WorldWideScience

Sample records for reductase gr glutathione

  1. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Jeune, B; Nybo, H

    1998-01-01

    aged between 60 and 79 years. MEASUREMENTS: enzyme activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase, catalase and glutathione reductase (GR) in erythrocytes. Functional capacity among the centenarians was evaluated by Katz' index of activities of daily living, the Physical...

  2. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Igor Y. Iskusnykh

    2013-01-01

    Full Text Available Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9 and glutathione reductase (GR, EC 1.6.4.2 activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.

  3. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  4. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli

    International Nuclear Information System (INIS)

    Yoon, Ho-Sung; Lee, In-Ae; Lee, Hyoshin; Lee, Byung-Hyun; Jo, Jinki

    2005-01-01

    Glutathione reductase (GR) plays an essential role in a cell's defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant glutathione. We constructed a recombinant plasmid based on the expression vector pET-18a that overexpresses a eukaryotic GR from Brassica campestris (BcGR) in Escherichia coli. For comparative analyses, E. coli GR (EcGR) was also subcloned in the same manner. The transformed E. coli with the recombinant constructs accumulated a high level of GR transcripts upon IPTG induction. Also, Western blot analysis showed overproduction of the BcGR protein in a soluble fraction of the transformed E. coli extract. When treated with oxidative stress generating reagents such as paraquat, salicylic acid, and cadmium, the BcGR overproducing E. coli exhibited a higher level of growth and survival rate than the control E. coli strain, but it was not as high as the E. coli strain transformed with the inducible EcGR. The translated amino acid sequences of BcGR and EcGR share 37.3% identity but all the functionally known important residues are conserved. It appears that eukaryotic BcGR functions in a prokaryotic system by providing protection against oxidative damages in E. coli

  5. Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases.

    Science.gov (United States)

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Mhamdi, Amna; Vanacker, Hélène; Noctor, Graham

    2017-08-03

    Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H 2 O 2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H 2 O 2 metabolism.

  6. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  7. Post-Transcriptional Regulation Prevents Accumulation of Glutathione Reductase Protein and Activity in the Bundle Sheath Cells of Maize1

    Science.gov (United States)

    Pastori, Gabriela M.; Mullineaux, Philip M.; Foyer, Christine H.

    2000-01-01

    Glutathione reductase (GR; EC 1.6.4.2) activity was assayed in bundle sheath and mesophyll cells of maize (Zea mays L. var H99) from plants grown at 20°C, 18°C, and 15°C. The purity of each fraction was determined by measuring the associated activity of the compartment-specific marker enzymes, Rubisco and phosphoenolpyruvate carboxylase, respectively. GR activity and the abundance of GR protein and mRNA increased in plants grown at 15°C and 18°C compared with those grown at 20°C. In all cases GR activity was found only in mesophyll fractions of the leaves, with no GR activity being detectable in bundle sheath extracts. Immunogold labeling with GR-specific antibodies showed that the GR protein was exclusively localized in the mesophyll cells of leaves at all growth temperatures, whereas GR transcripts (as determined by in situ hybridization techniques) were observed in both cell types. These results indicate that post-transcriptional regulation prevents GR accumulation in the bundle sheath cells of maize leaves. The resulting limitation on the capacity for regeneration of reduced glutathione in this compartment may contribute to the extreme chilling sensitivity of maize leaves. PMID:10712529

  8. Purification and properties of glutathione reductase from liver of the anoxia-tolerant turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Willmore, William G; Storey, Kenneth B

    2007-03-01

    Glutathione reductase (GR) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) using NADPH as a cofactor. The enzyme is a major component of cellular defense mechanisms against oxidative injury. In this study, GR was purified from the liver of the anoxia-tolerant turtle, Trachemys scripta elegans. The overall fold purifications were 13.3- and 12.1-fold with final specific activities of 5.5 and 1.44 U/mg of protein for control and anoxic turtle GR, respectively. SDS-PAGE of purified turtle liver GR showed a single protein band at approximately 55 kDa. Reverse phase HPLC of turtle GR revealed a single peak that had the same retention time as yeast GR. No new isoform of GR was detected in liver of T. s. elegans during anoxia. The K (m) values of turtle GR for GSSG and NADPH was 44.6 and 6.82 microM, respectively, suggesting a substantially higher affinity of turtle GR toward GSSG than most other vertebrates. Unlike other human GR, NADP(+ )did not inhibit turtle GR activity. The activation energy of turtle GR, calculated from the slope of the Arrhenius plot, was 32.2 +/- 2.64 kJ/mol. Turtle GR had high activity under a broad pH range (having activity between pHs 4 and 10; optimal activity at pH 6.5) and the enzyme maintains activity under the pH drop that occurs under anoxic conditions. The high affinity of turtle GR suggests that turtles have high redox buffering capacity of tissues to protect against oxidative stress encountered during anoxia/reoxygenation.

  9. Histochemical Localization of Glutathione Dependent NBT-Reductase in Mouse Skin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. Methods The fresh frozen tissue sections (8m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. Results  The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. Conclusion The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  10. Superoxide radical formation, superoxide dismutase and glutathione reductase activity in the brain of irradiated rats

    International Nuclear Information System (INIS)

    Stanimirovic, D.; Ivanovic, L.; Simovic, M.; Cernak, I.; Savic, J.

    1989-01-01

    In the forebrain cortex, basal ganglia and hippocampus of irradiated rats (whole body, X-ray, 9 Gy), nitroblue-tetrazolium (NBT) reduction was measured as a probe of superoxide radical formation 1 hr, 6 hrs, 24 hrs and 72 hrs after irradiation. Increased superoxide radical formation was found in parallel with increase of superoxide dismutase (SOD) activity and marked decrease of glutathione reductase (GR) activity which is the most pronounced in basal ganglia. The results indicate that in the postradiation period disproportion among free radical production and capacity of brain antioxidative system occurs. This disbalance is more expressed in the brain regions known as selective vulnerable (basal ganglia, hippocampus). (author). 10 refs.; 2 tabs

  11. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    Science.gov (United States)

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  12. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs

    International Nuclear Information System (INIS)

    Erden, M.; Bor, N.M.

    1984-01-01

    In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measured of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050)

  13. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.

    Science.gov (United States)

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-07-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.

  14. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  15. Reduced glutathione concentration and glutathione reductase activity in various rat tissues after the administration of some radioprotective agents

    International Nuclear Information System (INIS)

    Pulpanova, J.; Kovarova, H.; Ledvina, M.

    1982-01-01

    The concentrations of reduced glutathione (GSH) and activity of glutathione reductase were investigated in rat liver, kidney and spleen after intraperitoneal administration of cystamine (50 mg/kg), mexamine (10 mg/kg), or a mixture of cystamine with mexamine (20 + 10 mg/kg). The GSH concentration increased after the administration of cystamine in the liver (maximum between the 20th and 30th min), in the kidney and spleen (maximum after 60 min). The cystamine + mexamine mixture also caused a significant increase of the GSH concentration in all the organs investigated; however, the values increased at earlier intervals as after the cystamine administration. No substantial effect was shown in the case of the mexamine administration, only 30 min after the administration the values were higher. The activity of glutathione reductase was significantly lower over the entire period examined. This was found in the liver and kidney as after the administration of cystamine, as after the radioprotective mixture. There was also a less pronounced inhibition of the enzyme activity in the spleen. Mexamine as a single radioprotector had practically no influence on the activity. (author)

  16. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    Science.gov (United States)

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  17. Effect of cystamine on rat tissue GSH level and glutathione reductase activity

    International Nuclear Information System (INIS)

    Kovarova, H.; Pulpanova, J.

    1979-01-01

    Reduced glutathione (GSH) level and glutathione reductase activity were determined by means of the spectrophotometric method in various rat tissues after i.p. administration of cystamine (50 mg/kg and 20 mg/kg). GSH amount dropped in the spleen and kidney at 10 and 20 min; following this interval, an increase of GSH level was observed in the liver at 20-30 min, in the spleen and kidney at 60 min after the treatment with a radioprotective cystamine dose (50 mg/kg). The changes in GSH level induced by a non-radioprotective cystamine dose (20 mg/kg) had an opposite tendency. The activity of glutathione reductase was decreased in all tissues studied. As to the mechanism of the radioprotective action, both the inactivation of glutathione reductase activity and the changes in GSH level seem to be the factors contributing to the radioprotective effect of cystamine by strengthening the cellular radioresistance. (orig.) 891 MG/orig. 892 RKD [de

  18. Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment.

    Science.gov (United States)

    Contour-Ansel, Dominique; Torres-Franklin, Maria Lucia; Cruz DE Carvalho, Maria Helena; D'Arcy-Lameta, Agnès; Zuily-Fodil, Yasmine

    2006-12-01

    Reactive oxygen species are frequently produced when plants are exposed to abiotic stresses. Among the detoxication systems, two enzymes, ascorbate peroxidase and glutathione reductase (GR) play key roles. GR has also a central role in keeping the reduced glutathione pool during stress thus allowing the adjustments on the cellular redox reactions. The aim of this work was to study the variations in cytosolic and dual-targeted GR gene expression in the leaves of cowpea plants submitted to progressive drought, rapid desiccation and application of exogenous abscisic acid (ABA). Two cowpea (Vigna unguiculata) cultivars, one drought-resistant ('EPACE-1'), the other drought-sensitive ('1183') were submitted to progressive drought stress by withholding irrigation. Cut-off leaves were air-dried or treated with exogenous ABA. Two GR cDNAs, one cytosolic, the other dual-targeted to chloroplasts and mitochondria were isolated by PCR and cloned in plasmid vectors. Reverse-transcription PCR was used to study the variations in GR gene expression. Two new cDNAs encoding a putative dual-targeted and a cytosolic GR were cloned and sequenced from leaves of V. unguiculata. Drought stress induced an up-regulation of the expression of the cytosolic GR gene directly related to the intensity of the stress in both cultivars. The expression of dual-targeted GR was up-regulated by the drought treatment in the susceptible cultivar only. Under a fast desiccation, the '1183' cultivar responded later than the 'EPACE-1', although in 'EPACE-1' it was the cytosolic isoform which responded and in '1183' the dual-targeted one. Exogenous ABA enhanced significantly the activity and expression levels of GR in both cultivars after treatment for 24 h. These results demonstrate a noticeable activation in both cultivars of the antioxidant metabolism under a progressive water stress, which involves both GR genes in the case of the susceptible cultivar. Under a fast desiccation, the susceptible cultivar

  19. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi

    Science.gov (United States)

    Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    In this study, extracellular glutathione-dependent ferric reductase (GSH-FeR) activities in different dimorphic zoopathogenic fungal species were characterized. Supernatants from Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides brasiliensis and Sporothrix schenckii strains grown in their yeast form were able to reduce iron enzymically with glutathione as a cofactor. Some variations in the level of reduction were noted amongst the strains. This activity was stable in acidic, neutral and slightly alkaline environments and was inhibited when trivalent aluminium and gallium ions were present. Using zymography, single bands of GSH-FeRs with apparent molecular masses varying from 430 to 460 kDa were identified in all strains. The same molecular mass range was determined by size exclusion chromatography. These data demonstrate that dimorphic zoopathogenic fungi produce and secrete a family of similar GSH-FeRs that may be involved in the acquisition and utilization of iron. Siderophore production by these and other fungi has sometimes been considered to provide a full explanation of iron acquisition in these organisms. Our work reveals an additional common mechanism that may be biologically and pathogenically important. Furthermore, while some characteristics of these enzymes such as extracellular location, cofactor utilization and large size are not individually unique, when considered together and shared across a range of fungi, they represent an important novel physiological feature. PMID:16000713

  20. Structural Understanding of the Glutathione-dependent Reduction Mechanism of Glutathionyl-Hydroquinone Reductases*

    Science.gov (United States)

    Green, Abigail R.; Hayes, Robert P.; Xun, Luying; Kang, ChulHee

    2012-01-01

    Glutathionyl-hydroquinone reductases (GS- HQRs) are a newly identified group of glutathione transferases, and they are widely distributed in bacteria, halobacteria, fungi, and plants. GS-HQRs catalyze glutathione (GSH)-dependent reduction of glutathionyl-hydroquinones (GS-hydroquinones) to hydroquinones. GS-hydroquinones can be spontaneously formed from benzoquinones reacting with reduced GSH via Michael addition, and GS-HQRs convert the conjugates to hydroquinones. In this report we have determined the structures of two bacterial GS-HQRs, PcpF of Sphingobium chlorophenolicum and YqjG of Escherichia coli. The two structures and the previously reported structure of a fungal GS-HQR shared many features and displayed complete conservation for all the critical residues. Furthermore, we obtained the binary complex structures with GS-menadione, which in its reduced form, GS-menadiol, is a substrate. The structure revealed a large H-site that could accommodate various substituted hydroquinones and a hydrogen network of three Tyr residues that could provide the proton for reductive deglutathionylation. Mutation of the Tyr residues and the position of two GSH molecules confirmed the proposed mechanism of GS-HQRs. The conservation of GS-HQRs across bacteria, halobacteria, fungi, and plants potentiates the physiological role of these enzymes in quinone metabolism. PMID:22955277

  1. Positive correlation between decreased cellular uptake, NADPH-glutathione reductase activity and adriamycin resistance in Ehrlich ascites tumor lines.

    Science.gov (United States)

    Scheulen, M E; Hoensch, H; Kappus, H; Seeber, S; Schmidt, C G

    1987-01-01

    From a wild type strain of Ehrlich ascites tumor (EATWT) sublines resistant to daunorubicin (EATDNM), etoposide (EATETO), and cisplatinum (EATCIS) have been developed in vivo. Increase in survival and cure rate caused by adriamycin (doxorubicin) have been determined in female NMRI mice which were inoculated i.p. with EAT cells. Adriamycin concentrations causing 50% inhibition of 3H-thymidine (ICT) and 3H-uridine incorporation (ICU) and intracellular adriamycin steady-state concentrations (SSC) were measured in vitro. Adriamycin resistance increased and SSC decreased in the following sequence: EATWT - EATCIS - EATDNM - EATETO. When ICT and ICU were corrected for intracellular adriamycin concentrations in consideration of the different SSC (ICTc, ICUc), ICTc and ICUc still varied up to the 3.2 fold in EATCIS, EATDNM and EATETO in comparison to EATWT. Thus, in addition to different SSC other factors must be responsible for adriamycin resistance. Therefore, enzymes which may play a role in the cytotoxicity related to adriamycin metabolism (NADPH-cytochrome P-450 reductase, NADPH-glutathione reductase, NADP-glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase) were measured. In contrast to the other parameters determined, NADPH-glutathione reductase was significantly (p less than 0.01) increased up to the 3.2 fold parallel to adriamycin resistance as determined by increase in life span, cure rate, ICTc, and ICUc, respectively. It is concluded that high activities of NADPH-glutathione reductase may contribute to an increase in adriamycin resistance of malignant tumors.

  2. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Molecular cloning and characterization of Fasciola gigantica thioredoxin-glutathione reductase.

    Science.gov (United States)

    Changklungmoa, Narin; Kueakhai, Pornanan; Sangpairoj, Kant; Chaichanasak, Pannigan; Jaikua, Wipaphorn; Riengrojpitak, Suda; Sobhon, Prasert; Chaithirayanon, Kulathida

    2015-06-01

    The Fasciola gigantica thioredoxin-glutathione reductase (FgTGR) gene is a fusion between thioredoxin reductase (TR) and a glutaredoxin (Grx) gene. FgTGR was cloned by polymerase chain reaction (PCR) from adult complementary DNA (cDNA), and its sequences showed two isoforms, i.e., the cytosolic and mitochondrial FgTGR. Cytosolic FgTGR (cytFgTGR) was composed of 2370 bp, and its peptide had no signal sequence and hence was not a secreted protein. Mitochondrial FgTGR (mitFgTGR) was composed of 2506 bp with a signal peptide of 43 amino acids; therefore, it was a secreted protein. The putative cytFgTGR and mitFgTGR peptides comprised of 598 and 641 amino acids, respectively, with a molecular weight of 65.8 kDa for cytFgTGR and mitFgTGR, with a conserved sequence (CPYC) of TR, and ACUG and CVNVGC of Grx domains. The recombinant FgTGR (rFgTGR) was expressed in Escherichia coli BL21 (DE3) and used for production for a polyclonal antibody in rabbits (anti-rFgTGR). The FgTGR protein expression, estimated by indirect ELISA using the rabbit anti-rFgTGR as probe, showed high levels of expression in eggs, and 2- and 4-week-old juveniles and adults. The rFgTGR exhibited specific activities in the 5,5'-dithiobis (2-nitro-benzoic acid) (DTNB) reductase assay for TR activity and in β-hydroxyethul disulfide (HED) for Grx activity. When analyzed by immunoblotting and immunohistochemistry, rabbit anti-rFgTGR reacted with natural FgTGR at a molecular weight of 66 kDa from eggs, whole body fraction (WB) of metacercariae, NEJ, 2- and 4-week-old juveniles and adults, and the tegumental antigen (TA) of adult. The FgTGR protein was expressed at high levels in the tegument of 2- and 4-week-old juveniles. The FgTGR may be one of the major factors acting against oxidative stresses that can damage the parasite; hence, it could be considered as a novel vaccine or a drug target.

  4. In vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids

    Directory of Open Access Journals (Sweden)

    Ahmad Hassan

    2010-09-01

    Full Text Available Abstract Background Several cell culture and animal studies demonstrated that citrus bioactive compounds have protective effects against certain types of cancer. Among several classes of citrus bioactive compounds, limonoids were reported to prevent different types of cancer. Furthermore, the structures of citrus limonoids were reported to influence the activity of phase II detoxifying enzymes. The purpose of the study was to evaluate how variations in the structures of citrus limonoids (namely nomilin, deacetyl nomilin, and isoobacunoic acid and a mixture of limonoids would influence phase II enzyme activity in excised tissues from a mouse model. Methods In the current study, defatted sour orange seed powder was extracted with ethyl acetate and subjected to silica gel chromatography. The HPLC, NMR and mass spectra were used to elucidate the purity and structure of compounds. Female A/J mice were treated with three limonoids and a mixture in order to evaluate their effect on phase II enzymes in four different tissues. Assays for glutathione S-transferase and NAD(PH: quinone reductase (QR were used to evaluate induction of phase II enzymatic activity. Results The highest induction of GST against 1-chloro-2,4-dinitrobenzene (CDNB was observed in stomach (whole, 58% by nomilin, followed by 25% isoobacunoic acid and 19% deacetyl nomilin. Deacetyl nomilin in intestine (small as well as liver significantly reduced GST activity against CDNB. Additionally isoobacunoic acid and the limonoid mixture in liver demonstrated a significant reduction of GST activity against CDNB. Nomilin significantly induced GST activity against 4-nitroquinoline 1-oxide (4NQO, intestine (280% and stomach (75% while deacetyl nomilin showed significant induction only in intestine (73%. Induction of GST activity was also observed in intestine (93% and stomach (45% treated with the limonoid mixture. Finally, a significant induction of NAD(PH: quinone reductase (QR activity was

  5. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  6. Glutathione.

    Science.gov (United States)

    Noctor, Graham; Queval, Guillaume; Mhamdi, Amna; Chaouch, Sejir; Foyer, Christine H

    2011-01-01

    Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.

  7. [Effect of UV-radiation on the level of ascorbic acid, SH-groups, and activity of glutathione reductase in the eye lens].

    Science.gov (United States)

    Byshneva, L N; Senchuk, V V

    2002-01-01

    The effect of UV radiation in vitro on the level of ascorbate, SH-groups and glutathione reductase activity in the soluble fraction of bovine eye lens was studied. UV-Irradiation increased NADPH-oxidoreductase activity, the level of ascorbate oxidation and decreased the content of SH-groups and activity of glutathione reductase. Significant activation of the NADPH-oxidoreductase activity in the presence of ascorbate and Cu2+ was observed after UV-irradiation. It is suggested that ascorbate may play an important role in the UV-induced lens pathology.

  8. Purification and characterization of Taenia crassiceps cysticerci thioredoxin: insight into thioredoxin-glutathione-reductase (TGR) substrate recognition.

    Science.gov (United States)

    Martínez-González, J J; Guevara-Flores, A; Rendón, J L; Sosa-Peinado, A; Del Arenal Mena, I P

    2015-04-01

    Thioredoxin (Trx) is an oxidoreductase central to redox homeostasis in cells and is involved in the regulation of protein activity through thiol/disulfide exchanges. Based on these facts, our goal was to purify and characterize cytosolic thioredoxin from Taenia crassiceps cysticerci, as well as to study its behavior as a substrate of thioredoxin-glutathione reductase (TGR). The enzyme was purified >133-fold with a total yield of 9.7%. A molecular mass of 11.7kDa and a pI of 4.84 were measured. Native electrophoresis was used to identify the oxidized and reduced forms of the monomer as well as the presence of a homodimer. In addition to the catalytic site cysteines, cysticerci thioredoxin contains Cys28 and Cys65 residues conserved in previously sequenced cestode thioredoxins. The following kinetic parameters were obtained for the substrate of TGR: a Km of 3.1μM, a kcat of 10s(-1) and a catalytic efficiency of 3.2×10(6)M(-1)s(-1). The negative patch around the α3-helix of Trx is involved in the interaction with TGR and suggests variable specificity and catalytic efficiency of the reductase toward thioredoxins of different origins. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala.

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    Full Text Available A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR, thioredoxin-glutathione reductase (TGR, and a putative thioredoxin reductase (TrxR was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.

  10. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I).

    Science.gov (United States)

    Salinas, Gustavo; Gao, Wei; Wang, Yang; Bonilla, Mariana; Yu, Long; Novikov, Andrey; Virginio, Veridiana G; Ferreira, Henrique B; Vieites, Marisol; Gladyshev, Vadim N; Gambino, Dinorah; Dai, Shaodong

    2017-12-20

    New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with Au I -MPO, a novel gold inhibitor, together with inhibition assays were performed. Au I -MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys 519 and Cys 573 in the Au I -TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys 519 and Cys 573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.

  11. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    International Nuclear Information System (INIS)

    Wang, Yijun; Lu, Hongjuan; Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun; Taylor, Ethan Will; Zhang, Jinsong

    2012-01-01

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  12. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Lu, Hongjuan [Productivity Center of Jiangsu Province, Nanjing 210042, Jiangsu (China); Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Taylor, Ethan Will [Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  13. Biochemical parameters as biomarkers for the early recognition of environmental pollution on Scots pine trees. II. The antioxidative metabolites ascorbic acid, glutathione, {alpha}-tocopherol and the enzymes superoxide dismutase and glutathione reductase

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Haertling, S. [UFZ Centre for Environmental Research Leipzig-Halle, Halle (Germany). Dept. of Soil Sciences

    2001-10-01

    Field investigations with Scots pine trees (Pinus sylvestris L.) were performed in eastern Germany, where ambient SO{sub 2}, NO{sub x} and O{sub 3} concentrations differed significantly in 1992-99 at three sites, namely Neuglobsow (yearly mean SO{sub 2} in 1992: 9 {mu}g m{sup -3}), Taura (yearly mean SO{sub 2} in 1992: 54 {mu}g m{sup -3}) and Roesa (yearly mean SO{sub 2} in 1992: 73 {mu}g m{sup -3}). To investigate the effects of SO{sub 2}, NO{sub x} and O{sub 3} on antioxidants (superoxide dismutase, ascorbic acid, glutathione, glutathione reductase, {alpha}-tocopherol) and pigments including chlorophyll fluorescence as well as visible damage symptoms in the form of needle yellowing and tip necroses, needles of the 1st and 2nd age class from young and mature trees were collected at the sites every October. Eight years after the start of the field study in 1992, the ambient SO{sub 2} concentrations had decreased significantly at Neuglobsow (yearly mean SO{sub 2} in 1999: 4 {mu}g m{sup -3}), Taura (yearly mean SO{sub 2} in 1999: 5 {mu}g m{sup -3}) and Roesa (yearly mean SO{sub 2} in 1999: 5 {mu}g m{sup -3}). NO{sub x} and O{sub 3} differed less at the three sites and showed no temporal variations. Whole needle glutathione continuously decreased, although concentrations were higher in needles of the 1st and 2nd age class from the polluted sites Taura and Roesa than the unpolluted site Neuglobsow. The activities of glutathione reductase exhibited the same site-related differences and temporal variations and were correlated with concentrations of oxidized glutathione (GSSG). In contrast, the activities of the enzyme superoxide dismutase and the concentrations of whole needle ascorbic acid remained unchanged over the period. Only at the end of the investigation period did the concentrations of oxidized ascorbic acid (dehydroascorbate) increase in six-month-old needles at the polluted sites Taura and Roesa. Despite the clear decreases in SO{sub 2}, the visible symptoms

  14. Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): Insights as a potent player in host antioxidant defense.

    Science.gov (United States)

    Herath, H M L P B; Wickramasinghe, P D S U; Bathige, S D N K; Jayasooriya, R G P T; Kim, Gi-Young; Park, Myoung Ae; Kim, Chul; Lee, Jehee

    2017-01-01

    Glutathione reductase (GSR) is an enzyme that catalyzes the biochemical conversion of oxidized glutathione (GSSG) into the reduced form (GSH). Since the ratio between the two forms of glutathione (GSH/GSSG) is important for the optimal function of GSH to act as an antioxidant against H 2 O 2 , the contribution of GSR as an enzymatic regulatory agent to maintain the proper ratio is essential. Abalones are marine mollusks that frequently encounter environmental factors that can trigger the overproduction of reactive oxygen species (ROS) such as H 2 O 2 . Therefore, we conducted the current study to reveal the molecular and functional properties of a GSR homolog in the disk abalone, Haliotis discus discus. The identified cDNA sequence (2325 bp) has a 1356 bp long open reading frame (ORF), coding for a 909 bp long amino acid sequence, which harbors a pyridine nucleotide-disulfide oxidoreductase domain (171-246 aa), a pyridine nucleotide-disulfide oxidoreductase dimerization domain, and a NAD(P)(+)-binding Rossmann fold superfamily signature domain. Four functional residues: the FAD binding site, glutathione binding site, NADPH binding motif, and assembly domain were identified to be conserved among the other species. The recombinant abalone GSR (rAbGSR) exhibited detectable activity in a standard glutathione reductase activity assay. The optimum pH and optimal temperature for the reaction were found to be 7.0 and 50 °C, respectively, while the ionic strength of the medium had no effect. The enzymatic reaction was vastly inhibited by Cu +2 and Cd +2 ions. A considerable effect of cellular protection was detected with a disk diffusion assay conducted with rAbGSR. Moreover, an MTT assay and flow cytometry confirmed the significance of the protective role of rAbGSR in cell function. Furthermore, AbGSR was found to be ubiquitously distributed in different types of abalone tissues. AbGSR mRNA expression was significantly upregulated in response to three immune challenges

  15. [The activity of glutathione antioxidant system at melaksen and valdoxan action under experimental hyperthyroidism in rats].

    Science.gov (United States)

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    Investigation of glutathione antioxidant system activity and diene conjugates content in rats liver and blood serum at the influence of melaksen and valdoxan under experimental hyperthyroidism (EG) has been revealed. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP) and glutathione transferase (GT), growing at pathological conditions, change to the side of control value at these substunces introduction. Reduced glutathione content (GSH) at melaxen and valdoxan action increased compared with values under the pathology, that, obviously, could be associated with a reduction of its spending on the detoxication of free radical oxidation (FRO) toxic products. Diene conjugates level in rats liver and blood serum, increasing at experimental hyperthyroidism conditions, under introduction of melatonin level correcting drugs, also approached to the control meaning. Results of the study indicate on positive effect of melaxen and valdoxan on free radical homeostasis, that appears to be accompanied by decrease of load on the glutathione antioxidant system in comparison with the pathology.

  16. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  17. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  18. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I)

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, Gustavo [Worm Biology Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay.; Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.; Gao, Wei [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; School of Science, Beijing Forestry University, Beijing, China.; Wang, Yang [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; Bonilla, Mariana [Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.; Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay.; Yu, Long [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; Novikov, Andrey [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; Virginio, Veridiana G. [Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.; Ferreira, Henrique B. [Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.; Vieites, Marisol [Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.; Gladyshev, Vadim N. [Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts.; Gambino, Dinorah [Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.; Dai, Shaodong [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.

    2017-12-20

    Aims: New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. Results: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer–monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. Innovation: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. Conclusions: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491–1504.

  19. Effect of riboflavin supply on student body's provision in north-western Poland with riboflavin measured by activity of glutathione reductase considering daily intake of other nutrients.

    Science.gov (United States)

    Szczuko, Małgorzata; Seidler, Teresa; Mierzwa, Mariusz; Stachowska, Ewa; Chlubek, Dariusz

    2011-06-01

    The riboflavin nutritional status of 120 people, age 22-25, studying in Szczecin, Poland, together with contents of their daily food servings were studied. Body's provision with riboflavin was determined using the erythrocyte glutathione reductase activity coefficient (EGRAC) and was compared with a sample in which the enzyme activity was stimulated with flavin adenine dinucleotide. The information concerning diets was collected with the method of a 7-day food record prior to blood collection. Biochemical deficiency in riboflavin was observed in 33.7% of women and 25% of men. The resulting average EGRAC value was 1.02 for women and 0.88 for men. Assessment of significant differences in riboflavin provision between the sexes revealed better provision in the male group. The comparison of EGRAC values with riboflavin content in 7-day diets of the respondents showed that the average intake of this vitamin in the female group, in which biochemical deficiency was observed, amounted to 1.05 mg, whereas in the male group it was, on average, 1.39 mg. In the group of people in which the potential risk of riboflavin deficiency in the body was not observed, the level of this vitamin consumption was, on average, 1.43 mg and 1.8 mg in the female and male groups, respectively. Women with biochemical riboflavin deficiency consumed significantly less of all the analyzed nutrients in comparison with the people without riboflavin deficiency.

  20. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  1. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  2. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver.

    Science.gov (United States)

    Odbayar, Tseye-Oidov; Kimura, Toshinori; Tsushida, Tojiro; Ide, Takashi

    2009-05-01

    The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague-Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

  3. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen.

    Science.gov (United States)

    Meinerz, Daiane F; Branco, Vasco; Aschner, Michael; Carvalho, Cristina; Rocha, João Batista T

    2017-09-01

    Exposure to methylmercury (MeHg), an important environmental toxicant, may lead to serious health risks, damaging various organs and predominantly affecting the brain function. The toxicity of MeHg can be related to the inhibition of important selenoenzymes, such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Experimental studies have shown that selenocompounds play an important role as cellular detoxifiers and protective agents against the harmful effects of mercury. The present study investigated the mechanisms by which diphenyl diselenide [(PhSe) 2 ] and ebselen interfered with the interaction of mercury (MeHg) and selenoenzymes (TrxR and GPx) in an in vitro experimental model of cultured human neuroblastoma cells (SH-SY5Y). Our results established that (PhSe) 2 and ebselen increased the activity and expression of TrxR. In contrast, MeHg inhibited TrxR activity even at low doses (0.5 μm). Coexposure to selenocompounds and MeHg showed a protective effect of (PhSe) 2 on both the activity and expression of TrxR. When selenoenzyme GPx was evaluated, selenocompounds did not alter its activity or expression significantly, whereas MeHg inhibited the activity of GPx (from 1 μm). Among the selenocompounds only (PhSe) 2 significantly protected against the effects of MeHg on GPx activity. Taken together, these results indicate a potential use for ebselen and (PhSe) 2 against MeHg toxicity. Furthermore, for the first time, we have demonstrated that (PhSe) 2 caused a more pronounced upregulation of TrxR than ebselen in neuroblastoma cells, likely reflecting an important molecular mechanism involved in the antioxidant properties of this compound. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Glutathione level after long-term occupational elemental mercury exposure

    International Nuclear Information System (INIS)

    Kobal, Alfred Bogomir; Prezelj, Marija; Horvat, Milena; Krsnik, Mladen; Gibicar, Darija; Osredkar, Josko

    2008-01-01

    Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg o ) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg o -not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidized disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p o could be an inductive and additive response to maintain the balance between GSH and antioxidative enzymes in interaction with the Hg body burden accumulated during remote occupational exposure, which does not represent a severely increased oxidative stress

  5. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3′,5,5′-tetramethylbenzidine

    Energy Technology Data Exchange (ETDEWEB)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri, E-mail: vpavlov@cicbiomagune.es

    2015-06-30

    Highlights: • The light-powered nanosensor fabricated by enzymatic reactions was reported. • The sensor use energy of photons for oxidation of chromogenic enzymatic substrates. • Enzymatic assays for glucose oxidase and glutathione reductase were developed. - Abstract: It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd{sup 2+} and S{sup 2−} ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound.

  6. Glutathione system participation in thoracic aneurysms from patients with Marfan syndrome.

    Science.gov (United States)

    Zúñiga-Muñoz, Alejandra María; Pérez-Torres, Israel; Guarner-Lans, Verónica; Núñez-Garrido, Elías; Velázquez Espejel, Rodrigo; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Soto, María Elena

    2017-05-01

    Aortic dilatation in Marfan syndrome (MFS) is progressive. It is associated with oxidative stress and endothelial dysfunction that contribute to the early acute dissection of the vessel and can result in rupture of the aorta and sudden death. We evaluated the participation of the glutathione (GSH) system, which could be involved in the mechanisms that promote the formation and progression of the aortic aneurysms in MFS patients. Aortic aneurysm tissue was obtained during chest surgery from eight control subjects and 14 MFS patients. Spectrophotometrical determination of activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO) index, carbonylation, total antioxidant capacity (TAC), and concentration of reduced and oxidized glutathione (GSH and GSSG respectively), was performed in the homogenate from aortic aneurysm tissue. LPO index, carbonylation, TGF-β1, and GR activity were increased in MFS patients (p < 0.04), while TAC, GSH/GSSG ratio, GPx, and GST activity were significantly decreased (p < 0.04). The depletion of GSH, in spite of the elevated activity of GR, not only diminished the activity of GSH-depend GST and GPx, but increased LPO, carbonylation and decreased TAC. These changes could promote the structural and functional alterations in the thoracic aorta of MFS patients.

  7. The effect of excimer laser keratectomy on corneal glutathione-related enzymes in rabbits.

    Science.gov (United States)

    Bilgihan, Ayşe; Bilgihan, Kamil; Yis, Ozgür; Yis, Nilgün Safak; Hasanreisoglu, Berati

    2003-04-01

    Glutathione related enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. Excimer laser is a very useful tool for the treatment of refractive errors and removing superficial corneal opacities. Previous studies have shown that excimer laser may initiate free radical formation in the cornea. In the present study, we evaluated the effect of excimer laser keratectomy on corneal glutathione-related enzyme activities in rabbits. Animals were divided into five groups, and all groups were compared with the controls (group 1), after epithelial scraping (group 2), transepithelial photorefractive keratectomy (PRK) (group 3), traditional PRK (group 4) and deep traditional PRK (group 5). Corneal glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) activities were measured after 24h. Corneal GPx and GR activities significantly decreased only in group 5 (p < 0.05) but GST activities significantly decreased in all groups when compared with the control group (p < 0.05). In conclusion, excimer laser inhibits the glutathione dependent defense system in the cornea, this effect becomes more prominent after high doses of excimer laser energy and antioxidants may be useful to reduce free radical mediated complications.

  8. [Effects of melaxen and valdoxan on the activity of glutathione antioxidant system and NADPH-producing enzymes in rat heart under experimental hyperthyroidism conditions].

    Science.gov (United States)

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    The effects of melaxen and valdoxan on the activity of glutathione antioxidant system and some NADPH-producing enzymes have been studied under conditions of experimental hyperthyroidism in rat heart. Under the action of these drugs, reduced glutathione (GSH) content increased as compared to values observed under the conditions of pathology. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP), glucose-6-phosphate dehydrogenase, and NADP isocitrate dehydrogenase (increased under pathological conditions) change toward the intact control values upon the introduction of both drugs. The influence of melaxen and valdoxan, capable of producing antioxidant effect, leads apparently to the inhibition of free-radical oxidation processes and, as a consequence, the reduction of mobilization degree of the glutathione antioxidant system.

  9. Effects of whole body x-ray irradiation on induction by phenobarbital of rat liver glucose-6-phosphate dehydrogenase and glutathione reductase

    Energy Technology Data Exchange (ETDEWEB)

    Bitny-Szlachto, S.; Szyszko, A. (Wojskowy Inst. Higieny i Epidemiologii, Warsaw (Poland))

    1979-01-01

    In rats treated with phenobarbital (3x100 mg/kg, i.p.), liver G-6-P dehydrogenase activity increased by 70% in the cytosol and in the 9.000xg supernatant, and only by 20% in microsomes. Moreover, the phenobarbital treatment increased rat liver GSSG reductase activity by 30%. On the other hand, activity of the liver microsomal G-6-P dehydrogenase was found to increase by some 20% in whole body irradiated, both control and phenobarbital treated rats. In rats irradiated with 600 R prior to the first dose of the inducer there was not noted any increase in G-6-P dehydrogenase of the 9.000xg supernatant, and increase in the cytosol activity dropped to 38%. Thus, induction of the soluble liver G-6-P dehydrogenase by phenobarbital has turned out to be radiosensitive, whereas phenobarbital induction of GSSG reductase was unaffected by irradiation.

  10. Acute effects of heavy metals on the expression of glutathione-related antioxidant genes in the marine ciliate Euplotes crassus

    International Nuclear Information System (INIS)

    Kim, Se-Hun; Kim, Se-Joo; Lee, Jae-Seong; Lee, Young-Mi

    2014-01-01

    Highlights: • Significant higher increases in the relative ROS and total GSH levels were observed after exposure to heavy metals. • Real-time PCR data showed expression levels of GPx and GR mRNA were sensitively modulated within 8 h of exposure to heavy metals. • E. crassus GPx and GR genes may be involved in cellular defense mechanisms against heavy metal-induced oxidative stress. • E. crassus GPx and GR genes will be useful as potential molecular markers for monitoring heavy metal contamination. - Abstract: Euplotes crassus, a single-celled eukaryote, is directly affected by environmental contaminants. Here, exponentially cultured E. crassus were exposed to cadmium, copper, lead, and zinc and then the reactive oxygen species (ROS) and total glutathione (GSH) levels were measured. Subsequently, the transcriptional modulation of glutathione peroxidase (GPx) and glutathione reductase (GR) were estimated by quantitative RT-PCR. After an 8-h exposure, significantly higher increases in the relative ROS and total GSH levels were observed in exposed group, compared to the controls. Real-time PCR data revealed that the expression levels of GPx and GR mRNA were sensitively modulated within 8 h of exposure to all heavy metals. These findings suggest that these genes may be involved in cellular defense mechanisms by modulating their gene expression against heavy metal-induced oxidative stress. Thus, they may be useful as potential molecular biomarkers to assess sediment environments for contaminants

  11. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    SUMMARY Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin–angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40–50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals. PMID:21430206

  12. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii.

