WorldWideScience

Sample records for reducing rollback propagation

  1. Local rollback for fault-tolerance in parallel computing systems

    Science.gov (United States)

    Blumrich, Matthias A [Yorktown Heights, NY; Chen, Dong [Yorktown Heights, NY; Gara, Alan [Yorktown Heights, NY; Giampapa, Mark E [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugavanam, Krishnan [Yorktown Heights, NY

    2012-01-24

    A control logic device performs a local rollback in a parallel super computing system. The super computing system includes at least one cache memory device. The control logic device determines a local rollback interval. The control logic device runs at least one instruction in the local rollback interval. The control logic device evaluates whether an unrecoverable condition occurs while running the at least one instruction during the local rollback interval. The control logic device checks whether an error occurs during the local rollback. The control logic device restarts the local rollback interval if the error occurs and the unrecoverable condition does not occur during the local rollback interval.

  2. Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer. Ph.D. Thesis

    Science.gov (United States)

    Alewine, Neal Jon

    1993-01-01

    Multiple instruction rollback (MIR) is a technique to provide rapid recovery from transient processor failures and was implemented in hardware by researchers and slow in mainframe computers. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs were also developed which remove rollback data hazards directly with data flow manipulations, thus eliminating the need for most data redundancy hardware. Compiler-assisted techniques to achieve multiple instruction rollback recovery are addressed. It is observed that data some hazards resulting from instruction rollback can be resolved more efficiently by providing hardware redundancy while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations were conducted which indicate improved efficiency over previous hardware-based and compiler-based schemes. Various enhancements to the compiler transformations and to the data redundancy hardware developed for the compiler-assisted MIR scheme are described and evaluated. The final topic deals with the application of compiler-assisted MIR techniques to aid in exception repair and branch repair in a speculative execution architecture.

  3. Fault-tolerant sub-lithographic design with rollback recovery

    International Nuclear Information System (INIS)

    Naeimi, Helia; DeHon, Andre

    2008-01-01

    Shrinking feature sizes and energy levels coupled with high clock rates and decreasing node capacitance lead us into a regime where transient errors in logic cannot be ignored. Consequently, several recent studies have focused on feed-forward spatial redundancy techniques to combat these high transient fault rates. To complement these studies, we analyze fine-grained rollback techniques and show that they can offer lower spatial redundancy factors with no significant impact on system performance for fault rates up to one fault per device per ten million cycles of operation (P f = 10 -7 ) in systems with 10 12 susceptible devices. Further, we concretely demonstrate these claims on nanowire-based programmable logic arrays. Despite expensive rollback buffers and general-purpose, conservative analysis, we show the area overhead factor of our technique is roughly an order of magnitude lower than a gate level feed-forward redundancy scheme

  4. Checkpoint-based forward recovery using lookahead execution and rollback validation in parallel and distributed systems. Ph.D. Thesis, 1992

    Science.gov (United States)

    Long, Junsheng

    1994-01-01

    This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR.

  5. Use of common time base for checkpointing and rollback recovery in a distributed system

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.

    1993-01-01

    An approach to checkpointing and rollback recovery in a distributed computing system using a common time base is proposed. A common time base is established in the system using a hardware clock synchronization algorithm. This common time base is coupled with the idea of pseudo-recovery points to develop a checkpointing algorithm that has the following advantages: reduced wait for commitment for establishing recovery lines, fewer messages to be exchanged, and less memory requirement. These advantages are assessed quantitatively by developing a probabilistic model.

  6. Hurricane risk assessment to rollback or ride out a cost versus loss decision making approach

    Science.gov (United States)

    Wohlman, Richard A.

    1992-01-01

    The potential exists that a hurricane striking the Kennedy Space Center while a Space Shuttle is on the pad. Winds in excess of 74.5 knots could cause the failure of the holddown bolts bringing about the catastrophic loss of the entire vehicle. Current plans call for the rollback of the shuttle when winds of that magnitude are forecast to strike the center. As this is costly, a new objective method for making rollback/rideout decisions based upon Bayesian Analysis and economic cost versus loss is presented.

  7. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    Science.gov (United States)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  8. Rollback of an intraoceanic subduction system and termination against a continental margin

    Science.gov (United States)

    Campbell, S. M.; Simmons, N. A.; Moucha, R.

    2017-12-01

    The Southeast Indian Slab (SEIS) seismic anomaly has been suggested to represent a Tethyan intraoceanic subduction system which operated during the Jurassic until its termination at or near the margin of East Gondwana (Simmons et al., 2015). As plate reconstructions suggest the downgoing plate remained coupled to the continental margin, this long-lived system likely experienced a significant amount of slab rollback and trench migration (up to 6000 km). Using a 2D thermomechanical numerical code that includes the effects of phase transitions, we test this interpretation by modeling the long-term subduction, transition zone stagnation, and rollback of an intraoceanic subduction system in which the downgoing plate remains coupled to a continental margin. In addition, we also investigate the termination style of such a system, with a particular focus on the potential for some continental subduction beneath an overriding oceanic plate. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-735738

  9. Simulation of reactive nanolaminates using reduced models: II. Normal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher; Knio, Omar M. [Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)

    2010-03-15

    Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)

  10. Oppositely directed pairs of propagating rifts in back-arc basins: Double saloon door seafloor spreading during subduction rollback

    Science.gov (United States)

    Martin, A. K.

    2006-06-01

    When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of

  11. A major Early Miocene thermal pulse due to subduction segmentation and rollback in the western Mediterranean region

    Science.gov (United States)

    Spakman, W.; Van Hinsbergen, D. J.; Vissers, R.

    2012-12-01

    Geological studies have shown that Eo-Oligocene subduction related high-pressure, low-temperature metasediments and peridotites of the Alboran region (Spain, Morocco) and the Kabylides (Algeria) experienced a major Early Miocene (~21 Ma) thermal pulse requiring asthenospheric temperatures at ~60 km depth. Despite earlier propositions, the cause of this thermal pulse is still controversial while also the paleogeographic origin of the Alboran and Kabylides units is debated. Here, we relate the thermal pulse to segmentation of the West Alpine-Tethyan slab under the SE Iberian margin (Baleares-Sardinia). We restore the Alboran rocks farther east than previously assumed, to close to the Balearic Islands, adjacent to Sardinia. We identify three major lithosphere faults, the NW-SE trending North Balearic Transform Zone (NBTZ) and the ~W-E trending Emile Baudot and North African transforms that accommodated the Miocene subduction evolution of slab segmentation, rollback, and migration of Alboran and Kabylides rocks to their current positions. The heat pulse occurred S-SE of the Baleares where slab segmentation along the NBTZ triggered radially outgrowing S-SW rollback opening a slab window that facilitated local ascent of asthenosphere below the rapidly extending Alboran-Kabylides accretionary prism. Subsequent slab rollback carried the Kabylides and Alboran domains to their present positions. Our new reconstruction is in line with tomographically imaged mantle structure and focuses attention on the crucial role of evolving subduction segmentation driving HT-metamorphism and subsequent extension, fragmentation, and dispersion of geological terrains.

  12. Rollback recovery with low overhead for fault tolerance in mobile ad hoc networks

    Directory of Open Access Journals (Sweden)

    Parmeet Kaur Jaggi

    2015-10-01

    Full Text Available Mobile ad hoc networks (MANETs have significantly enhanced the wireless networks by eliminating the need for any fixed infrastructure. Hence, these are increasingly being used for expanding the computing capacity of existing networks or for implementation of autonomous mobile computing Grids. However, the fragile nature of MANETs makes the constituent nodes susceptible to failures and the computing potential of these networks can be utilized only if they are fault tolerant. The technique of checkpointing based rollback recovery has been used effectively for fault tolerance in static and cellular mobile systems; yet, the implementation of existing protocols for MANETs is not straightforward. The paper presents a novel rollback recovery protocol for handling the failures of mobile nodes in a MANET using checkpointing and sender based message logging. The proposed protocol utilizes the routing protocol existing in the network for implementing a low overhead recovery mechanism. The presented recovery procedure at a node is completely domino-free and asynchronous. The protocol is resilient to the dynamic characteristics of the MANET; allowing a distributed application to be executed independently without access to any wired Grid or cellular network access points. We also present an algorithm to record a consistent global snapshot of the MANET.

  13. One-particle reducible contribution to the one-loop spinor propagator in a constant field

    Directory of Open Access Journals (Sweden)

    N. Ahmadiniaz

    2017-11-01

    Full Text Available Extending work by Gies and Karbstein on the Euler–Heisenberg Lagrangian, it has recently been shown that the one-loop propagator of a charged scalar particle in a constant electromagnetic field has a one-particle reducible contribution in addition to the well-studied irreducible one. Here we further generalize this result to the spinor case, and find the same relation between the reducible term, the tree-level propagator and the one-loop Euler–Heisenberg Lagrangian as in the scalar case. Our demonstration uses a novel worldline path integral representation of the photon-dressed spinor propagator in a constant electromagnetic field background.

