the fluid around a static sepak takraw ball was investigated at different wind speeds for three different orientations using CFD. It was found that although the drag did not differ very much, increasing the wind velocity causes an increase in drag. The lift coefficientvaries as the velocity increases and does not show a regular pattern. The drag and lift coefficients are influenced by the orientation of the sepak takraw ball.

  16. An Optimal Angle of Launching a Point Mass in a Medium with Quadratic Drag Force

    CERN Document Server

    Chudinov, P

    2005-01-01

    A classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. Analytic approach is used for investigation. The problem of finding an optimal angle of launching a point mass in a medium with quadratic drag force is considered. An equation for determining a value of this angle is obtained. After finding the optimal angle of launching, eight main parameters of the point mass motion are analytically determined. These parameters are used to construct analytically six main functional relationships of the problem. Simple analytic formulas are used to solve two problems of optimization aimed to maximize the flight range of a point mass and minimize the initial speed of the point mass for getting to the given point on the plane. The motion of a baseball is presented as an example.

  17. Alignment of dust particles by ion drag forces in subsonic flows

    Energy Technology Data Exchange (ETDEWEB)

    Piel, Alexander [IEAP, Christian-Albrechts-University, D-24098 Kiel (Germany)

    2011-07-15

    The role of ion drag forces for the alignment of dust particles is studied for subsonic flows. While alignment by wake-field attraction is a well known mechanism for supersonic flows, it is argued here that ion-scattering forces become more important in subsonic ion flows. A model of non-overlapping collisions is introduced and numerical results are discussed. For typical conditions of dusty plasma experiments, alignment by drag forces is found strong enough to overcome the destabilizing force from Coulomb repulsion between dust particles. It turns out that the major contribution to the horizontal restoring force originates from the transverse momentum transfer, which is usually neglected in ion drag force calculations because of an assumed rotational symmetry of the flow.

  18. Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow

    Science.gov (United States)

    Watanabe, Sho; Mamori, Hiroya; Fukagata, Koji

    2017-04-01

    Friction drag reduction effect by superhydrophobic surfaces in a turbulent channel flow is investigated by means of direct numerical simulation. The simulations are performed under a constant pressure gradient at the friction Reynolds number of 180. A special focus is laid upon the influence of the angle of microridge structure to flow direction, while the gas area fraction on the surface is kept at 50% and the groove width is kept constant at 33.75 wall units. Larger drag reduction effect is observed for a smaller angle: the bulk-mean velocity is increased about 15% when the microridge is parallel to the flow. The drag reduction effect is found to deteriorate rapidly with the microridge angle due to a decrease in the slip velocity. The Reynolds stress budgets show that the modification in each physical effect is qualitatively similar but more pronounced when the microridge is aligned with the stream.

  19. Direct drag and hot-wire measurements on thin-element riblet arrays

    Science.gov (United States)

    Wilkinson, S. P.; Lazos, B. S.

    1987-01-01

    An experimental study of stream wise, near-wall, thin-element riblet arrays under a turbulent boundary layer has been conducted in low-speed air. Hot-wire data show that a single, isolated thin-element riblet causes formation of counter-rotating vortex-pairs with a spanwise wavelength of 130 viscous lengths. Abrupt shifts in turbulence intensity magnitude and peak location are observed for streamwise riblet arrays as spanwise riblet spacing is varied. Direct drag measurements show net drag reduction (up to 8.5 percent) over a wide range of riblet spacings along with behavior at discrete non-dimensional spacings indicative of vortex activity. Overall, the data suggest that more than one drag reduction mechanism may be involved.

  20. Buoyancy increase and drag-reduction through a simple superhydrophobic coating.

    Science.gov (United States)

    Hwang, Gi Byoung; Patir, Adnan; Page, Kristopher; Lu, Yao; Allan, Elaine; Parkin, Ivan P

    2017-06-08

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown that the low energy surface treatment decreased the adhesion of water molecules to the surface of the boat resulting in a reduction of the drag force. Additionally, a robust superhydrophobic surface was fabricated through layer-by-layer coating using adhesive double side tape and the paint, and after a 100 cm abrasion test with sand paper, the surface still retained its water repellency, enhanced buoyancy and drag reduction.