    Science.gov (United States)

    Kavitha, S; Chandra, T S

    2014-11-01

    Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.

  13. Experimental type 2 diabetes mellitus and acetaminophen toxic lesions: glutathione system indices changes

    Directory of Open Access Journals (Sweden)

    Olga Furka

    2017-11-01

    Full Text Available Background. The goal of the research was to study the effect of acetaminophen on major glutathione part of antioxidant system indices in liver homogenate of rats with type 2 diabetes mellitus in time dynamics. Materials and methods. We conducted two series of experiments. In the first series toxic lesion was caused by a single intragastric administration of acetaminophen suspension in 2 % starch solution to animals in a dose of 1250 mg/kg (1/2 LD50. In the second series  the suspension of acetaminophen in 2 % starch solution in a dose of 55 mg/kg was given, which corresponds to the highest therapeutic dose during 7 days. Non-genetic form of experimental type 2 diabetes mellitus was modeled by Islam S., Choi H. method (2007. Activity of glutathione peroxidase (GPx and glutathione reductase (GR, and contents of reduced glutathione (GSH were determined in liver homogenate. Results. The obtained results have shown that GR and GPx activity actively decreased after acetaminophen administration in higher therapeutic doses to rats with type 2 DM. However, the changes were less pronounced than in rats with type 2 DM and acute acetaminophen toxic lesions. Conclusion. Results of the research have shown that acetaminophen administration to rats with type 2 DM causes a significant violation of compensatory mechanisms, especially of the enzyme and nonenzyme parts of antioxidant system.

  14. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    Science.gov (United States)

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  15. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    International Nuclear Information System (INIS)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken

    2006-01-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate

  16. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Kumar, Sudhir; Siddiqui, Huma; Patil, Govil; Ashquin, Mohd; Ahmad, Iqbal

    2010-10-09

    Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells). Both sizes of silica nanoparticles induced dose-dependent cytotoxicity as measured by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) generation, and membrane lipid peroxidation (LPO). However, both sizes of silica nanoparticles had little effect on intracellular glutathione (GSH) level and the activities of glutathione metabolizing enzymes; glutathione reductase (GR) and glutathione peroxidase (GPx). Buthionine-[S,R]-sulfoximine (BSO) plus silica nanoparticles did not result in significant GSH depletion than that caused by BSO alone nor N-acetyl cysteine (NAC) afforded significant protection from ROS and LPO induced by silica nanoparticles. The rather unaltered level of GSH is also supported by finding no appreciable alteration in the level of GR and GPx. Our data suggest that the silica nanoparticles exert toxicity in A549 cells through the oxidant generation (ROS and LPO) rather than the depletion of GSH. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Exogenous Spermidine Alleviates Low Temperature Injury in Mung Bean (Vigna radiata L. Seedlings by Modulating Ascorbate-Glutathione and Glyoxalase Pathway

    Directory of Open Access Journals (Sweden)

    Kamrun Nahar

    2015-12-01

    Full Text Available The role of exogenous spermidine (Spd in alleviating low temperature (LT stress in mung bean (Vigna radiata L. cv. BARI Mung-3 seedlings has been investigated. Low temperature stress modulated the non-enzymatic and enzymatic components of ascorbate-glutathione (AsA-GSH cycle, increased H2O2 content and lipid peroxidation, which indicate oxidative damage of seedlings. Low temperature reduced the leaf relative water content (RWC and destroyed leaf chlorophyll, which inhibited seedlings growth. Exogenous pretreatment of Spd in LT-affected seedlings significantly increased the contents of non-enzymatic antioxidants of AsA-GSH cycle, which include AsA and GSH. Exogenous Spd decreased dehydroascorbate (DHA, increased AsA/DHA ratio, decreased glutathione disulfide (GSSG and increased GSH/GSSG ratio under LT stress. Activities of AsA-GSH cycle enzymes such as ascorbate peroxidase (APX, monodehydroascorbate reductase (MDHAR, dehydroascorbate reductase (DHAR and glutathione reductase (GR increased after Spd pretreatment in LT affected seedlings. Thus, the oxidative stress was reduced. Protective effects of Spd are also reflected from reduction of methylglyoxal (MG toxicity by improving glyoxalase cycle components, and by maintaining osmoregulation, water status and improved seedlings growth. The present study reveals the vital roles of AsA-GSH and glyoxalase cycle in alleviating LT injury.

  18. Effect of an aqueous extract of Cucurbita ficifolia Bouché on the glutathione redox cycle in mice with STZ-induced diabetes.

    Science.gov (United States)

    Díaz-Flores, M; Angeles-Mejia, S; Baiza-Gutman, L A; Medina-Navarro, R; Hernández-Saavedra, D; Ortega-Camarillo, C; Roman-Ramos, R; Cruz, M; Alarcon-Aguilar, F J

    2012-10-31

    Cucurbita ficifolia is used in Mexican traditional medicine as an anti-diabetic and anti-inflammatory agent and its actions can be mediated by antioxidant mechanisms. Disturbance in the homeostasis of glutathione has been implicated in the etiology and progression of diabetes mellitus and its complications. It was evaluated, the effect of an aqueous extract of Cucurbita ficifolia on glycemia, plasma lipid peroxidation; as well as levels of reduced (GSH) and oxidized (GSSG) glutathione and activities of enzymes involved in glutathione redox cycle: glutathione peroxidase (GPx) and glutathione reductase (GR) in liver, pancreas, kidney and heart homogenates of streptozotocin-induced diabetic mice. Increased blood glucose and lipid peroxidation, together with decreased of GSH concentration, GSH/GSSG ratio and its redox potential (E(h)), and enhanced activity of GPx and GR in liver, pancreas and kidney were the salient features observed in diabetic mice. Administration of the aqueous extract of Cucurbita ficifolia to diabetic mice for 30 days, used at a dose of 200 mg/kg, resulted in a significant reduction in glycemia, polydipsia, hyperphagia and plasma lipid peroxidation. Moreover, GSH was increased in liver, pancreas and kidney, and GSSG was reduced in liver, pancreas and heart, therefore GSH/GSSG ratio and its E(h) were restored. Also, the activities involved in the glutathione cycle were decreased, reaching similar values to controls. An aqueous extract of Cucurbita ficifolia with hypoglycemic action, improve GSH redox state, increasing glutathione pool, GSH, GSH/GSSG ratio and its E(h), mechanism that can explain, at least in part, its antioxidant properties, supporting its use as an alternative treatment for the control of diabetes mellitus, and prevent the induction of complications by oxidative stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

    Science.gov (United States)

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2014-01-27

    Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  20. Effects of reduced glutathion and vitamin c on cisplatin-induced ...

    African Journals Online (AJOL)

    glutathione peroxidase [GSHPx], catalase [CAT], glutathione reductase [GSHR] activities and gene expression, glutathione [GSH] content) and lipid peroxidation products (malondialdehyde, MDA) in rat liver tissue were measured. CDDP hepatotoxicity was manifested by an increase in serum ALT and AST, elevation of MDA ...

  1. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    Science.gov (United States)

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  2. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms

    International Nuclear Information System (INIS)

    Guo, Bin; Liu, Chen; Li, Hua; Yi, Keke; Ding, Nengfei; Li, Ningyu; Lin, Yicheng; Fu, Qinglin

    2016-01-01

    Highlights: • The role of endogenous SA in mediating Cd tolerance was explored using sid2 mutants. • Cd stress induces SA accumulation in a SID2 dependent way. • Depletion of SA causes negative effects on Cd tolerance. • Endogenous SA is required for promoting Cd tolerance by modulating GSH metabolism. • Possible mode of SA signaling through GR/GSH pathway under Cd toxicity was discussed. - Abstract: A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed.

  3. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: ndgb@163.com [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Liu, Chen; Li, Hua [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Yi, Keke [Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Ding, Nengfei; Li, Ningyu; Lin, Yicheng [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Fu, Qinglin, E-mail: fuql161@yahoo.com.cn [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China)

    2016-10-05

    Highlights: • The role of endogenous SA in mediating Cd tolerance was explored using sid2 mutants. • Cd stress induces SA accumulation in a SID2 dependent way. • Depletion of SA causes negative effects on Cd tolerance. • Endogenous SA is required for promoting Cd tolerance by modulating GSH metabolism. • Possible mode of SA signaling through GR/GSH pathway under Cd toxicity was discussed. - Abstract: A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed.

  4. Signaling molecule methylglyoxal ameliorates cadmium injury in wheat (Triticum aestivum L) by a coordinated induction of glutathione pool and glyoxalase system.

    Science.gov (United States)

    Li, Zhong-Guang; Nie, Qian; Yang, Cong-Li; Wang, Yue; Zhou, Zhi-Hao

    2018-03-01

    Methylglyoxal (MG) now is found to be an emerging signaling molecule. It can relieve the toxicity of cadmium (Cd), however its alleviating mechanism still remains unknown. In this study, compared with the Cd-stressed seedlings without MG treatment, MG treatment could stimulate the activities of glutathione reductase (GR) and gamma-glutamylcysteine synthetase (γ-ECS) in Cd-stressed wheat seedlings, which in turn induced an increase of reduced glutathione (GSH). Adversely, the activated enzymes related to GSH biosynthesis and increased GSH were weakened by N-acetyl-L-cysteine (NAC, MG scavenger), 2,4-dihydroxy-benzylamine (DHBA) and 1,3-bischloroethyl-nitrosourea (BCNU, both are specific inhibitors of GR), buthionine sulfoximine (BSO, a specific inhibitors of GSH biosynthesis), and N-ethylmaleimide (NEM, GSH scavenger), respectively. In addition, MG increased the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in Cd-treated seedlings, followed by declining an increase in endogenous MG as comparision to Cd-stressed seedlings alone. On the contrary, the increased glyoxalase activity and decreased endogenous MG level were reversed by NAC and specific inhibitors of Gly I (isoascorbate, IAS; squaric acid, SA). Furthermore, MG alleviated an increase in hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) in Cd-treated wheat seedlings. These results indicated that MG could alleviate Cd toxicity and improve the growth of Cd-stressed wheat seedlings by a coordinated induction of glutathione pool and glyoxalase system. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Glutathione S-transferase M1 and T1 gene polymorphisms with consumption of high fruit-juice and vegetable diet affect antioxidant capacity in healthy adults.

    Science.gov (United States)

    Yuan, Linhong; Zhang, Ling; Ma, Weiwei; Zhou, Xin; Ji, Jian; Li, Nan; Xiao, Rong

    2013-01-01

    To our knowledge, no data have yet shown the combined effects of GSTM1/GSTT1 gene polymorphisms with high consumption of a fruit and vegetable diet on the body's antioxidant capacity. A 2-wk dietary intervention in healthy participants was conducted to test the hypothesis that the antioxidant biomarkers in individuals with different glutathione-S-transferases (GST) genotypes will be different in response to a high fruit-juice and vegetable diet. In our study, 24 healthy volunteers with different GST genotypes (12 GSTM1+/GSTT1+ and 12 GSTM1-/GSTT1- participants) consumed a controlled diet high in fruit-juice and vegetables for 2 wk. Blood and first-void urine specimens were obtained at baseline, 1-wk, and 2-wk intervals. The antioxidant capacity-related biomarkers in blood and urine were observed and recorded at the scheduled times. Erythrocyte GST and glutathione reductase (GR) activities response to a high fruit-juice and vegetable diet are GST genotype-dependent. Two weeks on the high fruit-juice and vegetable diet increased GST and GR activities in the GSTM1+/GSTT1+ group (P juice and vegetable diet than GSTM1-/GSTT1- participants. The diet intervention was effective in enhancing glutathione peroxidase and catalase activities in all participants (P 0.05). The effects of a diet rich in fruit-juice and vegetables on antioxidant capacity were dependent on GSTM1/GSTT1 genotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes.

    Science.gov (United States)

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2013-12-01

    Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence in autism suggests a deficit in glutathione (GSH), a major endogenous antioxidant. It is not known whether the synthesis, consumption, and/or regeneration of GSH is affected in autism. In the cerebellum tissues from autism (n=10) and age-matched control subjects (n=10), the activities of GSH-related enzymes glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glutamate cysteine ligase (GCL) involved in antioxidant defense, detoxification, GSH regeneration, and synthesis, respectively, were analyzed. GCL is a rate-limiting enzyme for GSH synthesis, and the relationship between its activity and the protein expression of its catalytic subunit GCLC and its modulatory subunit GCLM was also compared between the autistic and the control groups. Results showed that the activities of GPx and GST were significantly decreased in autism compared to that of the control group (Pautistic subjects showed lower GR activity than 95% confidence interval (CI) of the control group. GCL activity was also significantly reduced by 38.7% in the autistic group compared to the control group (P=0.023), and 8 of 10 autistic subjects had values below 95% CI of the control group. The ratio of protein levels of GCLC to GCLM in the autism group was significantly higher than that of the control group (P=0.022), and GCLM protein levels were reduced by 37.3% in the autistic group compared to the control group. A positive strong correlation was observed between GCL activity and protein levels of GCLM (r=0.887) and GCLC (r=0.799) subunits in control subjects but not in autistic subjects, suggesting that regulation of GCL activity is affected in autism. These results suggest that enzymes involved in GSH homeostasis have impaired activities in the cerebellum in autism, and lower GCL activity in autism may be related to decreased protein expression

  7. Interactive effects of herbicide and enhanced UV-B on growth, oxidative damage and the ascorbate-glutathione cycle in two Azolla species.

    Science.gov (United States)

    Prasad, Sheo Mohan; Kumar, Sushil; Parihar, Parul; Singh, Rachana

    2016-11-01

    A field experiment was conducted to investigate the impact of alone and combined exposures of herbicide pretilachlor (5, 10 and 20μgml(-1)) and enhanced UV-B radiation (UV-B1; ambient +2.2kJm(-2) day(-1) and UV-B2; ambient +4.4kJm(-2) day(-1)) on growth, oxidative stress and the ascorbate-glutathione (AsA-GSH) cycle in two agronomically important Azolla spp. viz., Azolla microphylla and Azolla pinnata. Decreased relative growth rate (RGR) in both the species under tested stress could be linked to enhanced oxidative stress, thus higher H2O2 accumulation was observed, that in turn might have caused severe damage to lipids and proteins, thereby decreasing membrane stability. The effects were exacerbated when spp. were exposed to combined treatments of enhanced UV-B and pretilachlor. Detoxification of H2O2 is regulated by enzymes/metabolites of AsA-GSH cycle such as ascorbate peroxidase (APX) and glutathione reductase (GR) activity that were found to be stimulated. While, dehydroascorabte reductase (DHAR) activity, and the amount of metabolites: ascorbate (AsA), glutathione (GSH) and ratios of reduced/oxidized AsA (AsA/DHA) and GSH (GSH/GSSG), showed significant reduction with increasing doses of both the stressors, either applied alone or in combination. Glutathione-S-transferase (GST), an enzyme involved in scavenging of xenobiotics, was found to be stimulated under the tested stress. This study suggests that decline in DHAR activity and in AsA/DHA ratio might have led to enhanced H2O2 accumulation, thus decreased RGR was noticed under tested stress in both the species and the effect was more pronounced in A. pinnata. Owing to better performance of AsA-GSH cycle in A. microphylla, this study substantiates the view that A. microphylla is more tolerant than A. pinnata. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    The thioredoxin system has evolved in all kingdoms of life acting as a key antioxidant system in the defense against oxidative stress. The thioredoxin system utilizes reducing equivalents from NADPH to reduce protein disulfide targets. The reducing equivalents are shuttled via a flavin and redox...... active dithiol motif in thioredoxin reductase (TrxR) to reduce the small ubiquitous thioredoxin (Trx). Trx in turn regulates the protein dithiol/disulfide balance by reduction of protein disulfide targets in e.g. ribonucleotide reductase, peroxiredoxins and methionine sulfoxide reductase. The glutathione......, thus expected to rely mainly on the Trx system for thiol-disulfide control. L. lactis is an important industrial microorganism used as starter culture in the dairy production of cheese, buttermilk etc. and known to be sensitive to oxidative stress. The L. lactis TrxR (LlTrxR) is a homodimeric...

  9. Novel interaction of diethyldithiocarbamate with the glutathione/glutathione peroxidase system

    International Nuclear Information System (INIS)

    Kumar, K.S.; Sancho, A.M.; Weiss, J.F.

    1986-01-01

    Diethyldithiocarbamate (DDC) exhibits a variety of pharmacologic activities, including both radioprotective and sensitizing properties. Since the glutathione/glutathione peroxidase system may be a significant factor in determining radiation sensitivity, the potential mechanisms of action of DDC in relation to this system were examined in vitro. The interaction of DDC with reduced glutathione (GSH) was tested using a simple system based on the reduction of cytochrome c. When DDC (0.005 mM) was incubated with GSH (0.5 mM), the reduction of cytochrome c was eightfold greater than that expected from an additive effect of DDC and GSH. GSH could be replaced by oxidized glutathione and glutathione reductase. Cytochrome c reduced by DDC was oxidized by mitochondria. The interaction of DDC with both the hexosemonophosphate shunt pathway and the mitochondrial respiratory chain suggests the possibility of linking these two pathways through DDC. Oxidation of DDC by peroxide and reversal by GSH indicated that the drug can engage in a cyclic reaction with peroxide and GSH. This was confirmed when DDC was used in the assay system for glutathione peroxidase (GSHPx) without GSHPx. DDC at a concentration of 0.25 mM was more active than 0.01 unit of pure GSHPx in eliminating peroxide, and much more active than the other sulfhydryl compounds tested. These studies indicate that DDC can supplement GSHPx activity or substitute for it in detoxifying peroxides, and suggests a unique role in the chemical modification of radiation sensitivity

  10. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.

    Science.gov (United States)

    Mitozo, Péricles Arruda; de Souza, Luiz Felipe; Loch-Neckel, Gecioni; Flesch, Samira; Maris, Angelica Francesca; Figueiredo, Cláudia Pinto; Dos Santos, Adair Roberto Soares; Farina, Marcelo; Dafre, Alcir Luiz

    2011-07-01

    Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H₂O₂ or cumene hydroperoxide (CuOOH), both at 100 μM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H₂O₂ decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H₂O₂ and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H₂O₂, but not in C6 cells. However, Prx-SO₃ formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

    International Nuclear Information System (INIS)

    Anjum, Naser A.; Singh, Neetu; Singh, Manoj K.; Shah, Zahoor A.; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal

    2013-01-01

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed “graphene oxide”) are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L −1 ) of graphene oxide (0.5–5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L −1 ), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L −1 ) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione

  12. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A. [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal); Singh, Neetu; Singh, Manoj K. [University of Aveiro, Center for Mechanical Technology and Automation (TEMA) and Department of Mechanical Engineering (Portugal); Shah, Zahoor A. [University of Toledo, Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (United States); Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal, E-mail: ahmadr@ua.pt [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal)

    2013-07-15

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed 'graphene oxide') are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop-faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L{sup -1}) of graphene oxide (0.5-5 {mu}m) and evaluates glutathione ({gamma}-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L{sup -1}), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L{sup -1}) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and

  13. Grænsekrydsende ledelse

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Ingerslev, Karen

    2013-01-01

    interessere sig for, hvordan de tænker, taler og handler på grænser. Ledere er, qua deres organisatoriske position, i særlig grad ansvarlige for at etablere grænsepraktikker, hvor grænser bliver til ’broer’ og ikke ’barrierer’ for samarbejde og innovation. Lykkes det ikke at gøre grænser til udviklingsforkant...

  14. Grøstl Addendum

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Knudsen, Lars R.; Matusiewicz, Krystian

    2009-01-01

    This document is an addendum to the submission document of Grøstl, which was selected for the second round of NIST’s SHA-3 competition [18]. We stress that we do not change the specification of Grøstl. In other words, Grøstl is defined exactly as specified in the original submission document [8]....

  15. Alterations of energy metabolism and glutathione levels of HL-60 cells induced by methacrylates present in composite resins.

    Science.gov (United States)

    Nocca, G; De Palma, F; Minucci, A; De Sole, P; Martorana, G E; Callà, C; Morlacchi, C; Gozzo, M L; Gambarini, G; Chimenti, C; Giardina, B; Lupi, A

    2007-03-01

    Methacrylic compounds such as 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and bisphenol A glycerolate (1 glycerol/phenol) dimethacrylate (Bis-GMA) are largely present in auto- or photopolymerizable composite resins. Since the polymerization reaction is never complete, these molecules are released into the oral cavity tissues and biological fluids where they could cause local adverse effects. The aim of this work was to verify the hypothesis that the biological effects of HEMA, TEGDMA and Bis-GMA - at a non-cytotoxic concentration - depend on the interaction with mitochondria and exert consequent alterations of energy metabolism, GSH levels and the related pathways in human promyelocytic cell line (HL-60). The biological effects of methacrylic monomers were determined by analyzing the following parameters: GSH concentration, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) activity, oxygen and glucose consumption and lactate production along with cell differentiation and proliferation. All monomers induced both cellular differentiation and decrease in oxygen consumption. Cells treated with TEGDMA and Bis-GMA showed a significant enhancement of glucose consumption and lactate production. TEGDMA and HEMA induced GSH depletion stimulating G6PDH and GR activity. All the monomers under study affect the metabolism of HL-60 cells and show differentiating activity. Since alterations in cellular metabolism occurred at compound concentrations well below cytotoxic levels, the changes in energy metabolism and glutathione redox balance could be considered as potential mechanisms for inducing clinical and sub-clinical adverse effects and thus providing useful parameters when testing biocompatibility of dental materials.

  16. Role of glutathione in tolerance to arsenite in Salvinia molesta, an aquatic fern

    Directory of Open Access Journals (Sweden)

    Adinan Alves da Silva

    2017-09-01

    Full Text Available ABSTRACT In many plant species, tolerance to toxic metals is highly dependent on glutathione, an essential metabolite for cellular detoxification. We evaluated the responses of glutathione metabolism to arsenite (AsIII in Salvinia molesta, an aquatic fern that has unexplored phytoremediation potential. Plants were exposed to different AsIII concentrations in nutrient solution for 24 h. AsIII caused cell membrane damage to submerged leaves, indicating oxidative stress. There was an increase in the glutathione content and ϒ-glutamylcysteine synthetase enzyme activity in the submerged and floating leaves. The glutathione peroxidase and glutathione sulfotransferase enzymes also showed increased activity in both plant parts, whereas glutathione reductase only showed increased activity in the submerged leaves. These findings suggest an important role for glutathione in the protection of S. molesta against the toxic effects of AsIII, with more effective tolerance responses in the floating leaves.

  17. Seasonal variation of oxidative biomarkers in gills and digestive gland of green-lipped mussel Perna viridis from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N.

    peroxidation (LPX), hydrogen peroxide (H sub(2) O sub(2)), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione transferase (GST), glutathione reductase (GR), reduced glutathione (GSH) and ascorbic acid (ASA) were measured...

  18. Grúas-torre

    Directory of Open Access Journals (Sweden)

    Chinchilla, M.

    1964-09-01

    Full Text Available The current large volume of construction, and the new building methods, including large scale préfabrication, have made it necessary to develop adequate machinery to cope with the new requirements. These include the quick distribution of materials and the lifting of large and heavy items. One of these machines which has now attained a widespread use is the tower crane, both of the fixed and moveable type, either on tyres, rails, or of the climbing type. Although these cranes have been known for the last fifty years, their full development only began after the last World War. Their most usual features and varieties make it possible to classify these cranes in a table, which includes most of the models now in standard use.Los nuevos volúmenes de edificación, y los nuevos sistemas, como la prefabricación, han exigido el desarrollo de la maquinaria auxiliar correspondiente, con el fin de poder cubrir las necesidades de alimentación de la obra, reparto de materiales y elevación de cargas y piezas voluminosas. Entre las máquinas auxiliares que h a n obtenido una verdadera mayoría, de edad se encuentran las grúas-torre, fijas, móviles sobre neumáticos o carriles y trepadoras, las cuales, pese a ser conocidas y empleadas desde los años 10, han encontrado su verdadero campo de aplicación después de la segunda guerra mundial. Sus características más comunes respecto a elementos que constituyen la mayor parte de los modelos, permiten agruparlas en una tabla en la que quedan incluidas casi todas las de uso normal.

  19. Cellular glutathione prevents cytolethality of monomethylarsonic acid

    International Nuclear Information System (INIS)

    Sakurai, Teruaki; Kojima, Chikara; Ochiai, Masayuki; Ohta, Takami; Sakurai, Masumi H.; Waalkes, Michael P.; Fujiwara, Kitao

    2004-01-01

    Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs V ) and dimethylarsinic acid (DMAs V ). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs V . We studied the molecular mechanisms of in vitro cytolethality of MMAs V using a rat liver epithelial cell line (TRL 1215). MMAs V was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs V , but aminooxyacetic acid (AOAA), an inhibitor of β-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs V in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs V , although cellular GSH levels actually prevented the cytolethality of combined MMAs V and exogenous GSH. These findings indicate that human arsenic metabolite MMAs V is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects

  20. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  1. Membrane accessibility of glutathione

    DEFF Research Database (Denmark)

    Garcia, Almudena; Eljack, N., D.; Sani, ND

    2015-01-01

    Regulation of the ion pumping activity of the Na(+),K(+)-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate...... that this cysteine is in a transmembrane domain of the protein. Here we have analysed via fluorescence and NMR spectroscopy as well as molecular dynamics simulations whether glutathione is able to penetrate into the interior of a lipid membrane. No evidence for any penetration of glutathione into the membrane...

  2. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  3. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  4. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders

    Science.gov (United States)

    Franson, J. Christian; Hoffman, David J.; Flint, Paul L.

    2011-01-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  5. Uranyl complexes of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Marzotto, A [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1977-01-01

    Dioxouranium(VI) complexes of the tripeptide glutathione having different molar ratios were prepared and studied by IR, PMR, electronic absorption and circular dichroism spectra. The results indicate that coordination occurs at the carboxylato groups, acting as monodentate ligands, whereas no significant interaction with the amino and sulfhydrylic groups takes place.

  6. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...... profiles were observed. No ascorbate peroxidase (APX) activity was present in mature seeds but activity was detected after 24 h PI and increased 14-fold up to 144 h PI. In contrast, dehydroascorbate reductase (DHAR) activity was present at 4 h PI and first decreased by 9-fold until 72 h PI followed by a 5......-fold increase at 144 h PI. Glutathione reductase and monodehydroascorbate reductase activities were also detected at 4 h PI, and showed modest increases of 1.8- and 2.7-fold, respectively, by 144 h PI. The combination of functional analysis with the proteomics approach enabled correlation...

  7. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    Science.gov (United States)

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  8. Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide?

    NARCIS (Netherlands)

    den Hartog, G.J.M.; Haenen, G.R.M.M.; Vegt, E.; van der Vijgh, W.J.F.; Bast, A.

    2002-01-01

    Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide? den Hartog GJ, Haenen GR, Vegt E, van der Vijgh WJ, Bast A. Department of Pharmacology and Toxicology, Maastricht University, The Netherlands. Hypochlorous acid (HOCl) is a bactericidal

  9. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N.

    peroxidation (LPX). Increased activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase (GST) both in gills and digestive glands under long...

  10. Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese

    Science.gov (United States)

    Franson, J. Christian; Hoffman, David J.; Schmutz, Joel A.

    2002-01-01

    In 1998, we collected blood samples from 63 emperor geese (Chen canagica) on their breeding grounds on the Yukon-Kuskokwim Delta (YKD) in western Alaska, USA. We studied the relationship between selenium concentrations in whole blood and the activities of glutathione peroxidase and glutathione reductase in plasma. Experimental studies have shown that plasma activities of these enzymes are useful biomarkers of selenium-induced oxidative stress, but little information is available on their relationship to selenium in the blood of wild birds. Adult female emperor geese incubating their eggs in mid-June had a higher mean concentration of selenium in their blood and a greater activity of glutathione peroxidase in their plasma than adult geese or goslings that were sampled during the adult flight feathermolting period in late July and early August. Glutathione peroxidase activity was positively correlated with the concentration of selenium in the blood of emperor geese, and the rate of increase relative to selenium was greater in goslings than in adults. The activity of glutathione reductase was greatest in the plasma of goslings and was greater in molting adults than incubating females but was not significantly correlated with selenium in the blood of adults or goslings. Incubating female emperor geese had high selenium concentrations in their blood, accompanied by increased glutathione peroxidase activity consistent with early oxidative stress. These findings indicate that further study of the effects of selenium exposure, particularly on reproductive success, is warranted in this species.

  11. Grønne, kommunale regnskaber

    DEFF Research Database (Denmark)

    Kristiansen, K.

    Hvad er et grønt, kommunalt regnskab? Hvordan får man miljøhjulet til at dreje? Hvorfor lave et grønt regnskab? Håndbog i grønne, kommunale regnskaber viser, hvordan man nemt kan lave et grønt regnskab, som er tilpasset forholdene i den enkelte kommune og som kan bruges i det lokale Agenda 21...

  12. Populismens grænser

    DEFF Research Database (Denmark)

    Siim, Birte

    2010-01-01

    I den forløbne uge har 'burkasagen' og sagen om kønsopdelte grupper på Blågårdsskolen atter udfordret grænserne for det danske demokratis rummelighed. De to sager har vakt stor opsigt i pressen og har fremkaldt voldsomme udtalelser både fra repræsentanter for regeringen, dens støtteparti og fra t...

  13. Gr.

    Directory of Open Access Journals (Sweden)

    Václav Blažek

    1984-12-01

    Full Text Available The-Greek word   (Archilochos, Aristophanes, Plato, Aristoteles, Dor. ní&anos: "ape", ní-&wv, -wvoi; "little ape" (Pindaros does not have any convincible Indo-European etymology. The old comparison with Lat. foedus "beastly, foul" etc. is obviously improbable and the word is rather bor­rowed from an unknown source.

  14. Correction of glutathione metabolism in the liver of albino rats affected by low radiation doses

    International Nuclear Information System (INIS)

    Moiseenok, A.G.; Slyshenkov, V.S.; Khomich, T.I.; Zimatkina, T.I.; Kanunnikova, N.P.

    1997-01-01

    The levels of total glutathione GSH, GSSG and the activities of glutathione reductase and glutathione peroxidase were studied in the liver of adult albino rats subjected to 3-fold external γ-irradiation throughout 2 weeks at the overall dose of 0.75 Gy after 15 h, 2 and 5 days from the last irradiation. Some animals were injected intraperitoneally with the pantothenate containing complex > 3 times on days 1-3 before the irradiation. The radiation related decrease of GSH, GSH/GSSG and the total glutathione level was prevented by the prophylactic administration of the complex and probably at the expense of the activation of the G-SH biosynthesis and/or transport in the liver by the CoA biosynthetic precursor. (author)

  15. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    International Nuclear Information System (INIS)

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.; Bohrer, Denise; Garcia, Solange C.; Dafre, Alcir L.; Milatovic, Dejan; Souza, Diogo O.; Rocha, Joao B.T.; Aschner, Michael; Farina, Marcelo

    2008-01-01

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F 2 -isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F 2 -isoprostanes levels at all time points. Significant negative correlations were found between F 2 -isoprostanes and GSH, as well as between F 2 -isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at

  16. Garlic protects the glutathione redox cycle in irradiated rats

    International Nuclear Information System (INIS)

    Abu-Ghadeer, A.R.M.; Osman, S.A.A.; Abbady, M.M.

    1999-01-01

    The aim of the present study is to evaluate the possible radioprotective role of garlic oil on the glutathione redox cycle (GSH, GSH-Px, GR and G6-PD) in blood and tissues (liver, spleen and intestine) of irradiated rats. Garlic oil was orally administered to rats (100 mg/Kg- b.w.) for 7 days before exposure to a fractionated of whole body gamma irradiation up to 9 Gy (3 Gy X 3 at 2 days intervals) and during the whole period of irradiation. The data showed that radiation exposure caused significant inhibition of the biochemical parameters in blood and tissue of irradiated rats all over the investigation periods (3,7 and 15 days). Garlic oil ameliorated the decrease in the tested parameters with noticeable effect on the 15 Th. day after radiation exposure. It is concluded that garlic oil could control the radiation induced changes in the glutathione redox cycle and provided some radioprotective effect

  17. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  18. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  19. GLUTATHIONE AND ANTIOXIDANT ENZYMES IN THE HEPATOPANCREAS OF CRAYFISH PROCAMBARUS CLARKII (GIRARD, 1852 OF LAKE TRASIMENO (ITALY

    Directory of Open Access Journals (Sweden)

    ELIA A. C.

    2006-01-01

    Full Text Available Antioxidant parameters, such as total glutathione, glutathione S-transferase, glutathione peroxidase, glutathione reductase, glyoxalases, catalase, and some heavy metals such as, lead, cadmium and chromium were examined in hepatopancreas of both sexes of Procambarus clarkii collected seasonally from Lake Trasimeno, from winter 2002-2003 to autumn 2003. Heavy metals content in hepatopancreas in males and females of P. clarkii was low and did not vary through the sampling periods and between sexes. On the contrary, crayfish exhibited sex-dependent differences in levels of some enzyme activities and of total glutathione, and no apparent relationship was found between contaminant burdens and antioxidant indexes in hepatopancreas. Because measured metal concentrations were low, other factors, presumably, were involved in antioxidant variations in P. clarkii and these latter seemed to be affected more by biological and environmental factors, other than those related to pollutants body burdens.

  20. CHANGES IN THE GLUTATHIONE SYSTEM IN P19 EMBRYONAL CARCINOMA CELLS UNDER HYPOXIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    D. S. Orlov

    2015-01-01

    Full Text Available Introduction. According to modern perceptions, tumor growth, along with oxidative stress formation, is accompanied by hypoxia. Nowadays studying the regulation of cellular molecular system functioning by conformational changes in proteins appears to be a topical issue. Research goal was to evaluate the state of the glutathione system and the level of protein glutathionylation in P19 embryonal carcinoma (EC cells under hypoxic conditions.Material and methods. P19 EC cells (mouse embryonal carcinoma cultured under normoxic and hypox-ic conditions served the research material.The concentration of total, oxidized, reduced and protein-bound glutathione, the reduced to oxidized thiol ratio as well as glutathione peroxidase and glutathione reductase activity were determined by spectropho-tometry.Results. Glutathione imbalance was accompanied by a decrease in P19 EC cell redox status under hypox-ic conditions against the backdrop of a rise in protein-bound glutathione.Conclusions. As a result of the conducted study oxidative stress formation was identified when modeling hypoxia in P19 embryonal carcinoma cells. The rise in the concentration of protein-bound glutathione may indicate the role of protein glutathionylation in regulation of P19 cell metabolism and functions un-der hypoxia. 

  1. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  2. Glutathione and Mitochondria

    Directory of Open Access Journals (Sweden)

    Vicent eRibas

    2014-07-01

    Full Text Available Glutathione (GSH is the main nonprotein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease and Alzheimer’s disease.

  3. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  4. Impaired spermatogenesis and gr/gr deletions related to Y chromosome haplogroups in Korean men.

    Directory of Open Access Journals (Sweden)

    Jin Choi

    Full Text Available Microdeletion of the Azoospermia Factor (AZF regions in Y chromosome is a well-known genetic cause of male infertility resulting from spermatogenetic impairment. However, the partial deletions of AZFc region related to spermatogenetic impairment are controversial. In this study, we characterized partial deletion of AZFc region in Korean patients with spermatogenetic impairment and assessed whether the DAZ and CDY1 contributes to the phenotype in patients with gr/gr deletions. Total of 377 patients with azoo-/oligozoospermia and 217 controls were analyzed using multiplex polymerase chain reaction (PCR, analysis of DAZ-CDY1 sequence family variants (SFVs, and quantitative fluorescent (QF-PCR. Of the 377 men with impaired spermatogenesis, 59 cases (15.6% had partial AZFc deletions, including 32 gr/gr (8.5%, 22 b2/b3 (5.8%, four b1/b3 (1.1% and one b3/b4 (0.3% deletion. In comparison, 14 of 217 normozoospermic controls (6.5% had partial AZFc deletions, including five gr/gr (2.3% and nine b2/b3 (4.1% deletions. The frequency of gr/gr deletions was significantly higher in the azoo-/oligozoospermic group than in the normozoospermic control group (p = 0.003; OR = 3.933; 95% CI = 1.509-10.250. Concerning Y haplogroup, we observed no significant differences in the frequency of gr/gr deletions between the case and the control groups in the YAP+ lineages, while gr/gr deletion were significantly higher in azoo-/oligozoospermia than normozoospermia in the YAP- lineage (p = 0.004; OR = 6.341; 95% CI = 1.472-27.312. Our data suggested that gr/gr deletion is associated with impaired spermatogenesis in Koreans with YAP- lineage, regardless of the gr/gr subtypes.

  5. Computing Gröbner fans

    DEFF Research Database (Denmark)

    Fukuda, K.; Jensen, Anders Nedergaard; Thomas, R.R.

    2005-01-01

    This paper presents algorithms for computing the Gröbner fan of an arbitrary polynomial ideal. The computation involves enumeration of all reduced Gröbner bases of the ideal. Our algorithms are based on a uniform definition of the Gröbner fan that applies to both homogeneous and non......-homogeneous ideals and a proof that this object is a polyhedral complex. We show that the cells of a Gröbner fan can easily be oriented acyclically and with a unique sink, allowing their enumeration by the memory-less reverse search procedure. The significance of this follows from the fact that Gröbner fans...... are not always normal fans of polyhedra in which case reverse search applies automatically. Computational results using our implementation of these algorithms in the software package Gfan are included....

  6. Effect of Glutathione on the Taste and Texture of Type I Sourdough Bread.

    Science.gov (United States)

    Tang, Kai Xing; Zhao, Cindy J; Gänzle, Michael G

    2017-05-31

    Type I sourdough fermentations with Lactobacillus sanfranciscensis as predominant organism accumulate reduced glutathione through glutathione reductase (GshR) activity of L. sanfranciscensis. Reduced glutathione acts as chain terminator for gluten polymerization but is also kokumi-active and may thus enhance bread taste. This study implemented a type I model sourdough fermentations to quantitate glutathione accumulation sourdough, bread dough, and bread and to assess the effect of L. sanfranciscensis GshR on bread volume by comparison of L. sanfranciscensis and an isogenic strain devoid of GshR. L. sanfranciscensis sourdough accumulated the highest amount of reduced glutathione during proofing. Bread produced with the wild type strain had a lower volume when compared to the gshR deficient mutant. The accumulation of γ-glutamyl-cysteine was also higher in L. sanfranciscensis sourdoughs when compared to doughs fermented with the gshR mutant strain. The accumulation of reduced glutathione in L. sanfranciscensis bread did not enhance the saltiness of bread.