  14. Long distance transport of eclogite and blueschist during early Pacific Ocean subduction rollback

    Science.gov (United States)

    Tamblyn, Renee; Hand, Martin; Kelsey, David; Phillips, Glen; Anczkiewicz, Robert

    2017-04-01

    The Tasmanides in eastern Australia represent a period of continental crustal growth on the western margin of the Pacific Ocean associated with slab rollback from the Cambrian until the Triassic. During rollback numerical models predict that subduction products can become trapped in the forearc (Geyra et al., 2002), and can migrate with the trench as it retreats. In a long-lived subduction controlled regime such as the Tasmanides, this should result in an accumulation of subduction products with protracted geochronological and metamorphic histories. U-Pb, Lu-Hf, Sm-Nd and Ar-Ar geochronology and phase equilibria modelling of lawsonite-eclogite and garnet blueschist in the Southern New England Fold Belt in Australia demonstrate that high-P low-T rocks remained within a subduction setting for c. 40 Ma, from c. 500 to 460 Ma. High-P metamorphic rocks initially formed close to the Australian cratonic margin during the late Cambrian, and were subsequently transported over 1500 Ma oceanward, during which time subducted material continued to accumulate, resulting in the development of complex mélange which records eclogite and blueschist metamorphism and partial exhumation over 40 Ma. The duration of refrigerated metamorphism approximates the extensional evolution of the upper plate which culminated in the development of the Lachlan Fold Belt. The protracted record of eclogite and blueschist metamorphism indicates that rapid exhumation is not necessarily required for preservation of high-pressure metamorphic rocks from subduction systems. Reference: Gerya, T. V., Stockhert, B., & Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 6-1-6-19. doi:10.1029/2002tc001406

  15. Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems. Ph.D. Thesis

    Science.gov (United States)

    Wang, Yi-Min

    1993-01-01

    Checkpointing and rollback recovery are techniques that can provide efficient recovery from transient process failures. In a message-passing system, the rollback of a message sender may cause the rollback of the corresponding receiver, and the system needs to roll back to a consistent set of checkpoints called recovery line. If the processes are allowed to take uncoordinated checkpoints, the above rollback propagation may result in the domino effect which prevents recovery line progression. Traditionally, only obsolete checkpoints before the global recovery line can be discarded, and the necessary and sufficient condition for identifying all garbage checkpoints has remained an open problem. A necessary and sufficient condition for achieving optimal garbage collection is derived and it is proved that the number of useful checkpoints is bounded by N(N+1)/2, where N is the number of processes. The approach is based on the maximum-sized antichain model of consistent global checkpoints and the technique of recovery line transformation and decomposition. It is also shown that, for systems requiring message logging to record in-transit messages, the same approach can be used to achieve optimal message log reclamation. As a final topic, a unifying framework is described by considering checkpoint coordination and exploiting piecewise determinism as mechanisms for bounding rollback propagation, and the applicability of the optimal garbage collection algorithm to domino-free recovery protocols is demonstrated.

  16. A fractional factorial probabilistic collocation method for uncertainty propagation of hydrologic model parameters in a reduced dimensional space

    Science.gov (United States)

    Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.

    2015-10-01

    In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.

  17. Novel error propagation approach for reducing H2S/O2 reaction mechanism

    International Nuclear Information System (INIS)

    Selim, H.; Gupta, A.K.; Sassi, M.

    2012-01-01

    A reduction strategy of hydrogen sulfide/oxygen reaction mechanism is conducted to simplify the detailed mechanism. Direct relation graph and error propagation methodology (DRGEP) has been used. A novel approach of direct elementary reaction error (DERE) has been developed in this study. The developed approach allowed for further reduction of the reaction mechanism. The reduced mechanism has been compared with the detailed mechanism under different conditions to emphasize its validity. The results obtained from the resulting reduced mechanism showed good agreement with that from the detailed mechanism. However, some discrepancies have been found for some species. Hydrogen and oxygen mole fractions showed the largest discrepancy of all combustion products. The reduced mechanism was also found to be capable of tracking the changes that occur in chemical kinetics through the change in reaction conditions. A comparison on the ignition delay time obtained from the reduced mechanism and previous experimental data showed good agreement. The reduced mechanism was used to track changes in mechanistic pathways of Claus reactions with the reaction progress.

  18. Optical trapping of nanoparticles with significantly reduced laser powers by using counter-propagating beams (Presentation Recording)

    Science.gov (United States)

    Zhao, Chenglong; LeBrun, Thomas W.

    2015-08-01

    Gold nanoparticles (GNP) have wide applications ranging from nanoscale heating to cancer therapy and biological sensing. Optical trapping of GNPs as small as 18 nm has been successfully achieved with laser power as high as 855 mW, but such high powers can damage trapped particles (particularly biological systems) as well heat the fluid, thereby destabilizing the trap. In this article, we show that counter propagating beams (CPB) can successfully trap GNP with laser powers reduced by a factor of 50 compared to that with a single beam. The trapping position of a GNP inside a counter-propagating trap can be easily modulated by either changing the relative power or position of the two beams. Furthermore, we find that under our conditions while a single-beam most stably traps a single particle, the counter-propagating beam can more easily trap multiple particles. This (CPB) trap is compatible with the feedback control system we recently demonstrated to increase the trapping lifetimes of nanoparticles by more than an order of magnitude. Thus, we believe that the future development of advanced trapping techniques combining counter-propagating traps together with control systems should significantly extend the capabilities of optical manipulation of nanoparticles for prototyping and testing 3D nanodevices and bio-sensing.

  19. Temporal scaling in information propagation

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  20. Reduced reabsorption and enhanced propagation induced by large Stokes shift in quantum dot-filled optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hua; Zhang, Yu, E-mail: yuzhang@jlu.edu.cn; Lu, Min; Liu, Wenyan [Jilin University, State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering (China); Xu, Jian [The Pennsylvania State University, Department of Engineering Science and Mechanics (United States); Yu, William W., E-mail: wyu6000@gmail.com [Jilin University, State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering (China)

    2016-07-15

    With tunable emission wavelength, high photoluminescence quantum yield, and broad absorption, colloidal quantum dots are attractive for the application in optical fiber as dopants. However, most of the quantum dots have a large overlap between their absorption and photoluminescence spectra, resulting in reabsorption loss which hinders the realization of long-distance waveguides. Therefore, ZnCuInS/ZnSe/ZnS quantum dots with large Stokes shift were proposed to fabricate a liquid-core optical fiber in this work. In this work, ZnCuInS/ZnSe/ZnS QDs with an average size of 3.3 nm were synthesized and the optical properties of the QD-filled fiber were also investigated as a function of fiber length and doping concentration. Compared to the control sample filled with CdSe/CdS/ZnS quantum dots, the ZnCuInS/ZnSe/ZnS quantum dot-based waveguides showed reduced reabsorption and enhanced signal propagation, which demonstrates great potential of large Stokes-shift quantum dots in optical waveguide devices.Graphical AbstractA reduced reabsorption and enhanced propagation of ZnCuInS/ZnSe/ZnS QDs-doped liquid-core optical fiber was achieved due to the large Stokes shift.

  1. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models.

    Science.gov (United States)

    Games, Dora; Valera, Elvira; Spencer, Brian; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Patrick, Christina; Ubhi, Kiren; Nuber, Silke; Sacayon, Patricia; Zago, Wagner; Seubert, Peter; Barbour, Robin; Schenk, Dale; Masliah, Eliezer

    2014-07-09

    Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease. Copyright © 2014 the authors 0270-6474/14/349441-14$15.00/0.

  2. Study of Propagation Mechanisms in Dynamical Railway Environment to Reduce Computation Time of 3D Ray Tracing Simulator

    Directory of Open Access Journals (Sweden)

    Siham Hairoud

    2013-01-01

    Full Text Available In order to better assess the behaviours of the propagation channel in a confined environment such as a railway tunnel for subway application, we present an optimization method for a deterministic channel simulator based on 3D ray tracing associated to the geometrical optics laws and the uniform theory of diffraction. This tool requires a detailed description of the environment. Thus, the complexity of this model is directly bound to the complexity of the environment and specifically to the number of facets that compose it. In this paper, we propose an algorithm to identify facets that have no significant impact on the wave propagation. This allows us to simplify the description of the geometry of the modelled environment by removing them and by this way, to reduce the complexity of our model and therefore its computation time. A comparative study between full and simplified environment is led and shows the impact of this proposed method on the characteristic parameters of the propagation channel. Thus computation time obtained from the simplified environment is 6 times lower than the one of the full model without significant degradation of simulation accuracy.