  1. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  2. The effect of finger spreading on drag of the hand in human swimming

    CERN Document Server

    van Houwelingen, Josje; Kunnen, Rudie P J; van Heijst, GertJan F; Grift, Ernst Jan; Breugem, Wim Paul; Delfos, Rene; Westerweel, Jerry; Clercx, Herman J H; van de Water, Willem

    2016-01-01

    The effect of finger spreading on hydrodynamic drag in swimming is studied both with a numerical simulation and with laboratory experiments. Both approaches are based on the exact same 3D model of the hand with attached forearm. The virtual version of the hand with forearm was implemented in a numerical code by means of an immersed boundary method and the physical version was studied in a wind tunnel experiment. An enhancement of the drag coefficient of 2 and 5% compared to the case with closed fingers was found for the numerical simulation and experiment, respectively. A 5 and 8% favourable effect on the (dimensionless) force moment at an optimal finger spreading of 10 degrees was found, which indicates that the difference is more outspoken in the force moment. Also an analytical model is proposed, using scaling arguments similar to the Betz actuator disk model, to explain the drag coefficient as a function of finger spacing.

  3. Development of a Kevlar/PMR-15 reduced drag DC-9 nacelle fairing

    Science.gov (United States)

    Kawai, R. T.; Hrach, F. J.

    1980-01-01

    The paper describes an advanced composite fairing designed to reduce drag on DC-9 nacelles as a part of the NASA Engine Component Improvement Program. This fairing is the aft enclosure for the thrust reverser actuator system on JT8D engine nacelles and is subjected to a 500 F exhaust flow during the reverse thrust. A reduced-drag configuration was developed by using in-flight tuft surveys for flow visualization in order to identify areas with low-quality flow, and then modifying the aerodynamic lines to improve the flow. A fabrication method for molding the part in an autoclave was developed; this material system is suitable for 500 F. The resultant composite fairing reduces the overall aircraft drag 1% with a weight reduction of 40% when compared with a metal component.

  4. Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suction

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2014-08-01

    Full Text Available The high demand for new and improved aerodynamic drag reduction devices has led to the invention of flow control mechanisms and continuous suction is a promising strategy that does not have major impact on vehicle geometry. The implementation of this technique on sport utility vehicles (SUV requires adequate choice of the size and location of the opening as well as the magnitude of the boundary suction velocity. In this paper we introduce a new methodology to identifying these parameters for maximum reduction in aerodynamic drag. The technique combines automatic modeling of the suction slit, computational fluid dynamics (CFD and a global search method using orthogonal arrays. It is shown that a properly designed suction mechanism can reduce drag by up to 9%..

  5. Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of experiments have been performed to demonstrate the significant drag reduction of the laminar flow in the ultrahydrophobic channels with dual-scale micro-nano structured surfaces.However,in previous experiments,the ultrahydrophobic surfaces were fabricated with micro-structures or nano-structures and the channels were on the microscale.For the drag reduction in macro-scale channels few reports are available.Here a new method was developed to fabricate ultrahydrophobic surfaces with micro-nano hierarchical structures made from carbon nanotubes.The drag reductions up to 36.3% were observed in the macro-channels with ultrahydrophobic surfaces.The micro-PIV was used to measure the flow velocity in channels.Compared with the traditional no-slip theory at walls,a significant slip velocity was observed on the ultrahydrophobic surfaces.