  7. Effect of asoka on the intracellular glutathione levels and skin tumour promotion in mice.

    Science.gov (United States)

    Varghese, C D; Nair, S C; Panikkar, B; Panikkar, K R

    1993-04-15

    The bark of Saraka asoca (asoka) is commonly used to treat various diseases by the Indian system of medicine and in Sri Lanka. Further purification and chemical analysis of the active compound from the bark extract of asoka showed that (-)-epicatechin was responsible for the observed antitumour/anticarcinogenic activity. Papilloma formation in mice initiated with 7,12-dimethylbenz[a]anthracene (DMBA) and promoted using croton oil was inhibited by the topical application of 100 mg/kg body weight (b.w.) of (-)-epicatechin isolated from asoka bark extract. Oral administration of the same dose restricted the growth of s.c. injected 20 methylcholanthrene (MCA) induced soil tissue fibrosarcomas significantly in mice. Elevations of almost 2-4-fold in the intracellular reduced glutathione and related enzymes viz., glutathione reductase and glutathione S-transferase of sarcoma-180 tumour cells were noted in the presence of 1 microgram/ml of (-)-epicatechin, further highlighting its antiproliferative effect.

  8. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure

    Directory of Open Access Journals (Sweden)

    V. P. Rosalovsky

    2015-10-01

    Full Text Available Chlorpyrifos (CPF is a highly toxic organophosphate compound, widely used as an active substance of many insecticides. Along with the anticholinesterase action, CPF may affect other biochemical mechanisms, particularly through disrupting pro- and antioxidant balance and inducing free-radical oxidative stress. Origins and occurrence of these phenomena are still not fully understood. The aim of our work was to investigate the effects of chlorpyrifos on key parameters of glutathione system and on lipid peroxidation in rat blood in the time dynamics during one hour after exposure. We found that a single exposure to 50 mg/kg chlorpyrifos caused a linear decrease in butyryl cholinesterase activity, increased activity of glutathione peroxidase and glutathione reductase, alterations in the levels of glutathione, TBA-active products and lipid hydroperoxides during 1 hour after poisoning. The most significant changes in studied parameters were detected at the 15-30th minutes after chlorpyrifos exposure.

  9. The state of glutathion system of blood, brain and liver of white rats after chronic gamma-irradiation

    International Nuclear Information System (INIS)

    Petushok, N.Eh.; Lashak, L.K.; Trebukhina, R.V.

    1999-01-01

    The effects of 3-fold gamma-irradiation in total dose 0,75 Gy on the glutathion system in different periods after exposure (1 hour, 1 day, 1 and 4 weeks) in blood, brain and liver of white rats were studied. It was concluded that liver and brain have higher ability to maintain the stability of antioxidant system than blood has. After shot disturbances caused by irradiation in brain and liver the state of glutathion system of detoxication has normalized, while concentration of malonic dialdehyde was raised in all terms. The most pronounced changes of antioxidant system were registered in blood at early terms (1 hour) after irradiation that was manifested in increasing of reduced glutathion content, raising of glutathion reductase and catalase activity. In remote period the activity of this system in blood was exhausted

  10. Active biomonitoring of a subtropical river using glutathione-S ...

    African Journals Online (AJOL)

    Active biomonitoring of a subtropical river using glutathione-S-transferase (GST) and heat shock proteins (HSP 70) in. Oreochromis niloticusas surrogate biomarkers of metal contamination. Victor Kurauone Muposhi1, Beaven Utete1*, Idah Sithole-Niang2 and Stanley Mukangenyama2. 1Wildlife Ecology and Conservation, ...

  11. [Die Gründung...] / Anders Henriksson

    Index Scriptorium Estoniae

    Henriksson, Anders

    2004-01-01

    Rets.: Karsten Brüggemann. Die Gründung der Republik Estland und das Ende des "Einen und unteilbaren Russland" : die Petrograder Front des Russischen Bürgerkrieges, 1918-1920. Wiesbaden : Harrassowitz, 2002

  12. Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths

    Directory of Open Access Journals (Sweden)

    Salinas Gustavo

    2010-04-01

    Full Text Available Abstract Background The thioredoxin and/or glutathione pathways occur in all organisms. They provide electrons for deoxyribonucleotide synthesis, function as antioxidant defenses, in detoxification, Fe/S biogenesis and participate in a variety of cellular processes. In contrast to their mammalian hosts, platyhelminth (flatworm parasites studied so far, lack conventional thioredoxin and glutathione systems. Instead, they possess a linked thioredoxin-glutathione system with the selenocysteine-containing enzyme thioredoxin glutathione reductase (TGR as the single redox hub that controls the overall redox homeostasis. TGR has been recently validated as a drug target for schistosomiasis and new drug leads targeting TGR have recently been identified for these platyhelminth infections that affect more than 200 million people and for which a single drug is currently available. Little is known regarding the genomic structure of flatworm TGRs, the expression of TGR variants and whether the absence of conventional thioredoxin and glutathione systems is a signature of the entire platyhelminth phylum. Results We examine platyhelminth genomes and transcriptomes and find that all platyhelminth parasites (from classes Cestoda and Trematoda conform to a biochemical scenario involving, exclusively, a selenium-dependent linked thioredoxin-glutathione system having TGR as a central redox hub. In contrast, the free-living platyhelminth Schmidtea mediterranea (Class Turbellaria possesses conventional and linked thioredoxin and glutathione systems. We identify TGR variants in Schistosoma spp. derived from a single gene, and demonstrate their expression. We also provide experimental evidence that alternative initiation of transcription and alternative transcript processing contribute to the generation of TGR variants in platyhelminth parasites. Conclusions Our results indicate that thioredoxin and glutathione pathways differ in parasitic and free-living flatworms and

  13. Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths

    Science.gov (United States)

    2010-01-01

    Background The thioredoxin and/or glutathione pathways occur in all organisms. They provide electrons for deoxyribonucleotide synthesis, function as antioxidant defenses, in detoxification, Fe/S biogenesis and participate in a variety of cellular processes. In contrast to their mammalian hosts, platyhelminth (flatworm) parasites studied so far, lack conventional thioredoxin and glutathione systems. Instead, they possess a linked thioredoxin-glutathione system with the selenocysteine-containing enzyme thioredoxin glutathione reductase (TGR) as the single redox hub that controls the overall redox homeostasis. TGR has been recently validated as a drug target for schistosomiasis and new drug leads targeting TGR have recently been identified for these platyhelminth infections that affect more than 200 million people and for which a single drug is currently available. Little is known regarding the genomic structure of flatworm TGRs, the expression of TGR variants and whether the absence of conventional thioredoxin and glutathione systems is a signature of the entire platyhelminth phylum. Results We examine platyhelminth genomes and transcriptomes and find that all platyhelminth parasites (from classes Cestoda and Trematoda) conform to a biochemical scenario involving, exclusively, a selenium-dependent linked thioredoxin-glutathione system having TGR as a central redox hub. In contrast, the free-living platyhelminth Schmidtea mediterranea (Class Turbellaria) possesses conventional and linked thioredoxin and glutathione systems. We identify TGR variants in Schistosoma spp. derived from a single gene, and demonstrate their expression. We also provide experimental evidence that alternative initiation of transcription and alternative transcript processing contribute to the generation of TGR variants in platyhelminth parasites. Conclusions Our results indicate that thioredoxin and glutathione pathways differ in parasitic and free-living flatworms and that canonical enzymes

  14. Grænser, barrierer og broer

    DEFF Research Database (Denmark)

    Nortvig, Anne Mette; Christiansen, René B.; Karlsen, Asgjerd Vea

    2015-01-01

    ledelsesmæssige muligheder for, at skoleklasser i grundskolen kan arbejde sammen og lære på tværs af de tre landes grænser. Nogle af de helt overordnede mål for projektet har således været at udvikle grænseoverskridende undervisningsmodeller i Norden, der kunne mindske de mentale og praktiske barrierer for en...

  15. Grænsestrategier og transnationale relationer

    DEFF Research Database (Denmark)

    Eilenberg, Michael

    2006-01-01

    I denne artikel ønsker jeg at undersøge betydningen af transnationale etniske relationer for den indonesiske ibanske befolkning, der er bosat i grænselandet, mellem den malaysiske delstat, Sarawak og den indonesiske provins, Vest Kalimantan. Jeg vil diskutere hvordan transnationale etniske...... disse processer, som de kommer til udtryk i form af bl.a. arbejdsmigration på tværs af den internationale grænse til Sarawak, Malaysia. Udgivelsesdato: Juli...

  16. Branding af grønne byer

    DEFF Research Database (Denmark)

    Konijnendijk, Cecil Cornelis; Petersen, Karen Sejr

    2010-01-01

    Det grønne - byens parker og natur - kan være med til at skabe en attraktiv by, som har stærk identitet og brand, både for omverden og byens egne borgere.......Det grønne - byens parker og natur - kan være med til at skabe en attraktiv by, som har stærk identitet og brand, både for omverden og byens egne borgere....

  17. Modulation of antioxidant and biotransformation enzymes in the gills of Perna viridis (L.) exposed to water accomodate fraction of diesel

    Digital Repository Service at National Institute of Oceanography (India)

    Jena, K.B.; Verlecar, X.N.; Chainy, G.B.N.

    tested for cell damage and antioxidant responses in P. viridis for over 15 day period. The parameters measured included lipid peroxidation (LPX), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR...

  18. Differences in associations between markers of antioxidative defense and asthma are sex specific

    DEFF Research Database (Denmark)

    Malling, Tine Halsen; Sigsgaard, Torben; Andersen, Helle R

    2010-01-01

    on a screening questionnaire, random sampling, or both. Serum selenium concentrations and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase [GPX], glutathione reductase [GR], and glucose-6-phosphate dehydrogenase [G6PD]) in erythrocytes were measured. Asthma was defined as either...

  19. Glutathione treatment of hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Dalhoff, K; Ranek, L; Mantoni, M

    1992-01-01

    This prospective study was undertaken to substantiate observations that glutathione (GSH) inhibits or reverses tumor growth in humans with hepatocellular carcinoma (HCC), a neoplasm with an extremely poor prognosis. Eight patients with biopsy-proven HCC not amenable to surgery were given 5 g of GSH...

  20. MathGR: a tensor and GR computation package to keep it simple

    OpenAIRE

    Wang, Yi

    2013-01-01

    We introduce the MathGR package, written in Mathematica. The package can manipulate tensor and GR calculations with either abstract or explicit indices, simplify tensors with permutational symmetries, decompose tensors from abstract indices to partially or completely explicit indices and convert partial derivatives into total derivatives. Frequently used GR tensors and a model of FRW universe with ADM type perturbations are predefined. The package is built around the philosophy to "keep it si...

  1. Association between methylenetetrahydrofolate reductase (MTHFR ...

    African Journals Online (AJOL)

    Association between methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study. Amit Kumar, Shubham Misra, Anjali Hazarika, Pradeep Kumar, Ram Sagar, Abhishek Pathak, Kamalesh Chakravarty, Kameshwar ...

  2. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    GSH) present in tissues. It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione role in detoxification and conjugation in whole blood components (plasma and ...

  3. Antisense Suppression of 2-Cysteine Peroxiredoxin in Arabidopsis Specifically Enhances the Activities and Expression of Enzymes Associated with Ascorbate Metabolism But Not Glutathione Metabolism1

    Science.gov (United States)

    Baier, Margarete; Noctor, Graham; Foyer, Christine H.; Dietz, Karl-Josef

    2000-01-01

    The aim of this study was to characterize the effect of decreased 2-cysteine peroxiredoxin (2-CP) on the leaf anti-oxidative system in Arabidopsis. At three stages of leaf development, two lines of transgenic Arabidopsis mutants with decreased contents of chloroplast 2-CP were compared with wild type and a control line transformed with an empty vector. Glutathione contents and redox state were similar in all plants, and no changes in transcript levels for enzymes involved in glutathione metabolism were observed. Transcript levels for chloroplastic glutathione peroxidase were much lower than those for 2-CP, and both cytosolic and chloroplastic glutathione peroxidase were not increased in the mutants. In contrast, the foliar ascorbate pool was more oxidized in the mutants, although the difference decreased with plant age. The activities of thylakoid and stromal ascorbate peroxidase and particularly monodehydroascorbate reductase were increased as were transcripts for these enzymes. No change in dehydroascorbate reductase activity was observed, and effects on transcript abundance for glutathione reductase, catalase, and superoxide dismutase were slight or absent. The results demonstrate that 2-CP forms an integral part of the anti-oxidant network of chloroplasts and is functionally interconnected with other defense systems. Suppression of 2-CP leads to increased expression of other anti-oxidative genes possibly mediated by increased oxidation state of the leaf ascorbate pool. PMID:11027730

  4. Characterization of recombinant glyoxylate reductase from thermophile Thermus thermophilus HB27.

    Science.gov (United States)

    Ogino, Hiroyasu; Nakayama, Hitoshi; China, Hideyasu; Kawata, Takuya; Doukyu, Noriyuki; Yasuda, Masahiro

    2008-01-01

    A glyoxylate reductase gene from the thermophilic bacterium Thermus thermophilus HB27 (TthGR) was cloned and expressed in Escherichia coli cells. The recombinant enzyme was highly purified to homogeneity and characterized. The purified TthGR showed thermostability up to 70 degrees C. In contrast, the maximum reaction condition was relatively mild (45 degrees C and pH 6.7). Although the kcat values against co-enzyme NADH and NADPH were similar, the Km value against co-enzyme NADH was approximately 18 times higher than that against NADPH. TthGR prefers NADPH rather than NADH as an electron donor. These results indicate that a phosphate group of a co-enzyme affects the binding affinity rather than the reaction efficiency, and TthGR demands appropriate amount of phosphate for a high activity. Furthermore, it was found that the half-lives of TthGR in the presence of 25% dimethyl sulfoxide and diethylene glycol were significantly longer than that in the absence of an organic solvent.

  5. 1-Methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons

    International Nuclear Information System (INIS)

    Drechsel, Derek A.; Liang, L.-P.; Patel, Manisha

    2007-01-01

    Decreased glutathione levels associated with increased oxidative stress are a hallmark of numerous neurodegenerative diseases, including Parkinson's disease. GSH is an important molecule that serves as an anti-oxidant and is also a major determinant of cellular redox environment. Previous studies have demonstrated that neurotoxins can cause changes in reduced and oxidized GSH levels; however, information regarding steady state levels remains unexplored. The goal of this study was to characterize changes in cellular GSH levels and its regulatory enzymes in a dopaminergic cell line (N27) following treatment with the Parkinsonian toxin, 1-methyl-4-phenylpyridinium (MPP + ). Cellular GSH levels were initially significantly decreased 12 h after treatment, but subsequently recovered to values greater than controls by 24 h. However, oxidized glutathione (GSSG) levels were increased 24 h following treatment, concomitant with a decrease in GSH/GSSG ratio prior to cell death. In accordance with these changes, ROS levels were also increased, confirming the presence of oxidative stress. Decreased enzymatic activities of glutathione reductase and glutamate-cysteine ligase by 20-25% were observed at early time points and partly account for changes in GSH levels after MPP + exposure. Additionally, glutathione peroxidase activity was increased 24 h following treatment. MPP + treatment was not associated with increased efflux of glutathione to the medium. These data further elucidate the mechanisms underlying GSH depletion in response to the Parkinsonian toxin, MPP +

  6. Determination of glutaredoxin enzyme activity and protein S-glutathionylation using fluorescent eosin-glutathione.

    Science.gov (United States)

    Coppo, Lucia; Montano, Sergio J; Padilla, Alicia C; Holmgren, Arne

    2016-04-15

    Glutaredoxins catalyze glutathione-dependent disulfide oxidoreductions, particularly reduction of glutathione (GSH)-protein mixed disulfides. Mammalian glutaredoxins are present in the cytosol/nucleus as Grx1 or in mitochondria as Grx2a. Here we describe di-eosin-glutathione disulfide (Di-E-GSSG) as a new tool to study glutaredoxin (Grx) activity. Di-E-GSSG has almost no fluorescence in its disulfide form due to self-quenching, whereas the reduced form (E-GSH) has a large fluorescence emission at 545 nm after excitation at 520 nm. Di-E-GSSG was a very poor substrate for glutathione reductase, but we discovered that the molecule was an excellent substrate for glutaredoxin in a coupled assay system with GSH, nicotinamide adenine dinucleotide phosphate (NADPH), and glutathione reductase or with lipoamide, NADH, and lipoamide dehydrogenase. In addition, Di-E-GSSG was used to glutathionylate the free SH group of bovine serum albumin (BSA), yielding eosin-glutathionylated BSA (E-GS-BSA) readily observed in ultraviolet (UV) light. E-GS-BSA also displayed a quenched fluorescence, and its Grx-catalyzed reduction could be followed by the formation of E-GSH by fluorescence emission using microtiter plates. This way of measuring Grx activity provided an ultrasensitive method that detected Grx1 and Grx2 at picomolar levels. Human Grx1 was readily quantified in 40 μl of plasma and determined to be 680 ± 208 pM in healthy controls. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  8. [Dinitrosyl iron complexes with glutathione recover rats with experimental endometriosis].

    Science.gov (United States)

    Adamian, L V; Burgova, E N; Tkachev, N A; Mikoian, V D; Stepanian, A A; Sonova, M M; Vanin, A F

    2013-01-01

    The effect of binuclear dinitrosyl iron complexes (DNIC) with glutathione on endometrioid tumors in rats with experimental endometriosis has been studied. The latter was induced by an autotransplantation model, where two fragments of endometrium with myometrium (2 x 2 mm) from the left uterine horn was grafted to the inner surface of the anterior abdominal wall. The test animals received intraperitoneal injections of 0.5 ml DNIC-glutathione at the dose of 12.5 micromole per kg daily for 12 days 28 days after operation. The injections resulted in more than a 2-fold decrease in the total volume of both large tumors formed from grafts and small additive tumors formed nearby grafts. The disappearance of the additive tumors was also observed in test animals. The EPR signal with g(av) = 2.03 characteristic of protein bound DNIC with thiol-containing ligands was recorded in livers, graft and additive tumors of test and control animals pointing out intensive generation of nitric oxide in rats with experimental endometriosis. Ribonucleotide reductase activation discovered by doublet the EPR signal at g = 2.0 with 2.3 mT hyperfine structure splitting was found in small tumors. The cytotoxic effect of DNIC-glutathione on endometrioid tumors was suggested to be due to DNIC degradation nearby the tumors induced by iron chelating compounds released from the tumors. The degradation resulted in release of a high amount of nitric oxide molecules and nitrosonium ions from DNICs affecting the tumors by way of the cytotoxic effect.

  9. [Alternative nutrition and glutathione levels].

    Science.gov (United States)

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Brtková, A; Magálová, T; Barteková, S

    1999-08-30

    Low protein quality and quantity is reported to be a possible risk of alternative nutrition. Pulses contain 18-41% of methionine in relation to reference protein, moreover, its content in cereals is by one half lower. Therefore vegetarians and vegans may have an insufficient intake of sulphur-containing amino acids that may subsequently affect glutathione values (precursors of its synthesis). In groups of adults on an alternative diet--lactoovovegetarians (n = 47) and vegans (n = 44) aged 19-62 years with average duration on a vegetarian or vegan diet of 7.6 and 4.9 years, respectively, glutathione levels (GSH) were measured in erythrocytes (spectrophotometrically), as well as the activity of GSH-dependent enzymes. As nutritional control (n = 42) served an average sample of omnivores selected from a group of 489 examined, apparently healthy subjects of the same age range living in the same region. One to low protein intake (56% of RDA) exclusively of plant origin significantly lower levels of total proteins were observed in vegans with a 16% frequency of hypoproteinaemia (vs 0% in omnivores). In comparison to omnivores a significantly lower glutathione level was found (4.28 +/- 0.12 vs 4.84 +/- 0.14 mumol/g Hb, P vegan diet also in adult age.

  10. Characterization of human warfarin reductase

    OpenAIRE

    Sokolová, Simona

    2016-01-01

    Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Simona Sokolová Supervisor: PharmDr. Petra Malátková, Ph.D. Title of diploma thesis: Characterization of human warfarin reductase Warfarin is widely used anticoagulant drug. Considering the narrow therapeutic window of warfarin, it is important to fully understand its metabolism in human body. Oxidative, reductive and conjugation reactions are involved in warfarin metabolism. Howev...

  11. Evaluering af Grøn Livsstil

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Agger, Annika Heilskov

    1998-01-01

    :  the potential of change of the initiatives;  the development of the campaign, and  the strategies and organisation of the Danish campaign. The evaluation comprised of large number of qualitative interview and collects important knowledge of organising local processes of change......Evaluations of the Danish part of the International Campaign Green Action Plan (Grøn Livsstil). 'Grøn Livsstil' aims at qualifying and supporting individuals and families to take action in order to change their households towards sustainability. The evaluation focused on qualitative aspects such as...

  12. Psyken er en grænseflade

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2011-01-01

    En computer er i sig selv blot et stykke mekanik. Det afgørende sker i mødet mellem maskinen, mennesker og fællesskaber: på grænsefladen. Præcis som hos levende væsner......En computer er i sig selv blot et stykke mekanik. Det afgørende sker i mødet mellem maskinen, mennesker og fællesskaber: på grænsefladen. Præcis som hos levende væsner...

  13. The generic Gröbner walk

    DEFF Research Database (Denmark)

    Jensen, Anders Nedergaard; Lauritzen, Niels; Fukuda, Komei

    2005-01-01

    perturbation of this line. This usually involves both time and space demanding arithmetic of integers much larger than the input numbers. In this paper we show how the explicit line may be replaced by a formal line using Robbiano's characterization of group orders on . This gives rise to the generic Gröbner...... walk involving only Gröbner basis conversion over facets and computations with marked polynomials. The infinite precision integer arithmetic is replaced by term order comparisons between (small) integral vectors. This makes it possible to compute with infinitesimal numbers and perturbations...

  14. A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Bugel, Susanne; Krath, Britta

    2008-01-01

    -enriched yeast or Se-enriched milk. We found no effect on plasma lipid resistance to oxidation, total cholesterol, TAG, HDL- and LDL-cholesterol, GPX, glutathione reductase (GR) and glutathione S-transferase (GST) activities measured in erythrocytes, GPX and GR activities determined in plasma, or GR and GST...

  15. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species

    NARCIS (Netherlands)

    Kremer, D.R.; Veenhuis, M.; Fauque, G.; Peck Jr., H.D.; LeGall, J.; Lampreia, J.; Moura, J.J.G.; Hansen, T.A.

    1988-01-01

    The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were

  16. Model of the static universe within GR

    International Nuclear Information System (INIS)

    Karbanovski, V. V.; Tarasova, A. S.; Salimova, A. S.; Bilinskaya, G. V.; Sumbulov, A. N.

    2011-01-01

    Within GR, the problems of the Robertson-Walker universe are discussed. The approach based on transition to a nondiagonal line element is suggested. Within the considered approach, the static universe model is investigated. The possibility of constructing scenarios without an initial singularity and “exotic” matter is discussed. Accordance of the given model to the properties of the observable universe is discussed.

  17. Glutathione in plants: an integrated overview.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Chaouch, Sejir; Han, Yi; Neukermans, Jenny; Marquez-Garcia, Belen; Queval, Guillaume; Foyer, Christine H

    2012-02-01

    Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues. © 2011 Blackwell Publishing Ltd.

  18. Impaired glutathione synthesis in schizophrenia

    DEFF Research Database (Denmark)

    Gysin, René; Kraftsik, Rudolf; Sandell, Julie

    2007-01-01

    Schizophrenia is a complex multifactorial brain disorder with a genetic component. Convergent evidence has implicated oxidative stress and glutathione (GSH) deficits in the pathogenesis of this disease. The aim of the present study was to test whether schizophrenia is associated with a deficit...... of GSH synthesis. Cultured skin fibroblasts from schizophrenia patients and control subjects were challenged with oxidative stress, and parameters of the rate-limiting enzyme for the GSH synthesis, the glutamate cysteine ligase (GCL), were measured. Stressed cells of patients had a 26% (P = 0.......002) decreased GCL activity as compared with controls. This reduction correlated with a 29% (P schizophrenia in two...

  19. COMPARATIVE INHIBITION OF YEAST GLUTATHIONE REDUCTASE BY ARSENICALS AND ARSENOTHIOLS. (R826136)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  1. Toxicity of isoproturon on Saccharomyces cerevisiae growing in mineral medium depends on glutathione-mediated antioxidant capacity.

    OpenAIRE

    Candeias, M; Alves-Pereira, I; Ferreira, Rui

    2011-01-01

    The results revealed an increase of viable cells, after 72 h of culture and an increase of antioxidant power mediated by GSH and GR activity in S. cerevisiae UE-ME3. The adaptive response of UE-ME3 strain to isoproturon, determined in MB, was clearly higher than observed in IGC-3507 strain. So, we presume that the extent of the toxic effect of isoproturon in both yeast strains depends on glutathione-mediated antioxidant capacity.

  2. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  3. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  4. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice

    Directory of Open Access Journals (Sweden)

    Ruixia Dong

    2016-12-01

    Full Text Available Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(PH:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.

  5. Den grønlandske forbindelse

    DEFF Research Database (Denmark)

    Jacobsen, Marc

    2016-01-01

    Danmarks tilstedeværelse i Arktis er helt og aldeles afhængig af, at rigsfællesskabet består. Uden Grønland ville Danmark miste muligheden for at sidde til højbords med USA, Rusland og Canada. En mulighed som, Danmarks størrelse taget i betragtning, er helt unik og af uvurderlig betydning for Dan...... for Danmarks plads i det globale hierarki. Det er derfor alfa og omega, at Danmark fortsat plejer forholdet til Grønland med stor omhu, og at eventuelle uenigheder mellem Nuuk og København bliver taget seriøst og behandlet med stor, gensidig respekt...

  6. Economic Analysis of the Greenland Inland Traverse (GrIT)

    Science.gov (United States)

    2016-06-01

    fuel and cargo based on data from the 2012 and 2014 seasons. DISCLAIMER: The contents of this report are not to be used for advertising ...GrIT compared with airlift ....................................................................... 24 13 Fuel consumed by GrIT12 and GrIT14 compared...objective was to identify and quantify, insofar as possible, the component costs of the GrIT and airlift resupply modes. In effect , we sought to link

  7. Glutathione, cell proliferation and differentiation | Ashtiani | African ...

    African Journals Online (AJOL)

    All organisms require an equivalent source for living. Reduced glutathione is the most abundant thiol containing protein in mammalian cells and organs. Glutathione was discovered by Hopkins in 1924 who published his findings in JBC. It is a three peptide containing glutamic acid, cystein and glycin and is found in reduced ...

  8. A regulatory review for products containing glutathione

    Directory of Open Access Journals (Sweden)

    Nur Hidayah Abd Rahim

    2016-01-01

    Full Text Available Glutathione is a potent antioxidant as well as has important role for DNA synthesis and repair, protein synthesis, amino acid transport, and enzyme activation. Besides this, Glutathione products are now mainly selling as whitening agent which are mainly marketing through social media (Facebook and different websites. Information is not available whether glutathione product are following the regulatory guidelines of National Pharmaceutical Control Bureau of Malaysia (NPCB for selling, advertisement and promotion. This review was carried out by extracting information about glutathione from scientific database using PubMed, Cochrane Library and Embase. Analysis of the available information, case example of glutathione products showed that a brand of glutathione (Glutacaps HQ did not show the product's registration number from NPCB, and also did not show the name, address, contact number of the advertiser, and even not found the name of the manufacture. Without providing the above mentioned information, the product is selling and promoting through social media (fb which is not allowed by the NPCB guidelines part 4.14. So far, only two clinical trials were conducted on glutathione supplementation for 4 weeks duration. There was no serious or systematic adverse effects reported in clinical trials. As the two clinic trials resulted contradictory outcomes, further studies needed for conformation of the clinic benefits of glutathione. Otherwise, random use of glutathione may be risk for the health of the people. Besides, the marketer mainly promoting glutathione as the skin whitening beauty product instead of using as health supplement, it may cause additional and serious risk to the users as the manufacturer not providing sufficient information about the product, its registration number, manufacturing company, etc.

  9. Mesurar la creativitat en disseny gràfic

    OpenAIRE

    Ayala Pérez, José

    2013-01-01

    En aquesta investigació es construeix un marc conceptual, on s'integra la creativitat i el disseny gràfic. S'introdueix el model tridimensional de la creativitat en el disseny gràfic, on la creativitat és disertada en tres dimensions, novetat, comunicació i estètica. Basat en el model tridimensional de la creativitat en Disseny Gràfic, es construeix un instrument per poder mesurar la creativitat d'un disseny gràfic. L'instrument va ser administrat a 115 dissenyadors gràfics del Col · legi de ...

  10. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  11. Gõtter, Grãber und Gelehrte

    Directory of Open Access Journals (Sweden)

    Pedro Moacyr Campos

    1953-09-01

    Full Text Available CERAM, (C. W.. — Gõtter, Grãber und Gelehrte, Rowohlt Verlag, Hamburg.,  1951, 494 págs. (Primeiro Parágrafo do Artigo Bem merecido foi o sucesso encontrado pelo livro de Ceram, Gotter, Graber und Gelehrte, ("Deuses, túmulos e eruditos", que alcançou a cifra de 106.000 exemplares entre novembro de 1949 e março de 1951, continuando a ser reimpresso após esta data.

  12. Corneal endothelial glutathione after photodynamic change

    International Nuclear Information System (INIS)

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-01-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system

  13. Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks

    Science.gov (United States)

    Hoffman, D.J.; Heinz, G.H.

    1998-01-01

    Earlier studies reported on the toxicity and related oxidative stress of different forms of Se, including seleno-D,L-methionine, in mallards (Anas platyrhynchos). This study compares the effects of Se (seleno-D,L-methionine) and Hg (methylmercury chloride) separately and in combination. Mallard drakes received one of the following diets: untreated feed (controls), or feed containing 10 ppm Se, 10 ppm Hg, or 10 ppm Se in combination with 10 ppm Hg. After 10 weeks, blood, liver, and brain samples were collected for biochemical assays. The following clinical and biochemical alterations occurred in response to mercury exposure: hematocrit and hemoglobin concentrations decreased; activities of the enzymes glutathione (GSH) peroxidase (plasma and liver), glutathione-S-transferase (liver), and glucose-6-phosphate dehydrogenase (G-6-PDH) (liver and brain) decreased; hepatic oxidized glutathione (GSSG) concentration increased relative to reduced glutathione (GSH); and lipid peroxidation in the brain was evident as detected by increased thiobarbituric reactive substances (TBARS). Effects of Se alone included increased hepatic GSSG reductase activity and brain TBARS concentration. Se in combination with Hg partially or totally alleviated effects of Hg on GSH peroxidase, G-6-PDH, and GSSG. These findings are compared in relation to field observations for diving ducks and other aquatic birds. It is concluded that since both Hg and excess Se can affect thiol status, measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. The ability of Se to restore the activities of G-6-PDH, GSH peroxidase, and glutathione status involved in antioxidative defense mechanisms may be crucial to biological protection from the toxic effects of methyl mercury.

  14. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  15. Glutathione system in Wolfram syndrome 1‑deficient mice.

    Science.gov (United States)

    Porosk, Rando; Kilk, Kalle; Mahlapuu, Riina; Terasmaa, Anton; Soomets, Ursel

    2017-11-01

    Wolfram syndrome 1 (WS) is a rare neurodegenerative disease that is caused by mutations in the Wolfram syndrome 1 (WFS1) gene, which encodes the endoplasmic reticulum (ER) glycoprotein wolframin. The pathophysiology of WS is ER stress, which is generally considered to induce oxidative stress. As WS has a well‑defined monogenetic origin and a model for chronic ER stress, the present study aimed to characterize how glutathione (GSH), a major intracellular antioxidant, was related to the disease and its progression. The concentration of GSH and the activities of reduction/oxidation system enzymes GSH peroxidase and GSH reductase were measured in Wfs1‑deficient mice. The GSH content was lower in most of the studied tissues, and the activities of antioxidative enzymes varied between the heart, kidneys and liver tissues. The results indicated that GSH may be needed for ER stress control; however, chronic ER stress from the genetic syndrome eventually depletes the cellular GSH pool and leads to increased oxidative stress.

  16. The antioxidant master glutathione and periodontal health

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Bains

    2015-01-01

    Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.

  17. Crystal Structure of Saccharomyces cerevisiae ECM4, a Xi-Class Glutathione Transferase that Reacts with Glutathionyl-(hydro)quinones

    Science.gov (United States)

    Schwartz, Mathieu; Didierjean, Claude; Hecker, Arnaud; Girardet, Jean-Michel; Morel-Rouhier, Mélanie; Gelhaye, Eric; Favier, Frédérique

    2016-01-01

    Glutathionyl-hydroquinone reductases (GHRs) belong to the recently characterized Xi-class of glutathione transferases (GSTXs) according to unique structural properties and are present in all but animal kingdoms. The GHR ScECM4 from the yeast Saccharomyces cerevisiae has been studied since 1997 when it was found to be potentially involved in cell-wall biosynthesis. Up to now and in spite of biological studies made on this enzyme, its physiological role remains challenging. The work here reports its crystallographic study. In addition to exhibiting the general GSTX structural features, ScECM4 shows extensions including a huge loop which contributes to the quaternary assembly. These structural extensions are probably specific to Saccharomycetaceae. Soaking of ScECM4 crystals with GS-menadione results in a structure where glutathione forms a mixed disulfide bond with the cysteine 46. Solution studies confirm that ScECM4 has reductase activity for GS-menadione in presence of glutathione. Moreover, the high resolution structures allowed us to propose new roles of conserved residues of the active site to assist the cysteine 46 during the catalytic act. PMID:27736955

  18. Crystal Structure of Saccharomyces cerevisiae ECM4, a Xi-Class Glutathione Transferase that Reacts with Glutathionyl-(hydroquinones.

    Directory of Open Access Journals (Sweden)

    Mathieu Schwartz

    Full Text Available Glutathionyl-hydroquinone reductases (GHRs belong to the recently characterized Xi-class of glutathione transferases (GSTXs according to unique structural properties and are present in all but animal kingdoms. The GHR ScECM4 from the yeast Saccharomyces cerevisiae has been studied since 1997 when it was found to be potentially involved in cell-wall biosynthesis. Up to now and in spite of biological studies made on this enzyme, its physiological role remains challenging. The work here reports its crystallographic study. In addition to exhibiting the general GSTX structural features, ScECM4 shows extensions including a huge loop which contributes to the quaternary assembly. These structural extensions are probably specific to Saccharomycetaceae. Soaking of ScECM4 crystals with GS-menadione results in a structure where glutathione forms a mixed disulfide bond with the cysteine 46. Solution studies confirm that ScECM4 has reductase activity for GS-menadione in presence of glutathione. Moreover, the high resolution structures allowed us to propose new roles of conserved residues of the active site to assist the cysteine 46 during the catalytic act.

  19. Kinetics of carbonyl reductase from human brain.

    OpenAIRE

    Bohren, K M; von Wartburg, J P; Wermuth, B

    1987-01-01

    Initial-rate analysis of the carbonyl reductase-catalysed reduction of menadione by NADPH gave families of straight lines in double-reciprocal plots consistent with a sequential mechanism being obeyed. The fluorescence of NADPH was increased up to 7-fold with a concomitant shift of the emission maximum towards lower wavelength in the presence of carbonyl reductase, and both NADPH and NADP+ caused quenching of the enzyme fluorescence, indicating formation of a binary enzyme-coenzyme complex. D...

  20. Atypical Thioredoxins in Poplar: The Glutathione-Dependent Thioredoxin-Like 2.1 Supports the Activity of Target Enzymes Possessing a Single Redox Active Cysteine1[W

    Science.gov (United States)

    Chibani, Kamel; Tarrago, Lionel; Gualberto, José Manuel; Wingsle, Gunnar; Rey, Pascal; Jacquot, Jean-Pierre; Rouhier, Nicolas

    2012-01-01

    Plant thioredoxins (Trxs) constitute a complex family of thiol oxidoreductases generally sharing a WCGPC active site sequence. Some recently identified plant Trxs (Clot, Trx-like1 and -2, Trx-lilium1, -2, and -3) display atypical active site sequences with altered residues between the two conserved cysteines. The transcript expression patterns, subcellular localizations, and biochemical properties of some representative poplar (Populus spp.) isoforms were investigated. Measurements of transcript levels for the 10 members in poplar organs indicate that most genes are constitutively expressed. Using transient expression of green fluorescent protein fusions, Clot and Trx-like1 were found to be mainly cytosolic, whereas Trx-like2.1 was located in plastids. All soluble recombinant proteins, except Clot, exhibited insulin reductase activity, although with variable efficiencies. Whereas Trx-like2.1 and Trx-lilium2.2 were efficiently regenerated both by NADPH-Trx reductase and glutathione, none of the proteins were reduced by the ferredoxin-Trx reductase. Only Trx-like2.1 supports the activity of plastidial thiol peroxidases and methionine sulfoxide reductases employing a single cysteine residue for catalysis and using a glutathione recycling system. The second active site cysteine of Trx-like2.1 is dispensable for this reaction, indicating that the protein possesses a glutaredoxin-like activity. Interestingly, the Trx-like2.1 active site replacement, from WCRKC to WCGPC, suppresses its capacity to use glutathione as a reductant but is sufficient to allow the regeneration of target proteins employing two cysteines for catalysis, indicating that the nature of the residues composing the active site sequence is crucial for substrate selectivity/recognition. This study provides another example of the cross talk existing between the glutathione/glutaredoxin and Trx-dependent pathways. PMID:22523226

  1. Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1.

    Science.gov (United States)

    Chen, Wei; Tuladhar, Anupama; Rolle, Shantelle; Lai, Yanhao; Rodriguez Del Rey, Freddy; Zavala, Cristian E; Liu, Yuan; Rein, Kathleen S

    2017-08-15

    Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, β-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, β-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Measurement of glutathione-protein mixed disulfides

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1984-01-01

    The development of a sensitive and highly specific assay for the presence of mixed disulfides between protein thiol groups and endogenous thiols has been undertaken. Previous investigations on the concentrations of glutathione (GSH), glutathione disulfide (GSSG) and protein glutathione mixed disulfides (ProSSG) have been of limited usefulness because of the poor specificity of the assays used. Our assay for these forms of glutathione is based on high performance liquid chromatography (HPLC) and is an extension of an earlier method. After perchloric acid precipitation, the protein sample is washed with an organic solvent to fully denature the protein. Up to a 10-fold increase in GSH released from fetal bovine serum (FBS) protein has been found when the protein precipitate is washed with ethanol rather than ether, as earlier suggested. Similar effects have been observed with an as yet unidentified thiol which elutes in the chromatography system with a retention volume similar to cysteine

  3. Protective effect of Pterocarpus marsupium bark extracts against cataract through the inhibition of aldose reductase activity in streptozotocin-induced diabetic male albino rats.