  3. The accuracy of dynamic attitude propagation

    Science.gov (United States)

    Harvie, E.; Chu, D.; Woodard, M.

    1990-01-01

    Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.

  4. In vitro propagation of Paphiopedilum orchids.

    Science.gov (United States)

    Zeng, Songjun; Huang, Weichang; Wu, Kunlin; Zhang, Jianxia; da Silva, Jaime A Teixeira; Duan, Jun

    2016-01-01

    Paphiopedilum is one of the most popular and rare orchid genera. Members of the genus are sold and exhibited as pot plants and cut flowers. Wild populations of Paphiopedilum are under the threat of extinction due to over-collection and loss of suitable habitats. A reduction in their commercial value through large-scale propagation in vitro is an option to reduce pressure from illegal collection, to attempt to meet commercial needs and to re-establish threatened species back into the wild. Although they are commercially propagated via asymbiotic seed germination, Paphiopedilum are considered to be difficult to propagate in vitro, especially by plant regeneration from tissue culture. This review aims to cover the most important aspects and to provide an up-to-date research progress on in vitro propagation of Paphiopedilum and to emphasize the importance of further improving tissue culture protocols for ex vitro-derived explants.

  5. Design Change Model for Effective Scheduling Change Propagation Paths

    Science.gov (United States)

    Zhang, Hai-Zhu; Ding, Guo-Fu; Li, Rong; Qin, Sheng-Feng; Yan, Kai-Yin

    2017-09-01

    Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train's bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency.

  6. Latest Cretaceous "A2-type" granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Aydin, Faruk; Uysal, Ibrahim; Dokuz, Abdurrahman; Kumral, Mustafa; Kandemir, Raif; Budakoglu, Murat; Ketenci, Murat

    2018-03-01

    An integrated study of comprehensive geochronological, geochemical, and Sr-Nd-Hf isotopic data was undertaken for the A-type Topcam pluton that intruded within the Sakarya Zone (NE Turkey) with the aims of elucidating its origin and tectonic significance and gaining new insights into the generation of aluminous A-type granites. New LA-ICP-MS zircon U-Pb crystallization ages of 72 and 73 Ma indicate emplacement in the Late Cretaceous time, just after extensive metaluminous I-type magmatism in the area. The pluton consists mainly of alkali feldspar, quartz, plagioclase, amphibole, and biotite with accessory minerals such as magnetite, apatite, and zircon. The outcrop is composed of granite, syenite, monzonite, and quartz monzonite and possesses a wide range of SiO2 content (57-70 wt%) with elevated Ga/Al ratios and low Mg# (mostly negative Eu (Eu/Eu* = 0.31 to 0.86) anomalies on the chondrite-normalized REE diagram. The rocks are enriched in some large ion lithophile elements (e.g., Rb, Th and Ba), and spidergrams show a relative depletion in Nb, Ti, and Sr. The granitic rocks of the pluton have identical 87Sr/86Sr(i) ratios ranging from 0.70518 to 0.70716, relatively low εNd (t) values varying from - 5.5 to - 0.4, and TDM ages (0.82-1.19 Ga). In situ zircon analyses show that the rocks have variable negative and positive εHf (t) values (- 5.5 to 5.9) and Hf two-stage model ages (742 to 1468 Ma), which are indicative of minor addition of juvenile material. Sr-Nd isotope modelling suggests mixing of 70-90% of lower crustal-derived melt with 10-30% of mantle-derived melt at lower crust depths. The heat source for partial melting is provided by upwelling of hot asthenosphere triggered by slab roll-back events. Geochemical and isotopic data reveal that metaluminous A2-type granites were derived from partial melting of the Paleozoic lower continental crust dominated by mafic rocks in amphibolitic composition, with minor input of subcontinental lithospheric mantle

  7. Dynamic 8-state ICSAR rumor propagation model considering official rumor refutation

    Science.gov (United States)

    Zhang, Nan; Huang, Hong; Su, Boni; Zhao, Jinlong; Zhang, Bo

    2014-12-01

    With the rapid development of information networks, negative impacts of rumor propagation become more serious. Nowadays, knowing the mechanisms of rumor propagation and having an efficient official rumor refutation plan play very important roles in reducing losses and ensuring social safety. In this paper we first develop the dynamic 8-state ICSAR (Ignorance, Information Carrier, Information Spreader, Information Advocate, Removal) rumor propagation model to study the mechanism of rumor propagation. Eight influencing factors including information attraction, objective identification of rumors, subjective identification of people, the degree of trust of information media, spread probability, reinforcement coefficient, block value and expert effects which are related to rumor propagation were analyzed. Next, considering these factors and mechanisms of rumor propagation and refutation, the dynamic 8-state ICSAR rumor propagation model is verified by the SIR epidemic model, computer simulation and actual data. Thirdly, through quantitative sensitivity analysis, the detailed function of each influencing factor was studied and shown in the figure directly. According to these mechanisms, we could understand how to block a rumor in a very efficient way and which methods should be chosen in different situations. The ICSAR model can divide people into 8 states and analyze rumor and anti-rumor dissemination in an accurate way. Furthermore, official rumor refutation is considered in rumor propagation. The models and the results are essential for improving the efficiency of rumor refutation and making emergency plans, which help to reduce the possibility of losses in disasters and rumor propagation.

  8. NLO error propagation exercise: statistical results

    International Nuclear Information System (INIS)

    Pack, D.J.; Downing, D.J.

    1985-09-01

    Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or 235 U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, 235 U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and 235 U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods

  9. Depletion of microglia and inhibition of exosome synthesis halt tau propagation

    Science.gov (United States)

    Asai, Hirohide; Ikezu, Seiko; Tsunoda, Satoshi; Medalla, Maria; Luebke, Jennifer; Haydar, Tarik; Wolozin, Benjamin; Butovsky, Oleg; Kügler, Sebastian; Ikezu, Tsuneya

    2015-01-01

    Accumulation of pathological tau protein is a major hallmark of Alzheimer’s disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus–based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target. PMID:26436904

  10. Dynamics of subduction, accretion, exhumation and slab roll-back: Mediterranean scenarios

    Science.gov (United States)

    Tirel, C.; Brun, J.; Burov, E. B.; Wortel, M. J.; Lebedev, S.

    2010-12-01

    A dynamic orogen reveals various tectonic processes brought about by subduction: accretion of oceanic and continental crust, exhumation of UHP-HP rocks, and often, back-arc extension. In the Mediterranean, orogeny is strongly affected by slab retreat, as in the Aegean and Tyrrhenian Seas. In order to examine the different dynamic processes in a self-consistent manner, we perform a parametric study using the fully coupled thermo-mechanical numerical code PARAFLAM. The experiments reproduce a subduction zone in a slab pull mode, with accretion of one (the Tyrrhenian case) and two continental blocks (the Aegean case) that undergo, in sequence, thrusting, burial and exhumation. The modeling shows that despite differences in structure between the two cases, the deformation mechanisms are fundamentally similar and can be described as follows. The accretion of a continental block at the trench beneath the suture zone begins with its burial to UHP-HP conditions and thrusting. Then the continental block is delaminated from its subducting lithosphere. During the subduction-accretion process, the angle of the subducting slab increases due to the buoyancy of the continental block. When the oceanic subduction resumes, the angle of the slab decreases to reach a steady-state position. The Aegean and Tyrrhenian scenarios diverge at this stage, due naturally to the differences of their accretion history. When continental accretion is followed by oceanic subduction only, the continental block that has been accreted and detached stays at close to the trench and does not undergo further deformation, despite the continuing rollback. The extensional deformation is located further within the overriding plate, resulting in continental breakup and the development of an oceanic basin, as in the Tyrrhenian domain. When the continental accretion is followed first by oceanic subduction and then by accretion of another continental block, however, the evolution of the subduction zone is

  11. Management of Botryosphaeriaceae species infection in grapevine propagation materials

    Directory of Open Access Journals (Sweden)