  6. Response spectrum method for extreme wave loading with higher order components of drag force

    Science.gov (United States)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Mohammad Ali, Dastan Diznab; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-01-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  7. Elasto-Inertial Turbulence: From Subcritical Turbulence to Maximum Drag Reduction

    Science.gov (United States)

    Dubief, Yves; Sid, Samir; Egan, Raphael; Terrapon, Vincent

    2015-11-01

    Elasto Inertial Turbulence (EIT) is a turbulence state found so far in polymer solutions. Upon the appropriate initial perturbation, an autonomous regeneration cycle emerges between polymer dynamics, pressure and velocity fluctuations. This cycle is best explained by the Poisson equation derived from viscoelastic flow models such as FENE-P (used in this study). This presentation provides an overview of the structure of EIT in 2D channel flows for Reynolds numbers ranging from Reτ = 10 to 100 and for 3D simulations up to Ret au = 300 . For flows below the Newtonian critical Reynolds number, EIT increases the drag. For higher Reynolds numbers, EIT is surmised to be the energetic bound of Maximum Drag Reduction (MDR), the asymptotic state of drag reduction in polymer solutions. The very existence of EIT at low Reynolds numbers (Reτ FNRS grant No.2.5020.11), the PRACE infrastructure, and the Vermont Advanced Computing Core.

  8. Drag Prediction in the Near Wake of a Circular Cylinder based on DPIV Data

    Directory of Open Access Journals (Sweden)

    Onur Son

    2016-01-01

    Full Text Available This study focuses on drag prediction in the near-wake of a circular cylinder by use of mean velocity profiles and discusses the closest location where a wake survey would yield an accurate result. Although the investigation considers both the mean and fluctuating velocities, the main focus is on the mean momentum deficit which should be handled properly beyond a critical distance. Digital Particle Image Velocimetry (DPIV experiments are performed in a Reynolds number range of 100 to 1250. Wake characteristics such as vortex formation length (L and wake width (t are determined and their relations to drag prediction are presented. Drag coefficients determined by momentum deficit formula are found to be in good agreement with experimental and numerical literature data in present Reynolds number regime.

  9. Heavy Class Helicopter Fuselage Model Drag Reduction by Active Flow Control Systems

    Science.gov (United States)

    De Gregorio, F.

    2017-08-01

    A comprehensive experimental investigation of helicopter blunt fuselage drag reduction using active flow control is being carried out within the European Clean Sky program. The objective is to demonstrate the capability of several active flow technologies to decrease fuselage drag by alleviating the flow separation occurring in the rear area of some helicopters. The work is performed on a simplified blunt fuselage at model-scale. Two different flow control actuators are considered for evaluation: steady blowing, unsteady blowing (or pulsed jets). Laboratory tests of each individual actuator are first performed to assess their performance and properties. The fuselage model is then equipped with these actuators distributed in 3 slots located on the ramp bottom edge. This paper addresses the promising results obtained during the wind-tunnel campaign, since significant drag reductions are achieved for a wide range of fuselage angles of attack and yaw angles without detriment of the other aerodynamic characteristics.

  10. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    Science.gov (United States)

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  11. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....

  12. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    Directory of Open Access Journals (Sweden)

    Akbıyık Hürrem

    2016-01-01

    Full Text Available In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  13. Optimization of Mass Bleed Control for Base Drag Reduction of Supersonic Flight Bodies

    Institute of Scientific and Technical Information of China (English)

    Y.-K.Lee; H.-D.Kim

    2006-01-01

    The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream. Axisymmtric, compressible, mass-averaged Navier-Stokes equations are solved using the standard k-ω turbulence model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow characteristics are explained regarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and freestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a larger orifice exit can offer better drag control.

  14. The Role of Drag in the Energetics of Strongly Forced Exoplanet Atmospheres

    CERN Document Server

    Rauscher, Emily

    2011-01-01

    In contrast to the Earth, where frictional heating is typically neglected in atmospheric modeling, we show that drag mechanisms could act as an important heat source in the strongly-forced atmospheres of some exoplanets, with the potential to alter the circulation. We modify the standard formalism of the atmospheric energy cycle to explicitly track the loss of kinetic energy and the associated frictional (re)heating, for application to exoplanets such as the asymmetrically heated "hot Jupiters" and gas giants on highly eccentric orbits. We establish that an understanding of the dominant drag mechanisms and their dependence on local atmospheric conditions is critical for accurate modeling, not just in their ability to limit wind speeds, but also because they could possibly change the energetics of the circulation enough to alter the nature of the flow. We discuss possible sources of drag and estimate the strength necessary to significantly influence the atmospheric energetics. As we show, the frictional heatin...