    Science.gov (United States)

    Xu, YanLi; Zhao, Yongxia; Sui, YaNan; Lei, XiaoJun

    2018-04-01

    The present study was aimed to investigate the protective effect of Pterocarpus marsupium bark extracts against cataract in streptozotocin-induced diabetic male albino rats. Aldose reductase is a key enzyme in the intracellular polyol pathway, which plays a major role in the development of diabetic cataract. Rats were divided into five groups as normal control, diabetic control, and diabetic control treated with different concentrations of Pterocarpus marsupium bark extracts. Presence of major constituents in Pterocarpus marsupium bark extract was performed by qualitative analysis. Body weight changes, blood glucose, blood insulin, and reduced glutathione (GSH) and aldose reductase mRNA and protein expression were determined. Rat body weight gain was noted following treatment with bark extracts. The blood glucose was reduced up to 36% following treatment with bark extracts. The blood insulin and tissue GSH contents were substantially increased more than 100% in diabetic rats following treatment with extracts. Aldose reductase activity was reduced up to 79.3% in diabetic rats following treatment with extracts. V max , K m , and K i of aldose reductase were reduced in the lens tissue homogenate compared to the diabetic control. Aldose reductase mRNA and protein expression were reduced more than 50% following treatment with extracts. Treatment with Pterocarpus marsupium bark was able to normalize these levels. Taking all these data together, it is concluded that the use of Pterocarpus marsupium bark extracts could be the potential therapeutic approach for the reduction of aldose reductase against diabetic cataract.

  4. Glutathione Metabolism and Parkinson’s Disease

    OpenAIRE

    Smeyne, Michelle; Smeyne, Richard Jay

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how...

  5. GrOW briefs: From research to policy | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-10-17

    Oct 17, 2017 ... ​For access to more GrOW findings and literature, visit the GrOW Research Series. Learn more about the GrOW program. What we do · Funding · Resources · About IDRC. Knowledge. Innovation. Solutions. Careers · Contact Us · Site map. Sign up now for IDRC news and views sent directly to your inbox ...

  6. The aldo-keto reductase superfamily homepage.

    Science.gov (United States)

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  7. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N.

    by defense sys- tems. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST) and non enzymatic antioxidant molecules such as reduced glutathione (GSH...- sures include lipid peroxidation (LPX), protein carbonyl (PC), hydrogen peroxide (H 2 O 2 ), GSH, ascorbic acid (ASA) and antioxidant enzymes such as SOD, CAT, GPX, GR and GST. In addition DNA strand breaks, as an index of genotoxic stress and MT...

  8. A new role for glutathione in the regulation of root architecture linked to strigolactones.

    Science.gov (United States)

    Marquez-Garcia, Belen; Njo, Maria; Beeckman, Tom; Goormachtig, Sofie; Foyer, Christine H

    2014-02-01

    Reduced glutathione (GSH) is required for root development, but its functions are not characterized. The effects of GSH depletion on root development were therefore studied in relation to auxin and strigolactone (SL) signalling using a combination of molecular genetic approaches and pharmacological techniques. Lateral root (LR) density was significantly decreased in GSH synthesis mutants (cad2-1, pad2-, rax1-), but not by the GSH synthesis inhibitor, buthionine sulfoximine (BSO). BSO-induced GSH depletion therefore did not influence root architecture in the same way as genetic impairment. Root glutathione contents were similar in the wild-type seedlings and max3-9 and max4-1 mutants that are deficient in SL synthesis and in the SL-signalling mutant, max2-1. BSO-dependent inhibition of GSH synthesis depleted the tissue GSH pool to a similar extent in the wild-type and SL synthesis mutants, with no effect on LR density. The application of the SL analogue GR24 increased root glutathione in the wild-type, max3-9 and max4-1 seedlings, but this increase was absent from max2-1. Taken together, these data establish a link between SLs and the GSH pool that occurs in a MAX2-dependent manner. © 2013 John Wiley & Sons Ltd.

  9. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione

    NARCIS (Netherlands)

    Dirven, H.A.A.M.; Ommen, B. van; Bladeren, P.J. van

    1994-01-01

    Alkylating agents can be detoxified by conjugation with glutathione (GSH). One of the physiological significances of this lies in the observation that cancer cells resistant to the cytotoxic effects of alkylating agents have higher levels of GSH and high glutathione S-transferase (GST) activity.

  10. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle.

    Science.gov (United States)

    Bachhawat, Anand Kumar; Yadav, Shambhu

    2018-04-17

    Glutathione was discovered in 1888, over 125 years ago. Since then, our understanding of various functions and metabolism of this important molecule has grown over these years. But it is only now, in the last decade, that a somewhat complete picture of its metabolism has emerged. Glutathione metabolism has till now been largely depicted and understood by the γ-glutamyl cycle that was proposed in 1970. However, new findings and knowledge particularly on the transport and degradation of glutathione have revealed that many aspects of the γ-glutamyl cycle are incorrect. Despite this, an integrated critical analysis of the cycle has never been undertaken and this has led to the cycle and its errors perpetuating in the literature. This review takes a careful look at the γ-glutamyl cycle and its shortcomings and presents a "glutathione cycle" that captures the current understanding of glutathione metabolism. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  11. Two New Sharp Ostrowski-Grüss Type Inequalities

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2013-11-01

    Full Text Available The purpose of this paper is to use a variant of the Grüss inequality to derive two new sharp Ostrowski-Grüss type inequalities related to a perturbed trapezoidal type rule and a perturbed generalized interior point rule, respectively, which provide improvements of some previous results in the literatures.

  12. Growth and Economic Opportunities for Women (GrOW) Frequently ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Alejandra

    GrOW will take a broad perspective on the types of questions and evidence on ... question; (2) set the outcome in the broader context of the underlying programme theory, ... Communications from the GrOW team with applicants during the ... There are specific criteria and application processes for this call that should be.

  13. Ungdomsselvmord og moderniseringsproblemer blandt inuit i Grønland

    DEFF Research Database (Denmark)

    Thorslund, Jørgen

    Undersøgelse fra Det grønlandske Forebyggelsesråds projekt vedrørende ungdomsselvmord, der ud fra kulturelle, sociale og psykologiske problemaspekter belyser årsagerne til selvmord blandt unge grønlændere og bringer forslag til forebyggelsesinitiativer, [...] der kan mindske antallet af selvmord....

  14. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Anna T Tillmann

    Full Text Available The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1 and the S-nitrosoglutathione reductase (GSNOR, Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.

  15. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  16. Visualidad del producto gráfico

    Directory of Open Access Journals (Sweden)

    Dr. José Luis Valero Sancho

    2002-01-01

    Full Text Available Los ojos son una de las vías de entrada de conocimientos más utilizadas por el ser humano, quizá una de las más importantes vías de acceso a la cultura. Pero pueden ser algo más que unos órganos al servicio del hombre, ya que tienen un funcionamiento propio que los hace vulnerables y pueden ser engañados y manipulados desde la apariencia o disposición visual de las cosas. ¿Qué es la visualidad? Según el Diccionario de la Real Academia Española, visual es lo perteneciente a la vista como instrumento o medio para ver y visualidad es el efecto agradable de los objetos vistosos que también pertenece a la vista. Por tanto, no debemos confundir visual con visualidad, pues el primero es el medio y el segundo el efecto que produce la utilización de los ojos y se desarrolla con la experiencia, porque consiste en reconocer y percibir algo que ya ha filtrado el órgano de la vista. ¿Cuándo los productos gráficos tienen visualidad? Cuando una información se explica mejor con estos productos icónicos y tipográficos, percibidos por la vista experta y educada para recibirlos.

  17. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    Science.gov (United States)

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz

    2015-01-01

    . The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys......Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined...... for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production...

  19. Gröbner bases statistics and software systems

    CERN Document Server

    2013-01-01

    The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels. This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no speci...

  20. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  1. Prevalence of methylenetetrahydrofolate reductase ( MTHFR ) and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase (MTHFR) and Cytosolic serine hydroxymethyltransferase (cSHMT) are enzymes involve in folate regulation in human. The C to T transition of the cSHMT and MTHFR genes at the 1420 as well as 677 nucleotides both carries TT genotype respectively. These enzymes have direct and ...

  2. Fossiler i Grønland. 2. del

    DEFF Research Database (Denmark)

    Harper, David Alexander Taylor; Lindow, Bent Erik Kramer

    2009-01-01

    Dette er anden og sidste del af POST Greenlands serie om fossiler i Grønland med tre frimærker, der beretter om de mange og spændende fossilfund fra Grønland. Mærkerne fortsætter vores rejse gennem nogle af nøglebegivenhederne i livets historie, smukt illustreret af endnu flere unikke fossiler....... Disse tre fossiler, en plante, et bløddyr og et hvirveldyr, er fra de yngre aflejringer i Grønland med aldre spændende fra for 200 millioner og indtil kun 8.000 år siden....

  3. Role of cellular antioxidants (glutathione and ascorbic acid) in the growth and development of wild carrot suspension cultures

    International Nuclear Information System (INIS)

    Earnshaw, B.A.

    1986-01-01

    Determinations of endogenous glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid (AA) and dehydroascorbic acid (DHA) in proliferating and developing wild carrot cultures showed that lower levels of GSH and AA were associated with developing cultures. The GSSG and DHA levels did not account for the changes in the levels of antioxidants between proliferating and developing cultures. Studies were designed to test an observed auxin (2,4-Dichlorophenoxyacetic acid, 2,4-D)-antioxidant association. Two fractions (embryo and less developed) were obtained by screening developed cultures which were previously grown in the presence of 14 C-2, 4-D. The embryo fraction had a lower concentration of 14 C than the less developed fraction, supporting the association, since the two fractions showed this relationship with respect to GSH and AA concentrations. Determinations of GSH and AA levels of cells grown in various concentrations of 2,4-D showed the association, decreases in the 2,4-D concentration correlated with decreases in the GSH and AA concentrations. The existence of a respiratory pathway involving GSSG reductase, DHA reductase, and AA oxidase was investigated to test whether inhibition of AA oxidase by 2,4-D could explain the auxin-antioxidant association; however, AA oxidase activity was not detected

  4. Effect of long term selenium yeast intervention on activity and gene expression of antioxidant and xenbiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) Pilot Study

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Krath, Britta; Overvad, Kim

    2008-01-01

    Numerous mechanisms have been proposed to explain the anti-carcinogenic effects of Se, among them altered carcinogen metabolism. We investigated the effect of Se supplementation on activities of glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST...

  5. Grúa para obras de gran altura

    Directory of Open Access Journals (Sweden)

    Hochtief, AG

    1961-12-01

    Full Text Available En las construcciones modernas donde las estructuras se extienden predominantemente en altura, caso corriente en los llamados rascacielos, entre los elementos auxiliares de obra se encuentra, en primer lugar, la grúa.

  6. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Science.gov (United States)

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  7. Flere grøntsager og fuldkornsprodukter i skolemad

    DEFF Research Database (Denmark)

    Christensen, Lene Møller; Trolle, Ellen; Lassen, Anne Dahl

    2017-01-01

    Den mad, danske folkeskoleelever køber gennem deres skolers madordninger, indeholder generelt for lidt fuldkorn og for få grøntsager. DTU Fødevareinstituttet har undersøgt seks skolers indsats med f.eks. at bruge flere grøntsager i varme retter og sandwich og at vælge brød, pasta og ris med...

  8. Caractérisation biochimique et fonctionnelle de glutathion-S-transferases (GSTs) chez Phanerochaete chrysosporium

    OpenAIRE

    Anak-Ngadin, Andrew

    2011-01-01

    Phanerochaete chrysosporium est un champignon ligninolytique largement étudié pour ses capacités à dégrader la lignine et certains xénobiotiques grâce à un important système d'enzymes extracellulaires. Son génome est entièrement séquencé et constitue un inventaire de séquences protéiques prédites qui a permis la description de nombreuses superfamilles de protéines. Parmi elles, les Glutathion S-transférases sont essentiellement impliquées dans le métabolisme secondaire du champignon. Cependan...

  9. Effect of Vitamin C on Glutathione Peroxidase Activities in Pregnant ...

    African Journals Online (AJOL)

    Glutathione peroxidase is one of the most important antioxidant enzymes in humans. We studied the relationship between serum glutathione peroxidase activity and vitamin C ingestion during normal pregnancy in women attending antenatal clinic in the University of Ilorin Teaching Hospital, Ilorin. Glutathione peroxidase ...

  10. Inhibition of Glutathione and Thioredoxin Metabolism Enhances Sensitivity to Perifosine in Head and Neck Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrean L. Simons

    2009-01-01

    Full Text Available The hypothesis that the Akt inhibitor, perifosine (PER, combined with inhibitors of glutathione (GSH and thioredoxin (Trx metabolism will induce cytotoxicity via metabolic oxidative stress in human head and neck cancer (HNSCC cells was tested. PER induced increases in glutathione disulfide (%GSSG in FaDu, Cal-27, and SCC-25 HNSCCs as well as causing significant clonogenic cell killing in FaDu and Cal-27, which was suppressed by simultaneous treatment with N-acetylcysteine (NAC. An inhibitor of GSH synthesis, buthionine sulfoximine (BSO, sensitized Cal-27 and SCC-25 cells to PER-induced clonogenic killing as well as decreased total GSH and increased %GSSG. Additionally, inhibition of thioredoxin reductase activity (TrxRed with auranofin (AUR was able to induce PER sensitization in SCC-25 cells that were initially refractory to PER. These results support the conclusion that PER induces oxidative stress and clonogenic killing in HNSCC cells that is enhanced with inhibitors of GSH and Trx metabolism.

  11. Sesquiterpene lactones: Mechanism of antineoplastic activity; relationship of cellular glutathione to cytotoxicity; and disposition

    International Nuclear Information System (INIS)

    Grippo, A.A.

    1987-01-01

    Helenalin, a sesquiterpene lactone, inhibited the growth of P388 lymphocytic and L1210 lymphoid leukemia, and Ehrlich ascites and KB carcinoma cells. The L1210 leukemia cells were most sensitive to the cytotoxic effects of helenalin. Helenalin's antineoplastic effects were due to inhibition of DNA synthesis by suppressing the activities of enzymes involved in this biosynthetic pathway; i.e., IMP dehydrogenase, ribonucleoside diphosphate reductase, thioredoxin complex, GSH disulfide oxidoreductase and DNA polymerase α activities. The relationship of reduced glutathione (GSH) to the cytotoxic effects of helanalin was evaluated. L1210 cells, which were more sensitive to helenalin's toxicity, contained lower basal concentrations of GSH. Helenalin decreased the concentration of reduced glutathione in both L1210 and P388 leukemia cells. Concurrent administration of helanalin with agents reported to raise GSH concentrations did not substantially effect GSH levels, nor were survival times of tumor-bearing mice enhanced. Following intraperitoneal administration of 3 H-plenolin, no radioactive drug and/or metabolite was sequestered in the organs of BDF 1 mice. Approximately 50% of 3 H-plenolin and/or its metabolites were eliminated via urine while lesser amounts of radioactive drug and/or metabolites were eliminated in the feces

  12. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

    Science.gov (United States)

    Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.

    2017-01-01

    The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127

  13. Nitrite reductase activity and inhibition of H₂S biogenesis by human cystathionine ß-synthase.

    Directory of Open Access Journals (Sweden)

    Carmen Gherasim

    Full Text Available Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS as a new player in nitrite reduction with implications for the nitrite-dependent control of H₂S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (Fe(II-NO CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR and nitrite. Formation of Fe(II-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H₂S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H₂S biology.

  14. Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment.

    Science.gov (United States)

    Holroyd, K J; Buhl, R; Borok, Z; Roum, J H; Bokser, A D; Grimes, G J; Czerski, D; Cantin, A M; Crystal, R G

    1993-10-01

    Concentrations of glutathione, a ubiquitous tripeptide with immune enhancing and antioxidant properties, are decreased in the blood and lung epithelial lining fluid of human immunodeficiency virus (HIV) seropositive individuals. Since the lung is the most common site of infection in those who progress to AIDS it is rational to consider whether it is possible to safely augment glutathione levels in the epithelial lining fluid of HIV seropositive individuals, thus potentially improving local host defence. Purified reduced glutathione was delivered by aerosol to HIV seropositive individuals (n = 14) and the glutathione levels in lung epithelial lining fluid were compared before and at one, two, and three hours after aerosol administration. Before treatment total glutathione concentrations in the epithelial lining fluid were approximately 60% of controls. After three days of twice daily doses each of 600 mg reduced glutathione, total glutathione levels in the epithelial lining fluid increased and remained in the normal range for at least three hours after treatment. Strikingly, even though > 95% of the glutathione in the aerosol was in its reduced form, the percentage of oxidised glutathione in epithelial lining fluid increased from 5% before treatment to about 40% three hours after treatment, probably reflecting the use of glutathione as an antioxidant in vivo. No adverse effects were observed. It is feasible and safe to use aerosolised reduced glutathione to augment the deficient glutathione levels of the lower respiratory tract of HIV seropositive individuals. It is rational to evaluate further the efficacy of this tripeptide in improving host defence in HIV seropositive individuals.

  15. Glutathione and its antiaging and antimelanogenic effects

    Directory of Open Access Journals (Sweden)

    Weschawalit S

    2017-04-01

    Full Text Available Sinee Weschawalit,1 Siriwan Thongthip,2 Phanupong Phutrakool,3 Pravit Asawanonda1 1Department of Medicine, Division of Dermatology, 2Chula Clinical Research Center, 3Chula Data Management Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand Background: Previous studies showed that supplementation of reduced form of glutathione (GSH, 500 mg/d has a skin-lightening efficacy in humans. This study was designed to evaluate the influences of both GSH and oxidized form (GSSG, at doses lower than 500 mg/d, on improving skin properties. Patients and methods: A randomized, double-blind, placebo-controlled, parallel, three-arm study was conducted. Healthy female subjects were equally randomized into three groups and took GSH (250 mg/d, GSSG (250 mg/d, or placebo orally for 12 weeks. At each visit at baseline and for 12 weeks, skin features including melanin index, wrinkles, and other relevant biophysical properties were measured. Blood samples were collected for safety monitoring. Results: In generalized estimating equation analyses, melanin index and ultraviolet spots of all sites including face and arm when given GSH and GSSG tended to be lower than placebo. At some sites evaluated, subjects who received GSH showed a significant reduction in wrinkles compared with those taking placebo. A tendency toward increased skin elasticity was observed in GSH and GSSG compared with placebo. There were no serious adverse effects throughout the study. Conclusion: We showed that oral glutathione, 250 mg/d, in both reduced and oxidized forms effectively influences skin properties. Overall, glutathione in both forms are well tolerated. Keywords: glutathione, melanin, pigment, aging, wrinkle, whitening

  16. Monoterpenoid indole alkaloids and phenols are required antioxidants in glutathione depleted Uncaria tomentosa root cultures

    Directory of Open Access Journals (Sweden)

    Ileana eVera-Reyes

    2015-04-01

    Full Text Available Plants cells sense their environment through oxidative signaling responses and make appropriate adjustments to gene expression, physiology and metabolic defense. Root cultures of Uncaria tomentosa, a native plant of the Amazon rainforest, were exposed to stressful conditions by combined addition of the glutathione inhibitor, buthionine sulfoximine (0.8 mM and 0.2 mM jasmonic acid. This procedure induced a synchronized two-fold increase of hydrogen peroxide and guaiacol peroxidases, while the glutathione content and glutathione reductase activity were reduced. Likewise in elicited cultures, production of the antioxidant secondary metabolites, monoterpenoid oxindole and glucoindole alkaloids, were 2.1 and 5.5-fold stimulated (704.0 ± 14.9 and 845.5 ± 13.0 µg/g DW, respectively after 12 h after, while phenols were three times increased. Upon elicitation, the activities and mRNA transcript levels of two enzymes involved in the alkaloid biosynthesis, strictosidine synthase and strictosidine β-glucosidase, were also enhanced. Differential proteome analysis performed by two-dimensional polyacrylamide gel electrophoresis of elicited and control root cultures showed that, after elicitation, several new protein spots appeared. Two of them were identified as thiol-related enzymes, namely cysteine synthase and methionine synthase. Proteins associated with antioxidant and stress responses, including two strictosidine synthase isoforms, were identified as well, together with others as caffeic acid O-methyltransferase. Our results propose that in U. tomentosa roots a signaling network involving hydrogen peroxide and jasmonate derivatives coordinately regulates the antioxidant response and secondary metabolic defense via transcriptional and protein activation.

  17. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems

    Science.gov (United States)

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki

    2015-01-01

    Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought

  18. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis.

    Science.gov (United States)

    Wu, Qi; Su, Nana; Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin

    2015-01-01

    Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.

  19. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-02-24

    Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

  20. Glutathione-binding site of a bombyx mori theta-class glutathione transferase.

    Directory of Open Access Journals (Sweden)

    M D Tofazzal Hossain

    Full Text Available The glutathione transferase (GST superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.

  1. Determination of glutathione and glutathione disulfide in biological samples: an in-depth review.

    Science.gov (United States)

    Monostori, Péter; Wittmann, Gyula; Karg, Eszter; Túri, Sándor

    2009-10-15

    Glutathione (GSH) is a thiol-containing tripeptide, which plays central roles in the defence against oxidative damage and in signaling pathways. Upon oxidation, GSH is transformed to glutathione disulfide (GSSG). The concentrations of GSH and GSSG and their molar ratio are indicators of cell functionality and oxidative stress. Assessment of redox homeostasis in various clinical states and medical applications for restoration of the glutathione status are of growing importance. This review is intended to provide a state-of-the-art overview of issues relating to sample pretreatment and choices for the separation and detection of GSH and GSSG. High-performance liquid chromatography, capillary electrophoresis and gas chromatography (as techniques with a separation step) with photometric, fluorimetric, electrochemical and mass spectrometric detection are discussed, stress being laid on novel approaches.

  2. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  3. Effect of acrolein and glutathione depleting agents on thioredoxin

    International Nuclear Information System (INIS)

    Yang Xianmei; Wu Xuli; Choi, Young Eun; Kern, Julie C.; Kehrer, James P.

    2004-01-01

    Acrolein is a widespread environmental pollutant that reacts rapidly with nucleophiles, especially cellular thiols. In addition to glutathione (GSH), thioredoxin (Trx) and thioredoxin reductase (TR) contain thiol groups and may react with electrophiles. In the present study, A549 cells treated with 5-25 μM acrolein for 30 min lost cellular Trx activity in a dose-dependent fashion. Over 90% of Trx activity was lost at concentrations of 25 μM or greater. In contrast, Trx protein content, as assessed by western blotting, was not altered immediately after the 30 min acrolein treatment. Both Trx activity and protein levels increased 4 h after the acrolein treatment. However, Trx activity remained below control levels at 24 h. A similar dose-response relationship was seen with TR in A549 cells exposed to acrolein. There was, however, a rapid recovery of TR activity such that it attained normal levels by 4 h after doses ≤75 μM acrolein. Diethyl maleate (DEM), a common but not highly specific, agent used to deplete GSH, also inactivated Trx. A 2 h exposure of A549 cells to 1 mM DEM depleted cellular GSH by ∼50% and diminished Trx activity by over 67%. Lower DEM doses (0.125 mM and 0.25 mM) for 1 h had no significant effect on GSH but significantly decreased Trx activity 12 and 23%, respectively. Similar to immediately after acrolein exposure, DEM did not affect Trx protein levels. A Trx-1-GFP fusion protein was transfected into A549 cells. While the fusion protein was expressed, the Trx component was inactive by the insulin reducing assay. In summary, Trx and TR are inactivated by acrolein. In addition, the GSH depleting agent DEM inactivates Trx somewhat more effectively than it depletes GSH. The Trx-1-GFP fusion protein, while readily expressed, appears to have little or no activity, perhaps because the small size of Trx-1 (12 kDa) is affected by the larger GFP

  4. Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses

    Science.gov (United States)

    Bansal, Sandeep Kumar; Jaiswal, Deepika; Gupta, Nishi; Singh, Kiran; Dada, Rima; Sankhwar, Satya Narayan; Gupta, Gopal; Rajender, Singh

    2016-02-01

    We analyzed the AZFc region of the Y-chromosome for complete (b2/b4) and distinct partial deletions (gr/gr, b1/b3, b2/b3) in 822 infertile and 225 proven fertile men. We observed complete AZFc deletions in 0.97% and partial deletions in 6.20% of the cases. Among partial deletions, the frequency of gr/gr deletions was the highest (5.84%). The comparison of partial deletion data between cases and controls suggested a significant association of the gr/gr deletions with infertility (P = 0.0004); however, the other partial deletions did not correlate with infertility. In cohort analysis, men with gr/gr deletions had a relatively poor sperm count (54.20 ± 57.45 million/ml) in comparison to those without deletions (72.49 ± 60.06), though the difference was not statistically significant (p = 0.071). Meta-analysis also suggested that gr/gr deletions are significantly associated with male infertility risk (OR = 1.821, 95% CI = 1.39-2.37, p = 0.000). We also performed trial sequential analyses that strengthened the evidence for an overall significant association of gr/gr deletions with the risk of male infertility. Another meta-analysis suggested a significant association of the gr/gr deletions with low sperm count. In conclusion, the gr/gr deletions show a strong correlation with male infertility risk and low sperm count, particularly in the Caucasian populations.

  5. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  6. mKikGR, a monomeric photoswitchable fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Satoshi Habuchi

    Full Text Available The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging.

  7. Stofmisbrugsbehandling blandt grønlændere i Danmark

    DEFF Research Database (Denmark)

    Baviskar, Siddhartha

    2016-01-01

    undersøgelsen af en forløbsanalyse af en udvalgt gruppe på 221 grønlændere over en 5-årig periode, 2007-2011. Denne gruppe ankom for første gang til Danmark i 2007 og opholdt sig i landet i alle årene til og med 2011. Dermed opnår vi viden om både graden af sårbarhed blandt grønlænderne på stofmisbrugsområdet...... målt i forhold til de øvrige danskere, og hvordan grønlændernes sårbarhed ændrer sig over tid i Danmark. Oplysninger vedrørende stofmisbrugsbehandling stammer fra Register over stofmisbrugere i behandling (SIB), som er et register over borgere, der gennem deres kommune er visiteret til behandling...

  8. Gründerzeit – Od skandalu do stylu

    OpenAIRE

    Jacek K. Knothe

    2017-01-01

    Przyjmuje się, iż architektura ‘okresu założycieli’ – ‘Grűnderzeit’ występowała w Niemczech w latach 1870-1920, to jest dłużej niż do zakończenia I wojny światowej stanowiącej swoistą cezurę XX wieku. Na terenie Polski, w miarę rozprzestrzeniania się przychodzącego z Europy postępu technicznego, styl Grűnderzeit następował pod koniec XIX wieku z niewielkim tylko opóźnieniem w stosunku do Niemiec, a wraz z nim jeszcze 12 stylów okresu historyzmu. Budynki z okresu Grűnderzeit, powszechnie obecn...

  9. Gráficos difusos versus gráficos tradicionales para el control de procesos por atributos

    Directory of Open Access Journals (Sweden)

    Vivian Lorena Chud Pantoja

    2017-05-01

    Full Text Available Los gráficos de control son una buena herramienta controlar procesos. Han sido ampliamente utilizados —y aún ahora se utilizan— en la mayoría de los procesos manufactureros. Sin embargo, se han presentado propuestas orientadas a mejorar el desempeño de los mismos, principalmente en los aspectos referentes a la incertidumbre y ambigüedad existente en los datos. En este sentido, los gráficos de control difusos son una alternativa valiosa para mejorar el desempeño de los gráficos tradicionales. Se presenta, entonces, una comparación de los gráficos de control Shewhart (tradicionales y los gráficos de control difusos por atributos, con el objetivo de establecer las similitudes y diferencias existentes entre las dos metodologías. De esta manera, se desarrolla un ejemplo numérico de un gráfico tradicional c y gráficos difusos construidos a partir de las siguientes técnicas de transformación: moda difusa, mediana difusa, rango medio difuso y enfoque difuso directo. Para realizar una comparación se utilizaron las reglas de evaluación de patrones de comportamiento no natural en un gráfico de control. A partir de los resultados de la comparación realizada en esta investigación se concluye que al utilizar las reglas de evaluación en ambos gráficos con los mismos datos no se obtienen diferencias en los resultados. (Abstract. Control charts are the main tool in the process control. They have been widely used and are still used in most manufacturing processes. However, proposals have emerged that seek to improve their performance, mainly about topics which involve the vagueness and uncertainty of the data. In this sense, fuzzy control charts area an important alternative for improve the performance of control charts. We present a comparison of Shewhart control charts (traditional and fuzzy control charts for attributes with the aim of establishing similarities and differences between the two methodologies. We develop a numerical

  10. Thermodynamics of the oxidation-reduction reaction {2 glutathionered(aq) + NADPox(aq)=glutathioneox(aq) + NADPred(aq)}

    International Nuclear Information System (INIS)

    Tewari, Yadu B.; Goldberg, Robert N.

    2003-01-01

    Microcalorimetry, spectrophotometry, and high-performance liquid chromatography (h.p.l.c.) have been used to conduct a thermodynamic investigation of the glutathione reductase catalyzed reaction {2 glutathione red (aq) + NADP ox (aq)=glutathione ox (aq) + NADP red (aq)}. The reaction involves the breaking of a disulfide bond and is of particular importance because of the role glutathione red plays in the repair of enzymes. The measured values of the apparent equilibrium constant K ' for this reaction ranged from 0.5 to 69 and were measured over a range of temperature (288.15 K to 303.15 K), pH (6.58 to 8.68), and ionic strength I m (0.091 mol · kg -1 to 0.90 mol · kg -1 ). The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations led to values of thermodynamic quantities at T=298.15 K and I m =0 for a chemical reference reaction that involves specific ionic forms. Thus, for the reaction {2 glutathione red - (aq) + NADP ox 3- (aq)=glutathione ox 2- (aq) + NADP red 4- (aq) + H + (aq)}, the equilibrium constant K=(6.5±4.4)·10 -11 , the standard molar enthalpy of reaction Δ r H o m =(6.9±3.0) kJ · mol -1 , the standard molar Gibbs free energy change Δ r G o m =(58.1±1.7) kJ · mol -1 , and the standard molar entropy change Δ r S o m =-(172±12) J · K -1 · mol -1 . Under approximately physiological conditions (T=311.15 K, pH=7.0, and I m =0.25 mol · kg -1 the apparent equilibrium constant K ' ∼0.013. The results of the several studies of this reaction from the literature have also been examined and analyzed using the chemical equilibrium model. It was found that much of the literature is in agreement with the results of this study. Use of our results together with a value from the literature for the standard electromotive force E o for the NADP redox reaction leads to E o =0.166 V (T=298.15 K and I

  11. Grønt regnskab for boligområder

    DEFF Research Database (Denmark)

    Jensen, O.M.

    Grønne regnskaber har vundet indpas i virksomheder, kommuner og boligområder. Med denne rapport foreligger der en model og en metode for opstilling af et grønt regnskab, der kan anvendes på alle typer af boliger, boligbebyggelser og boligområder. Et tilhørende regneark kan hjemtages på SBI´s hjem......´s hjemmeside 'www.sbi.dk', eller det kan opstilles ved hjælp af anvisningerne i rapporten. Rapporten henvender sig til alle, der arbejder med energiledelse, boligforvaltning, økologisk boligbyggeri, byfornyelse, miljødebat og Agenda 21-arbejde....

  12. Oracle JDeveloper 11gR2 Cookbook

    CERN Document Server

    Haralabidis, Nick

    2012-01-01

    "Oracle JDeveloper 11gR2 Cookbook" is a practical cookbook which goes beyond the basics with immediately applicable recipes for building ADF applications at an intermediate-to-advanced level. If you are a JavaEE developer who wants to go beyond the basics of building ADF applications with Oracle JDeveloper 11gR2 and get hands on with practical recipes, this book is for you. You should be comfortable with general Java development principles, the JDeveloper IDE, and ADF basics

  13. Oracle BAM 11gR1 Handbook

    CERN Document Server

    Wang, Pete

    2012-01-01

    "Oracle BAM 11gR1 Handbook" is a practical best practices tutorial focused entirely on Oracle Business Activity Monitoring. An intermediate-to-advanced guide, step-by-step instructions and an accompanying demo project will help SOA report developers through application development and producing dashboards and reports. If you are a developer/report developer or SOA Architect who wants to learn valuable Oracle BAM best practices for monitoring your operations in real time, then "Oracle BAM 11gR1 Handbook" is for you. Administrators will also find the book useful. You should already be comfortabl

  14. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  15. DNA damage induction of ribonucleotide reductase.

    OpenAIRE

    Elledge, S J; Davis, R W

    1989-01-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidas...

  16. Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice.

    Science.gov (United States)

    Rajashekara, Gireesh; Glover, David A; Banai, Menachem; O'Callaghan, David; Splitter, Gary A

    2006-05-01

    In vivo bioluminescence imaging is a persuasive approach to investigate a number of issues in microbial pathogenesis. Previously, we have applied bioluminescence imaging to gain greater insight into Brucella melitensis pathogenesis. Endowing Brucella with bioluminescence allowed direct visualization of bacterial dissemination, pattern of tissue localization, and the contribution of Brucella genes to virulence. In this report, we describe the pathogenicity of three attenuated bioluminescent B. melitensis mutants, GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091), and the dynamics of bioluminescent virulent bacterial infection following vaccination with these mutants. The virB4, galE, and BMEI1090-BMEI1091 mutants were attenuated in interferon regulatory factor 1-deficient (IRF-1(-/-)) mice; however, only the GR019 (virB4) mutant was attenuated in cultured macrophages. Therefore, in vivo imaging provides a comprehensive approach to identify virulence genes that are relevant to in vivo pathogenesis. Our results provide greater insights into the role of galE in virulence and also suggest that BMEI1090 and downstream genes constitute a novel set of genes involved in Brucella virulence. Survival of the vaccine strain in the host for a critical period is important for effective Brucella vaccines. The galE mutant induced no changes in liver and spleen but localized chronically in the tail and protected IRF-1(-/-) and wild-type mice from virulent challenge, implying that this mutant may serve as a potential vaccine candidate in future studies and that the direct visualization of Brucella may provide insight into selection of improved vaccine candidates.

  17. Effect of rosella ( Hibiscus sabdariffa L ) extract on glutathione-S ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of rosella (Hibiscus sabdariffa L) extract on glutathione-S-trasferase (GST) activity and its hepatoprotective effect. Methods: A total of 25 rats were divided randomly into 5 groups (5 rats per group). Group I served as the baseline, group II was the negative control group, while groups III, IV and ...

  18. CRTC2 Is a Coactivator of GR and Couples GR and CREB in the Regulation of Hepatic Gluconeogenesis.

    Science.gov (United States)

    Hill, Micah J; Suzuki, Shigeru; Segars, James H; Kino, Tomoshige

    2016-01-01

    Glucocorticoid hormones play essential roles in the regulation of gluconeogenesis in the liver, an adaptive response that is required for the maintenance of circulating glucose levels during fasting. Glucocorticoids do this by cooperating with glucagon, which is secreted from pancreatic islets to activate the cAMP-signaling pathway in hepatocytes. The cAMP-response element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) is a coactivator known to be specific to CREB and plays a central role in the glucagon-mediated activation of gluconeogenesis in the early phase of fasting. We show here that CRTC2 also functions as a coactivator for the glucocorticoid receptor (GR). CRTC2 strongly enhances GR-induced transcriptional activity of glucocorticoid-responsive genes. CRTC2 physically interacts with the ligand-binding domain of the GR through a region spanning amino acids 561-693. Further, CRTC2 is required for the glucocorticoid-associated cooperative mRNA expression of the glucose-6-phosphatase, a rate-limiting enzyme for hepatic gluconeogenesis, by facilitating the attraction of GR and itself to its promoter region already occupied by CREB. CRTC2 is required for the maintenance of blood glucose levels during fasting in mice by enhancing the GR transcriptional activity on both the G6p and phosphoenolpyruvate carboxykinase (Pepck) genes. Finally, CRTC2 modulates the transcriptional activity of the progesterone receptor, indicating that it may influence the transcriptional activity of other steroid/nuclear receptors. Taken together, these results reveal that CRTC2 plays an essential role in the regulation of hepatic gluconeogenesis through coordinated regulation of the glucocorticoid/GR- and glucagon/CREB-signaling pathways on the key genes G6P and PEPCK.

  19. Superoxide radical (O2-) reactivity with respect to glutathione

    International Nuclear Information System (INIS)

    Sekaki, A.; Gardes-Albert, M.; Ferradini, C.

    1984-01-01

    Influence of superoxide radicals formed during gamma irradiation of glutathione in aerated aqueous solutions is examined. Solutions are buffered at pH7 and contain sodium formate for capture of H and OH radicals which are transformed in COO - radicals and then O 2 - radicals. G value of glutathione disparition vs glutathione concentration are given with and without enzyme or catalase. Reaction mechanism are interpreted [fr

  20. IT-kriminalitet kender ingen grænser

    DEFF Research Database (Denmark)

    Langsted, Lars Bo

    2016-01-01

    I dag foregår mange kriminelle handlinger via internettet uden at der sættes mange spor i den fysiske verden. Samtidig kender internettet i sagens natur ingen grænser, og det giver udfordringer både for lovgiver, politi, anklagemyndighed og den enkelte borger....

  1. Die Brustflosse des Grönlandswales (Balaena mysticetus L.)

    NARCIS (Netherlands)

    Kükenthal, W.

    1922-01-01

    Das Studium der Brustflosse des Grönlandswales hat zu Fragen von allgemeinerem Interesse geführt. Ihre kurze und breite Form sowie ihre anscheinende Fünffingerigkeit, die ausserdem nur noch beim südlichen Glattwal (Balaena australis) vorkommt, liess sie ursprünglicher erscheinen als die schlankere

  2. Hägune vesi / Igor Gräzin

    Index Scriptorium Estoniae

    Gräzin, Igor, 1952-

    2005-01-01

    Riigikogu liikme sõnul teostavad AS-i Tallinna Vesi aktsiate müüki samad inimesed, kelle tegevuse tulemusena sai linnapea Tõnis Palts maksuameti ettekirjutuse 12 miljoni suuruses summas. I. Gräzin on esitanud arupärimise, miks ei korraldatud konkurssi juriidiliste firmade vahel, miks valiti just see firma, kuid saadud vastused teda ei rahulda

  3. Igor Gräzin predlagajet suditsja s glavoi PASE

    Index Scriptorium Estoniae

    2007-01-01

    Riigikogu liige Igor Gräzin arvab, et Eesti võiks kaaluda võimalust anda kohtusse ENPA president Rene van der Linden, kes on laimanud Eesti riiki. Riigikogu esimehe Ene Ergma kirjast ENPA presidendile Rene van Lindenile ja tema vastusest

  4. Common Concern for retsudviklingen i Grønland

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Sommer, Tine

    2013-01-01

    Artiklen behandler indledningsvis de komplekse kompetenceforhold, der er tale om i Grønland, og den udfordring som inuitterne står over for som konsekvens af klimaændringer og råstof- og olieindvindingsinteresser. Deres internationale menneskerettigheder og de globale miljøretlige forpligtelser o...