    Regina BILLONES-BAAIJENS

    2015-09-01

    Full Text Available In New Zealand grapevine propagation nurseries, Botryosphaeriaceae species have been reported to infect the source blocks of the nursery propagators leading to infection of the propagation materials. This research investigated the efficacy of different control methods which could prevent infection or eradicate the pathogen from harvested canes prior to plant propagation. In the source blocks, attempts to reduce infection of shoots by protecting trimming wounds were partially successful (P=0.036, with 19.5% incidence in fungicide-treated shoots and 24.3% infection in the control shoots. Further sampling showed that overall 19.9% of these infections were in the bark and 9.6% in the wood. Hot water treatment (HWT of dormant rootstock 5C canes, previously infected with Neofusicoccum luteum and N. parvum, at 50°C for 30 min resulted in internal infection incidences of 55 and 100%, respectively. HWT at 53°C reduced infection incidence to 0 and 8.5%, respectively, but killed the buds. In naturally infected canes, HWT of 50°C for 30 min reduced infection incidence from 35% in controls, to 0–15% over all Botryosphaeriaceae species. Shorter periods of HWT, at 55°C for 10 min, designed to kill bark infections, were effective in Sauvignon blanc but killed the buds of Pinot noir. Sauvignon blanc canes superficially infected with N. luteum were soaked for 30 min in the fungicides carbendazim, tebuconazole, thiophanate methyl and flusilazole, with and without a polyether-modified trisiloxane adjuvant. Results showed that carbendazim with no adjuvant and tebuconazole with 0.5 mL L-1 adjuvant eliminated 100% of bark infections. A further experiment that soaked 2,000 canes (Sauvignon blanc and Pinot noir in a carbendazim solution prior to rooting found that all canes were free of Botryosphaeriaceae species infection, compared to 17% natural incidence. These results have indicated the potential efficacy of several methods for preventing or reducing infection

  12. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  13. MANGO PROPAGATION

    OpenAIRE

    ALBERTO CARLOS DE QUEIROZ PINTO; VICTOR GALÁN SAÚCO; SISIR KUMAR MITRA; FRANCISCO RICARDO FERREIRA

    2018-01-01

    ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud) as well as the main asexual propagation methods...

  14. Suppression of Fatigue Crack Propagation of Duralumin by Cavitation Peening

    Directory of Open Access Journals (Sweden)

    Hitoshi Soyama

    2015-08-01

    Full Text Available It was demonstrated in the present paper that cavitation peening which is one of the mechanical surface modification technique can suppress fatigue crack propagation in duralumin. The impacts produced when cavitation bubble collapses can be utilised for the mechanical surface modification technique in the same way as laser peening and shot peening, which is called “cavitation peening”. Cavitation peening employing a cavitating jet in water was used to treat the specimen made of duralumin Japanese Industrial Standards JIS A2017-T3. After introducing a notch, fatigue test was conducted by a load-controlled plate bending fatigue tester, which has been originally developed. The fatigue crack propagation behavior was evaluated and the relationship between the fatigue crack propagation rate versus stress intensity factor range was obtained. From the results, the fatigue crack propagation rate was drastically reduced by cavitation peening and the fatigue life of duralumin plate was extended 4.2 times by cavitation peening. In addition, the fatigue crack propagation can be suppressed by 88% in the stable crack propagation stage by cavitation peening.

  15. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  16. Prediction of tides using back-propagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This paper presents an application of the artificial neural network with back-propagation procedures for accurate prediction...

  17. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  18. Interstellar propagation of low energy cosmic rays

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1975-01-01

    Wave particles interactions prevent low energy cosmic rays from propagating at velocities much faster than the Alfven velocity, reducing their range by a factor of order 50. Therefore, supernovae remnants cannot fill the neutral portions of the interstellar medium with 2 MeV cosmic rays [fr

  19. MANGO PROPAGATION

    Directory of Open Access Journals (Sweden)

    ALBERTO CARLOS DE QUEIROZ PINTO

    2018-03-01

    Full Text Available ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud as well as the main asexual propagation methods their uses and practices. Finally, pattern and quality of graft mangos and their commercialization aspects will be discussed in this Chapter.

  20. NR2A contributes to genesis and propagation of cortical spreading depression in rats.

    Science.gov (United States)

    Bu, Fan; Du, Ruoxing; Li, Yi; Quinn, John P; Wang, Minyan

    2016-03-22

    Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile.

  1. Analysis of uncertainty propagation in nuclear fuel cycle scenarios

    International Nuclear Information System (INIS)

    Krivtchik, Guillaume

    2014-01-01

    Nuclear scenario studies model nuclear fleet over a given period. They enable the comparison of different options for the reactor fleet evolution, and the management of the future fuel cycle materials, from mining to disposal, based on criteria such as installed capacity per reactor technology, mass inventories and flows, in the fuel cycle and in the waste. Uncertainties associated with nuclear data and scenario parameters (fuel, reactors and facilities characteristics) propagate along the isotopic chains in depletion calculations, and through out the scenario history, which reduces the precision of the results. The aim of this work is to develop, implement and use a stochastic uncertainty propagation methodology adapted to scenario studies. The method chosen is based on development of depletion computation surrogate models, which reduce the scenario studies computation time, and whose parameters include perturbations of the depletion model; and fabrication of equivalence model which take into account cross-sections perturbations for computation of fresh fuel enrichment. Then the uncertainty propagation methodology is applied to different scenarios of interest, considering different options of evolution for the French PWR fleet with SFR deployment. (author) [fr

  2. Reduction of Uncertainty Propagation in the Airport Operations Network

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sanz, A.; Gomez Comendador, F.; Arnaldo Valdes, R.

    2016-07-01

    Airport operations are a complex system involving multiple elements (ground access, landside, airside and airspace), stakeholders (ANS providers, airlines, airport managers, policy makers and ground handling companies) and interrelated processes. To ensure appropriate and safe operation it is necessary to understand these complex relationships and how the effects of potential incidents, failures and delays (due to unexpected events or capacity constraints) may propagate throughout the different stages of the system. An incident may easily ripple through the network and affect the operation of the airport as a whole, making the entire system vulnerable. A holistic view of the processes that also takes all of the parties (and the connections between them) into account would significantly reduce the risks associated with airport operations, while at the same time improving efficiency. Therefore, this paper proposes a framework to integrate all relevant stakeholders and reduce uncertainty in delay propagation, thereby lowering the cause-effect chain probability of the airport system (which is crucial for the operation and development of air transport). Firstly, we developed a model (map) to identify the functional relationships and interdependencies between the different stakeholders and processes that make up the airport operations network. This will act as a conceptual framework. Secondly, we reviewed and characterised the main causes of delay. Finally, we extended the system map to create a probabilistic graphical model, using a Bayesian Network approach and influence diagrams, in order to predict the propagation of unexpected delays across the airport operations network. This will enable us to learn how potential incidents may spread throughout the network creating unreliable, uncertain system states. Policy makers, regulators and airport managers may use this conceptual framework (and the associated indicators) to understand how delays propagate across the airport

  3. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  4. Model and Dynamic Behavior of Malware Propagation over Wireless Sensor Networks

    Science.gov (United States)

    Song, Yurong; Jiang, Guo-Ping

    Based on the inherent characteristics of wireless sensor networks (WSN), the dynamic behavior of malware propagation in flat WSN is analyzed and investigated. A new model is proposed using 2-D cellular automata (CA), which extends the traditional definition of CA and establishes whole transition rules for malware propagation in WSN. Meanwhile, the validations of the model are proved through theoretical analysis and simulations. The theoretical analysis yields closed-form expressions which show good agreement with the simulation results of the proposed model. It is shown that the malware propaga-tion in WSN unfolds neighborhood saturation, which dominates the effects of increasing infectivity and limits the spread of the malware. MAC mechanism of wireless sensor networks greatly slows down the speed of malware propagation and reduces the risk of large-scale malware prevalence in these networks. The proposed model can describe accurately the dynamic behavior of malware propagation over WSN, which can be applied in developing robust and efficient defense system on WSN.

  5. Wave propagation in spatially modulated tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ziepke, A., E-mail: ziepke@itp.tu-berlin.de; Martens, S.; Engel, H. [Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin (Germany)

    2016-09-07

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube’s modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.

  6. Genetically engineered excitable cardiac myofibroblasts coupled to cardiomyocytes rescue normal propagation and reduce arrhythmia complexity in heterocellular monolayers.