  15. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey

    Science.gov (United States)

    Wang, Zhen-guo; Sun, Xi-wan; Huang, Wei; Li, Shi-bin; Yan, Li

    2016-12-01

    The drag and heat reduction problem of hypersonic vehicles has always attracted the attention worldwide, and the experimental test approach is the basis of theoretical analysis and numerical simulation. In the current study, research progress of experimental investigations on drag and heat reduction are summarized by several kinds of mechanism, namely the forward-facing cavity, the opposing jet, the aerospike, the energy deposition and their combinational configurations, and the combinational configurations include the combinational opposing jet and forward-facing cavity concept and the combinational opposing jet and aerospike concept. The geometric models and flow conditions are emphasized, especially for the basic principle for the drag and heat flux reduction of each device. The measurement results of aerodynamic and aerothermodynamic are compared and analyzed as well, which can be a reference for assessing the accuracy of numerical results.

  16. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets

    Science.gov (United States)

    Yang, Shao-Qiong; Li, Shan; Tian, Hai-Ping; Wang, Qing-Yi; Jiang, Nan

    2016-04-01

    Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect. In the present study, the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer (TBL) is investigated. This is done by means of tomographic particle image velocimetry (TPIV) measurements in channel flows over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190. The turbulent flows over drag-reducing riblets are verified by a planar time-resolved particle image velocimetry (TRPIV) system initially, and then the TPIV measurements are performed. Two-dimensional (2D) experimental results with a drag-reduction rate of around 4.81 % are clearly visible over triangle riblets with a peak-to-peak spacing s+ of 14, indicating from the drag-reducing performance that the buffer layer within the TBL has thickened; the logarithmic law region has shifted upward and the Reynolds shear stress decreased. A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudes of the spanwise vorticity when ejection (Q2) and sweep (Q4) events occur at the near wall, having the greatest effect on Q4 events in particular. The so-called quadrupole statistical model for coherent structures in the whole TBL is verified. Meanwhile, their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent flow over riblets are changed, suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events (Q2 and Q4), thereby reducing the skin friction drag.

  17. Optimizing Geometry Mediated Skin Friction Drag on Riblet-Textured Surfaces

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2016-11-01

    Micro-scale riblets have been shown to modify the skin friction drag on patterned surfaces. Shark skin is widely known as a natural example of this passive drag reduction mechanism and artificial riblet tapes have been previously used in the America's Cups tournament resulting in a 1987 victory. Previous experiments with riblet surfaces in turbulent boundary layer flow have shown 4-8% reduction in the skin friction drag. Our computations with sinusoidal riblet surfaces in high Reynolds number laminar boundary layer flow and experiments with V-grooves in laminar Taylor-Couette flow also show that the reduction in skin friction can be substantial and depends on the spacing and height of the riblets. In the boundary layer setting, this frictional reduction is also a function of the length of the plate in the flow direction, while in the Taylor Couette setting it depends on the gap size. In the current work, we use scaling arguments and conformal mapping to establish a simplified theory for laminar flow over V-groove riblets and explore the self-similarity of the velocity contours near the patterned surface. We combine these arguments with theoretical and numerical calculations using Matlab and OpenFOAM to show that the drag reduction achievable in laminar flow over riblet surfaces depends on a rescaled form of the Reynolds number combined with the aspect ratio of the texture (defined in terms of the ratio of the height to spacing of the riblets). We then use these results to explain the underlying physical mechanisms driving frictional drag reduction and offer recommendations for designing low drag surfaces.