  5. The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures?

    Science.gov (United States)

    Deponte, Marcel

    2017-11-20

    Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data. Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic approaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms. Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular concentrations of reduced glutathione? How can iron-sulfur cluster biogenesis, oxidative protein folding, or redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend on the organism, cell type, and subcellular compartment but also on different ideologies among researchers. A rational approach to compare the relevance of glutathione-dependent pathways is to combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, enzymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might require the development of novel tools but is crucial to address potential kinetic competitions and to decipher uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal

  6. Gräzin : Tagasi tähendab edasi / Igor Gräzin ; interv. Urmas Lauri

    Index Scriptorium Estoniae

    Gräzin, Igor, 1952-

    2004-01-01

    Europarlamenti kandideeriva Igor Gräzini arvates oleks Eestile olnud kasulik EL-i astumisega veel kaks-kolm aastat oodata. Euroopa Liit peaks tagasi minema aastasse 1957, kui ta oli vabakaubandusassotsiatsioon, see võimaldaks USA-ga konkureerida, väidab autor

  7. Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis

    International Nuclear Information System (INIS)

    Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.

    2011-01-01

    B. melitensis is a NIAID Category B microorganism that is responsible for brucellosis and is a potential agent for biological warfare. Here, the solution structure of the 116-residue arsenate reductase-related protein Bm-YffB (BR0369) from this organism is reported. Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H 2 AsO 4 − ), a compound that is toxic to bacteria, to arsenite ion (AsO 2 − ), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein’s major biological function then disabling the cell’s ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB shows that the protein consists of two domains: a four-stranded mixed β-sheet flanked by two α-helices on one side and an α-helical bundle. The α/β domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with 15 N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX 3 CX 3 R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm

  8. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  9. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  10. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-05-01

    The intracellular glutathione (GSH) content in HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulfoximine (BSO) or diethyl maleate (DEM). Clonogenicity, single strand DNA breaks (ssb) and double strand DNA breaks (dsb) were used as criteria for radiation induced damage after X- or γ irradiation. In survival experiments DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the OER was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (Auth.)

  11. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-01-01

    The intracellular glutathione (GSH) content of HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulphoximine or diethyl maleate (DEM). Clonogenicity, single-strand DNA breaks (ssb) and double-strand DNA breaks (dsb) were used as criteria for radiation-induced damage after X- or γ-irradiation. In survival experiments, DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the o.e.r. was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (author)

  12. Misonidazole-glutathione conjugates in CHO cells

    International Nuclear Information System (INIS)

    Varghese, A.J.; Whitmore, G.F.

    1984-01-01

    Misonidazole, after reduction to the hydroxylamine derivative, reacts with glutathione (GSH) under physiological conditions. The reaction product has been identified as a mixture of two isomeric conjugates. When water soluble extracts of CHO cells exposed to misonidazole under hypoxic conditions are subjected to HPLC analysis, misonidazole derivatives, having the same chromatographic properties as the GSH-MISO conjugates, were detected. When CHO cells were incubated with misonidazole in the presence of added GSH, a substantial increase in the amount of the conjugate was detected. When extracts of CHO cells exposed to misonidazole under hypoxia were subsequently exposed to GSH, an increased formation of the conjugate was observed. A rearrangement product of the hydroxylamine derivative of misonidazole is postulated as the reactive intermediate responsible for the formation of the conjugate

  13. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    International Nuclear Information System (INIS)

    Fahmy, Karim; Oertel, Jana; Solioz, M.

    2017-01-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  14. Radioimmunoassays for catalase and glutathion peroxidase

    International Nuclear Information System (INIS)

    Baret, A.; Courtiere, A.; Lorry, D.; Puget, K.; Michelson, A.M.

    1982-01-01

    Specific and sensitive radioimmunoassays for human, bovine and rat catalase (CAT) and glutathion Peroxidase (GPX) are described. The obtained values are expressed as enzymatic units per μg of immunoreactive protein. They appear to closely correspond to specific activities of the purified enzymes determined by colorimetric protein-assay. Indeed, the values of the specific activities of purified human CAT is 57.9 k/mg and that of purified rat GPX is 180 units/mg. This result validates the present RIAs and the association of the two techniques allows the determination of a further parameter. In conclusion, RIAs for CAT and GPX can be applied with great specificity and sensitivity to a wide variety of human, rat and bovine medias

  15. Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Chun-hua ZHANG

    2008-03-01

    Full Text Available A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH and glutathione S-transferase (GST, EC 2.5.1.18 activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments. Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.

  16. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  17. Glutathione Redox System in β-Thalassemia/Hb E Patients

    Directory of Open Access Journals (Sweden)

    Ruchaneekorn W. Kalpravidh

    2013-01-01

    Full Text Available β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH/glutathione disulfide (GSSG and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.

  18. Gründerzeit – Od skandalu do stylu

    Directory of Open Access Journals (Sweden)

    Jacek K. Knothe

    2017-12-01

    Full Text Available Przyjmuje się, iż architektura ‘okresu założycieli’ – ‘Grűnderzeit’ występowała w Niemczech w latach 1870-1920, to jest dłużej niż do zakończenia I wojny światowej stanowiącej swoistą cezurę XX wieku. Na terenie Polski, w miarę rozprzestrzeniania się przychodzącego z Europy postępu technicznego, styl Grűnderzeit następował pod koniec XIX wieku z niewielkim tylko opóźnieniem w stosunku do Niemiec, a wraz z nim jeszcze 12 stylów okresu historyzmu. Budynki z okresu Grűnderzeit, powszechnie obecne w centrach polskich miast pomimo zniszczeń spowodowanych II wojną, stanowią zwykle obiekty najstarsze i choćby z tego powodu uznawane są za estetyczny kanon historycznej zabudowy mieszkaniowej. Zamiarem autora jest przywrócenie do literatury polskiej terminu Grűnderzeit jako bardziej precyzyjnie określającego styl niż termin ‘historyzm’, używany do opisania praktycznie każdej formy architektonicznej z okresu poprzedzającego modernizm. Autorowi chodzi też o spowodowanie w polskiej literaturze dekonstrukcji terminu ‘historyzm’ i wyodrębnienie z niego terminu Grűnderzeit, ponadto o rozprawienie się z funkcjonującymi na temat stylu Grűnderzeit uprzedzeniami oraz o wykazanie związków i wpływu tego stylu na architekturę tkanki miejskiej większości polskich miast, nie tylko tych położonych na zachód od Wisły. Bezrefleksyjność lub też pogląd, iż architektura z przełomu XIX i XX wieku na terenie Polski nie miała korzeni w XIX wiecznej architekturze Europy, a jeśli nawet miała, to na pewno nie były one niemieckie, w erze globalizmu która właśnie wtedy się rozpoczynała, nie wytrzymuje próby.

  19. Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.

    Science.gov (United States)

    Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E

    2016-06-01

    Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice.

    Science.gov (United States)

    Cui, Xuezhi; Navneet, Soumya; Wang, Jing; Roon, Penny; Chen, Wei; Xian, Ming; Smith, Sylvia B

    2017-04-01

    Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/-]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/-]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Retinas isolated from wild-type (WT), Mthfr+/-, and Cbs+/- mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Aside from decreased CBS RNA/protein levels in Cbs+/- retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/- and Cbs+/- retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/- and Cbs+/- mice compared with WT. Ganglion cell loss and vasculopathy observed in Mthfr+/- and Cbs+/- mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter.

  1. Structure and expression of human dihydropteridine reductase

    International Nuclear Information System (INIS)

    Lockyer, J.; Cook, R.G.; Milstien, S.; Kaufman, S.; Woo, S.L.C.; Ledley, F.D.

    1987-01-01

    Dihydropteridine reductase catalyzes the NADH-mediated reduction of quinonoid dihydrobiopterin and is an essential component of the pterindependent aromatic amino acid hydroxylating systems. A cDNA for human DHPR was isolated from a human liver cDNA library in the vector λgt11 using a monospecific antibody against sheep DHPR. The nucleic acid sequence and amino acid sequence of human DHPR were determined from a full-length clone. A 112 amino acid sequence of sheep DHPR was obtained by sequencing purified sheep DHPR. This sequence is highly homologous to the predicted amino acid sequence of the human protein. Gene transfer of the recombinant human DHPR into COS cells leads to expression of DHPR enzymatic activity. These results indicate that the cDNA clone identified by antibody screening is an authentic and full-length cDNA for human DHPR

  2. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    Science.gov (United States)

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  3. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and

  4. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.J.M.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional H-1 NMR

  5. Den græske by i Afghanistan

    DEFF Research Database (Denmark)

    Hannestad, Lise

    2016-01-01

    Byen Ai Khanoum som blev udgravet i i 1960'erne i det nordøstlige Afghanistan blev grundlagt som følge af Alexander den Stores erobring af hele Nærorienten og frem til det nordlige Indien. Fundene viser en spændende blanding af græsk og nræorientalsk kultur......Byen Ai Khanoum som blev udgravet i i 1960'erne i det nordøstlige Afghanistan blev grundlagt som følge af Alexander den Stores erobring af hele Nærorienten og frem til det nordlige Indien. Fundene viser en spændende blanding af græsk og nræorientalsk kultur...

  6. Hjemløshed i Grønland

    DEFF Research Database (Denmark)

    Hansen, Knud Erik; Andersen, Hans Thor

    Rapporten giver en beskrivelse af karakteren af hjemløsheden i Grønland. Den beskriver forholdene for tre måder at være ude i hjemløshed på i Grønland, hvordan husstande når dertil og hvilke muligheder de har for at komme ud af hjemløsheden. I rapporten indgår beskrivelser af en række personers liv...... households get homeless and their options to get out of homelessness. The report contains descriptions of how a number of people live in homelessness. The three types are: Homeless with no fixed accommodation, resettled living in resettlement housing and homeless who are long-time living with family, friends...

  7. GR712RC- Dual-Core Processor- Product Status

    Science.gov (United States)

    Sturesson, Fredrik; Habinc, Sandi; Gaisler, Jiri

    2012-08-01

    The GR712RC System-on-Chip (SoC) is a dual core LEON3FT system suitable for advanced high reliability space avionics. Fault tolerance features from Aeroflex Gaisler’s GRLIB IP library and an implementation using Ramon Chips RadSafe cell library enables superior radiation hardness.The GR712RC device has been designed to provide high processing power by including two LEON3FT 32- bit SPARC V8 processors, each with its own high- performance IEEE754 compliant floating-point-unit and SPARC reference memory management unit.This high processing power is combined with a large number of serial interfaces, ranging from high-speed links for data transfers to low-speed control buses for commanding and status acquisition.

  8. Entsorgungswirtschaft zwischen Grünem Punkt und Dosenpfand

    OpenAIRE

    Johann Wackerbauer

    2003-01-01

    Die Zeiten der hohen Wachstumsraten in der Abfallentsorgung dürften vorbei sein. Die Nachfrage nach Entsorgungsleistungen wird stärker von der Umweltpolitik als von der allgemeinen Konjunkturentwicklung beeinflusst. Die Turbulenzen im Zusammenhang mit der Einführung der Pfandpflicht auf Einweggetränkeverpackungen und die Diskussion um die Monopolstellung der Gesellschaft »Der Grüne Punkt - Duales System Deutschland AG« im Bereich der Entsorgung von Verkaufsverpackungen haben die Entsorgungs...

  9. Minimal canonical comprehensive Gröbner systems

    OpenAIRE

    Manubens, Montserrat; Montes, Antonio

    2009-01-01

    This is the continuation of Montes' paper "On the canonical discussion of polynomial systems with parameters''. In this paper, we define the Minimal Canonical Comprehensive Gröbner System of a parametric ideal and fix under which hypothesis it exists and is computable. An algorithm to obtain a canonical description of the segments of the Minimal Canonical CGS is given, thus completing the whole MCCGS algorithm (implemented in Maple and Singular). We show its high utility for applications, suc...

  10.  Gadeplansarbejdets grænseposition - muligheder og dilemmaer

    DEFF Research Database (Denmark)

    Mørck, Line Lerche

    2010-01-01

    Artiklen giver et bud på, hvordan vi gennem grænsefællesskaber på tværs af etniske og sociale skel kan bevæge det etablerede samfund og de unge, så de unge kommer 'indenfor rækkevidde'. Der diskuteres muligheder og dilemmaer i et gadeplansarbejde, der mødes med forventninger om at skulle samarbej...

  11. Comparison of plasma malondialdehyde, glutathione, glutathione peroxidase, hydroxyproline and selenium levels in patients with vitiligo and healthy controls

    Directory of Open Access Journals (Sweden)

    Ozturk I

    2008-01-01

    Full Text Available Background: The etiology and pathophysiologic mechanism of vitiligo are still unclear. The relationship between increased oxidative stress due to the accumulation of radicals and reactive oxygen species and the associated changes in blood and epidermal component of vitiliginous skin have been reported many times. We investigated the possible changes of plasma malondialdehyde, glutathione, selenium, hydroxyproline and glutathione peroxidase activity levels in patients with vitiligo in order to evaluate the relationship between oxidative stress and etiopathogenesis of vitiligo. Materials and Methods: Plasma malondialdehyde, glutathione, hydroxyproline and glutathione peroxidase activity levels were measured by spectrophotometric methods, and HPLC was used for measurement of selenium concentrations. Results: Our results showed increased malondialdehyde, hydroxyproline and glutathione peroxidase activity levels in plasma of vitiligo group ( P < 0.05. Conclusion: Support of antioxidant system via nonenzymatic antioxidant compounds and antioxidant enzymes may be useful to prevent of melanocyte degeneration which occur due to oxidative damage in vitiligo.

  12. Interactions of [alpha,beta]-unsaturated carbonyl compounds with the glutathione-related biotransformation system

    NARCIS (Netherlands)

    Iersel, van M.L.P.S.

    1998-01-01

    Introduction
    Modulation of glutathione-related biotransformation steps may play a role in important phenomena as anticarcinogenicity and multidrug resistance. Glutathione-related biotransformation comprises three main aspects i.e. glutathione, the

  13. Grüneisen parameter for gases and superfluid helium

    International Nuclear Information System (INIS)

    De Souza, Mariano; Menegasso, Paulo; Paupitz, Ricardo; Seridonio, Antonio; Lagos, Roberto E

    2016-01-01

    The Grüneisen ratio (Γ), i.e. the ratio of the thermal expansivity to the specific heat at constant pressure, quantifies the degree of anharmonicity of the potential governing the physical properties of a system. While Γ has been intensively explored in solid state physics, very little is known about its behavior for gases. This is most likely due to the difficulties posed in carrying out both thermal expansion and specific heat measurements in gases with high accuracy as a function of pressure and temperature. Furthermore, to the best of our knowledge a comprehensive discussion about the peculiarities of the Grüneisen ratio is still lacking in the literature. Here we report on a detailed and comprehensive overview of the Grüneisen ratio. Particular emphasis is placed on the analysis of Γ for gases. The main findings of this work are: (i) for the van der Waals gas Γ depends only on the co-volume b due to interaction effects, it is smaller than that for the ideal gas (Γ = 2/3) and diverges upon approaching the critical volume; (ii) for the Bose–Einstein condensation of an ideal boson gas, assuming the transition as first-order, Γ diverges upon approaching a critical volume, similarly to the van der Waals gas; (iii) for 4 He at the superfluid transition Γ shows a singular behavior. Our results reveal that Γ can be used as an appropriate experimental tool to explore pressure-induced critical points. (paper)

  14. Minedrift og miljø i Grønland

    DEFF Research Database (Denmark)

    Johansen, P.; Asmund, G.; Glahder, C. M.

    zink, som er frigjort fra de mineraler, som er brudt og oparbejdet. Forureningen kommer især fra tailings fra de anlæg, hvor indholdet af værdifulde mineraler i malmen er blevet adskilt og opkoncentreret. En anden vigtig forureningskilde har været såkaldt gråbjerg, dvs. brudt materiale, hvor......, at spe cielt bly ophober sig i høje koncentrationer i muslinger i tidevandszonen. Men der er også eksempler på, at fisk og rejer samt tangplanter får forhøjede blyværdier. Forstyrrelser I Grønland vil aktiviteter i forbindelse med minedrift og efterforskning af mine ra ler i mange tilfælde resultere i...... for eksempel sikre, at tailings og gråbjerg bliver deponeret på en måde, så frigørelse af metaller bliver væsentligt begrænset og ikke resulterer i, at forurenende stoffer bliver spredt over større områder. Der bliver også allerede ved godkendelsen af et mineprojekt udarbejdet en plan for, hvordan området skal...

  15. Rebound Attacks on the Reduced Grøstl Hash Function

    DEFF Research Database (Denmark)

    Mendel, Florian; Rechberger, C.; Schlaffer, Martin

    2010-01-01

    Grøstl is one of 14 second round candidates of the NIST SHA-3 competition. Cryptanalytic results on the wide-pipe compression function of Grøstl-256 have already been published. However, little is known about the hash function, arguably a much more interesting cryptanalytic setting. Also, Grøstl...

  16. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    Science.gov (United States)

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  17. Personage Column:Prof. Dr.Adolf Grünert%人物专栏:Adolf Grünert

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Adolf Grünert was born in 1938 in Neuleiningen, a lovely western village of Germany in Palatinate (Pfalz).The first seven years of his life were overshadowed by the war as he was living in the war region of western front.Despite of this, his childhood was deeply influenced by the outstanding care and shelter of his parents and the family-life.

  18. Nucleation behavior of glutathione polymorphs in water

    International Nuclear Information System (INIS)

    Chen, Zhi; Dang, Leping; Li, Shuai; Wei, Hongyuan

    2013-01-01

    Nucleation behavior of glutathione (GSH) polymorphs in water was investigated by experimental method combined with classical nucleation theory. The solubility of α and β forms GSH in water at different temperatures, and the nucleation induction period at various supersaturations and temperatures were determined experimentally. The results show that, in a certain range of supersaturation, the nucleation of β form predominates at relatively higher temperature, while α form will be obtained at lower temperature. The nucleation kinetics parameters of α and β form were then calculated. To understand the crucial role of temperature on crystal forms, “hypothetic” nucleation parameters of β form at 283.15 K were deduced based on extrapolation method. The results show that the interfacial tension, critical free energy, critical nucleus radius and nucleus number of α form are smaller than that of β form in the same condition at 283.15 K, which implies that α form nucleates easier than β form at low temperature. This work may be useful for the control and optimization of GSH crystallization process in industry

  19. Labor Augmentation with Oxytocin Decreases Glutathione Level

    Directory of Open Access Journals (Sweden)

    Naomi Schneid-Kofman

    2009-01-01

    Full Text Available Objective. To compare oxidative stress following spontaneous vaginal delivery with that induced by Oxytocin augmented delivery. Methods. 98 women recruited prior to labor. 57 delivered spontaneously, while 41 received Oxytocin for augmentation of labor. Complicated deliveries and high-risk pregnancies were excluded. Informed consent was documented. Arterial cord blood gases, levels of Hematocrit, Hemoglobin, and Bilirubin were studied. Glutathione (GSH concentration was measured by a spectroscopic method. Plasma and red blood cell (RBC levels of Malondialdehyde indicated lipid peroxidation. RBC uptake of phenol red denoted cell penetrability. SPSS data analysis was used. Results. Cord blood GSH was significantly lower in the Oxytocin group (2.3±0.55 mM versus 2.55±0.55 mM, =.01. No differences were found in plasma or RBC levels of MDA or in uptake of Phenol red between the groups. Conclusion. Lower GSH levels following Oxytocin augmentation indicate an oxidative stress, though selected measures of oxidative stress demonstrate no cell damage.

  20. The Genetic Architecture of Murine Glutathione Transferases.

    Directory of Open Access Journals (Sweden)

    Lu Lu

    Full Text Available Glutathione S-transferase (GST genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6 and DBA2/J (D2--the BXD family--was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01 with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.

  1. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  2. Crystallization and diffraction analysis of thioredoxin reductase from Streptomyces coelicolor

    International Nuclear Information System (INIS)

    Koháryová, Michaela; Brynda, Jiří; Řezáčová, Pavlína; Kollárová, Marta

    2011-01-01

    Thioredoxin reductase from S. coelicolor was crystallized and diffraction data were collected to 2.4 Å resolution. Thioredoxin reductases are homodimeric flavoenzymes that catalyze the transfer of electrons from NADPH to oxidized thioredoxin substrate. Bacterial thioredoxin reductases represent a promising target for the development of new antibiotics. Recombinant thioredoxin reductase TrxB from Streptomyces coelicolor was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from cryocooled crystals to 2.4 Å resolution using a synchrotron-radiation source. The crystals belonged to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 82.9, b = 60.6, c = 135.4 Å, α = γ = 90.0, β = 96.5°

  3. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... Alexander et al., 2005) and heme-type nitrite reductase gene (Smith and ... owing to a genotype-dependent response (Zhang et al.,. 1991; Sakhanokho et al., ..... Improvement of cell culture conditions for rice. Jpn. Agric. Res.

  4. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  5. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  6. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... in prostate cancer patients: a potential factor implicated ... reductase alpha polypeptides 1 and 2 in a set of 601 prostate cancer patients from four ..... tion in the key androgen-regulating genes androgen receptor, cytochrome ...

  7. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2014-01-01

    Full Text Available Epalrestat (EPS, approved in Japan, is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Here we report that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH, which is important for protection against oxidative injury, through transcription regulation. Treatment of Schwann cells with EPS caused a dramatic increase in intracellular GSH levels. EPS increased the mRNA levels of γ-glutamylcysteine synthetase (γ-GCS, the enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that plays a central role in regulating the expression of γ-GCS. ELISA revealed that EPS increased nuclear Nrf2 levels. Knockdown of Nrf2 by siRNA suppressed the EPS-induced GSH biosynthesis. Furthermore, pretreatment with EPS reduced the cytotoxicity induced by H2O2, tert-butylhydroperoxide, 2,2'-azobis (2-amidinopropane dihydrochloride, and menadione, indicating that EPS plays a role in protecting against oxidative stress. This is the first study to show that EPS induces GSH biosynthesis via the activation of Nrf2. We suggest that EPS has new beneficial properties that may prevent the development and progression of disorders caused by oxidative stress.

  8. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.

    Science.gov (United States)

    Ren, Xiaoyuan; Zou, Lili; Zhang, Xu; Branco, Vasco; Wang, Jun; Carvalho, Cristina; Holmgren, Arne; Lu, Jun

    2017-11-01

    The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.

  9. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  10. Glutathione content in sperm cells of infertile men

    Directory of Open Access Journals (Sweden)

    R. V. Fafula

    2017-04-01

    Full Text Available Hyperproduction of reactive oxygen species can damage sperm cells and is considered to be one of the mechanisms of male infertility. Cell protection from the damaging effects of free radicals and lipid peroxidation products is generally determined by the degree of antioxidant protection. Glutathione is non-enzymatic antioxidant which plays an important protective role against oxidative damages and lipid peroxidation. The aim of the present work is to determine the content of reduced and oxidized glutathione in sperm cells of infertile men. Semen samples from 20 fertile men (normozoospermics and 72 infertile patients (12 oligozoospermics, 17 asthenozoospermics, 10 oligoasthenozoosper­mics and 33 leucocytospermic were used. The total, oxidized (GSSG and reduced (GSH glutathione levels were measured spectrophotometrically. The levels of total glutathione were significantly lower in the spermatozoa of patients with oligozoo-, asthenozoo- and oligoasthenozoospermia than in the control. Infertile groups showed significantly decreased values of reduced glutathione in sperm cells vs. fertile men, indicating an alteration of oxidative status. The oxidized glutathione levels in sperm cells of infertile men did not differ from those of normozoospermic men with proven fertility. The GSH/GSSG ratio was significantly decreased in the oligo-, astheno- and oligoasthenozoospermic groups compared to the normozoospermic group. In patients with leucocytospermia the GSH/GSSG ratio was lower but these changes were not significant. In addition, glutathione peroxidase activity in sperm cells was decreased in patients with oligozoo-, astenozoo-, oligoastenozoospermia and with leucocytospermia. The most significant changes in glutathione peroxidase activity were observed in infertile men with leucocytospermia. Decreased GSH/GSSG ratio indicates a decline in redox-potential of the glutathione system in sperm cells of men with decreased fertilizing potential

  11. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...

  12. Effect of Food Sources of Natural Chemo preventive Agents on ...

    African Journals Online (AJOL)

    Objective: The work attempted to evaluate the potential of natural products containing cancer chemopreventive agents in increasing the level of some endogenous antioxidant enzymes such as Glutathione STransferase (GST), Glutathione reductase (GR), catalase, superoxide dismutase(SOD-1,2) in brain and kidney ...

  13. Neuroprotective role of vitamin D3 in colchicine-induced Alzheimerâ ...

    African Journals Online (AJOL)

    Adham R. Mohamed

    2014-06-14

    Jun 14, 2014 ... The following parameters were evaluated in rats of all studied groups: Abbreviations: Ab, amyloid beta; AD, Alzheimer's disease; BBB, blood–brain barrier; BDNF, brain derived neurotrophic factor; CSF, cerebrospinal fluid; GPX, glutathione peroxidase; GR, glutathione reductase. * Corresponding author.

  14. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  15. Streptococcus sanguinis Class Ib Ribonucleotide Reductase

    Science.gov (United States)

    Makhlynets, Olga; Boal, Amie K.; Rhodes, DeLacy V.; Kitten, Todd; Rosenzweig, Amy C.; Stubbe, JoAnne

    2014-01-01

    Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with FeII and O2 can self-assemble a diferric-tyrosyl radical (FeIII2-Y•) cofactor (1.2 Y•/β2) and with the help of NrdI can assemble a MnIII2-Y• cofactor (0.9 Y•/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and MnII2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μm) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR. PMID:24381172

  16. Aldose reductase, oxidative stress and diabetic mellitus

    Directory of Open Access Journals (Sweden)

    Waiho eTang

    2012-05-01

    Full Text Available Diabetes mellitus (DM is a complex metabolic disorder arising from lack of insulin production or insulin resistance 1. DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR [ALR2; EC 1.1.1.21], a key enzyme in the polyol pathway, catalyzes NADPH-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS in various tissues of DM including the heart, vasculature, neurons, eyes and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis and myocardium (heart failure leading to severe morbidity and mortality (reviewed in 2. In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.

  17. Aldose reductase mediates retinal microglia activation

    International Nuclear Information System (INIS)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark

    2016-01-01

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1"G"F"P mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR"W"T background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  18. Aldose reductase inhibitory compounds from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Ha Na; Lee, Min Young; Kim, Jin-Kyu; Suh, Hong-Won; Lim, Soon Sung

    2013-09-01

    As part of our ongoing search for natural sources of therapeutic and preventive agents for diabetic complications, we evaluated the inhibitory effects of components of the fruit of Xanthium strumarium (X. strumarium) on aldose reductase (AR) and galactitol formation in rat lenses with high levels of glucose. To identify the bioactive components of X. strumarium, 7 caffeoylquinic acids and 3 phenolic compounds were isolated and their chemical structures were elucidated on the basis of spectroscopic evidence and comparison with published data. The abilities of 10 X. strumarium-derived components to counteract diabetic complications were investigated by means of inhibitory assays with rat lens AR (rAR) and recombinant human AR (rhAR). From the 10 isolated compounds, methyl-3,5-di-O-caffeoylquinate showed the most potent inhibition, with IC₅₀ values of 0.30 and 0.67 μM for rAR and rhAR, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate, methyl-3,5-di-O-caffeoylquinate showed competitive inhibition of rhAR. Furthermore, methyl-3,5-di-O-caffeoylquinate inhibited galactitol formation in the rat lens and in erythrocytes incubated with a high concentration of glucose, indicating that this compound may be effective in preventing diabetic complications.

  19. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  20. Binding of Fidarestat Stereoisomers with Aldose Reductase

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-11-01

    Full Text Available The stereospecificity in binding to aldose reductase (ALR2 of two fidarestat {6-fluoro-2',5'-dioxospiro[chroman-4,4'-imidazolidine]-2-carboxamide} stereoisomers [(2S,4Sand (2R,4S] has been investigated by means of molecular dynamics simulations using freeenergy integration techniques. The difference in the free energy of binding was found to be2.0 ± 1.7 kJ/mol in favour of the (2S,4S-form, in agreement with the experimentalinhibition data. The relative mobilities of the fidarestats complexed with ALR2 indicate alarger entropic penalty for hydrophobic binding of (2R,4S-fidarestat compared to (2S,4S-fidarestat, partially explaining its lower binding affinity. The two stereoisomers differmainly in the orientation of the carbamoyl moiety with respect to the active site and rotationof the bond joining the carbamoyl substituent to the ring. The detailed structural andenergetic insights obtained from out simulations allow for a better understanding of thefactors determining stereospecific inhibitor-ALR2 binding in the EPF charges model.

  1. Hemoglobin-catalyzed fluorometric method for the determination of glutathione

    Science.gov (United States)

    Wang, Ruiqiang; Tang, Lin; Li, Hua; Wang, Yi; Gou, Rong; Guo, Yuanyuan; Fang, Yudong; Chen, Fengmei

    2016-01-01

    A new spectrofluorometric method for the determination of glutathione based on the reaction catalyzed by hemoglobin was reported. The reaction product gave a highly fluorescent intensity with the excitation and emission wavelengths of 320.0 nm and 413.0 nm, respectively. The optimum experimental conditions were investigated. Results showed that low concentration glutathione enhanced the fluorescence intensity significantly. The line ranges were 1.0 × 10-6-1.0 × 10-5 mol L-1 of glutathione and 6.0 × 10-10 mol L-1-1.0 × 10-8 mol L-1, respectively. The detection limit was calculated to be 1.1 × 10-11 mol L-1. The recovery test by the standard addition method gave values in the range of 90.78%-102.20%. This method was used for the determination of glutathione in synthetic and real samples with satisfactory results.

  2. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... stress such as asthma, lung cancer, and type 2 diabetes mellitus.[11-13]. Although ... epigenetic, and environmental factors. Little is known ..... glutathione Stransferase genes increase risk of prostate cancer biochemical ...

  3. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  4. Electrolyte ions and glutathione enzymes as stress markers in ...

    African Journals Online (AJOL)

    Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery. ... By Country · List All Titles · Free To Read Titles This Journal is Open Access. Featuring journals from 32 Countries:.

  5. Inhibition of glutathione S-transferases (GSTs) activity from cowpea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Inhibition effect of the plant extracts on the GST was studied by spectrophotometric method. The ... of assuring food security in developing countries like ..... studies on African cat fish (Clarias gariepinus) liver glutathione s-.

  6. Reliability assessment of creep rupture life for Gr. 91 steel

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Kim, Seon-Jin; Jang, Jinsung

    2013-01-01

    Highlights: • Statistical analysis of a number of creep rupture data based on Z parameter. • Determination of the constant C in LM parameter and long-term creep life prediction. • Generation of random variables for Z s and Z cr by Monte-Carlo simulation in a SCRI model. • Examples for design application were reasonably drawn from the viewpoints of reliability. - Abstract: This paper presents reliability assessment of the long-term creep life of Gr. 91 steel, which is a major structural material for high temperature structural components of Generation-IV reactor systems. A number of creep rupture data for Gr. 91 steel were collected through literature surveys, and the long-term creep life was predicted by Larson–Miller parameter. A “Z parameter” method was used to describe the magnitude of the deviation of the creep rupture data to a master curve. A “Service Condition-creep Rupture property Interference (SCRI) model” based on the Z parameter was used to simultaneously consider the scattering of the creep rupture data of materials and the fluctuations of service conditions in reliability assessment. A statistical analysis of the creep rupture data was conducted by the Z parameter. To carry out the SCRI model, a number of random variables for Z s describing service conditions and Z cr describing the dispersion of the creep rupture data were generated using a Monte-Carlo simulation technique. As examples for application, the creep rupture life under a certain service conditions of Gr. 91 steel was reasonably drawn from the viewpoints of reliability

  7. Intracellular thiol levels and radioresistance: Studies with glutathione and glutathione mono ethyl ester

    International Nuclear Information System (INIS)

    Astor, M.B.; Meister, A.; Anderson, M.E.

    1987-01-01

    Intracellular thiols such as glutathione (GSH) protect cells against free radicals formed during oxidative metabolism or from exposure to drugs or ionizing radiation. The role of intracellular GSH in the repair of radiation induced free radical damage was studied using GSH or its analog glutathione mono ethyl ester (GEE), which readily penetrates into the cell. Chinese hamster V79 cells with normal GSH levels were afforded equal protection under aerated and hypoxic conditions (DMF = 1.2 OER = 3.7) by both 10 mM GSH and GEE although GEE had raised interacellular GSH levels three-fold. Growth of V79 cells in cysteine free media resulted in undetectable levels of GSH and OER of 2.2 with no change in aerated survival. Restoration of intracellular GSH by 10 mM GEE resulted in an increase of the OER from 2.2. to 3.8 (DMF = 1.7). Only 14% of the intracellular GSH needs to be repleted to give an OER of 3.0. These experiments provide evidence that thiols do play a role in the oxygen effect and are present at levels in excess of what is necessary for maximal radioprotection

  8. Reduced glutathione and glutathione disulfide in the blood of glucose-6-phosphate dehydrogenase-deficient newborns.

    Science.gov (United States)

    Gong, Zhen-Hua; Tian, Guo-Li; Huang, Qi-Wei; Wang, Yan-Min; Xu, Hong-Ping

    2017-07-20

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is commonly detected during mass screening for neonatal disease. We developed a method to measure reduced glutathione (GSH) and glutathione disulfide (GSSG) using tandem mass spectrometry (MS/MS) for detecting G6PD deficiency. The concentration of GSH and the GSH/GSSG ratio in newborn dry-blood-spot (DBS) screening and in blood plus sodium citrate for test confirmation were examined by MS/MS using labeled glycine as an internal standard. G6PD-deficient newborns had a lower GSH content (242.9 ± 15.9 μmol/L)and GSH/GSSG ratio (14.9 ± 7.2) than neonatal controls (370.0 ± 53.2 μmol/L and 46.7 ± 19.6, respectively). Although the results showed a significance of P blood measured using MS/MS on the first day of sample preparation are consistent with G6PD activity and are helpful for diagnosing G6PD deficiency.

  9. Subcellular distribution of glutathione and cysteine in cyanobacteria

    OpenAIRE

    Zechmann, Bernd; Tomašić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-01-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine,...

  10. Comparison on Mechanical Properties of SA508 Gr.3 Cl.1, Cl.2, and Gr.4N Low Alloy Steels for Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Chul; Park, Sang-Gyu; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    In this study, microstructure and mechanical properties of SA508 Gr.3 Cl. 1, Cl.2, and Gr.4N low alloy steels are characterized to compare their properties. To evaluate the fracture toughness in the transition region, the master curve method according to ASTM E1921 was adopted in the cleavage transition region. Tensile tests and Charpy impact tests were also performed to evaluate the mechanical properties, and a microstructural investigation was carried out. The microstructure and mechanical properties of SA508 Gr.3 Cl.1, Cl2 and Gr.4N low alloy steels were characterized.. The predominant microstructure of SA508 Gr.4N model alloy is tempered martensite, while SA508 Gr.3 Cl.1 and Cl.2 steels show a typical tempered upper bainitic structure. SA508 Gr. 4N model alloy shows the best strength and transition behavior among the three SA508 steels. SA508 Gr.3 Cl.2 steel also has quite good strength, but there is a loss of toughness.

  11. Dokumentaalfilm "Maile Grünbergi värvilised maailmad" = "Maile Grünberg's colourful worlds": a documentary / Karin Paulus, Priit Põldme

    Index Scriptorium Estoniae

    Paulus, Karin, 1975-

    2015-01-01

    Sisearhitekt Maile Grünbergist ja 2014. aastal temast valminud dokumentaalfilmist "Maile Grünbergi värvilised maailmad". Režissöör Peeter Brambat, tegevprodutsent Priit Põldme, käsikiri Karin Paulus, Peeter Brambat, Priit Põldme. 2014. aasta Kultuurkapitali Arhitektuuripreemia kandidaat

  12. Study on corrosion resistance of A106Gr.B and A672Gr.B60 in dynamic water loop with high temperature and pressure

    International Nuclear Information System (INIS)

    Tian Jue; Wang Hui; Li Xinmin

    2014-01-01

    Due to the low carbon and low alloy Cr content, flow accelerates corrosion prone to have a serious impact on safety. AP1000 is the most advanced nuclear power technology in recent years. The plant used A672Gr.B60 as an alternative feed pipe to reduce the impact of flow accelerated corrosion. The impact of different flow rates, alkaline agent type and material property on A672Gr.B60 and A106Gr.B were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectronic spectroscopy (XPS). After 336 h experiments were conducted, results show that the corrosion rate of A672Gr.B60 is much lower than that of A106Gr.B, and the density of oxidation film on A672Gr.B60 is superior to A106Gr.B. Ethanolamine (ETA) as an alkaline agent is better to reduce FAC to A106Gr.B, and it also can make the oxidation film become denser. Changes in flow rate will affect the size, shape and distribution of the oxide particles, and will also affect the thickness of the oxide film. Both of two materials were composed by Fe 3 O 4 . (authors)

  13. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background

    DEFF Research Database (Denmark)

    Krausz, C; Giachini, C; Xue, Y

    2008-01-01

    of duplications and the Y-chromosomal haplogroup were characterised. Although the study had good power to detect factors that accounted for >or=5.5% of the variation in sperm concentration, no such factor was found. A negative effect of gr/gr deletions followed by b2/b4 duplication was found within...

  14. ΛGR Centennial: Cosmic Web in Dark Energy Background

    Science.gov (United States)

    Chernin, A. D.

    The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.

  15. Gröbner bases and convex polytopes

    CERN Document Server

    Sturmfels, Bernd

    1995-01-01

    This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centers around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.

  16. El periodismo gráfico durante la dictadura

    OpenAIRE

    Díaz, César Luis

    2017-01-01

    Este volumen del Centro de Estudios en Historia/Comunicación/Periodismo/Medios (CEHICOPEME), está dedicado al examen de ocho de los principales medios gráficos argentinos durante la última dictadura cívico-militar. Se trata de una decena de artículos que si bien fueron realizados como obras en sí mismas, no pueden ser aisladas de una forma de concebir la disciplina que las contiene, cuya matriz de producción se gestó en esta Facultad de Periodismo y Comunicación Social (UNLP) hace poco más de...