    Directory of Open Access Journals (Sweden)

    Luqia Hou

    Full Text Available The use of genetic engineering of unexcitable cells to enable expression of gap junctions and inward rectifier potassium channels has suggested that cell therapies aimed at establishing electrical coupling of unexcitable donor cells to host cardiomyocytes may be arrhythmogenic. Whether similar considerations apply when the donor cells are electrically excitable has not been investigated. Here we tested the hypothesis that adenoviral transfer of genes coding Kir2.1 (I(K1, Na(V1.5 (I(Na and connexin-43 (Cx43 proteins into neonatal rat ventricular myofibroblasts (NRVF will convert them into fully excitable cells, rescue rapid conduction velocity (CV and reduce the incidence of complex reentry arrhythmias in an in vitro model.We used adenoviral (Ad- constructs encoding Kir2.1, Na(V1.5 and Cx43 in NRVF. In single NRVF, Ad-Kir2.1 or Ad-Na(V1.5 infection enabled us to regulate the densities of I(K1 and I(Na, respectively. At varying MOI ratios of 10/10, 5/10 and 5/20, NRVF co-infected with Ad-Kir2.1+ Na(V1.5 were hyperpolarized and generated action potentials (APs with upstroke velocities >100 V/s. However, when forming monolayers only the addition of Ad-Cx43 made the excitable NRVF capable of conducting electrical impulses (CV = 20.71±0.79 cm/s. When genetically engineered excitable NRVF overexpressing Kir2.1, Na(V1.5 and Cx43 were used to replace normal NRVF in heterocellular monolayers that included neonatal rat ventricular myocytes (NRVM, CV was significantly increased (27.59±0.76 cm/s vs. 21.18±0.65 cm/s, p<0.05, reaching values similar to those of pure myocytes monolayers (27.27±0.72 cm/s. Moreover, during reentry, propagation was faster and more organized, with a significantly lower number of wavebreaks in heterocellular monolayers formed by excitable compared with unexcitable NRVF.Viral transfer of genes coding Kir2.1, Na(V1.5 and Cx43 to cardiac myofibroblasts endows them with the ability to generate and propagate APs. The results

  7. On fault propagation in deterioration of multi-component systems

    International Nuclear Information System (INIS)

    Liang, Zhenglin; Parlikad, Ajith Kumar; Srinivasan, Rengarajan; Rasmekomen, Nipat

    2017-01-01

    In extant literature, deterioration dependence among components can be modelled as inherent dependence and induced dependence. We find that the two types of dependence may co-exist and interact with each other in one multi-component system. We refer to this phenomenon as fault propagation. In practice, a fault induced by the malfunction of a non-critical component may further propagate through the dependence amongst critical components. Such fault propagation scenario happens in industrial assets or systems (bridge deck, and heat exchanging system). In this paper, a multi-layered vector-valued continuous-time Markov chain is developed to capture the characteristics of fault propagation. To obtain the mathematical tractability, we derive a partitioning rule to aggregate states with the same characteristics while keeping the overall aging behaviour of the multi-component system. Although the detailed information of components is masked by aggregated states, lumpability is attainable with the partitioning rule. It means that the aggregated process is stochastically equivalent to the original one and retains the Markov property. We apply this model on a heat exchanging system in oil refinery company. The results show that fault propagation has a more significant impact on the system's lifetime comparing with inherent dependence and induced dependence. - Highlights: • We develop a vector value continuous-time Markov chain to model the meta-dependent characteristic of fault propagation. • A partitioning rule is derived to reduce the state space and attain lumpability. • The model is applied on analysing the impact of fault propagation in a heat exchanging system.

  8. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    International Nuclear Information System (INIS)

    Ruhlandt, Aike; Salditt, Tim

    2016-01-01

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality

  9. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    International Nuclear Information System (INIS)

    Sraj, I.; Vohra, M.; Alawieh, L.; Weihs, T.P.; Knio, O.M.

    2013-01-01

    Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  10. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  11. Electron beam propagation in the ion-focused and resistive regimes

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Lampe, M.; Fernsler, R.; Slinker, S.P.

    1993-01-01

    Pinched propagation of intense relativistic electron beams occurs in several distinct pressure regimes. In low density gases (∼ 1-100 mtorr), the beam propagates in the ion-focused regime (IFR). The beam ionizes the neutral gas, and plasma electrons are ejected, leaving behind a positive ion column which pinches the beam electrostatically. At gas densities near 1 atm, the beam-generated plasma is resistive and the pinch effect is provided by the self-magnetic field of the beam. Beam transport experiments in both regimes have been performed on the Advanced Test Accelerator (ATA) at Lawrence Livermore National Lab. and on SuperIBEX at the Naval Research Lab. IFR methods have been employed in both experiments to transport the beam prior to injection into the air and to introduce a head-to-tail taper in the beam radius. IFR simulations have shown how the resulting beam radius and emittance profiles are influenced by gas density, chamber dimensions and entrance and exit foils. Beam propagation in dense gas is subject to disruption by the resistive hose instability. However, both experiments and simulations have shown that the emittance variation introduced by IFR transport can substantially reduce the growth of the hose instability. Both experiments have also propagated beams in reduced-density channels. Simulations predict that the channel may in some cases produce a moderate stabilizing and tracking effect arising from plasma currents flowing at the edge of the channel

  12. Four loop massless propagators: An algebraic evaluation of all master integrals

    International Nuclear Information System (INIS)

    Baikov, P.A.; Chetyrkin, K.G.

    2010-01-01

    The old 'glue-and-cut' symmetry of massless propagators, first established in Ref. (Chetyrkin and Tkachov, 1981), leads -after reduction to master integrals is performed - to a host of non-trivial relations between the latter. The relations constrain the master integrals so tightly that they all can be analytically expressed in terms of only few, essentially trivial, watermelon-like integrals. As a consequence we arrive at explicit analytical results for all master integrals appearing in the process of reduction of massless propagators at three and four loops. The transcendental structure of the results suggests a clean explanation of the well-known mystery of the absence of even zetas (ζ 2n ) in the Adler function and other similar functions essentially reducible to massless propagators. Once a reduction of massless propagators at five loops is available, our approach should be also applicable for explicitly performing the corresponding five-loop master integrals.

  13. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    Science.gov (United States)

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  14. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  15. Efficient Geometric Sound Propagation Using Visibility Culling

    Science.gov (United States)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  16. Fatigue crack propagation in self-assembling nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, Andreas; Wetzel, Bernd [Institute for Composite Materials (IVW GmbH) Technical University of Kaiserslautern, 67633 Kaiserslautern (Germany)

    2016-05-18

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  17. Fatigue crack propagation in self-assembling nanocomposites

    Science.gov (United States)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  18. Fatigue crack propagation in self-assembling nanocomposites

    International Nuclear Information System (INIS)

    Klingler, Andreas; Wetzel, Bernd

    2016-01-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  19. Controlling wave propagation through nonlinear engineered granular systems

    Science.gov (United States)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  20. Simplified hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1983-01-01

    The model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable-area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are corrected for. This model of flame propagation reduces to differential equations which describes the temporal variations of vessel pressure, burned volume and gas entropy. The thermodynamic state of the burned gas immediately following the flame is determined using an isobaric Hugoniot relation. At other locations the burned-gas thermodynamic states are determined using a Lagrangian particle tracking method. Results of a computer code using the method are presented. 11 figures

  1. Four loop massless propagators: An algebraic evaluation of all master integrals

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P.A., E-mail: baikov@theory.sinp.msu.r [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Chetyrkin, K.G., E-mail: konstantin.chetyrkin@kit.ed [Institut fuer Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe (Germany)] [Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312 (Russian Federation)

    2010-10-01

    The old 'glue-and-cut' symmetry of massless propagators, first established in Ref. (Chetyrkin and Tkachov, 1981), leads -after reduction to master integrals is performed - to a host of non-trivial relations between the latter. The relations constrain the master integrals so tightly that they all can be analytically expressed in terms of only few, essentially trivial, watermelon-like integrals. As a consequence we arrive at explicit analytical results for all master integrals appearing in the process of reduction of massless propagators at three and four loops. The transcendental structure of the results suggests a clean explanation of the well-known mystery of the absence of even zetas ({zeta}{sub 2n}) in the Adler function and other similar functions essentially reducible to massless propagators. Once a reduction of massless propagators at five loops is available, our approach should be also applicable for explicitly performing the corresponding five-loop master integrals.

  2. Reduction of Exudates (Browning) in Sugarcane Micro Propagation ...

    African Journals Online (AJOL)

    ... of this variety, ascorbic acid and citric acid was added as constituent of the media using MS and stock at different concentrations. The browning was reduced drastically at the addition of 0.1g/litre ascorbic acid and 0.15g/litre citric acid. Keywords: reduction, exudates browning, micro propagation, sugarcane. Nig J. Biotech.

  3. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  4. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  5. Database for propagation models

    Science.gov (United States)

    Kantak, Anil V.

    1991-07-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  6. Enhanced propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels.

    Science.gov (United States)

    Fuchs, J; d'Humières, E; Sentoku, Y; Antici, P; Atzeni, S; Bandulet, H; Depierreux, S; Labaune, C; Schiavi, A

    2010-11-26

    The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.

  7. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.

  8. Phenobarbital reduces EEG amplitude and propagation of neonatal seizures but does not alter performance of automated seizure detection.