  18. Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica

    Science.gov (United States)

    Amory, Charles; Gallée, Hubert; Naaim-Bouvet, Florence; Favier, Vincent; Vignon, Etienne; Picard, Ghislain; Trouvilliez, Alexandre; Piard, Luc; Genthon, Christophe; Bellot, Hervé

    2017-02-01

    The surface of windy Antarctic snowfields is subject to drifting snow, which leads to the formation of sastrugi. In turn, sastrugi contribute to the drag exerted by the snow surface on the atmosphere and hence influence drifting snow. Although the surface drag over rough sastrugi fields has been estimated for individual locations in Antarctica, its variation over time and with respect to drifting snow has received little attention. Using year-round data from a meteorological mast, seasonal variations in the neutral drag coefficient at a height of 10 m (C_{{ DN}10}) in coastal Adelie Land are presented and discussed in light of the formation and behaviour of sastrugi based on observed aeolian erosion patterns. The measurements revealed high C_{{ DN}10} values (≥ 2 × 10^{-3}) and limited drifting snow (35% of the time) in summer (December-February) versus lower C_{{ DN}10} values (≈ 1.5 × 10^{-3}) associated with more frequent drifting snow (70% of the time) in winter (March-November). Without the seasonal distinction, there was no clear dependence of C_{{ DN}10} on friction velocity or wind direction, but observations revealed a general increase in C_{{ DN}10} with rising air temperature. The main hypothesis defended here is that higher temperatures increase snow cohesion and the development of sastrugi just after snow deposition while inhibiting the sastrugi streamlining process by raising the erosion threshold. This increases the contribution of the sastrugi form drag to the total surface drag in summer when winds are lighter and more variable. The analysis also showed that, in the absence of erosion, single snowfall events can reduce C_{{ DN}10} to 1 × 10^{-3} due to the burying of pre-existing microrelief under newly deposited snow. The results suggest that polar atmospheric models should account for spatial and temporal variations in snow surface roughness through a dynamic representation of the sastrugi form drag.

  19. Influence of Particle Shape on Drag Coefficient for Commonly Occuring Sandy Particles in Coastal Areas

    Directory of Open Access Journals (Sweden)

    Chitra Arora

    2010-06-01

    Full Text Available A well defined relationship connecting settling velocity with sediment geometry and ambient properties is an essential pre-requisite for coastal and hydraulic engineering studies. An established relationship for settling velocity of sandy particles assuming spherical shape geometry is available in the literature. In reality, the sediment particles need not be spherical at all times, which influences settling velocity that is strongly biased to the drag coefficient. Based on quantitative comparison with measured data collected at Oahu Islands located in the Hawaiian archipelago, USA this work provides a relationship between drag coefficient and particle shape factor for sand grains viz; sand, sandy loam and fine sandy loam typically found in coastal environment (typical size ranges from 0.05 to 2.0 mm. The particle Reynolds number and shape factor are evaluated for each grain. The drag coefficient evaluated as function of nominal diameter and Reynolds number show a positive correlation over a wide range of shape factors used in this study. A comprehensive correlation has been developed of the drag coefficient for non-spherical particles as a function of Reynolds number and particle shape. Further a regression analysis was performed on the functional dependence of drag coefficient on particle shape. Based on this study, it could be advocated the validity of Krumbien shape factor holds well for the above characterized grain size and various particle shapes considered. Hence, the settling velocity of particles has a functional dependence on estimated drag coefficient with important implications for modeling sediment transport and swash zone hydrodynamics.

  20. Toy Model of Frame-Dragging Magnetosphere for the M87 Jet

    Indian Academy of Sciences (India)

    Lei Huang; Zhi-Qiang Shen

    2014-09-01

    We make a toy model for M87 jet to interpret its parabolic structure and acceleration in the apparent speeds, according to observations in milli-arcsecond to arcsecond scales upstream of HST-1. The outermost layer of jet is driven by the frame-dragging effect in the Kerr spacetime with a slowly to moderately spinning black hole. The corresponding magnetosphere has a foot-point 0 in the vicinity of event-horizon, and rotating at a frequency F equal to that of the frame-dragging (0).