  17. Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

    Directory of Open Access Journals (Sweden)

    Esther Gamero-Sandemetrio

    2018-01-01

    Full Text Available Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidative stress response of non-Saccharomyces wine yeasts and their potential impact on ADY production. In this study we analyzed the oxidative stress response in several non-Saccharomyces yeast species by measuring the activity of reactive oxygen species (ROS scavenging enzymes, e.g., catalase and glutathione reductase, accumulation of protective metabolites, e.g., trehalose and reduced glutathione (GSH, and lipid and protein oxidation levels. Our data suggest that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after ADY production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

  18. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  19. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    Directory of Open Access Journals (Sweden)

    Yeon Bok Kim

    2014-01-01

    Full Text Available Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  20. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  1. Reduced glutathione as a persistence indicator of alien plants of the Amelancheir family

    Directory of Open Access Journals (Sweden)

    L. G. Dolgova

    2009-04-01

    Full Text Available It was proved that glutathione is an important indicator of the vegetation condition and persistence. According to the amount of glutathione the studied mespilus species are adapted to the environmental conditions. Increase of the glutathione amount is caused by some abiotic factors, e.g. temperature. Some differences of the glutathione content may be explained by the plants species patterns.

  2. A topological extension of GR: Black holes induce dark energy

    International Nuclear Information System (INIS)

    Spaans, M

    2013-01-01

    A topological extension of general relativity is presented. The superposition principle of quantum mechanics, as formulated by the Feynman path integral, is taken as a starting point. It is argued that the trajectories that enter this path integral are distinct and thus that space-time topology is multiply connected. Specifically, space-time at the Planck scale consists of a lattice of three-tori that facilitates many distinct paths for particles to travel along. To add gravity, mini black holes are attached to this lattice. These mini black holes represent Wheeler's quantum foam and result from the fact that GR is not conformally invariant. The number of such mini black holes in any time-slice through four-space is found to be equal to the number of macroscopic (so long-lived) black holes in the entire universe. This connection, by which macroscopic black holes induce mini black holes, is a topological expression of Mach's principle. The proposed topological extension of GR can be tested because, if correct, the dark energy density of the universe should be proportional the total number of macroscopic black holes in the universe at any time. This prediction, although strange, agrees with current astrophysical observations.

  3. How secure are Grünbaum's Foundations?

    Science.gov (United States)

    Wax, M L

    1995-06-01

    As exemplified in Freud's cases, behaviour becomes meaningful as it is situated within a history (narrative). Operating from a Unity of Science orientation, Grünbaum emphasises causal rather than meaningful connections, and selectively follows early Freud: when (and only when) the repressed historical cause is uncovered, the symptom disappears. Since that consequential connection has proven to be not causally invariable Grünbaum discredits psychoanalysis as unscientific. Counterposed to his causal approach is that of philosopher MacIntyre, who contends that identity and moral responsibility must be situated within personal history. Also counterposed is sociologist Max Weber who struggled with parallel issues in the German 'Geisteswissenschaften' of Freud's time. The oedipal complex is akin to Weber's ideal types, as are the various models implicit in analytic discourse. Psychoanalysis must be understood as a normative science. In so far as contemporary psychology and psychiatry emphasise causal relationships, their procedures (experimental, epidemiological) can never hope to encompass psychoanalysis. Like other grand theoretical systems, psychoanalysis has applications in wide arenas--personal, developmental, familial, cultural, religious, historical, ethnological; its development during the last century has come from the interaction of findings from those arenas with those from the consulting room.

  4. Interruption with the Migration of Iodide by GR(CT)

    International Nuclear Information System (INIS)

    Min, J. H.; Lee, J. K.; Jeong, J. T.

    2012-01-01

    The purpose of this study is to understand the influence of green rust on the migration of iodide. GR(CT) would be major corrosion product of iron near the seawater or saline layer in underground. The GR(CT) may play an important role in the retardation of the iodide migration in a deep geological environment due to it's anionic exchange reaction. In underground radioactive waste repository, the corrosion of iron canisters would be proceed as follows; Fe(II) and/or Fe(III) dissolved from iron containers → Fe(II)(OH) 2 and/or Fe(III)(OH) 3 → Green rust → Lepidocrocite or Magnetite → Goetite etc. Generally, the green rust has known to exist in environments close to the Fe(Π)/Fe(ΠΙ) transition zone or between the oxidized layer and reduced layer in the underground. As anion exchanger and strong reducer, the green rusts can affect the migration of anions, reactions involving green rusts were poorly studied in relation to the safety assessment of radioactive waste repository

  5. Glutathione level and its relation to radiation therapy in patients with cancer of uterine cervix

    International Nuclear Information System (INIS)

    Mukundan, H.; Bahadur, A.K.; Kumar, A.; Sardana, S.; Naik, S.L.D.; Ray, A.; Sharma, B.K.

    1999-01-01

    Glutathione functions as an important antioxidant in the destruction of hydrogen peroxide and lipid peroxides by providing substrate for the glutathione peroxidase and also promotes the ascorbic acid. Glutathione plays a vital role in detoxification of xenobiotics, carcinogens, free radicals and maintenance of immune functions. The study was aimed to determine plasma glutathione as well as erythrocyte glutathione and glutathione peroxidase in patients with invasive cervical carcinoma (n=30) before initiation and after completion of radiotherapy and subsequently, at the time of first three monthly follow-up visit. The levels of plasma glutathione, erythrocyte glutathione and glutathione peroxidase activity were found to be lower in all cervical cancer patients as compared to age matched normal control women. The study indicates a change in antioxidant status in relation with the glutathione system among patients with invasive carcinoma of the uterine cervix. This study also demonstrates the effect of radiation therapy on this antioxidant system. (author)

  6. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  7. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Hepatic glutathione and glutathione S-transferase in selenium deficiency and toxicity in the chick

    International Nuclear Information System (INIS)

    Kim, Y. S.

    1989-01-01

    First, the hepatic activity of GSH-T CDNB was increased only under conditions of severe oxidative stress produced by combined Se- and vitamin E (VE)-deficiency, indicating that VE also affects GSH metabolism. Second, the incorporation of 35 S-methionine into GSH and protein was about 4- and 2-fold higher, respectively, in Se- and VE-deficient chick hepatocytes as compared to controls. Third, chicks injected with the glutathione peroxidase (SeGSHpx) inhibitor, aurothioglucose (AuTG), showed increase hepatic GSH-T CDNB activity and plasma GSH concentration regardless of their Se status. Fourth, the effect of ascorbic acid (AA), on GSH metabolism was studied. Chicks fed 1000 ppm AA showed decreased hepatic GSH concentration compared to chicks fed no AA in a Se- and VE-deficient diet. Fifth, chicks fed excess Se showed increase hepatic activity of GSH-T CDNB and GSH concentration regardless of VE status

  9. Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Borok, Z; Buhl, R; Grimes, G J; Bokser, A D; Hubbard, R C; Holroyd, K J; Roum, J H; Czerski, D B; Cantin, A M; Crystal, R G

    1991-07-27

    Idiopathic pulmonary fibrosis (IPF) is characterised by alveolar inflammation, exaggerated release of oxidants, and subnormal concentrations of the antioxidant glutathione in respiratory epithelial lining fluid (ELF). Glutathione (600 mg twice daily for 3 days) was given by aerosol to 10 patients with IPF. Total ELF glutathione rose transiently, ELF oxidised glutathione concentrations increased, and there was a decrease in spontaneous superoxide anion release by alveolar macrophages. Thus, glutathione by aerosol could be a means of reversing the oxidant-antioxidant imbalance in IPF.

  10. Comparison of SA508 Gr.3 and SA508 Gr.4N Low Alloy Steels for Reactor Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S

    2009-12-15

    The microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure which has the coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3} due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. Besides, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect. And the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

  11. Differential MR/GR Activation in Mice Results in Emotional States Beneficial or Impairing for Cognition

    Directory of Open Access Journals (Sweden)

    Vera Brinks

    2007-01-01

    Full Text Available Corticosteroids regulate stress response and influence emotion, learning, and memory via two receptors in the brain, the high‐affinity mineralocorticoid (MR and low‐affinity glucocorticoid receptor (GR. We test the hypothesis that MR- and GR-mediated effects interact in emotion and cognition when a novel situation is encountered that is relevant for a learning process. By adrenalectomy and additional constant corticosterone supplement we obtained four groups of male C57BL/6J mice with differential chronic MR and GR activations. Using a hole board task, we found that mice with continuous predominant MR and moderate GR activations were fast learners that displayed low anxiety and arousal together with high directed explorative behavior. Progressive corticosterone concentrations with predominant action via GR induced strong emotional arousal at the expense of cognitive performance. These findings underline the importance of a balanced MR/GR system for emotional and cognitive functioning that is critical for mental health.

  12. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes.

    Science.gov (United States)

    Grissa, Ibtissem; Bidard, Frédérique; Grognet, Pierre; Grossetete, Sandrine; Silar, Philippe

    2010-09-01

    Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  14. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  15. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Glutathione-dependent responses of plants to drought: a review

    Directory of Open Access Journals (Sweden)

    Mateusz Labudda

    2014-02-01

    Full Text Available Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.

  17. "a view of life" - 18.-30.9.2007 (Sisimiut Museum, Grønland)

    DEFF Research Database (Denmark)

    Medonos, Jakub Christensen

    2007-01-01

    Udstilling af og om unge i Sisimiut, Grønland. I Forbindelse med forskningsprojektet; "Ungdom og urbanitet i Grønland - en undersøgelse af den urbane ungdomskultur i Sisimiut: kompetencer, kreativitet og visioner." Se: www.workshop2007.wordpress.com  ......Udstilling af og om unge i Sisimiut, Grønland. I Forbindelse med forskningsprojektet; "Ungdom og urbanitet i Grønland - en undersøgelse af den urbane ungdomskultur i Sisimiut: kompetencer, kreativitet og visioner." Se: www.workshop2007.wordpress.com  ...

  18. Pathological and biochemical changes in rat eyes exposed to gamma irradiation and benzo(A) pyrene and the protective role of glutathione and oltipraze

    International Nuclear Information System (INIS)

    Abd Elmaguid, A.; Naguib, N.I.; Saad, T.M.M.

    2007-01-01

    This study aims to evaluate the effect of exposure to carcinogenic compounds as benzo(a)pyrene in combination with other risk factor which is gamma irradiation on different eye tissues. The study was also conducted to evaluate the protective role of antioxidants such as glutathione and oltipraze before and during exposure to the risk factors. The first group of rats was kept as normal untreated control group. The second group was treated with oltipraze and glutathione for 14 days (positive control group). The third group was injected (i.p) with benzo(a)pyrene in three successive doses parallel with exposure to whole body gamma irradiation of 6 Gy divided in three successive doses ( 2 Gy/ day). The fourth group was treated with oltipraze and glutathione for 14 days then injected (i.p) with benzo(a)pyrene in the last 3 days of treatment in three successive doses parallel with exposure to the same whole body gamma irradiation as third group (6 Gy). Rat eyes were examined clinically every week. For histopathological and biochemical examinations, all groups were sacrificed at 1 month and 2 months after irradiation exposure and the eye tissues were examined by light microscope. The biochemical parameters such as lipid peroxides, SOD, GSH, GSH reductase and GSH peroxidase were estimated in blood and lens. Soluble and insoluble proteins were measured in lens only.The results showed that i.p injection of rats with benzo(a)pyrene and exposure to gamma irradiation caused alterations in eyes of rats clinically, histologically and biochemically. Animals that received glutathione and oltipraze and subjected to benzo(a)pyrene and radiation showed noticeable amelioration in the assayed parameters indicating their protective role as promising agents

  19. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione.

    Science.gov (United States)

    Laher, Ismail; Beam, Julianne; Botta, Amy; Barendregt, Rebekah; Sulistyoningrum, Dian; Devlin, Angela; Rheault, Mark; Ghosh, Sanjoy

    2013-01-01

    Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.

  20. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  1. Expression and site-directed mutagenesis of human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-01-01

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 → Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by α-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme

  2. Grøn Open Access i Praksis

    DEFF Research Database (Denmark)

    Open Access indikatoren påviste et uudnyttet potentiale på ca 60%, men hvorfor er der så ikke mere Open Access indhold?. I det konkrete arbejde med forskningsregistrering og registrering af post-prints støder bibliotekerne på en række udfordringer, som vanskeliggør institutionernes muligheder...... for at nå de nationale Open Access mål. Det er for eksempel inden for områderne rettigheder og licenser, tilladte Open Access versioner, embargoperioder m.m., at vi støder på problemer. Det er disse meget konkrete udfordringer, der arbejdes med i det kommende DEFF projekt ”Grøn Open Access i praksis”....

  3. CHAMAYOU, Grégoire. Teoria do drone.

    Directory of Open Access Journals (Sweden)

    Luiz Philipe de Caux

    2016-06-01

    Full Text Available É possível desvendar uma reconfiguração de normas e relações sociais e políticas, quiçá da própria estrutura dessas normas e relações, a partir da investigação da emergência de um artefato técnico? Tal é a questão de fundo que mobiliza o jovem filósofo francês Grégoire Chamayou, apresentado ao público brasileiro nesta bela edição da Cosac Naify, com competente tradução de Célia Euvaldo; questão que Chamayou ensaia res-ponder indo diretamente à coisa.

  4. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    RBCs in physiological saline at normal Pco2 and pH. After initial loading of oxygenated RBCs with nitrite (partly oxidizing Hb to metHb), the nitrite is removed by three washes of the RBCs in nitrite-free physiological saline to enable the detection of RBC metHb reductase activity in the absence......Hb reductase activity in fish offsets their higher Hb autoxidation and higher likelihood of encountering elevated nitrite. Deoxygenation significantly raised the rates of RBC metHb reduction, and more so in rainbow trout than in carp. The temperature sensitivity of metHb reduction in rainbow trout RBCs...

  5. Albumin-gold-glutathione is a probable auranofin metabolite

    International Nuclear Information System (INIS)

    Shaw, C.F. III; Coffer, M.; Isab, A.A.

    1989-01-01

    The newly licensed gold drug, auranofin ((2,3,4,6-tetra-O-acetyl-β-1-D-gluco-pyranosato-S-)triethylphoshine-gold(I)) crosses cell membranes and enters cells which are inaccessible to parenteral gold drugs. In vivo, the triethylphosphine ligand and gold of auranofin, but not the thio-sugar moiety, accumulate in and subsequently efflux from red blood cells (RBCs). Extracellular albumin increases in the extent of gold efflux and acts as a gold binding site. The rate of efflux is first-order in RBC gold concentration. Studies using RBCs in which labelled [ 14 C]-glutathione is generated in situ incorporation of [ 14 C]- glycine demonstrate that glutathione also effluxes from the RBCs and forms a gold-glutathione-albumin complex. This may be the immunopharmacologically active complex

  6. Põhjamaade kultuurikeskus Nuuk`is Gröönimaal = Pohjoismainen kulttuurikekus, Nuuk, Grönlanti / Mikko Heikkinen, Markku Komonen

    Index Scriptorium Estoniae

    Heikkinen, Mikko

    1993-01-01

    Põhjamaade kultuurikeskuse ehitamiseks Gröönimaale Nuuḱi linna korraldati 1993.a. rahvusvaheline arhitektuurikonkurss. Artiklis on tutvustatud soome arhitektide Mikko Heikkineni ja Markku Komoneni võistlustööd

  7. Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip

    DEFF Research Database (Denmark)

    Ponsero, Alise J.; Igbaria, Aeid; Darch, Maxwell A.

    2017-01-01

    In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative...... oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import...... by reduction, causing Bip oxidation and inhibition of glutathione transport. Coupling of glutathione ER import to Ero1 activation provides a basis for glutathione ER redox poise maintenance....

  8. Glutathione maintenance mitigates age-related susceptibility to redox cycling agents

    Directory of Open Access Journals (Sweden)

    Nicholas O. Thomas

    2016-12-01

    Full Text Available Isolated hepatocytes from young (4–6 mo and old (24–26 mo F344 rats were exposed to increasing concentrations of menadione, a vitamin K derivative and redox cycling agent, to determine whether the age-related decline in Nrf2-mediated detoxification defenses resulted in heightened susceptibility to xenobiotic insult. An LC50 for each age group was established, which showed that aging resulted in a nearly 2-fold increase in susceptibility to menadione (LC50 for young: 405 μM; LC50 for old: 275 μM. Examination of the known Nrf2-regulated pathways associated with menadione detoxification revealed, surprisingly, that NAD(PH: quinone oxido-reductase 1 (NQO1 protein levels and activity were induced 9-fold and 4-fold with age, respectively (p=0.0019 and p=0.018; N=3, but glutathione peroxidase 4 (GPX4 declined by 70% (p=0.0043; N=3. These results indicate toxicity may stem from vulnerability to lipid peroxidation instead of inadequate reduction of menadione semi-quinone. Lipid peroxidation was 2-fold higher, and GSH declined by a 3-fold greater margin in old versus young rat cells given 300 µM menadione (p2-fold reduction in cell death, suggesting that the age-related increase in menadione susceptibility likely stems from attenuated GSH-dependent defenses. This data identifies cellular targets for intervention in order to limit age-related toxicological insults to menadione and potentially other redox cycling compounds.

  9. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  10. Targeting Glutathione-S Transferase Enzymes in Musculoskeletal Sarcomas: A Promising Therapeutic Strategy

    Directory of Open Access Journals (Sweden)

    Michela Pasello

    2011-01-01

    Full Text Available Recent studies have indicated that targeting glutathione-S-transferase (GST isoenzymes may be a promising novel strategy to improve the efficacy of conventional chemotherapy in the three most common musculoskeletal tumours: osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. By using a panel of 15 drug-sensitive and drug-resistant human osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma cell lines, the efficay of the GST-targeting agent 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthiohexanol (NBDHEX has been assessed and related to GST isoenzymes expression (namely GSTP1, GSTA1, GSTM1, and MGST. NBDHEX showed a relevant in vitro activity on all cell lines, including the drug-resistant ones and those with higher GSTs levels. The in vitro activity of NBDHEX was mostly related to cytostatic effects, with a less evident apoptotic induction. NBDHEX positively interacted with doxorubicin, vincristine, cisplatin but showed antagonistic effects with methotrexate. In vivo studies confirmed the cytostatic efficay of NBDHEX and its positive interaction with vincristine in Ewing's sarcoma cells, and also indicated a positive effect against the metastatisation of osteosarcoma cells. The whole body of evidence found in this study indicated that targeting GSTs in osteosarcoma, Ewing's sarcoma and rhabdomyosarcoma may be an interesting new therapeutic option, which can be considered for patients who are scarcely responsive to conventional regimens.

  11. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  12. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    ) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd(1) nitrite reductases, and we discuss this control...

  13. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from. Rhodococcus sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC. AAG CCG AAT GCC-3' (forward) ...

  14. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  15. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    Aldose Reductase Inhibitory and Antiglycation Activities of Four Medicinal Plant Standardized Extracts and Their Main Constituents for the Prevention of ... levels in galactosemic condition by using reverse phase high pressure liquid chromatography (RP-HPLC) and gas liquid chromatography (GLC) was determined.

  16. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Edman, J C; Edman, U; Cao, Mi-Mi

    1989-01-01

    Pneumocystis carinii dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) cDNA sequences have been isolated by their ability to confer trimethoprim resistance to Escherichia coli. Consistent with the recent conclusion that P. carinii is a member of the Fungi...

  17. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  18. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene .... proteins with reversed coenzyme preference from NADPH to NADH ..... 399–404. Hasper A A, Visser J and de Graaff L H 2000 The Aspergillus.

  19. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  20. Making Growth Work for Women in Low-income Countries (GrOW ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project is part of the Growth and Economic Opportunities for Women (GrOW) program. GrOW is a five-year, multi-funder partnership with the UK's Department for International Development (DFID), The William ... In addition to 10 projects addressing the barriers to women's economic ... Careers · Contact Us · Site map.

  1. Grænser forudsætter, at man vil bruge magt

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2016-01-01

    Historisk set. Fra Hadrians mur til de lyseblå gendarmer ved den dansk-tyske grænse: en historie om magt.......Historisk set. Fra Hadrians mur til de lyseblå gendarmer ved den dansk-tyske grænse: en historie om magt....

  2. Gröbner bases in control theory and signal processing

    CERN Document Server

    Regensburger, Georg

    2007-01-01

    This volume contains survey and original articles presenting the state of the art on the application of Gröbner bases in control theory and signal processing. The contributions are based on talks delivered at the Special Semester on Gröbner Bases and Related Methods at the Johann Radon Institute of Computational and Applied Mathematics (RICAM), Linz, Austria, in May 2006.

  3. Identification of 5α-reductase isoenzymes in canine skin.

    Science.gov (United States)

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  4. Internal differential collision attacks on the reduced-round Grøstl-0 hash function

    DEFF Research Database (Denmark)

    Ideguchi, Kota; Tischhauser, Elmar Wolfgang; Preneel, Bart

    2014-01-01

    . This results in collision attacks and semi-free-start collision attacks on the Grøstl-0 hash function and compression function with reduced rounds. Specifically, we show collision attacks on the Grøstl-0-256 hash function reduced to 5 and 6 out of 10 rounds with time complexities 248 and 2112 and on the Grøstl......-0-512 hash function reduced to 6 out of 14 rounds with time complexity 2183. Furthermore, we demonstrate semi-free-start collision attacks on the Grøstl-0-256 compression function reduced to 8 rounds and the Grøstl-0-512 compression function reduced to 9 rounds. Finally, we show improved...

  5. On the Computation of Comprehensive Boolean Gröbner Bases

    Science.gov (United States)

    Inoue, Shutaro

    We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.

  6. Comparative study of biological activity of glutathione, sodium ...

    African Journals Online (AJOL)

    Glutathione (GSH) and sodium tungstate (Na2WO4) are important pharmacological agents. They provide protection to cells against cytotoxic agents and thus reduce their cytotoxicity. It was of interest to study the biological activity of these two pharmacological active agents. Different strains of bacteria were used and the ...

  7. Hepatic and erythrocytic glutathione peroxidase activity in liver diseases.

    Science.gov (United States)

    Cordero, R; Ortiz, A; Hernández, R; López, V; Gómez, M M; Mena, P

    1996-09-01

    Hepatic and erythrocytic glutathione peroxidase activity, together with malondialdehyde levels, were determined as indicators of peroxidation in 83 patients from whom liver biopsies had been taken for diagnostic purposes. On histological study, the patients were classified into groups as minimal changes (including normal liver), steatosis, alcoholic hepatitis, hepatic cirrhosis, light to moderately active chronic hepatitis, and severe chronic active hepatitis. The glutathione peroxidase activity in erythrocytes showed no significant changes in any liver disease group. In the hepatic study, an increased activity was observed in steatosis with respect to the minimal changes group, this increased activity induced by the toxic agent in the initial stages of the alcoholic hepatic disease declining as the hepatic damage progressed. There was a negative correlation between the levels of hepatic malondialdehyde and hepatic glutathione peroxidase in subjects with minimal changes. This suggested the existence of an oxidative equilibrium in this group. This equilibrium is broken in the liver disease groups as was manifest in a positive correlation between malondialdehyde and glutathione peroxidase activity.

  8. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis

    NARCIS (Netherlands)

    Jones, J.T.; Reavy, B.; Smant, G.; Prior, A.E.

    2004-01-01

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for

  9. Metabolic modulation of glutathione in whole blood components ...

    African Journals Online (AJOL)

    Lead has been found to have the ability to interfere in the metabolism and biological activities of many proteins. It has also been found that metalloelements have strong affinity for sulfhydryl (-SH) groups in biological molecules including glutathione (GSH) in tissues. Because of these facts, it was of interest to investigate ...

  10. Glutathione dysregulation and the etiology and progression of human diseases.

    NARCIS (Netherlands)

    Ballatori, N.; Krance, S.M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C.L.

    2009-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases

  11. Metabolic modulation of glutathione in whole blood components ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Key words: Lead acetate, glutathione (GSH), dithiobisdinitrobenzoic acid (DTNB), plasma and cytosolic ... fraction. Control containing 1 ml of venous blood and 1 ml of 0.9%. NaCl solution was also centrifuged for isolation of plasma. The packed cells were .... altered fatty acid composition of membranes?

  12. Is Glutathione the Major Cellular Target of Cisplatin?

    DEFF Research Database (Denmark)

    Kasherman, Yonit; Stürup, Stefan; gibson, dan

    2009-01-01

    Cisplatin is an anticancer drug whose efficacy is limited because tumors develop resistance to the drug. Resistant cells often have elevated levels of cellular glutathione (GSH), believed to be the major cellular target of cisplatin that inactivates the drug by binding to it irreversibly, forming...

  13. A novel method for screening the glutathione transferase inhibitors

    Directory of Open Access Journals (Sweden)

    Węgrzyn Grzegorz

    2009-03-01

    Full Text Available Abstract Background Glutathione transferases (GSTs belong to the family of Phase II detoxification enzymes. GSTs catalyze the conjugation of glutathione to different endogenous and exogenous electrophilic compounds. Over-expression of GSTs was demonstrated in a number of different human cancer cells. It has been found that the resistance to many anticancer chemotherapeutics is directly correlated with the over-expression of GSTs. Therefore, it appears to be important to find new GST inhibitors to prevent the resistance of cells to anticancer drugs. In order to search for glutathione transferase (GST inhibitors, a novel method was designed. Results Our results showed that two fragments of GST, named F1 peptide (GYWKIKGLV and F2 peptide (KWRNKKFELGLEFPNL, can significantly inhibit the GST activity. When these two fragments were compared with several known potent GST inhibitors, the order of inhibition efficiency (measured in reactions with 2,4-dinitrochlorobenzene (CDNB and glutathione as substrates was determined as follows: tannic acid > cibacron blue > F2 peptide > hematin > F1 peptide > ethacrynic acid. Moreover, the F1 peptide appeared to be a noncompetitive inhibitor of the GST-catalyzed reaction, while the F2 peptide was determined as a competitive inhibitor of this reaction. Conclusion It appears that the F2 peptide can be used as a new potent specific GST inhibitor. It is proposed that the novel method, described in this report, might be useful for screening the inhibitors of not only GST but also other enzymes.

  14. Insecticide resistance and glutathione S-transferases in mosquitoes ...

    African Journals Online (AJOL)

    Mosquito glutathione S-transferases (GSTs) have received considerable attention in the last 20 years because of their role in insecticide metabolism producing resistance. Many different compounds, including toxic xenobiotics and reactive products of intracellular processes such as lipid peroxidation, act as GST substrates.

  15. State of the glutathione system at different periods after irradiation

    International Nuclear Information System (INIS)

    Petushok, N.; Trebukhina, R.

    1997-01-01

    The effect of the 3-fold irradiation on the glutatione system was studied. Activation of these system was shown to take place at early terms (1 hour) after irradiation, then it was exhausted that resulted in accumulation of lipid peroxidation products in blood. This phase changes in glutathione system could be correspond to certain stages of stress-syndrome. (author)

  16. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a ...

  17. Heterogeneous role of the glutathione antioxidant system in modulating the response of ESFT to fenretinide in normoxia and hypoxia.

    Directory of Open Access Journals (Sweden)

    Tapiwanashe Magwere

    Full Text Available Glutathione (GSH is implicated in drug resistance mechanisms of several cancers and is a key regulator of cell death pathways within cells. We studied Ewing's sarcoma family of tumours (ESFT cell lines and three mechanistically distinct anticancer agents (fenretinide, doxorubicin, and vincristine to investigate whether the GSH antioxidant system is involved in the reduced sensitivity to these chemotherapeutic agents in hypoxia. Cell viability and death were assessed by the trypan blue exclusion assay and annexin V-PI staining, respectively. Hypoxia significantly decreased the sensitivity of all ESFT cell lines to fenretinide-induced death, whereas the effect of doxorubicin or vincristine was marginal and cell-line-specific. The response of the GSH antioxidant system in ESFT cell lines to hypoxia was variable and also cell-line-specific, although the level of GSH appeared to be most dependent on de novo biosynthesis rather than recycling. RNAi-mediated knockdown of key GSH regulatory enzymes γ-glutamylcysteine synthetase or glutathione disulfide reductase partially reversed the hypoxia-induced resistance to fenretinide, and increasing GSH levels using N-acetylcysteine augmented the hypoxia-induced resistance in a cell line-specific manner. These observations are consistent with the conclusion that the role of the GSH antioxidant system in modulating the sensitivity of ESFT cells to fenretinide is heterogeneous depending on environment and cell type. This is likely to limit the value of targeting GSH as a therapeutic strategy to overcome hypoxia-induced drug resistance in ESFT. Whether targeting the GSH antioxidant system in conjunction with other therapeutics may benefit some patients with ESFT remains to be seen.

  18. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki; Minowa, Yosuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2010-01-01

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 and 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate scoring

  19. Multiscale modelling approach combining a kinetic model of glutathione metabolism with PBPK models of paracetamol and the potential glutathione-depletion biomarkes ophthalmic acid and 5-oxoproline in humans and rats

    NARCIS (Netherlands)

    Geenen, S.; Yates, J.W.T.; Kenna, J.G.; Bois, F.Y.; Wilson, I.D.; Westerhoff, H.V.

    2014-01-01

    A key role of the antioxidant glutathione is detoxification of chemically reactive electrophilic drug metabolites within the liver. Therefore glutathione depletion can have severe toxic consequences. Ophthalmic acid and 5-oxoproline are metabolites involved in glutathione metabolism, which can be

  20. Adolescentes e grávidas: onde buscam apoio?

    Directory of Open Access Journals (Sweden)

    Roselí Aparecida Godinho

    Full Text Available Adolescência é época de crise, mudança, readaptação ao novo corpo e de novas atitudes frente a vida. Se somarmos a isso o significado da gravidez, dos pontos de vista pessoal, social e familiar, compreenderemos como a gestação pode ser um evento difícil para a adolescente. O presente estudo teve como objetivo identificar onde as adolescentes grávidas buscam apoio. Evidenciou-se que as entrevistadas puderam contar com o apoio da família, principalmente dos pais e, com menos freqüência com o do pai do bebê, bem como a aceitação da gravidez, sua relação com o abandono escolar, a visão idealizada dessas garotas acerca da gestação e expectativas futuras, a preocupação com aspectos biológicos e a despreocupação com problemas concretos.

  1. GrEMBOSS: EMBOSS over the EELA GRID

    Energy Technology Data Exchange (ETDEWEB)

    Bonavides-Martinez, C.; Murrieta-Leon, E.; Verleyen, J.; Zayas-Lagunas, R.; Hernandez-Alvarez, A.; Rodriguez-Bahena, R.; Valverde, J. R.; Branger, P. A.; Sarachu, M.

    2007-07-01

    With the growth of genome databases and the implied complexity for processing such information within bioinformatics research, there is a need for computing power and massive storage facilities which can be provided by Grid infrastructures. EMBOSS is a free Open Source sequence analysis package specially developed for the needs of the bioinformatics and molecular biology user community. This work describes the deployment of EMBOSS over the EELA and EGEE Grids, both gLite middle ware-based infrastructures. This work is focused on rewriting the I/O EMBOSS libraries (AJAX) to use the GFAL from the LCG/EGEE middle ware. This library allows the use of files registered on the catalog service which are contained in the storage elements of a Grid. Submitting a job into a Grid is not an intuitive task. This work also describes an ad hoc mechanism to allow bioinformaticians to concentrate on the EMBOSS command, instead of acquiring advanced knowledge about Grid usage. The results obtained so far demonstrate the functionality of GrEMBOSS, and represent an efficient and viable alternative for gridifying other bioinformatics applications. (Author)

  2. GrEMBOSS: EMBOSS over the EELA GRID

    International Nuclear Information System (INIS)

    Bonavides-Martinez, C.; Murrieta-Leon, E.; Verleyen, J.; Zayas-Lagunas, R.; Hernandez-Alvarez, A.; Rodriguez-Bahena, R.; Valverde, J. R.; Branger, P. A.; Sarachu, M.

    2007-01-01

    With the growth of genome databases and the implied complexity for processing such information within bioinformatics research, there is a need for computing power and massive storage facilities which can be provided by Grid infrastructures. EMBOSS is a free Open Source sequence analysis package specially developed for the needs of the bioinformatics and molecular biology user community. This work describes the deployment of EMBOSS over the EELA and EGEE Grids, both gLite middle ware-based infrastructures. This work is focused on rewriting the I/O EMBOSS libraries (AJAX) to use the GFAL from the LCG/EGEE middle ware. This library allows the use of files registered on the catalog service which are contained in the storage elements of a Grid. Submitting a job into a Grid is not an intuitive task. This work also describes an ad hoc mechanism to allow bioinformaticians to concentrate on the EMBOSS command, instead of acquiring advanced knowledge about Grid usage. The results obtained so far demonstrate the functionality of GrEMBOSS, and represent an efficient and viable alternative for gridifying other bioinformatics applications. (Author)

  3. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells

    Science.gov (United States)

    Yadav, Umesh CS; Ramana, KV; Srivastava, SK

    2013-01-01

    Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30μM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells SAECs. Exposure of SAECs to varying concentrations of acrolein caused cell-death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low (5 to 10 μM) but not high (>10 μM) concentrations of acrolein-induced SAECs cell death. AR inhibition protected SAECs from low dose (5 μM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail-moment, and annexin-V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of pro-apoptotic proteins Bax and Bad from cytosol to the mitochondria, and that of Bcl2 and BclXL from mitochondria to cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK, and c-jun were transiently activated in airway epithelial cells by acrolein in a concentration and time-dependent fashion, which were significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. PMID:23770200

  4. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    International Nuclear Information System (INIS)

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA −/− ). We found that MsrA −/− mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA −/− liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA −/− than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA −/− than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA −/− than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.

  5. Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo

    International Nuclear Information System (INIS)

    Wang Xufang; Zhang Jinsong; Xu Tongwen

    2007-01-01

    Cyclophosphamide (CTX) is in the nitrogen mustard group of alkylating antineoplastic chemotherapeutic agents. It is one of the most frequently used antitumor agents for the treatment of a broad spectrum of human cancers. Thioredoxin reductase (TrxR) catalyze the NADPH-dependent reduction of thioredoxin and play an important role in multiple cellular events related to carcinogenesis including cell proliferation, apoptosis, and cell signaling. This enzyme represents a promising target for the development of cytostatic agents. The purpose of this study is to determine whether CTX could target TrxR in vivo. Lewis lung carcinoma and solid H22 hepatoma treated with 50-250 mg/kg CTX for 3 h lost TrxR activity in a dose-dependent fashion. Over 75% and 95% of TrxR activity was lost at the dose of 250 mg/kg. There was, however, a recovery of TrxR activity such that it attained normal levels by 120 h after a dose of 250 mg/kg. In addition, we found that CTX caused a preferential TrxR inhibition over other antioxidant enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase. We also used ascites H22 cells to investigate cancer cells response after TrxR was inhibited by CTX in vivo since CTX is needed to be activated by liver cytochrome P450 enzymes. The time course and dose-dependent changes of cellular TrxR activity were similar with those in tumor tissue. CTX caused a dose-dependent cellular proliferation inhibition which was positively correlated with TrxR inhibition at 3 h. Furthermore, when 3 h CTX-treated cells with various TrxR backgrounds, harvested from ascites-bearing mice, were implanted into mice, the proliferations of these cells were again proportionally dependent on TrxR activity. The TrxR inhibition could thereby be considered as a crucial mechanism contributing to anticancer effect seen upon clinical use of CTX

  6. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    Science.gov (United States)

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  7. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. Copyright © 2013 Elsevier Inc. All rights

  8. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.

    Science.gov (United States)

    Passaia, Gisele; Queval, Guillaume; Bai, Juan; Margis-Pinheiro, Marcia; Foyer, Christine H

    2014-03-01

    Glutathione peroxidases (GPXs) fulfil important functions in oxidative signalling and protect against the adverse effects of excessive oxidation. However, there has been no systematic characterization of the functions of the different GPX isoforms in plants. The roles of the different members of the Arabidopsis thaliana GPX gene (AtGPX) family were therefore investigated using gpx1, gpx2, gpx3, gpx4, gpx6, gpx7, and gpx8 T-DNA insertion mutant lines. The shoot phenotypes were largely similar in all genotypes, with small differences from the wild type observed only in the gpx2, gpx3, gpx7, and gpx8 mutants. In contrast, all the mutants showed altered root phenotypes compared with the wild type. The gpx1, gpx4, gpx6, gpx7, and gpx8 mutants had a significantly greater lateral root density (LRD) than the wild type. Conversely, the gpx2 and gpx3 mutants had significantly lower LRD values than the wild type. Auxin increased the LRD in all genotypes, but the effect of auxin was significantly greater in the gpx1, gpx4, and gpx7 mutants than in the wild type. The application of auxin increased GPX4 and GPX7 transcripts, but not GPX1 mRNAs in the roots of wild-type plants. The synthetic strigolactone GR24 and abscisic acid (ABA) decreased LRD to a similar extent in all genotypes, except gpx6, which showed increased sensitivity to ABA. These data not only demonstrate the importance of redox controls mediated by AtGPXs in the control of root architecture but they also show that the plastid-localized GPX1 and GPX7 isoforms are required for the hormone-mediated control of lateral root development.

  9. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS).

    Science.gov (United States)

    Olson, Kenneth R; Gao, Yan; DeLeon, Eric R; Arif, Maaz; Arif, Faihaan; Arora, Nitin; Straub, Karl D

    2017-08-01

    Catalase is well-known as an antioxidant dismutating H 2 O 2 to O 2 and H 2 O. However, catalases evolved when metabolism was largely sulfur-based, long before O 2 and reactive oxygen species (ROS) became abundant, suggesting catalase metabolizes reactive sulfide species (RSS). Here we examine catalase metabolism of H 2 S n , the sulfur analog of H 2 O 2 , hydrogen sulfide (H 2 S) and other sulfur-bearing molecules using H 2 S-specific amperometric electrodes and fluorophores to measure polysulfides (H 2 S n ; SSP4) and ROS (dichlorofluorescein, DCF). Catalase eliminated H 2 S n , but did not anaerobically generate H 2 S, the expected product of dismutation. Instead, catalase concentration- and oxygen-dependently metabolized H 2 S and in so doing acted as a sulfide oxidase with a P 50 of 20mmHg. H 2 O 2 had little effect on catalase-mediated H 2 S metabolism but in the presence of the catalase inhibitor, sodium azide (Az), H 2 O 2 rapidly and efficiently expedited H 2 S metabolism in both normoxia and hypoxia suggesting H 2 O 2 is an effective electron acceptor in this reaction. Unexpectedly, catalase concentration-dependently generated H 2 S from dithiothreitol (DTT) in both normoxia and hypoxia, concomitantly oxidizing H 2 S in the presence of O 2 . H 2 S production from DTT was inhibited by carbon monoxide and augmented by NADPH suggesting that catalase heme-iron is the catalytic site and that NADPH provides reducing equivalents. Catalase also generated H 2 S from garlic oil, diallyltrisulfide, thioredoxin and sulfur dioxide, but not from sulfite, metabisulfite, carbonyl sulfide, cysteine, cystine, glutathione or oxidized glutathione. Oxidase activity was also present in catalase from Aspergillus niger. These results show that catalase can act as either a sulfide oxidase or sulfur reductase and they suggest that these activities likely played a prominent role in sulfur metabolism during evolution and may continue do so in modern cells as well. This also appears

  10. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  11. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  12. Mechanisms of radiosensitization and protection studied with glutathione-deficient human cell lines

    International Nuclear Information System (INIS)

    Revesz, L.; Edgren, M.