    Science.gov (United States)

    Mathieson, Sean R; Livingstone, Vicki; Low, Evonne; Pressler, Ronit; Rennie, Janet M; Boylan, Geraldine B

    2016-10-01

    Phenobarbital increases electroclinical uncoupling and our preliminary observations suggest it may also affect electrographic seizure morphology. This may alter the performance of a novel seizure detection algorithm (SDA) developed by our group. The objectives of this study were to compare the morphology of seizures before and after phenobarbital administration in neonates and to determine the effect of any changes on automated seizure detection rates. The EEGs of 18 term neonates with seizures both pre- and post-phenobarbital (524 seizures) administration were studied. Ten features of seizures were manually quantified and summary measures for each neonate were statistically compared between pre- and post-phenobarbital seizures. SDA seizure detection rates were also compared. Post-phenobarbital seizures showed significantly lower amplitude (pphenobarbital reduces both the amplitude and propagation of seizures which may help to explain electroclinical uncoupling of seizures. The seizure detection rate of the algorithm was unaffected by these changes. The results suggest that users should not need to adjust the SDA sensitivity threshold after phenobarbital administration. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Scintillation reduction for laser beams propagating through turbulent atmosphere

    International Nuclear Information System (INIS)

    Berman, G P; Gorshkov, V N; Torous, S V

    2011-01-01

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams, including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analysed. These studies were performed for different dimensions of the detector, distances of propagation, and strengths of the atmospheric turbulence. Methods for significantly reducing the SI are described. These methods utilize averaging of the signal at the detector over a set of partially coherent beams (PCBs). It is demonstrated that the most effective approach is using a set of PCBs with definite initial directions of propagation relative to the z-axis. This approach results in a significant compensation of the beam wandering which in many cases is the main contributor to the SI. A novel method is to generate the PCBs by combining two laser beams-Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the effective suppression of the SI does not require high-frequency modulators. This result is important for achieving gigabit data rates in long-distance laser communication through turbulent atmospheres.

  10. Scintillation reduction for laser beams propagating through turbulent atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G P; Gorshkov, V N [Theoretical Division, T-4 and CNLS MS B213, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Torous, S V, E-mail: gpb@lanl.gov [National Technical University of Ukraine ' KPI' , 37 Peremogy Avenue, Building 7, Kiev-56, 03056 (Ukraine)

    2011-03-14

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams, including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analysed. These studies were performed for different dimensions of the detector, distances of propagation, and strengths of the atmospheric turbulence. Methods for significantly reducing the SI are described. These methods utilize averaging of the signal at the detector over a set of partially coherent beams (PCBs). It is demonstrated that the most effective approach is using a set of PCBs with definite initial directions of propagation relative to the z-axis. This approach results in a significant compensation of the beam wandering which in many cases is the main contributor to the SI. A novel method is to generate the PCBs by combining two laser beams-Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the effective suppression of the SI does not require high-frequency modulators. This result is important for achieving gigabit data rates in long-distance laser communication through turbulent atmospheres.

  11. Effects of previous ionization and excitation on the ionization wave propagation along the dielectric tube

    International Nuclear Information System (INIS)

    Xia, Yang; Liu, Dongping; Bi, Zhenhua; Wang, Xueyang; Niu, Jinhai; Ji, Longfei; Song, Ying; Qi, Zhihua; Wang, Wenchun

    2016-01-01

    In this paper, by using a high precision synchronization system, the ignition time, velocity, and propagation properties of the ionization waves (IWs) have been investigated in detail from the 1st high voltage (HV) pulse to the sequential ones over a large range of the pulse-off time. In order to clarify the effects of previous ionization and excitation on the IW propagation, the density of the residual charges are controlled by varying the pulse-off time from 199 μs to 15 μs. The results show that the formation and propagation of IWs can be strongly affected by previous discharge. For a longer pulse-off time (100 μs–190 μs), the propagation velocity of plasma bullets are decreased from the 1st to the 10th HV pulse, then increased after the 10th pulse, and finally become stable after about 500 pulses. When the pulse-off time is reduced to 15 μs, the propagation velocity of plasma bullets will rapidly increase and become stable after the 1st HV pulse. The ignition voltage is significantly reduced after the 1st HV pulse with the decrease in pulse-off time. Consequently, the generation and propagation of IWs in the tube are strongly affected by the accumulation of long-lived metastable helium (He) species and residual charges from previous discharges, which is important for understanding the plasma bullet behavior. (paper)

  12. A 3D thermal runaway propagation model for a large format lithium ion battery module

    International Nuclear Information System (INIS)

    Feng, Xuning; Lu, Languang; Ouyang, Minggao; Li, Jiangqiu; He, Xiangming

    2016-01-01

    In this paper, a 3D thermal runaway (TR) propagation model is built for a large format lithium ion battery module. The 3D TR propagation model is built based on the energy balance equation. Empirical equations are utilized to simplify the calculation of the chemical kinetics for TR, whereas equivalent thermal resistant layer is employed to simplify the heat transfer through the thin thermal layer. The 3D TR propagation model is validated by experiment and can provide beneficial discussions on the mechanisms of TR propagation. According to the modeling analysis of the 3D model, the TR propagation can be delayed or prevented through: 1) increasing the TR triggering temperature; 2) reducing the total electric energy released during TR; 3) enhancing the heat dissipation level; 4) adding extra thermal resistant layer between adjacent batteries. The TR propagation is successfully prevented in the model and validated by experiment. The model with 3D temperature distribution provides a beneficial tool for researchers to study the TR propagation mechanisms and for engineers to design a safer battery pack. - Highlights: • A 3D thermal runaway (TR) propagation model for Li-ion battery pack is built. • The 3D TR propagation model can fit experimental results well. • Temperature distributions during TR propagation are presented using the 3D model. • Modeling analysis provides solutions for the prevention of TR propagation. • Quantified solutions to prevent TR propagation in battery pack are discussed.

  13. Radio Wave Propagation Handbook for Communication on and Around Mars

    Science.gov (United States)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  14. Complete genome sequences of three Campylobacter jejuni phage-propagating strains

    Science.gov (United States)

    Bacteriophage therapy has the potential to reduce Campylobacter jejuni numbers in livestock, but requires a detailed understanding of phage-host interactions. Some C. jejuni strains are readily infected by certain phages, and are thus designated as phage-propagating strains. Here we report the compl...

  15. Impact of wave propagation delay on latency in optical communication systems

    Science.gov (United States)

    Kawanishi, Tetsuya; Kanno, Atsushi; Yoshida, Yuki; Kitayama, Ken-ichi

    2012-12-01

    Latency is an important figure to describe performance of transmission systems for particular applications, such as data transfer for earthquake early warning, transaction for financial businesses, interactive services such as online games, etc. Latency consists of delay due to signal processing at nodes and transmitters, and of signal propagation delay due to propagation of electromagnetic waves. The lower limit of the latency in transmission systems using conventional single mode fibers (SMFs) depends on wave propagation speed in the SMFs which is slower than c. Photonic crystal fibers, holly fibers and large core fibers can have low effective refractive indices, and can transfer light faster than in SMFs. In free-space optical systems, signals propagate with the speed c, so that the latency could be smaller than in optical fibers. For example, LEO satellites would transmit data faster than optical submarine cables, when the transmission distance is longer than a few thousand kilometers. This paper will discuss combination of various transmission media to reduce negative impact of the latency, as well as applications of low-latency systems.

  16. Causality and matter propagation in 3D spin foam quantum gravity

    International Nuclear Information System (INIS)

    Oriti, Daniele; Tlas, Tamer

    2006-01-01

    In this paper we tackle the issue of causality in quantum gravity, in the context of 3d spin foam models. We identify the correct procedure for implementing the causality/orientation dependence restriction that reduces the path integral for BF theory to that of quantum gravity in first order form. We construct explicitly the resulting causal spin foam model. We then add matter degrees of freedom to it and construct a causal spin foam model for 3d quantum gravity coupled to matter fields. Finally, we show that the corresponding spin foam amplitudes admit a natural approximation as the Feynman amplitudes of a noncommutative quantum field theory, with the appropriate Feynman propagators weighting the lines of propagation, and that this effective field theory reduces to the usual quantum field theory in flat space in the no-gravity limit

  17. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    Directory of Open Access Journals (Sweden)

    Benjamin Scellier

    2017-05-01

    Full Text Available We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made and the second phase of training (after the target or prediction error is revealed. Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST

  18. Light-Cone and Diffusive Propagation of Correlations in a Many-Body Dissipative System.

    Science.gov (United States)

    Bernier, Jean-Sébastien; Tan, Ryan; Bonnes, Lars; Guo, Chu; Poletti, Dario; Kollath, Corinna

    2018-01-12

    We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.

  19. Focused proton beams propagating in reactor of fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Niu, K [Teikyo Heisei Univ., Uruido, Ichihara, Chiba (Japan)

    1997-12-31

    One of the difficult tasks of light ion beam fusion is to propagate the beam in the reactor cavity and to focus the beam on the target. The light ion beam has a certain local divergence angle because there are several causes for divergence at the diode. The electrostatic force induced at the leading edge causes beam divergence during propagation. To confine the beam within a small radius during propagation, the magnetic field must be employed. Here the electron beam is proposed to be launched simultaneously with the launching of the proton beam. If the electron beam has the excess current, the beam induces a magnetic field in the negative azimuthal direction, which confines the ion beam within a small radius by the electrostatic field as well as the electron beam by the Lorentz force. The metal guide around the beam path helps the beam confinement and reduces the total amount of magnetic field energy induced by the electron current. (author). 2 figs., 15 refs.

  20. Community Mining Method of Label Propagation Based on Dense Pairs

    Directory of Open Access Journals (Sweden)

    WENG Wei

    2014-03-01

    Full Text Available In recent years, with the popularity of handheld Internet equipments like mobile phones, increasing numbers of people are becoming involved in the virtual social network. Because of its large amount of data and complex structure, the network faces new challenges of community mining. A label propagation algorithm with low time complexity and without prior parameters deals easily with a large networks. This study explored a new method of community mining, based on label propagation with two stages. The first stage involved identifying closely linked nodes according to their local adjacency relations that gave rise to a micro-community. The second stage involved expanding and adjusting this community through a label propagation algorithm (LPA to finally obtain the community structure of the entire social network. This algorithm reduced the number of initial labels and avoided the merging of small communities in general LPAs. Thus, the quality of community discovery was improved, and the linear time complexity of the LPA was maintained.

  1. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  2. Tropospheric radiowave propagation beyond the horizon

    CERN Document Server

    Du Castel, François

    1966-01-01

    Tropospheric Radiowave Propagation Beyond the Horizon deals with developments concerning the tropospheric propagation of ultra-short radio waves beyond the horizon, with emphasis on the relationship between the theoretical and the experimental. Topics covered include the general conditions of propagation in the troposphere; general characteristics of propagation beyond the horizon; and attenuation in propagation. This volume is comprised of six chapters and begins with a brief historical look at the various stages that have brought the technique of transhorizon links to its state of developmen

  3. Light propagation in linear optical media

    CERN Document Server

    Gillen, Glen D; Guha, Shekhar

    2013-01-01

    Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o

  4. PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine

    Science.gov (United States)

    D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.

    2012-04-01

    PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three

  5. Semiclassical propagation of Wigner functions.

    Science.gov (United States)

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  6. Propagation phenomena in real world networks

    CERN Document Server

    Fay, Damien; Gabryś, Bogdan

    2015-01-01

    Propagation, which looks at spreading in complex networks, can be seen from many viewpoints; it is undesirable, or desirable, controllable, the mechanisms generating that propagation can be the topic of interest, but in the end all depends on the setting. This book covers leading research on a wide spectrum of propagation phenomenon and the techniques currently used in its modelling, prediction, analysis and control. Fourteen papers range over topics including epidemic models, models for trust inference, coverage strategies for networks, vehicle flow propagation, bio-inspired routing algorithms, P2P botnet attacks and defences, fault propagation in gene-cellular networks, malware propagation for mobile networks, information propagation in crisis situations, financial contagion in interbank networks, and finally how to maximize the spread of influence in social networks. The compendium will be of interest to researchers, those working in social networking, communications and finance and is aimed at providin...

  7. Propagation of dynamic measurement uncertainty

    International Nuclear Information System (INIS)

    Hessling, J P

    2011-01-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result

  8. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  9. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment

    Directory of Open Access Journals (Sweden)

    X. Zhao

    2010-12-01

    Full Text Available This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed Fourier split-step algorithm. Numerical experiments indicate that wind-driven roughened sea surface has an impact on the electromagnetic wave propagation in the duct environment, and the strength is intensified along with the increment of sea wind speeds and/or the operating frequencies. In a fixed duct environment, however, proper disposition of the transmitter could reduce these impacts.

  10. A simplified hydrodynamic model of hydrogen flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.; Ratzel, A.

    1983-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels. This semianalytical model of flame propagation reduces to a set of ordinary differential equations which describes the temporal variations of vessel pressure, burned volume and gas entropy. The thermodynamic state of the burned gas immediately following the flame is determined using an isobaric Hugoniot relationship. At other locations the burned gas thermodynamic states are determined using a Lagrangian particle tracking method. Results of a computer code using the method are presented

  11. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  12. Modelling the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    Scaling of the Landau gauge gluon propagator calculated at {beta} = 6.0 and at {beta} = 6.2 is demonstrated. A variety of functional forms for the gluon propagator calculated on a large (32{sup 3} x 64) lattice at {beta} = 6.0 are investigated.

  13. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  14. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  15. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  16. Nonlinear propagation of a spatially incoherent laser beam: self-induced smoothing and reduction of scattering instabilities

    International Nuclear Information System (INIS)

    Maximov, A.V.; Ourdev, I.G.; Rozmus, W.; Capjack, C.E.; Mounaix, Ph.; Huller, S.; Pesme, D.; Tikhonchuk, V.T.; Divol, L.

    2000-01-01

    It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)

  17. Wave propagation in elastic layers with damping

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Darula, Radoslav

    2016-01-01

    The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....

  18. Semiclassical propagator of the Wigner function.

    Science.gov (United States)

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  19. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  20. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  1. Suppression of tau propagation using an inhibitor that targets the DK-switch of nSMase2.

    Science.gov (United States)

    Bilousova, Tina; Elias, Chris; Miyoshi, Emily; Alam, Mohammad Parvez; Zhu, Chunni; Campagna, Jesus; Vadivel, Kanagasabai; Jagodzinska, Barbara; Gylys, Karen Hoppens; John, Varghese

    2018-05-23

    Targeting of molecular pathways involved in the cell-to-cell propagation of pathological tau species is a novel approach for development of disease-modifying therapies that could block tau pathology and attenuate cognitive decline in patients with Alzheimer's disease and other tauopathies. We discovered cambinol through a screening effort and show that it is an inhibitor of cell-to-cell tau propagation. Our in vitro data demonstrate that cambinol inhibits neutral sphingomyelinase 2 (nSMase2) enzyme activity in dose response fashion, and suppresses extracellular vesicle (EV) production while reducing tau seed propagation. Our in vivo testing with cambinol shows that it can reduce the nSMase2 activity in the brain after oral administration. Our molecular docking and simulation analysis reveals that cambinol can target the DK-switch in the nSMase2 active site. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Effect of segregations on mechanical properties and crack propagation in spring steel

    Directory of Open Access Journals (Sweden)

    B. Žužek

    2015-10-01

    Full Text Available Considerable efforts have been made over the last decades to improve performance of spring steels, which would increase the service time of springs and also allow vehicles weight reduction. There are different possibilities of improving properties of spring steels, from modifying the chemical composition of steels to optimizing the deformation process and changing the heat treatment parameters. Another way of improving steel properties is through refining the microstructure and reducing amount of inclusions. Therefore, the focus of the current investigation was to determine the effect of more uniform and cleaner microstructure obtained through electro-slag remelting (ESR of steel on the mechanical and dynamic properties of spring steel, with special focus on the resistance to fatigue crack propagation. Effect of the microstructure refinement was evaluated in terms of tensile strength, elongation, fracture and impact toughness, and fatigue resistance under bending and tensile loading. After the mechanical tests the fracture surfaces of samples were analyzed using scanning electron microscope (SEM and the influence of microstructure properties on the crack propagation and crack propagation resistance was studied. Investigation was performed on hot rolled, soft annealed and vacuum heat treated 51CrV4 spring steel produced by conventional continuous casting and compared with steel additional refined through ESR. Results shows that elimination of segregations and microstructure refinement using additional ESR process gives some improvement in terms of better repeatability and reduced scattering, but on the other hand it has negative effect on crack propagation resistance and fatigue properties of the spring steel.

  3. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    Science.gov (United States)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  4. Search for fourth sound propagation in supersolid 4He

    International Nuclear Information System (INIS)

    Aoki, Y.; Kojima, H.; Lin, X.