    1982-01-01

    Glutathione-deficient fibroblasts and lymphoblastoid cells, derived from patients with an inborn error of glutathione synthetase activity, and glutathione-proficient cells, derived from clinically healthy individuals, were used to investigate the importance of glutathione for radiosensitization by misonidazole. With single-strand DNA breaks as an end point, misonidazole as well as oxygen was found to lack any sensitizing effect on cells deficient in glutathione. The post-irradiation repair of single-strand breaks induced by hypoxic irradiation of misonidazole treated cells was found to be a great extent glutathione dependent, like the repair of breaks induced by oxic irradiation. Naturally occurring aminothiols in glutathione-deficient cells appeared to be in efficient as substitutes for glutatione. Artificial aminothiols, such as cysteamine or dithiothreitol, were found to effectively replace glutathione

  13. Expression of the glutathione enzyme system of human colon mucosa by localisation, gender and age.

    NARCIS (Netherlands)

    Hoensch, H.; Peters, W.H.M.; Roelofs, H.M.J.; Kirch, W.

    2006-01-01

    BACKGROUND: The glutathione S-transferases (GST) can metabolise endogenous and exogenous toxins and carcinogens by catalysing the conjugation of diverse electrophiles with reduced glutathione (GSH). Variations of GST enzyme activity could influence the susceptibility of developing cancers in certain

  14. Carbon monoxide may enhance bile secretion by increasing glutathione excretion and Mrp2 expression in rats

    Directory of Open Access Journals (Sweden)

    Chiung-Yu Chen

    2013-05-01

    Conclusion: The present study demonstrated that CO enhanced biliary output in conjunction with NO by increasing the biliary excretion of glutathione. The increment in biliary glutathione was associated with an increased expression of hepatic Mrp2.

  15. Activation of the microsomal glutathione-S-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein

    NARCIS (Netherlands)

    Haenen, G R; Vermeulen, N P; Tai Tin Tsoi, J N; Ragetli, H M; Timmerman, H; Blast, A

    1988-01-01

    Allyl alcohol is hepatotoxic. It is generally believed that acrolein, generated out of allyl alcohol by cytosolic alcohol dehydrogenase, is responsible for this toxicity. The effect of acrolein in vitro and in vivo on the glutathione (GSH) dependent protection of liver microsomes against lipid

  16. CHARACTERIZATION OF DANSYLATED CYSTEINE, CYSTINE, GLUTATHIONE, AND GLUTATHIONE DISULFIDE BY NARROW BORE LIQUID CHROMATOGRAPHY - ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    A method using reversed phase high performance liquid chromtography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the dientity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and...

  17. Análise comparativa das PE e PI máximas entre mulheres grávidas e não-grávidas e entre grávidas de diferentes períodos gestacionais

    Directory of Open Access Journals (Sweden)

    Leila Graziele Dias de Almeida

    2005-10-01

    Full Text Available O propósito deste estudo foi de verificar as possíveis diferenças entre as pressões inspiratórias e expiratórias máxima de mulheres grávidas e não-grávidas, bem como entre grávidas de períodos gestacionais diferentes. Para obtenção das informações propostas, foi utilizado o aparelho manuvacuômetro MVD 500, Mhmicrohard Global Med, como instrumento aferidor das pressões expiratória e inspiratória máxima de gestantes e não-gestantes compreendidas dentro de um mesmo grupo etário. O critério utilizado para seleção de informantes desta pesquisa foi estar grávida para um dos grupos e não estar grávida para o outro, sendo as mesmas escolhidas aleatoriamente através de indicações de informantes. A abordagem das informantes foi realizada em suas residências onde foram coletados dados de pressão inspiratória e expiratória máximas para posteriormente serem organizados, processados, categorizados e finalmente obter-se as médias encontradas nos grupos da amostra da pesquisa. As médias de pressão inspiratória e expiratória máximas obtidas nos grupos das gestantes foram as seguintes: PEmax.= 51,3cm H20; e Pimax= 48,3 cm H20; já as médias encontradas no grupo das não-gestantes foram: PEmax = 73 cm H2O, Pimax= 69,2cm H2O. As gestantes pertencentes ao subgrupo do primeiro ao quinto mês apresentaram uma média de PE= 56 cm H2O, e de PI= 60 cm H2O, enquanto que as gestantes do subgrupo a partir do sexto mês apresentaram as médias de PE e Pi= 56 cm H2O e 43,2 cm H2O respectivamente. Os resultados obtidos forneceram subsídios para inferir que existem diferenças entre as pressões inspiratória e expiratória máximas entre grávidas e não-grávidas, bem como em grávidas de período gestacionais diferentes

  18. Evidence that steroid 5alpha-reductase isozyme genes are differentially methylated in human lymphocytes.

    Science.gov (United States)

    Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A

    2002-03-01

    The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.

  19. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms

    Directory of Open Access Journals (Sweden)

    Izabella Kovacs

    2016-11-01

    Full Text Available Nitric oxide (NO has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation. Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR. In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2 in-vitro and by paraquat-induced oxidative stress in-vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that ROS-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling.

  20. Glutathione metabolism modelling: a mechanism for liver drug-robustness and a new biomarker strategy

    NARCIS (Netherlands)

    Geenen, S.; du Preez, F.B.; Snoep, J.L.; Foster, A.J.; Sarda, S.; Kenna, J.G.; Wilson, I.D.; Westerhoff, H.V.

    2013-01-01

    Background Glutathione metabolism can determine an individual's ability to detoxify drugs. To increase understanding of the dynamics of cellular glutathione homeostasis, we have developed an experiment-based mathematical model of the kinetics of the glutathione network. This model was used to

  1. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.

    Directory of Open Access Journals (Sweden)

    Ioanna Vallianou

    Full Text Available Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO.The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001, 54% of Low Density Lipoprotein (LDL-cholesterol (p<0.001 and 34.5% of triglycerides (p<0.001. Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins.Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent and merits further evaluation.

  2. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Background Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). Methodology/Principal Findings The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001), 54% of Low Density Lipoprotein (LDL)-cholesterol (p<0.001) and 34.5% of triglycerides (p<0.001). Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Conclusions Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent

  3. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP

    DEFF Research Database (Denmark)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R

    2015-01-01

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow...... interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate...

  4. Frukt og grønt i mat og helsefaget. En casestudie

    OpenAIRE

    Kristoffersen, Mirjam

    2016-01-01

    Masteroppgave i fysisk aktivitet og kosthold i et skolemiljø Bakgrunn og hensikt: Studier viser at barn og unge har et for lavt inntak av frukt og grønt i forhold til hva som er anbefalt. Skolen er en arena hvor en kan nå mange med kunnskap om hvorfor en bør spise mer frukt og grønnsaker. Spesielt faget mat og helse kan bidra til å belyse temaet gjennom undervisningen. Hensikten med denne studien er å bidra med kunnskap om hva som blir brukt av frukt og grønnsaker og hvordan det blir benyt...

  5. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase.

    Science.gov (United States)

    Liew, Li Phing; Lim, Zun Yi; Cohen, Matan; Kong, Ziqing; Marjavaara, Lisette; Chabes, Andrei; Bell, Stephen D

    2016-11-01

    In many organisms, hydroxyurea (HU) inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Crystallization of purple nitrous oxide reductase from Pseudomonas stutzeri

    International Nuclear Information System (INIS)

    Pomowski, Anja; Zumft, Walter G.; Kroneck, Peter M. H.; Einsle, Oliver

    2010-01-01

    The physiologically active form of nitrous oxide reductase was isolated and crystallized under strict exclusion of dioxygen and diffraction data were collected from crystals belonging to two different space groups. Nitrous oxide reductase (N 2 OR) from Pseudomonas stutzeri catalyzes the final step in denitrification: the two-electron reduction of nitrous oxide to molecular dinitrogen. Crystals of the enzyme were grown under strict exclusion of dioxygen by sitting-drop vapour diffusion using 2R,3R-butanediol as a cryoprotectant. N 2 OR crystallized in either space group P1 or P6 5 . Interestingly, the key determinant for the resulting space group was the crystallization temperature. Crystals belonging to space group P1 contained four 130 kDa dimers in the asymmetric unit, while crystals belonging to space group P6 5 contained a single dimer in the asymmetric unit. Diffraction data were collected to resolutions better than 2 Å

  7. Up-regulation of glutathione-related genes, enzyme activities and transport proteins in human cervical cancer cells treated with doxorubicin.

    Science.gov (United States)

    Drozd, Ewa; Krzysztoń-Russjan, Jolanta; Marczewska, Jadwiga; Drozd, Janina; Bubko, Irena; Bielak, Magda; Lubelska, Katarzyna; Wiktorska, Katarzyna; Chilmonczyk, Zdzisław; Anuszewska, Elżbieta; Gruber-Bzura, Beata

    2016-10-01

    Doxorubicin (DOX), one of the most effective anticancer drugs, acts in a variety of ways including DNA damage, enzyme inhibition and generation of reactive oxygen species. Glutathione (GSH) and glutathione-related enzymes including: glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferases (GST) may play a role in adaptive detoxification processes in response to the oxidative stress, thus contributing to drug resistance phenotype. In this study, we investigated effects of DOX treatment on expression and activity of GSH-related enzymes and multidrug resistance-associated proteins in cultured human cervical cancer cells displaying different resistance against this drug (HeLa and KB-V1). Determination of expression level of genes encoding GST isoforms and MRP proteins (GCS, GPX, GSR, GSTA1-3, GSTM1, GSTP1, ABCC1-3, MGST1-3) was performed using StellARray™ Technology. Enzymatic activities of GPX and GSR were measured using biochemical methods. Expression of MRP1 was examined by immunofluorescence microscopy. This study showed that native expression levels of GSTM1 and GSTA3 were markedly higher in KB-V1 cells (2000-fold and 200-fold) compared to HeLa cells. Resistant cells have also shown significantly elevated expression of GSTA1 and GSTA2 genes (200-fold and 50-fold) as a result of DOX treatment. In HeLa cells, exposure to DOX increased expression of all genes: GSTM1 (7-fold) and GSTA1-3 (550-fold, 150-fold and 300-fold). Exposure to DOX led to the slight increase of GCS expression as well as GPX activity in KB-V1 cells, while in HeLa cells it did not. Expression of ABCC1 (MRP1) was not increased in any of the tested cell lines. Our results indicate that expression of GSTM1 and GSTA1-3 genes is up-regulated by DOX treatment and suggest that activity of these genes may be associated with drug resistance of the tested cells. At the same time, involvement of MRP1 in DOX resistance in the given experimental conditions is unlikely

  8. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  9. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  10. Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Paula B. Andrade

    2012-05-01

    Full Text Available This study aims to evaluate the antioxidant potential of extracts of Brassica oleracea L. var. acephala DC. (kale and several materials of Pieris brassicae L., a common pest of Brassica cultures using a cellular model with hamster lung fibroblast (V79 cells under quiescent conditions and subjected to H2O2-induced oxidative stress. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and glutathione was determined by the 5,5'-dithiobis(2-nitrobenzoic acid (DTNB-oxidized glutathione (GSSG reductase recycling assay. The phenolic composition of the extracts was also established by HPLC-DAD. They presented acylated and non acylated flavonoid glycosides, some of them sulfated, and hydroxycinnamic acyl gentiobiosides. All extracts were cytotoxic by themselves at high concentrations and failed to protect V79 cells against H2O2 acute toxicity. No relationship between phenolic composition and cytotoxicity of the extracts was found. Rather, a significant increase in glutathione was observed in cells exposed to kale extract, which contained the highest amount and variety of flavonoids. It can be concluded that although flavonoids-rich extracts have the ability to increase cellular antioxidant defenses, the use of extracts of kale and P. brassicae materials by pharmaceutical or food industries, may constitute an insult to health, especially to debilitated individuals, if high doses are consumed.

  11. Radioprotective effect of cysteamine in glutathione synthetase-deficient cells

    International Nuclear Information System (INIS)

    Deschavanne, P.J.; Debieu, D.; Malaise, E.P.; Midander, J.; Revesz, L.

    1986-01-01

    The radioprotective role of endogenous and exogenous thiols was investigated, with survival as the end-point, after radiation exposure of cells under oxic and hypoxic conditions. Human cell strains originating from a 5-oxoprolinuria patient and from a related control were used. Due to a genetic deficiency in glutathione synthetase, the level of free SH groups, and in particular that of glutathione, is decreased in 5-oxoprolinuria cells. The glutathione synthetase deficient cells have a reduced oxygen enhancement ratio (1.5) compared to control cells (2.7). The radiosensitivity was assessed for both cell strains in the presence of different concentrations of an exogenous radioprotector:cysteamine. At concentrations varying between 0.1 and 20 mM, cysteamine protected the two cell strains to the same extent when irradiated under oxic and hypoxic conditions. The protective effect of cysteamine was lower under hypoxia than under oxic conditions for both cell strains. Consequently, the oxygen enhancement ratio decreased for both cell strains when cysteamine concentration increased. These results suggest that cysteamine cannot replace endogenous thiols as far as they are implicated in the radiobiological oxygen effect. (author)

  12. Balneotherapy and platelet glutathione metabolism in type II diabetic patients

    Science.gov (United States)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Agishi, Yuko

    1996-09-01

    Effects of balneotherapy on platelet glutathione metabolism were investigated in 12 type II (non-insulin-dependent) diabetic patients. Levels of the reduced form of glutathione (GSH) on admission were well correlated with those of fasting plasma glucose (FPG; r=0.692, Pbalneotherapy, the mean level of GSH showed no changes; however, in well-controlled patients (FPG 150 mg/dl), the value decreased ( Pbalneotherapy, the activity increased in 5 patients, decreased in 3 patients and showed no changes (alteration within ±3%) in all the other patients. From these findings in diabetic patients we concluded: (1) platelet GSH synthesis appeared to be induced in response to oxidative stress; (2) lowered GPX activities indicated that the antioxidative defense system was impaired; and (3) platelet glutathione metabolism was partially improved by 4 weeks balneotherapy, an effect thought to be dependent on the control status of plasma glucose levels. It is suggested that balneotherapy is beneficial for patients whose platelet antioxidative defense system is damaged, such as those with diabetes mellitus and coronary heart disease.

  13. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    Science.gov (United States)

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  14. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    Science.gov (United States)

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  15. Grūdų kainų kitimo tendencijos Lietuvoje 2006–2010 metais

    OpenAIRE

    Bradūnas, Vidmantas

    2011-01-01

    Straipsnyje nagrinėjami Lietuvos grūdų rinkoje vykstantys ekonominiai procesai bei jų poveikis grūdų supirkimo kainų kitimo tendencijoms. 2006 metai augalininkystės sektoriui buvo labai nepalankūs, 2007–2009 metais žymiai padidėjo augalų derlingumas ir derlius, o 2010-ieji dėl nepalankių klimatinių sąlygų buvo nederlingi – javų derlingumas, palyginti su 2009 metais, sumažėjo 20,3 proc. Lietuvos grūdų rinka labiausiai priartėjusi prie monopolinės konkurencijos sąlygų, ir grūdų kainas teoriškai...

  16. GRtoGR: a system for mapping GO relations to gene relations.

    Science.gov (United States)

    Taha, Kamal

    2013-12-01

    We introduce in this paper a biological search engine called GRtoGR. Given a set of S genes, GRtoGR would determine from GO graph the most significant Lowest Common Ancestor (LCA) of the GO terms annotating the set S. This significant LCA annotates the genes that are the most semantically related to the set S. The framework of GRtoGR refines the concept of LCA by introducing the concepts of Relevant Lowest Common Ancestor (RLCA) and Semantically Relevant Lowest Common Ancestor (SRLCA). A SRLCA is the most significant LCA of the GO terms annotating the set S. We observe that the existence of the GO terms annotating the set S is dependent on the existence of this SRLCA in GO graph. That is, the terms annotating a given set of genes usually have existence dependency relationships with the SRLCA of these terms. We evaluated GRtoGR experimentally and compared it with nine other methods. Results showed marked improvement.

  17. Brief report: Volume dependence of Grüneisen parameter for solids

    Indian Academy of Sciences (India)

    Brief report: Volume dependence of Grüneisen parameter for solids under extreme ... Shivalik Institute of Engineering and Technology, Aliyaspur, Ambala 133 206, India ... Accepted: 1 October 2015; Final version published online: 9 July 2016 ...

  18. El diseño gráfico: de las cavernas a la era digital

    Directory of Open Access Journals (Sweden)

    Lic. Itanel Bastos de Quadros Junior

    1999-01-01

    Full Text Available Los expertos discrepan sobre las raíces del diseño gráfico. Algunos identifican las pinturas rupestres como ejemplos ancestrales de los signos gráficos; otros reconocen sus formas embrionarias en Egipto, Grecia, México y Roma. Varios autores consideran que el diseño gráfico surge al mismo tiempo que la imprenta. Una corriente apunta a las vanguardias artísticas del inicio de este siglo. Otros, todavía, emplazan al pensamiento contemporáneo, con respecto al diseño gráfico, después de la segunda guerra mundial, como un fenómeno adjunto al fuerte desarrollo industrial y de los medios de comunicación.

  19. Effect of glutathione on phytochelatin synthesis in tomato cells. [Lycopersicon esculentum

    Energy Technology Data Exchange (ETDEWEB)

    Mendum, M.L.; Gupta, S.C.; Goldsbrough, P.B. (Purdue Univ., West Lafayette, IN (USA))

    1990-06-01

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably ({gamma}-Glu-Cys){sub 2}-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little ({sup 35}S)cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione.

  20. Kinetic assays for determining in vitro APS reductase activity in plants without the use of radioactive substances.

    Science.gov (United States)

    Brychkova, Galina; Yarmolinsky, Dmitry; Sagi, Moshe

    2012-09-01

    Adenosine 5'-phosphosulfate (APS) reductase (APR; EC 1.8.4.9) catalyzes the two-electron reduction of APS to sulfite and AMP, a key step in the sulfate assimilation pathway in higher plants. In spite of the importance of this enzyme, methods currently available for detection of APR activity rely on radioactive labeling and can only be performed in a very few specially equipped laboratories. Here we present two novel kinetic assays for detecting in vitro APR activity that do not require radioactive labeling. In the first assay, APS is used as substrate and reduced glutathione (GSH) as electron donor, while in the second assay APS is replaced by an APS-regenerating system in which ATP sulfurylase catalyzes APS in the reaction medium, which employs sulfate and ATP as substrates. Both kinetic assays rely on fuchsin colorimetric detection of sulfite, the final product of APR activity. Incubation of the desalted protein extract, prior to assay initiation, with tungstate that inhibits the oxidation of sulfite by sulfite oxidase activity, resulted in enhancement of the actual APR activity. The reliability of the two methods was confirmed by assaying leaf extract from Arabidopsis wild-type and APR mutants with impaired or overexpressed APR2 protein, the former lacking APR activity and the latter exhibiting much higher activity than the wild type. The assays were further tested on tomato leaves, which revealed a higher APR activity than Arabidopsis. The proposed APR assays are highly specific, technically simple and readily performed in any laboratory.

  1. Thioredoxin Reductase Activity may be More Important than GSH Level in Protecting Human Lens Epithelial Cells Against UVA Light

    Science.gov (United States)

    Padgaonkar, Vanita A.; Leverenz, Victor R.; Bhat, Aparna V.; Pelliccia, Sara E.; Giblin, Frank J.

    2014-01-01

    This study compares the abilities of the glutathione (GSH) and thioredoxin (Trx) antioxidant systems in defending cultured human lens epithelial cells (LECs) against UVA light. Levels of GSH were depleted with either L-buthionine-(S,R)-sulfoximine (BSO) or 1-chloro-2,4-dinitrobenzene (CDNB). CDNB treatment also inhibited the activity of thioredoxin reductase (TrxR). Two levels of O2, 3% and 20%, were employed during a 1 hr exposure of the cells to 25 J/cm2 of UVA radiation (338-400nm wavelength, peak at 365nm). Inhibition of TrxR activity by CDNB, combined with exposure to UVA light, produced a substantial loss of LECs and cell damage, with the effects being considerably more severe at 20% O2 compared to 3%. In contrast, depletion of GSH by BSO, combined with exposure to UVA light, produced only a slight cell loss, with no apparent morphological effects. Catalase was highly sensitive to UVA-induced inactivation, but was not essential for protection. Although UVA light presented a challenge for the lens epithelium, it was well-tolerated under normal conditions. The results demonstrate an important role for TrxR activity in defending the lens epithelium against UVA light, possibly related to the ability of the Trx system to assist DNA synthesis following UVA-induced cell damage. PMID:25495870

  2. La ségrégation sociale à Athènes

    Directory of Open Access Journals (Sweden)

    Thomas MALOUTAS

    1997-12-01

    Full Text Available La représentation synthétique de la structure socioprofessionnelle de la Région Urbaine d'Athènes permet de faire apparaître la morphologie géographique détaillée de la ségrégation urbaine ; cette morphologie peut devenir un élément essentiel d'interprétation des processus de ségrégation.

  3. Økologisk frøproduktions rolle i grøntsagsforsyningskæder

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    2009-01-01

    udsæd. Efterspørgslen var dog ikke helt som forventet. Enten fordi man ikke fik produceret de sorter som grøntsags producenterne ønskede, eller også fordi man fik produceret større mængder af udsæd end der reelt var et marked for. Status er derfor at produktionen af økologisk grønsagsfrø næsten er...

  4. Grønne områders betydning for bymiljø og stress

    DEFF Research Database (Denmark)

    Hansen, Karsten B.

    2004-01-01

    Der er mange sundhedsmæssige fordele ved at opholde sig udendørs i grønne områder, især i forhold til at reducere stress. En række lande inkl. Sverige bruger allerede det grønne aktivt i forebyggelse og behandling af sygdomme. I Danmark er den første patienthave på vej til at blive en realitet ved...

  5. Cisplatin-Induced Conditioned Taste Aversion: Attenuation by Dexamethasone but not Zacopride or GR38032F

    Science.gov (United States)

    1992-01-01

    SR2-1 Cisplatin-induced conditioned taste aversion: ateuto by dexamethasone but not zacopride or GR38032F Nm I- Paul C Mele, John R. McDonough, David...to 5-H1’, receptor blockade. 5-HT., receptor antagonists; Zacopridc: GR38032F; Desamethasone: Cisplatin: Taste aversion (conditioned) I. Introductlon...intake) was used as the area known as the chemoreceptor trigger zone (Borri- index of the CTA. son, 1974). Moreover. the findings that rats, ferrets

  6. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  7. Effects of HPM irradiation on expression of GR in hypothalamus and pituitary gland of rats

    International Nuclear Information System (INIS)

    Meng Li; Peng Ruiyun; Gao Yabing; Ma Junjie; Wang Shuiming; Hu Wenhua; Wang Dewen; Su Zhentao

    2005-01-01

    Objective: To explore the expression and significance of glucocorticoid receptor (GR) in hypothalamus and pituitary gland of rats after high power microwave (HPM) exposure. Methods: A total of 130 male Wistar rats were sacrificed at 6 h, 1 d, 3 d, 7 d, 14 d, 28 d and 3 m after whole body irradiation by 2-90 mW/cm 2 HPM and their hypothalamus and pituitary gland were collected. The changes of GR in the two tissues after HPM exposure were investigated by means of immunohistochemical staining and image analysis. Results: The expression of GR in hypothalamus was decreased after HPM exposure. The level of GR in the group of 10 mW/cm 2 was significantly lower (P 2 group was significantly lower (P 2 group was significantly higher (P 2 group was significantly higher (P<0.01) on 1 d and 3 d after HPM exposure. Conclusion: The expression of GR in hypothalamus was decreased while that in the anterior pituitary was increased after HPM exposure. The refore, the negative feedback of hypothalamic-pituitary-adrenal (HPA) axis was upset and the changes of GR is involved in the pathophysiological course of HPA. (authors)

  8. Synthesis and characterization of CdO/GrO nanolayer for in vivo imaging

    Directory of Open Access Journals (Sweden)

    Abbas Pardakhty

    2017-07-01

    Full Text Available Objective(s: Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity. Nanoparticles have enabled significant advances in pre-clinical cancer research as drug delivery vectors. Inorganic nanoparticles such as CdO/GrO nanoparticles have novel optical properties that can be used to optimize the signal-to-background ratio. This paper reports on a novel processing route for preparation of CdO/GrO nanolayer and investigation of its optical properties for application in in vivo targeting and imaging.Materials and Methods: Nanostructures were synthesized by reacting cadmium acetate and graphene powder. The effects ofdifferent parameters such as power and time of irradiation were also studied. Finally, the efficiency of CdO/GrO nanostructures as an optical composite was investigated using photoluminescence spectrum irradiation. CdO/GrO nanostructures were characterized by means of X-ray diffraction (XRD, atomic force microscopy (AFM, scanning electron microscopy (SEM, Fourier transform infrared (FT-IR and photoluminescence (PL spectroscopy.Results: According to SEM images, it was found that sublimation temperature had significant effect on morphology and layers. The spectrum shows an emission peak at 523 nm, indicating that CdO/GrO nanolayer can be used for in vivo imaging.Conclusion: The estimated optical band gap energy is an accepted value for application in in vivo imaging using a QD–CdO/GrO nanolayer.

  9. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Zhe, Du; Fang, Han; Yuxiu, Shi

    2008-01-01

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  10. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  11. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak

    2014-01-01

    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  12. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    International Nuclear Information System (INIS)

    Peters, J.

    1977-01-01

    Some experimental work is described showing that near-U.V. irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-U.V., and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex. (U.K.)

  13. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    Science.gov (United States)

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  14. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J [California Univ., Irvine (USA)

    1977-06-09

    Some experimental work is described showing that near-uv irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-uv, and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex.

  15. The Anti-Inflammatory Effects of Dimethyl Fumarate in Astrocytes Involve Glutathione and Haem Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Shao Xia Lin

    2011-03-01

    Full Text Available DMF (dimethyl fumarate exerts anti-inflammatory and prometabolic effects in a variety of cell types, and a formulation (BG-12 is being evaluated for monotherapy in multiple sclerosis patients. DMF modifies glutathione (GSH levels that can induce expression of the anti-inflammatory protein HO-1 (haem oxygenase-1. In primary astrocytes and C6 glioma cells, BG-12 dose-dependently suppressed nitrite production induced by either LI [LPS (lipopolysaccharide at 1 μg/ml plus IFNγ (interferon γ at 20 units/ml] or a mixture of proinflammatory cytokines, with greater efficacy in C6 cells. BG-12 reduced NOS2 (nitric oxide synthase 2 mRNA levels and activation of a NOS2 promoter, reduced nuclear levels of NF-κB (nuclear factor κB p65 subunit and attenuated loss of |κBα (inhibitory κBα in both cell types, although with greater effects in astrocytes. In astrocytes, LI decreased mRNA levels for GSHr (GSH reductase and GCL (c-glutamylcysteine synthetase, and slightly suppressed GSHs (GSH synthetase mRNAs. Co-treatment with BG-12 prevented those decreased and increased levels above control values. In contrast, LI reduced GSHp (GSH peroxidase and GCL in C6 cells, and BG-12 had no effect on those levels. BG-12 increased nuclear levels of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2, an inducer of GSH-related enzymes, in astrocytes but not C6 cells. In astrocytes, GSH was decreased by BG-12 at 2 h and increased at 24 h. Prior depletion of GSH using buthionine-sulfoximine increased the ability of BG-12 to reduce nitrites. In astrocytes, BG-12 increased HO-1 mRNA levels and effects on nitrite levels were blocked by an HO-1 inhibitor. These results demonstrate that BG-12 suppresses inflammatory activation in astrocytes and C6 glioma cells, but with distinct mechanisms, different dependence on GSH and different effects on transcription factor activation.

  16. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  17. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy.

    Science.gov (United States)

    Rae, Caroline D; Williams, Stephen R

    2017-07-15

    We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Roles of Glutathione Peroxidases during Embryo Development.

    Science.gov (United States)

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on

  19. Glutathione S-transferase gene polymorphisms in presbycusis.

    Science.gov (United States)

    Ateş, Nurcan Aras; Unal, Murat; Tamer, Lülüfer; Derici, Ebru; Karakaş, Sevim; Ercan, Bahadir; Pata, Yavuz Selim; Akbaş, Yücel; Vayisoğlu, Yusuf; Camdeviren, Handan

    2005-05-01

    Glutathione and glutathione-related antioxidant enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. Reactive oxygen species generation occurs in prolonged relative hypoperfusion conditions such as in aging. The etiology of presbycusis is much less certain; however, a complex genetic cause is most likely. The effect of aging shows a wide interindividual range; we aimed to investigate whether profiles of (glutathione S-transferase (GST) M1, T1 and P1 genotypes may be associated with the risk of age-related hearing loss. We examined 68 adults with presbycusis and 69 healthy controls. DNA was extracted from whole blood, and the GSTM1, GSTT1 and GSTP1 polymorphisms were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler Instrument. Associations between specific genotypes and the development of presbycusis were examined by use of logistic regression analyses to calculate odds ratios and 95% confidence intervals. Gene polymorphisms at GSTM1, GSTT1, and GSTP1 in subjects with presbycusis were not significantly different than in the controls (p > 0.05). Also, the combinations of different GSTM1, GSTT1, and GSTP1 genotypes were not an increased risk of presbycusis (p > 0.05). We could not demonstrate any significant association between the GSTM1, GSTT1, and GSTP1 polymorphism and age-related hearing loss in this population. This may be because of our sample size, and further studies need to investigate the exact role of GST gene polymorphisms in the etiopathogenesis of the presbycusis.

  20. Identification of a Novel Epoxyqueuosine Reductase Family by Comparative Genomics.

    Science.gov (United States)

    Zallot, Rémi; Ross, Robert; Chen, Wei-Hung; Bruner, Steven D; Limbach, Patrick A; de Crécy-Lagard, Valérie

    2017-03-17

    The reduction of epoxyqueuosine (oQ) is the last step in the synthesis of the tRNA modification queuosine (Q). While the epoxyqueuosine reductase (EC 1.17.99.6) enzymatic activity was first described 30 years ago, the encoding gene queG was only identified in Escherichia coli in 2011. Interestingly, queG is absent from a large number of sequenced genomes that harbor Q synthesis or salvage genes, suggesting the existence of an alternative epoxyqueuosine reductase in these organisms. By analyzing phylogenetic distributions, physical gene clustering, and fusions, members of the Domain of Unknown Function 208 (DUF208) family were predicted to encode for an alternative epoxyqueuosine reductase. This prediction was validated with genetic methods. The Q modification is present in Lactobacillus salivarius, an organism missing queG but harboring the duf208 gene. Acinetobacter baylyi ADP1 is one of the few organisms that harbor both QueG and DUF208, and deletion of both corresponding genes was required to observe the absence of Q and the accumulation of oQ in tRNA. Finally, the conversion oQ to Q was restored in an E. coli queG mutant by complementation with plasmids harboring duf208 genes from different bacteria. Members of the DUF208 family are not homologous to QueG enzymes, and thus, duf208 is a non-orthologous replacement of queG. We propose to name DUF208 encoding genes as queH. While QueH contains conserved cysteines that could be involved in the coordination of a Fe/S center in a similar fashion to what has been identified in QueG, no cobalamin was identified associated with recombinant QueH protein.

  1. Glutathione depletion in tissues after administration of buthionine sulphoximine

    International Nuclear Information System (INIS)

    Minchinton, A.I.; Rojas, A.; Smith, A.; Soranson, J.A.; Shrieve, D.C.; Jones, N.R.; Bremner, J.C.

    1984-01-01

    Buthionine sulphoximine (BSO) an inhibitor of glutathione (GSH) biosynthesis, was administered to mice in single and repeated doses. The resultant pattern of GSH depletion was studied in liver, kidney, skeletal muscle and three types of murine tumor. Liver and kidney exhibited a rapid depletion of GSH. Muscle was depleted to a similar level, but at a slower rate after a single dose. All three tumors required repeated administration of BSO over several days to obtain a similar degree of depletion to that shown in the other tissues

  2. Glutathione--linking cell proliferation to oxidative stress.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; de Simone, Ambra; Kiddle, Guy; Foyer, Christine H

    2015-12-01

    The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. The nuclear GSH pool provides an appropriate redox environment

  3. Efficacy of glutathione mesotherapy in burns: an experimental study.

    Science.gov (United States)

    Buz, A; Görgülü, T; Olgun, A; Kargi, E

    2016-12-01

    Thermal burns are the leading cause of trauma worldwide. Currently, no consensus on optimal treatment of deep partial-thickness (second-degree) burns has emerged, as reflected by the wide variability in available wound-care materials. The relative efficacies of products used for treatment of partial-thickness thermal burns remain unclear. Mesotherapy features intradermal administration of various agents, depending on burn location. In the present experimental study, we explored the efficacy of mesotherapy used to treat partial-thickness thermal burns in 50 male Wistar rats divided into five groups of equal number. No procedure was performed after infliction of thermal burns in control group (Group 1). Mesotherapy was applied with physiological saline in sham group (Group 2), glutathione, taurine, and L-carnitine were separately applied in Group 3, Group 4, and Group 5, respectively. Mesotherapeutic agents were injected intradermally into the reticular layer of the dermis using the point technique. The first course of mesotherapy was given within the first 2 h after infliction of thermal burns, and therapy was continued to day 10. On day 22, unhealed thermal burn areas were measured prior to sacrifice, and biopsies covering the total areas of burns were performed to allow of pathological evaluation. Group 3 (the glutathione group) showed the best extent of healing, followed by Group 4 (the taurine group) and Group 5 (the L-carnitine group). The healed thermal burn areas in these groups were significantly greater than those in the control and sham groups (P = 0.001). All of healing, acute and chronic inflammation, the amount of granulation tissue, the level of fibroblast maturation, the amount of collagen, the extent of re-epithelization and neovascularization, and ulcer depth were scored upon pathological examination of tissue cross-sections. The best outcomes were evident in the glutathione group, with statistical significance. Although wound healing in the L

  4. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen

    2012-09-01

    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  5. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  6. GR and ER co-activation alters the expression of differentiation genes and associates with improved ER+ breast cancer outcome

    Science.gov (United States)

    West, Diana C.; Pan, Deng; Tonsing-Carter, Eva Y.; Hernandez, Kyle M.; Pierce, Charles F.; Styke, Sarah C.; Bowie, Kathleen R.; Garcia, Tzintzuni I.; Kocherginsky, Masha; Conzen, Suzanne D.

    2016-01-01

    In estrogen receptor (ER)-negative breast cancer (BC), high tumor glucocorticoid receptor (GR) expression has been associated with a relatively poor outcome. In contrast, using a meta-analysis of several genomic datasets, here we find that tumor GR mRNA expression is associated with improved ER+ relapse-free survival (RFS) (independently of progesterone receptor (PR) expression). To understand the mechanism by which GR expression is associated with a better ER+ BC outcome, the global effect of GR-mediated transcriptional activation in ER+ BC cells was studied. Analysis of GR chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in ER+/GR+ MCF-7 cells revealed that upon co-activation of GR and ER, GR chromatin association became enriched at proximal promoter regions. Furthermore, following ER activation, increased GR chromatin association was observed at ER, FOXO, and AP1 response elements. In addition, ER associated with GR response elements, suggesting that ER and GR interact in a complex. Co-activation of GR and ER resulted in increased expression (relative to ER activation alone) of transcripts that encode proteins promoting cellular differentiation (e.g. KDM4B, VDR) and inhibiting the Wnt-signaling pathway (IGFBP4). Finally, expression of these individual pro-differentiation genes was associated with significantly improved RFS in ER+ BC patients. Together, these data suggest that the co-expression and subsequent activity of tumor cell GR and ER contribute to the less aggressive natural history of early-stage BC by coordinating the altered expression of genes favoring differentiation. Implications The interaction between estrogen and glucocorticoid receptor activity highlights the importance of context-dependent nuclear receptor function in cancer. PMID:27141101

  7. Extraction of glutathione from EFB fermentation waste using methanol with sonication process

    Science.gov (United States)

    Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni

    2017-11-01

    Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.

  8. The nature of the GRE influences the screening for GR-activity enhancing modulators.

    Directory of Open Access Journals (Sweden)

    Karen Dendoncker

    Full Text Available Glucocorticoid resistance (GCR, i.e. unresponsiveness to the beneficial anti-inflammatory activities of the glucocorticoid receptor (GR, poses a serious problem in the treatment of inflammatory diseases. One possible solution to try and overcome GCR, is to identify molecules that prevent or revert GCR by hyper-stimulating the biological activity of the GR. To this purpose, we screened for compounds that potentiate the dexamethasone (Dex-induced transcriptional activity of GR. To monitor GR transcriptional activity, the screen was performed using the lung epithelial cell line A549 in which a glucocorticoid responsive element (GRE coupled to a luciferase reporter gene construct was stably integrated. Histone deacetylase inhibitors (HDACi such as Vorinostat and Belinostat are two broad-spectrum HDACi that strongly increased the Dex-induced luciferase expression in our screening system. In sharp contrast herewith, results from a genome-wide transcriptome analysis of Dex-induced transcripts using RNAseq, revealed that Belinostat impairs the ability of GR to transactivate target genes. The stimulatory effect of Belinostat in the luciferase screen further depends on the nature of the reporter construct. In conclusion, a profound discrepancy was observed between HDACi effects on two different synthetic promoter-luciferase reporter systems. The favorable effect of HDACi on gene expression should be evaluated with care, when considering them as potential therapeutic agents. GEO accession number GSE96649.

  9. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    Science.gov (United States)

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of

  10. Glutathione Preservation during Storage of Rat Lenses in Optisol-GS and Castor Oil

    DEFF Research Database (Denmark)

    Holm, Thomas; Brøgger-Jensen, Martin Rocho; Johnson, Leif

    2013-01-01

    Glutathione concentration in the lens decreases in aging and cataractous lenses, providing a marker for tissue condition. Experimental procedures requiring unfrozen lenses from donor banks rely on transportation in storage medium, affecting lens homeostasis and alterations in glutathione levels. ....... The aim of the study was to examine the effects of Optisol-GS and castor oil on lens condition, determined from their ability to maintain glutathione concentrations....

  11. Glutathione-mediated biodegradable polyurethanes derived from L-arabinitol.

    Science.gov (United States)

    de Paz, M Violante; Zamora, Francisca; Begines, Belén; Ferris, Cristina; Galbis, Juan A

    2010-01-11

    The synthesis, characterization, and some properties of new glutathione-mediated biodegradable sugar-based copolyurethanes are described. These copolyurethanes were obtained by polyaddition reaction of mixtures of 2,2'-dithiodiethanol (DiT) and 2,3,4-tri-O-benzyl-L-arabinitol (ArBn) or 2,3,4-tri-O-methyl-L-arabinitol (ArMe) to 1,6-hexamethylene diisocyanate (HMDI). The copolymer compositions were studied by elemental microanalyses and (1)H NMR, revealing that the content of the copolymer units is in all cases very similar to that of their corresponding feed. The PU(DiT-HMDI) homopolymer exhibited a high crystallinity, but the introduction of the arabinitol-based diols led to a reduction in the crystallinity of the copolymers. In their TG curves, the copolymers exhibited a mixed trend of the related homopolymers, and all of them were thermally stable, with degradation temperatures above 220 degrees C. The degradation properties of the macromolecules under physiological conditions in the presence of glutathione were tested. All the copolyurethanes proved to be biodegradable under the experimental conditions (pH = 7.02 and 37 degrees C). The degradation pattern of the copolymers depended not only on the dithiodiethanol (DiT) reactive units ratio in the polymer backbone, but also on the crystallinity of the macromolecule.

  12. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis

    Directory of Open Access Journals (Sweden)

    Cristina Espinosa-Díez

    2018-04-01

    Full Text Available Glutathione (GSH biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL, which is composed of the catalytic (GCLc and the modulatory (GCLm subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice. In murine lung endothelial cells (MLEC derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177 and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+ male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+ mice. We observed that obstructed kidneys from Gclc(e/+ mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Keywords: Glutamate-cysteine ligase, ROS, Glutathione, Endothelial dysfunction, Kidney Fibrosis

  13. The role of glutathione transferases in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ćorić Vesna

    2016-01-01

    Full Text Available Mounting evidence suggest that members of the subfamily of cytosolic glutathione S-transferases (GSTs possess roles far beyond the classical glutathione-dependent enzymatic conjugation of electrophilic metabolites and xenobiotics. Namely, monomeric forms of certain GSTs are capable of forming protein: protein interactions with protein kinases and regulate cell apoptotic pathways. Due to this dual functionality of cytosolic GSTs, they might be implicated in both the development and the progression of renal cell carcinoma (RCC. Prominent genetic heterogeneity, resulting from the gene deletions, as well as from SNPs in the coding and non-coding regions of GST genes, might affect GST isoenzyme profiles in renal parenchyma and therefore serve as a valuable indicator for predicting the risk of cancer development. Namely, GSTs are involved in the biotransformation of several compounds recognized as risk factors for RCC. The most potent carcinogen of polycyclic aromatic hydrocarbon diol epoxides, present in cigarette smoke, is of benzo(apyrene (BPDE, detoxified by GSTs. So far, the relationship between GST genotype and BPDE-DNA adduct formation, in determining the risk for RCC, has not been evaluated in patients with RCC. Although the association between certain individual and combined GST genotypes and RCC risk has been debated in a the literature, the data on the prognostic value of GST polymorphism in patients with RCC are scarce, probably due to the fact that the molecular mechanism supporting the role of GSTs in RCC progression has not been clarified as yet.

  14. Glutathione transferase-mediated benzimidazole-resistance in Fusarium graminearum.

    Science.gov (United States)

    Sevastos, A; Labrou, N E; Flouri, F; Malandrakis, A

    2017-09-01

    Fusarium graminearum laboratory mutants moderately (MR) and highly (HR) benzimidazole-resistant, carrying or not target-site mutations at the β 2 -tubulin gene were utilized in an attempt to elucidate the biochemical mechanism(s) underlying the unique BZM-resistance paradigm of this fungal plant pathogen. Relative expression analysis in the presence or absence of carbendazim (methyl-2-benzimidazole carbamate) using a quantitative Real Time qPCR (RT-qPCR) revealed differences between resistant and the wild-type parental strain although no differences in expression levels of either β 1 - or β 2 -tubulin homologue genes were able to fully account for two of the highly resistant phenotypes. Glutathione transferase (GST)-mediated detoxification was shown to be -at least partly- responsible for the elevated resistance levels of a HR isolate bearing the β 2 -tubulin Phe200Tyr resistance mutation compared with another MR isolate carrying the same mutation. This benzimidazole-resistance mechanism is reported for the first time in F. graminearum. No indications of detoxification involved in benzimidazole resistance were found for the rest of the isolates as revealed by GST and glutathione peroxidase (GPx) activities and bioassays using monoxygenase and hydrolase detoxification enzyme inhibiting synergists. Interestingly, besides the Phe200Tyr mutation-carrying HR isolate, the remaining highly-carbendazim resistant phenotypes could not be associated with any of the target site modification/overproduction, detoxification or reduced uptake-increased efflux mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  16. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    International Nuclear Information System (INIS)

    Saito, K.; Warshaw, J.B.; Prough, R.A.

    1986-01-01

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35 S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol

  17. Acrolein-detoxifying isozymes of glutathione transferase in plants.

    Science.gov (United States)

    Mano, Jun'ichi; Ishibashi, Asami; Muneuchi, Hitoshi; Morita, Chihiro; Sakai, Hiroki; Biswas, Md Sanaullah; Koeduka, Takao; Kitajima, Sakihito

    2017-02-01

    Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 μM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.

  18. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    International Nuclear Information System (INIS)

    Slabaugh, M.B.; Mathews, C.K.

    1986-01-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using [ 35 S]methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated [ 3 H]thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses

  19. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M.

    1989-01-01

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by 31 P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase

  20. Crystallization and preliminary characterization of dihydropteridine reductase from Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Chen, Cong; Seo, Kyung Hye; Kim, Hye Lim; Zhuang, Ningning; Park, Young Shik; Lee, Kon Ho

    2008-01-01

    The dihydropteridine reductase from D. discoideum has been crystallized. Diffraction data were collected from a rectangular-shaped crystal to 2.16 Å resolution. Dihydropteridine reductase from Dictyostelium discoideum (dicDHPR) can produce d-threo-BH 4 [6R-(1′R,2′R)-5,6,7,8-tetrahydrobiopterin], a stereoisomer of l-erythro-BH 4 , in the last step of tetrahydrobiopterin (BH 4 ) recycling. In this reaction, DHPR uses NADH as a cofactor to reduce quinonoid dihydrobiopterin back to BH 4 . To date, the enzyme has been purified to homogeneity from many sources. In this report, the dicDHPR–NAD complex has been crystallized using the hanging-drop vapour-diffusion method with PEG 3350 as a precipitant. Rectangular-shaped crystals were obtained. Crystals grew to maximum dimensions of 0.4 × 0.6 × 0.1 mm. The crystal belonged to space group P2 1 , with unit-cell parameters a = 49.81, b = 129.90, c = 78.76 Å, β = 100.00°, and contained four molecules in the asymmetric unit, forming two closely interacting dicDHPR–NAD dimers. Diffraction data were collected to 2.16 Å resolution using synchrotron radiation. The crystal structure has been determined using the molecular-replacement method

  1. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from L...

  2. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  3. Substrate and cofactor binding to nitrile reductase : A mass spectrometry based study

    NARCIS (Netherlands)

    Gjonaj, L.; Pinkse, M.W.H.; Fernandez Fueyo, E.; Hollmann, F.; Hanefeld, U.

    2016-01-01

    Nitrile reductases catalyse a two-step reduction of nitriles to amines. This requires the binding of two NADPH molecules during one catalytic cycle. For the nitrile reductase from E. coli (EcoNR) mass spectrometry studies of the catalytic mechanism were performed. EcoNR is dimeric and has no Rossman

  4. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas; Bang, Maria Blanner; Rykær, Martin

    2017-01-01

    The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have...

  5. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression. ...

  6. No net splanchnic release of glutathione in man during N-acetylcysteine infusion

    DEFF Research Database (Denmark)

    Poulsen, H E; Vilstrup, H; Almdal, T

    1993-01-01

    Glutathione and amino acid concentrations were measured in arterial and hepatic vein plasma in four healthy volunteers and two patients with cirrhosis. There was no significant splanchnic efflux of glutathione (95% confidence limits, -0.501 to 0.405 mumol/min). After infusion of N...... to 0.97 +/- 0.11 (mean +/- SEM; p amino acids corresponded to an increased load on hepatic metabolic N conversion and transamination among nonessential amino acids. Splanchnic uptake of serine, alanine, cystine, isoleucine, and phenylalanine increased...... after NAC compatible with stimulated hepatic glutathione synthesis. In contrast to the rat, plasma glutathione in man probably originates mainly from extrahepatic tissues....

  7. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    Science.gov (United States)

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  9. Arte gráfico y tecnología una relación privada en la obra (gráfica) de Fabiola Ubani

    OpenAIRE

    Ubani García, Fabiola

    2015-01-01

    Programa de doctorado: En torno al problema de la génesis y el modelo en Arte y Arquitectura. Bienio 96/98 [ES]La tesis doctoral, Arte Gráfico y Tecnología una Relación Privada en la Obra (Gráfica) de Fabiola Ubani parte del análisis de la obra realizada por la Doctoranda a lo largo de veinticinco años de trayectoria artística. Obra en la que la tecnología ha jugado un papel fundamental, tanto en el proceso como en el producto. Por lo que el principal objetivo se orienta en: analizar y pro...

  10. Photoaffinity labelling of the active site of the rat glutathione transferases 3-3 and 1-1 and human glutathione transferase A1-1.

    OpenAIRE

    Cooke, R J; Björnestedt, R; Douglas, K T; McKie, J H; King, M D; Coles, B; Ketterer, B; Mannervik, B

    1994-01-01

    The glutathione transferases (GSTs) form a group of enzymes responsible for a wide range of molecular detoxications. The photoaffinity label S-(2-nitro-4-azidophenyl)glutathione was used to study the hydrophobic region of the active site of the rat liver GST 1-1 and 2-2 isoenzymes (class Alpha) as well as the rat class-Mu GST 3-3. Photoaffinity labelling was carried out using a version of S-(2-nitro-4-azidophenyl)glutathione tritiated in the arylazido ring. The labelling occurred with higher ...

  11. Impact of the application of humic acid and sodium nitroprusside on ...

    African Journals Online (AJOL)

    Nickel (Ni) is an essential micronutrient for plants but in high concentrations may turn toxic. This paper discusses the potential role of humic acid (HA) and sodium nitroprusside in modulating or preventing oxidative stress in rice plants. Three genes [superoxide dismutase (SOD) glutathione reductase (GR) and ascorbate ...

  12. La obra gráfica de Juan Carandell Pericay (I)

    OpenAIRE

    Naranjo-Ramírez, J.

    2007-01-01

    Revisión completa y exhaustiva de la obra gráfica del geólogo y geógrafo Juan Carandell (1893-1937). A través de dos artículos, publicados en sucesivos números de la misma revista, se procedió a la identificación, catalogación y clasificación de todos sus gráficos, mayoritariamente de carácter científico, así como a una restauración de los mismos; finalmente se ha realizado el estudio de toda esta producción gráfica, aportando en buen número de casos también la reproducción física en el seno ...

  13. La obra gráfica de Juan Carandell Pericay (y II)

    OpenAIRE

    Naranjo-Ramírez, J.

    2007-01-01

    Revisión completa y exhaustiva de la obra gráfica del geólogo y geógrafo Juan Carandell (1893-1937). A través de dos artículos, publicados en sucesivos números de la misma revista, se procedió a la identificación, catalogación y clasificación de todos sus gráficos, mayoritariamente de carácter científico, así como a una restauración de los mismos; finalmente se ha realizado el estudio de toda esta producción gráfica, aportando en buen número de casos también la reproducción física en el seno ...

  14. O desejo na Grécia Clássica

    Directory of Open Access Journals (Sweden)

    Zeferino Rocha

    Full Text Available O presente trabalho é a segunda parte de uma pesquisa que estou fazendo sobre “O Desejo na Grécia Antiga” e tem como objetivo apresentar as primeiras sistematizações teóricas que os filósofos da Grécia Clássica, particularmente Sócrates, Platão e Aristóteles, deram às manifestações do desejo, elaboradas pelos poetas épicos, líricos e trágicos e pelos filósofos da Grécia Arcaica. Demos especial destaque ao “Éros” socrático e ao que Platão diz sobre “Éros” no Banquete e no Fedro. E, finalmente, tentamos resumir o essencial da doutrina de Aristóteles sobre os fundamentos de uma metafísica do desejo.

  15. Multi-band photometric study of the short-period eclipsing binary GR Boo

    Science.gov (United States)

    Wang, Daimei; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng

    2017-05-01

    We present BVRI light curves with complete phase coverage for the short-period (p = 0.377day) eclipsing binary star GR Boo. We carried out the observations using the SARA 90 cm telescope located at Kitt Peak National Observatory. We obtained six new light curve minimum times. By fitting all of the available O-C minimum times, we obtained an updated ephemeris that shows the orbital period of GR Boo is decreasing at a rate of P˙ = - 2.36 ×10-7 days/year. This decrease in its period can be explained by either mass transfer from the more massive component to the less massive one, or angular momentum exchange due to magnetic activities. We also obtained a set of revised orbital parameters using the Wilson & Devinney program. And finally, we concluded that GR Boo is a contact binary with a dark spot.

  16. Gr-GDHP: A New Architecture for Globalized Dual Heuristic Dynamic Programming.

    Science.gov (United States)

    Zhong, Xiangnan; Ni, Zhen; He, Haibo

    2017-10-01

    Goal representation globalized dual heuristic dynamic programming (Gr-GDHP) method is proposed in this paper. A goal neural network is integrated into the traditional GDHP method providing an internal reinforcement signal and its derivatives to help the control and learning process. From the proposed architecture, it is shown that the obtained internal reinforcement signal and its derivatives can be able to adjust themselves online over time rather than a fixed or predefined function in literature. Furthermore, the obtained derivatives can directly contribute to the objective function of the critic network, whose learning process is thus simplified. Numerical simulation studies are applied to show the performance of the proposed Gr-GDHP method and compare the results with other existing adaptive dynamic programming designs. We also investigate this method on a ball-and-beam balancing system. The statistical simulation results are presented for both the Gr-GDHP and the GDHP methods to demonstrate the improved learning and controlling performance.

  17. Synthesis of isotopically labelled angiotensin II receptor antagonist GR138950X

    International Nuclear Information System (INIS)

    Carr, R.M.; Cable, K.M.; Newman, J.J.; Sutherland, D.R.

    1996-01-01

    Syntheses of [ 13 C] and [ 14 C]-labelled versions of angiotensin II receptor antagonist GR138950X, labelled in the imidazole carboxamide residue, are described. These involved preparation of an iodoimidazole substrate by a novel iododecarboxylation procedure, followed by cyanation with a mixture of carbon-labelled potassium cyanide and copper (l) iodide in DMF at high temperature. The preparation of a mass-labelled (M+5) version of GR138950X is also described. This involved the synthesis of an [ 13 C 3 , 15 N 2 ]-labelled imidazole from a 1,2,3-tricarbonyl compound, [ 13 C 3 ]propionaldehyde and [ 15 N]ammonia. The labelled imidazole was further elaborated into multiply-labelled GR138950X. (Author)

  18. Converging shock flows for a Mie-Grüneisen equation of state

    Science.gov (United States)

    Ramsey, Scott D.; Schmidt, Emma M.; Boyd, Zachary M.; Lilieholm, Jennifer F.; Baty, Roy S.

    2018-04-01

    Previous work has shown that the one-dimensional (1D) inviscid compressible flow (Euler) equations admit a wide variety of scale-invariant solutions (including the famous Noh, Sedov, and Guderley shock solutions) when the included equation of state (EOS) closure model assumes a certain scale-invariant form. However, this scale-invariant EOS class does not include even simple models used for shock compression of crystalline solids, including many broadly applicable representations of Mie-Grüneisen EOS. Intuitively, this incompatibility naturally arises from the presence of multiple dimensional scales in the Mie-Grüneisen EOS, which are otherwise absent from scale-invariant models that feature only dimensionless parameters (such as the adiabatic index in the ideal gas EOS). The current work extends previous efforts intended to rectify this inconsistency, by using a scale-invariant EOS model to approximate a Mie-Grüneisen EOS form. To this end, the adiabatic bulk modulus for the Mie-Grüneisen EOS is constructed, and its key features are used to motivate the selection of a scale-invariant approximation form. The remaining surrogate model parameters are selected through enforcement of the Rankine-Hugoniot jump conditions for an infinitely strong shock in a Mie-Grüneisen material. Finally, the approximate EOS is used in conjunction with the 1D inviscid Euler equations to calculate a semi-analytical Guderley-like imploding shock solution in a metal sphere and to determine if and when the solution may be valid for the underlying Mie-Grüneisen EOS.

  19. Objects, pictures and sounds: the ethnography of Theodor Koch-Grünberg (1872-1924

    Directory of Open Access Journals (Sweden)

    Erwin Frank

    2010-04-01

    Full Text Available The article characterizes the ethnological theory and method of Theodor Koch-Grünberg (1872-1924, a German anthropologist who made four visits to Brazil between 1896 and 1924, and who was especially noted for his writings about the Indians of the Rio Negro and Rio Branco, and the ethnographic collections, sound recordings, photography and films made during these journeys. The author relates this documentary material with Koch-Grünberg’s ethnographic project within the tradition of German Völkerkunde.

  20. Grüneisen parameter of the G mode of strained monolayer graphene

    KAUST Repository

    Cheng, Yingchun

    2011-03-28

    We present a detailed analysis of the effects of uniaxial and biaxial strain on the frequencies of the G mode of monolayer graphene, using first principles calculations. Our results allow us to explain discrepancies in the experimentally determined values of the Grüneisen parameter. The direction and strength of the applied strain, Poisson\\'s ratio of the substrate, and the intrinsic strain in different experimental setups turn out to be important. A reliable determination of the Grüneisen parameter is a prerequisite of strain engineering.

  1. Interfície gràfica per WPKG - distribució de programari

    OpenAIRE

    Garcia Morant, Josep

    2012-01-01

    Interfície gràfica per a la gestió del programari de lliure accés per a la distribució de programari WPKG (wpkg.org). Arquitectura MVC en un entorn J2EE6 utilitzant JSF2, JPA2 i EJB 3.1. Interfaz gráfica para la gestión del software de libre acceso para la distribución de software WPKG (wpkg.org). Arquitectura MVC en un entorno J2EE6 utilizando JSF2, JPA2 y EJB 3.1.

  2. Investigation of Public Charging Infrastructure : Case study Gränby sportfält

    OpenAIRE

    Dahl, Emma; Hedström, Andreas; Lindgren, Anna

    2017-01-01

    The municipal company Sportfastigheter AB is currently renovating and developing Gränby sportfält, a sports field in Uppsala. Adjacent to the sports field, a parking lot for 700 vehicles is located, where Sportfastigheter AB is preparing to install charging points for electric vehicles (EVs) at some of the places. This bachelor thesis aims to investigate how a public charging solution should be modeled, with the parking lot at Gränby sportfält as a case study. The investigation involves estim...

  3. Oracle Data Guard 11gR2 administration beginner's guide

    CERN Document Server

    Baransel, Emre

    2013-01-01

    Using real-world examples and hands-on tasks, Oracle Data Guard 11gR2 Administration Beginner's Guide will give you a solid foundation in Oracle Data Guard. It has been designed to teach you everything you need to know to successfully create and operate Data Guard environments with maximum flexibility, compatibility, and effectiveness.If you are an Oracle database administrator who wants to configure and administer Data Guard configurations, then ""Oracle Data Guard 11gR2 Administration Beginner's Guide"" is for you. With a basic understanding of Oracle database administration, you'll be able

  4. Sexismo en la publicidad gráfica del siglo XXI

    OpenAIRE

    Lesmes Fradejas, Yanire

    2014-01-01

    En la presente investigación se ha tratado el tema de la representación de la mujer estereotipada en la publicidad gráfica del siglo XXI. La publicidad hoy en día sigue teniendo rasgos sexistas y es lo que se ha querido demostrar mediante el análisis de varias gráficas debidamente clasificadas por categorías de productos donde la novedad recae sobre el análisis de publicidad con fines sociales y contra la violencia de género, encontrando en estas también signos de sexismo. Asimismo y bajo la ...

  5. Abanico de Gröbner y politopo de estados de un ideal

    OpenAIRE

    Rubio de Nicolás, Cristina

    2017-01-01

    Este trabajo tiene como objetivo hacer un estudio introductorio sobre los ideales iniciales respecto de órdenes monomiales de un ideal I del anillo k[x1;..., xm]. En él se enuncian algunos resultados técnicos sobre bases de Gröbner y geometría poliedral, necesarios para su desarrollo. En el trabajo se comprueba que existe un número finito de tales ideales iniciales, y se define el abanico de Gröbner de I, GF(I). Este abanico es un complejo poliedral de conos en el cual cada cono se correspond...

  6. Grüneisen parameter of the G mode of strained monolayer graphene

    KAUST Repository

    Cheng, Yingchun; Huang, Gaoshan; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2011-01-01

    We present a detailed analysis of the effects of uniaxial and biaxial strain on the frequencies of the G mode of monolayer graphene, using first principles calculations. Our results allow us to explain discrepancies in the experimentally determined values of the Grüneisen parameter. The direction and strength of the applied strain, Poisson's ratio of the substrate, and the intrinsic strain in different experimental setups turn out to be important. A reliable determination of the Grüneisen parameter is a prerequisite of strain engineering.

  7. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    International Nuclear Information System (INIS)

    Stevens, Graham; Joiner, Michael; Joiner, Barbara; Johns, Helen; Denekamp, Juliana

    1995-01-01

    Purpose: To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Methods and Materials: The feet of WHT mice were irradiated with single doses of 240 kVp x-rays while mice were exposed to carbogen or gases with oxygen/nitrogen mixtures containing 8-100% O 2 . The anoxic response was obtained by occluding the blood supply to the leg of anesthetized mice with a tourniquet, surrounding the foot with nitrogen, and allowing the mice to breathe 10% O 2 . Further experiments were performed to assess the efficacy of this method to obtain an anoxic response. Radiosensitivity of skin was assessed using the acute skin-reaction assay. Glutathione levels were modified using two schedules of dl-buthionine sulphoximine (BSO) and diethylmaleate (DEM), which were considered to produce extensive and intermediate levels of GSH depletion in the skin of the foot during irradiation. Results: Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. When skin radiosensitivity was plotted against the logarithm of the oxygen tension in the ambient gas, a sigmoid curve with a K value of 17-21% O 2 in the ambient gas was obtained. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O 2 in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediate levels of GSH

  8. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere.

    Science.gov (United States)

    Mashiyama, Susan T; Malabanan, M Merced; Akiva, Eyal; Bhosle, Rahul; Branch, Megan C; Hillerich, Brandan; Jagessar, Kevin; Kim, Jungwook; Patskovsky, Yury; Seidel, Ronald D; Stead, Mark; Toro, Rafael; Vetting, Matthew W; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C

    2014-04-01

    The cytosolic glutathione transferase (cytGST) superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this unusual reaction

  9. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    2014-04-01

    Full Text Available The cytosolic glutathione transferase (cytGST superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this

  10. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides.

    Science.gov (United States)

    Selvakumar, Karuthapandi; Shah, Poonam; Singh, Harkesh B; Butcher, Ray J

    2011-11-04

    The synthesis of some ebselen analogues and diaryl diselenides, which have amino acid functions as an intramolecularly coordinating group (Se···O) has been achieved by the DCC coupling procedure. The reaction of 2,2'-diselanediylbis(5-tert-butylisophthalic acid) or the activated ester tetrakis(2,5-dioxopyrrolidin-1-yl) 2,2'-diselanediylbis(5-tert-butylisophthalate) with different C-protected amino acids (Gly, L-Phe, L-Ala, and L-Trp) afforded the corresponding ebselen analogues. The used precursor diselenides have been found to undergo facile intramolecular cyclization during the amide bond formation reaction. In contrast, the DCC coupling of 2,2'-diselanediyldibenzoic acid with C-protected amino acids (Gly, L/D-Ala and L-Phe) affords the corresponding amide derivatives and not the ebselen analogues. Some of the representative compounds have been structurally characterized by single-crystal X-ray crystallography. The glutathione peroxidase (GPx)-like activities of the ebselen analogues and the diaryl diselenides have been evaluated by using the coupled reductase assay method. Intramolecularly stabilized ebselen analogues show slightly higher maximal velocity (V(max)) than ebselen. However, they do not show any GPx-like activity at low GSH concentrations at which ebselen and related diselenides are active. This could be attributed to the peroxide-mediated intramolecular cyclization of the corresponding selenenyl sulfide and diaryl diselenide intermediates generated during the catalytic cycle. Interestingly, the diaryl diselenides with alanine (L,L or D,D) amide moieties showed excellent catalytic efficiency (k(cat)/K(M)) with low K(M) values in comparison to the other compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees

    Directory of Open Access Journals (Sweden)

    Alberto eGonzález

    2014-10-01

    Full Text Available In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control, with OC kappa at 1 mg mL-1, or treated with inhibitors of NAD(PH, ascorbate (ASC and glutathione (GSH syntheses and thioredoxin reductase (TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS, adenosine 5´-phosphosulfate reductase (APR, involved in C, N and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism and growth in Eucalyptus trees.

  12. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Moenne, Fabiola; Gómez, Melissa; Sáez, Claudio A; Contreras, Rodrigo A; Moenne, Alejandra

    2014-01-01

    In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.

  13. Chronic Exposure to Tributyltin Induces Brain Functional Damage in Juvenile Common Carp (Cyprinus carpio)

    OpenAIRE

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-01-01

    The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish we...

  14. Glutathione in the modulation of radiosensitivity: a review

    International Nuclear Information System (INIS)

    Umadevi, P.; Prasanna, P.G.S.

    1993-01-01

    Glutathione (γ - glutamyl cysteinyl glycine, GSH) constitutes the major low molecular weight thiol compound in the mammalian cells. GSH has been assigned an important role in determining the inherent radiosensitivity of cells. Endogenous GSH involved in a number of radiation induced chemical processes, which help in the repair of radiation injury to the target molecules. Experimental evidence suggests that GSH competes with molecular oxygen in the cells to prevent fixation of DNA damage. Certain chemicals like buthionine sulfoximine are found to deplete the cellular GSH content by interactions at specific sites in the GSH cycle. It may be possible to take advantage of this phenomenon by increasing the radiosensitivity of hypoxic tumor cells, without seriously affecting the normal cells, so as to increase the therapeutic efficiency of radiation treatment. (author). 52 refs., 1 fig

  15. Erythrocytic glutathione peroxidase: Its relationship to plasma selenium in man

    International Nuclear Information System (INIS)

    Perona, G.; Cellerino, R.; Guidi, G.C.; Moschini, G.; Stievano, B.M.; Tregnaghi, C.

    1977-01-01

    Erythrocytic glutathione-peroxidase (GSH-Px) activity and plasma selenium concentrations were measured in 14 patients: 7 with iron deficiency and 7 with raised serum iron levels. The decreased enzymatic activity in iron deficiency was confirmed. Plasma selenium was significantly lower in patients with lower serum iron; furthermore there is a significant correlation between serum iron and plasma selenium concentrations. Another correlation even more significant was found between plasma selenium and enzyme activity in all the cases we studied. These data suggests that the importance of iron for GSH-Px activity may be merely due to its relationship with selenium and that plasma selenium concentration may be of critical importance for enzyme activity. (author)

  16. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  17. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    Science.gov (United States)

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity

  18. Ebselen: A substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant

    OpenAIRE

    Zhao, Rong; Masayasu, Hiroyuki; Holmgren, Arne

    2002-01-01

    Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], a seleno-organic compound with glutathione peroxidase-like activity is used in clinical trials against stroke. Human and bovine TrxR catalyzed the reduction of ebselen to ebselen selenol by NADPH with an apparent KM-value of 2.5 μM and a kcat of 588 min−1. The addition of thioredoxin (Trx) stimulated the TrxR-catalyzed reduction of ebselen several-fold. This result was caused by a very fast oxidation of reduced Trx by ebselen with a rate cons...

  19. Computational Modeling of the Catalytic Cycle of Glutathione Peroxidase Nanomimic.

    Science.gov (United States)

    Kheirabadi, Ramesh; Izadyar, Mohammad

    2016-12-29

    To elucidate the role of a derivative of ebselen as a mimic of the antioxidant selenoenzyme glutathione peroxidase, density functional theory and solvent-assisted proton exchange (SAPE) were applied to model the reaction mechanism in a catalytic cycle. This mimic plays the role of glutathione peroxidase through a four-step catalytic cycle. The first step is described as the oxidation of 1 in the presence of hydrogen peroxide, while selenoxide is reduced by methanthiol at the second step. In the third step of the reaction, the reduction of selenenylsulfide occurs by methanthiol, and the selenenic acid is dehydrated at the final step. Based on the kinetic parameters, step 4 is the rate-determining step (RDS) of the reaction. The bond strength of the atoms involved in the RDS is discussed with the quantum theory of atoms in molecules (QTAIM). Low value of electron density, ρ(r), and positive Laplacian values are the evidence for the covalent nature of the hydrogen bonds rupture (O 30 -H 31 , O 33 -H 34 ). A change in the sign of the Laplacian, L(r), from the positive value in the reactant to a negative character at the transition state indicates the depletion of the charge density, confirming the N 5 -H 10 and O 11 -Se 1 bond breaking. The analysis of electron location function (ELF) and localized orbital locator (LOL) of the Se 1 -N 5 and Se 1 -O 11 bonds have been done by multi-WFN program. High values of ELF and LOL at the transition state regions between the Se, N, and O atoms display the bond formation. Finally, the main donor-acceptor interaction energies were analyzed using the natural bond orbital analysis for investigation of their stabilization effects on the critical bonds at the RDS.

  20. Beta-amyloidolysis and glutathione in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lasierra-Cirujeda J

    2013-04-01

    Full Text Available J Lasierra-Cirujeda,1 P Coronel,2 MJ Aza,3 M Gimeno2 1CM Hematológico SC, Logroño, La Rioja, Spain; 2Tedec-Meiji Farma, SA, Alcalá de Henares, Madrid, Spain; 3Pharmaceutical Act, Ministry of Health, Regional Government, La Rioja, Spain Abstract: In this review, we hypothesized the importance of the interaction between the brain glutathione (GSH system, the proteolytic tissue plasminogen activator (t-PA/plasminogen/plasmin system, regulated by plasminogen activator inhibitor (PAI-1, and neuroserpin in the pathogenesis of Alzheimer's disease. The histopathological characteristic hallmark that gives personality to the diagnosis of Alzheimer's disease is the accumulation of neurofibroid tangles located intracellularly in the brain, such as the protein tau and extracellular senile plaques made primarily of amyloidal substance. These formations of complex etiology are intimately related to GSH, brain protective antioxidants, and the proteolytic system, in which t-PA plays a key role. There is scientific evidence that suggests a relationship between aging, a number of neurodegenerative disorders, and the excessive production of reactive oxygen species and accompanying decreased brain proteolysis. The plasminogen system in the brain is an essential proteolytic mechanism that effectively degrades amyloid peptides ("beta-amyloidolysis" through action of the plasmin, and this physiologic process may be considered to be a means of prevention of neurodegenerative disorders. In parallel to the decrease in GSH levels seen in aging, there is also a decrease in plasmin brain activity and a progressive decrease of t-PA activity, caused by a decrease in the expression of the t-PA together with an increase of the PAI-1 levels, which rise to an increment in the production of amyloid peptides and a lesser clearance of them. Better knowledge of the GSH mechanism and cerebral proteolysis will allow us to hypothesize about therapeutic practices. Keywords: glutathione

  1. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism......Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...

  2. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  3. Inhibition of acetaminophen oxidation by cimetidine and the effects on glutathione and activated sulphate synthesis rates

    DEFF Research Database (Denmark)

    Dalhoff, K; Poulsen, H E

    1993-01-01

    inhibition of cytochrome P-450 drug oxidation by cimetidine in isolated rat hepatocytes. The synthesis rates of glutathione and PAPS were determined simultaneously by an established method based on trapping of radioactivity (35S) in the prelabelled glutathione and PAPS pools. Preincubation of the hepatocytes...

  4. A mathematical modeling approach to assessing the reliabilty of biomarkers of glutathione metabolism.

    NARCIS (Netherlands)

    Geenen, S.; du Preez, F.B.; Reed, M.; Nijhout, H.F.; Kenna, J.G.; Wilson, I.D.; Westerhoff, H.V.; Snoep, J.L.

    2012-01-01

    One of the main pathways for the detoxification of reactive metabolites in the liver involves glutathione conjugation. Metabolic profiling studies have shown paradoxical responses in glutathione-related biochemical pathways. One of these is the increase in 5-oxoproline and ophthalmic acid

  5. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    International Nuclear Information System (INIS)

    Wang Qiang; Guan Yueping; Yang Mingzhu

    2012-01-01

    The superparamagnetic poly-(MA–DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA–DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA–DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione. - Highlights: ► The magnetic microsphere with surface IDA–Cu groups was synthesized. ► The magnetic microspheres were applied for adsorption of GSH. ► The adsorption–desorption of glutathione was investigated. ► The maximum adsorption capacity of GSH was fitted at 42.4 mg/g.

  6. Analysis of glutathione S-transferase (M1, T1 and P1) gene ...

    African Journals Online (AJOL)

    Glutathione S-transferase enzymes are active in detoxifying a wide number of endogenous and exogenous chemical carcinogens and subsequently, are crucial in protecting the DNA. Several studies show some differences in association of glutathione S-transferase M1, T1 and P1 genetic polymorphisms with the risk of ...

  7. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  8. Fatty acyl-CoA reductases of birds

    Science.gov (United States)

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  9. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism.

    Science.gov (United States)

    Shah, Halley; Speen, Adam M; Saunders, Christina; Brooke, Elizabeth A S; Nallasamy, Palanisamy; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity. © 2014 by the Society for Experimental Biology and Medicine.

  10. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Illuga saga Gríðarfóstra in Sweden

    DEFF Research Database (Denmark)

    Lavender, Philip Thomas

    2014-01-01

    This article looks at the intellectual history behind and scholarly preparation towards the first edition of Illuga saga Gríðarfóstra in Sweden in 1695. One of the main questions which the article tries to answer is why an edition of a saga about Danish kings and heroes would end up being produce...

  12. Saying Hello World with GrGen.NET - A Solution to the TTC 2011 Instructive Case

    Directory of Open Access Journals (Sweden)

    Sebastian Buchwald

    2011-11-01

    Full Text Available We introduce the graph transformation tool GrGen.NET (www.grgen.net by solving the Hello World Case of the Transformation Tool Contest 2011 which consists of a collection of small transformation tasks; for each task a section is given explaining our implementation.

  13. Lokal Agenda 21 – udfordring for de grønne forvaltninger

    DEFF Research Database (Denmark)

    Guldager, Susanne

    2004-01-01

    Lokal Agenda 21 forpligter kommuner til at arbejde for en bæredygtig udvikling i lokalområdet. Denne forpligtigelse omfatter også de grønne forvaltninger, og giver forvaltningerne mulighed for at tænke strategisk både på nationalt og globalt plan i forhold til de beslutninger og handlinger, der...

  14. Kolmanda põlvkonna mobiilside saab hoogu / Tõnu Grünberg

    Index Scriptorium Estoniae

    Grünberg, Tõnu, 1963-

    2003-01-01

    EMT arendus- ja tehnoloogiadirektor Tõnu Grünberg kommenteerib 3G mobiilsidevõrgu arengut maailmas ning prognoosib, et aastaks 2005 jõutakse ka Eestis toimiva 3G kommertsvõrguni. 3G toob mobiilse andmeside arengusse olulise hüppe, leiab autor

  15. How to falsify the GR+ΛCDM model with galaxy redshift surveys

    International Nuclear Information System (INIS)

    Acquaviva, Viviana; Gawiser, Eric

    2010-01-01

    A wide range of models describing modifications to general relativity have been proposed, but no fundamental parameter set exists to describe them. Similarly, no fundamental theory exists for dark energy to parametrize its potential deviation from a cosmological constant. This motivates a model-independent search for deviations from the concordance GR+ΛCDM cosmological model in large galaxy redshift surveys. We describe two model-independent tests of the growth of cosmological structure, in the form of quantities that must equal one if GR+ΛCDM is correct. The first, ε, was introduced previously as a scale-independent consistency check between the expansion history and structure growth. The second, υ, is introduced here as a test of scale-dependence in the linear evolution of matter density perturbations. We show that the ongoing and near-future galaxy redshift surveys WiggleZ, BOSS, and HETDEX will constrain these quantities at the 5-10% level, representing a stringent test of concordance cosmology at different redshifts. When redshift space distortions are used to probe the growth of cosmological structure, galaxies at higher redshift with lower bias are found to be most powerful in detecting the presence of deviations from the GR+ΛCDM model. However, because many dark energy or modified gravity models predict consistency with GR+ΛCDM at high redshift, it is desirable to apply this approach to surveys covering a wide range of redshifts and spatial scales.

  16. Jahn-Teller coupling at ND1 and GR1 centres in diamond

    International Nuclear Information System (INIS)

    Lowther, J.E.

    1978-01-01

    Stress parameters associated with the splitting of the GR1 and ND1 lines are examined in the light of the recent suggestion that ND1 arises from the negatively charged vacancy. The stress parameters are totally consistent with this interpretation; Jahn-Teller coupling in the excited states being similar for both centres. (author)

  17. Volume dependence of Grüneisen parameter for solids under

    Indian Academy of Sciences (India)

    2016-07-09

    Jul 9, 2016 ... 1School of Physics and Materials Science, P.O. Box 32, Bhadson Road, Thapar University,. Patiala 147 004, India. 2Shivalik Institute of Engineering and Technology, ... The knowledge of Grüneisen parameter is also required for investigating the melting curves from Lindemann–. Gilvarry criterion [1,2].

  18. Gødning er mere vigtig for grønkåls smag end frost

    DEFF Research Database (Denmark)

    Grønbæk, Marie

    2016-01-01

    Mange kender myten om, at grønkål smager bedre efter termometret har været nede i det blå felt. Ny forskning viser, at smagen ganske rigtigt ændrer sig – men mængden af gødning er faktisk mere afgørende for smagen....

  19. Instalación solar fotovoltaica aislada para una industria de artes gráficas

    OpenAIRE

    MUÑOZ PRADES, ÓSCAR

    2018-01-01

    El alumno diseñará una instalación solar fotovoltaica aislada de la red eléctrica, para suministrar los consumos necesarios a una industria de artes gráficas. Realizando tanto el diseño de la instalación como su presupuesto y amortización. TFGM

  20. Muuga / Mary von Grünewaldt ; tõlk. Mati Sirkel

    Index Scriptorium Estoniae

    Grünewaldt, Mary von

    2004-01-01

    Leo Zoegelt ostetud Muuga mõisahoone korrastamisest ja uue hoone ehitamisest C. T. von Neffi kunstikogu paigutamise tarbeks. Tütre mälestused. Tõlgitud raamatust: Skizzen und Bilder aus dem Leben Carl Timoleon von Neff / Mary von Grünewaldt. Darmstadt, 1887