    2008-01-01

    A systematic study is carried out to search for fourth sound propagation solid 4 He samples below 500 mK down to 40 mK between 25 and 56 bar using the techniques of heat pulse generator and titanium superconducting transition edge bolometer. If solid 4 He is endowed with superfluidity below 200 mK, as indicated by recent torsional oscillator experiments, theories predict fourth sound propagation in such a supersolid state. If found, fourth sound would provide convincing evidence for superfluidity and a new tool for studying the new phase. The search for a fourth sound-like mode is based on the response of the bolometers to heat pulses traveling through cylindrical samples of solids grown with different crystal qualities. Bolometers with increasing sensitivity are constructed. The heater generator amplitude is reduced to the sensitivity limit to search for any critical velocity effects. The fourth sound velocity is expected to vary as ∞ √ Ρ s /ρ. Searches for a signature in the bolometer response with such a characteristic temperature dependence are made. The measured response signal has not so far revealed any signature of a new propagating mode within a temperature excursion of 5 μK from the background signal shape. Possible reasons for this negative result are discussed. Prior to the fourth sound search, the temperature dependence of heat pulse propagation was studied as it transformed from 'second sound' in the normal solid 4 He to transverse ballistic phonon propagation. Our work extends the studies of [V. Narayanamurti and R. C. Dynes, Phys. Rev. B 12, 1731 (1975)] to higher pressures and to lower temperatures. The measured transverse ballistic phonon propagation velocity is found to remain constant (within the 0.3% scatter of the data) below 100 mK at all pressures and reveals no indication of an onset of supersolidity. The overall dynamic thermal response of solid to heat input is found to depend strongly on the sample preparation procedure

  5. Propagation of cortical spreading depression into the hippocampus: The role of the entorhinal cortex.

    Science.gov (United States)

    Martens-Mantai, Tanja; Speckmann, Erwin-Josef; Gorji, Ali

    2014-07-22

    Propagation of cortical spreading depression (CSD) to the subcortical structures could be the underlying mechanism of some neurological deficits in migraine with aura. The entorhinal cortex (EC) as a gray matter bridge between the neocortex and subcortical regions plays an important role in this propagation. In vitro combined neocortex-hippocampus brain slices were used to study the propagation pattern of CSD between the neocortex and the hippocampus. The effects of different compounds as well as tetanic electrical stimulations in the EC on propagation of CSD to the hippocampus were investigated. Repetitive induction of CSD by KCl injection in the somatosensory cortex enhanced the probability of CSD entrance to the hippocampus via EC. Local application of AMPA receptor blocker CNQX and cannabinoid receptor agonist WIN 55212-2 in EC facilitated the propagation of CSD to the hippocampus, whereas application of NMDA receptor blocker APV and GABA A receptor blocker bicuculline in this region reduced the probability of CSD penetration to the hippocampus. Application of tetanic stimulation in EC also facilitated the propagation of CSD entrance to the hippocampus. Our data suggest the importance of synaptic plasticity of EC in filtering the propagation of CSD into subcortical structures and possibly the occurrence of concomitant neurological deficits. Synapse, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  6. Calculation of nuclear electromagnetic pulse propagation along the earth's surface

    International Nuclear Information System (INIS)

    Liang Rui; Zheng Yi; Song Lijun; Zhang Xueqin; Lip Peng

    2010-01-01

    It calculates the LF/VLF wave of NEMP propagation along the earth's surface. The earth-wave and the sky-wave are taken into account in the calculation. With the distance increase, the earth wave attenuates fast than the sky wave, and the time difference between the earth wave and the sky wave is reduced. (authors)

  7. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  8. Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation

    Science.gov (United States)

    Gan, Xiao; Albert, RéKa

    Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide valuable insight into biological phenotypes and their stability. We identified the long-term behaviors of a multi-level, 70-node discrete dynamic model of the stomatal opening process in plants. We reduce the model's huge state space by reducing unregulated nodes and simple mediator nodes, and by simplifying the regulatory functions of selected nodes while keeping the model consistent with experimental observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions. We conclude that all nodes except two in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations do not affect the stomatal opening level in any situation. This conclusion applies to the original model as well in all the biologically meaningful cases. We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node knockouts does not affect the stomatal opening level. Thus, we conclude that the complex structure of this signal transduction network provides multiple information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.

  9. Effect of an Energy Reservoir on the Atmospheric Propagation of Laser-Plasma Filaments

    Science.gov (United States)

    Eisenmann, Shmuel; Peñano, Joseph; Sprangle, Phillip; Zigler, Arie

    2008-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort, high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present the first detailed measurements and numerical 3-D simulations of the longitudinal plasma density variation in a laser-plasma filament after it passes through an iris that blocks the surrounding energy reservoir. Since no compensation is available from the surrounding background energy, filament propagation is terminated after a few centimeters. For this experiment, simulations indicate that filament propagation is terminated by plasma defocusing and ionization loss, which reduces the pulse power below the effective self-focusing power. With no blockage, a plasma filament length of over a few meters was observed.

  10. Effect of an Energy Reservoir on the Atmospheric Propagation of Laser-Plasma Filaments

    International Nuclear Information System (INIS)

    Eisenmann, Shmuel; Penano, Joseph; Sprangle, Phillip; Zigler, Arie

    2008-01-01

    The ability to select and stabilize a single filament during propagation of an ultrashort, high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present the first detailed measurements and numerical 3-D simulations of the longitudinal plasma density variation in a laser-plasma filament after it passes through an iris that blocks the surrounding energy reservoir. Since no compensation is available from the surrounding background energy, filament propagation is terminated after a few centimeters. For this experiment, simulations indicate that filament propagation is terminated by plasma defocusing and ionization loss, which reduces the pulse power below the effective self-focusing power. With no blockage, a plasma filament length of over a few meters was observed

  11. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy

    Science.gov (United States)

    Liu, Jianjun; Kan, Jianquan

    2018-04-01

    In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.

  12. Propagation engineering in wireless communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2016-01-01

    This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.

  13. Propagation into an unstable state

    International Nuclear Information System (INIS)

    Dee, G.

    1985-01-01

    We describe propagating front solutions of the equations of motion of pattern-forming systems. We make a number of conjectures concerning the properties of such fronts in connection with pattern selection in these systems. We describe a calculation which can be used to calculate the velocity and state selected by certain types of propagating fronts. We investigate the propagating front solutions of the amplitude equation which provides a valid dynamical description of many pattern-forming systems near onset

  14. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  15. Static multiresolution grids with inline hierarchy information for cosmic ray propagation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gero, E-mail: gero.mueller@physik.rwth-aachen.de [III. Physikalisches Institut A, RWTH Aachen University, D-52056 Aachen (Germany)

    2016-08-01

    For numerical simulations of cosmic-ray propagation fast access to static magnetic field data is required. We present a data structure for multiresolution vector grids which is optimized for fast access, low overhead and shared memory use. The hierarchy information is encoded into the grid itself, reducing the memory overhead. Benchmarks show that in certain scenarios the differences in deflections introduced by sampling the magnetic field model can be significantly reduced when using the multiresolution approach.

  16. Fire propagation equation for the explicit identification of fire scenarios in a fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Moon, Joo Hyun

    2011-01-01

    When performing fire PSA in a nuclear power plant, an event mapping method, using an internal event PSA model, is widely used to reduce the resources used by fire PSA model development. Feasible initiating events and component failure events due to fire are identified to transform the fault tree (FT) for an internal event PSA into one for a fire PSA using the event mapping method. A surrogate event or damage term method is used to condition the FT of the internal PSA. The surrogate event or the damage term plays the role of flagging whether the system/component in a fire compartment is damaged or not, depending on the fire being initiated from a specified compartment. These methods usually require explicit states of all compartments to be modeled in a fire area. Fire event scenarios, when using explicit identification, such as surrogate or damage terms, have two problems: there is no consideration of multiple fire propagation beyond a single propagation to an adjacent compartment, and there is no consideration of simultaneous fire propagations in which an initiating fire event is propagated to multiple paths simultaneously. The present paper suggests a fire propagation equation to identify all possible fire event scenarios for an explicitly treated fire event scenario in the fire PSA. Also, a method for separating fire events was developed to make all fire events a set of mutually exclusive events, which can facilitate arithmetic summation in fire risk quantification. A simple example is given to confirm the applicability of the present method for a 2x3 rectangular fire area. Also, a feasible asymptotic approach is discussed to reduce the computational burden for fire risk quantification

  17. The propagator of quantum gravity in minisuperspace

    International Nuclear Information System (INIS)

    Louko, J.

    1985-04-01

    We study the quantum gravitational propagation amplitude between two spacelike three-surfaces in minisuperspaces where the supermomentum constraints are identically satisfied. We derive a well-defined path integral formula for the propagator and show that the propagator is an inverse of the canonical Hamiltonian operator. In an exactly solvable deSitter minisuperspace model the propagator is found to obey semi-classically correct boundary conditions. We discuss the implications for the full theory and suggest an approach to unravelling the physical meaning of the propagator. (orig.)

  18. Neural network construction via back-propagation

    International Nuclear Information System (INIS)

    Burwick, T.T.

    1994-06-01

    A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima

  19. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  20. An algorithm to improve sampling efficiency for uncertainty propagation using sampling based method

    International Nuclear Information System (INIS)

    Campolina, Daniel; Lima, Paulo Rubens I.; Pereira, Claubia; Veloso, Maria Auxiliadora F.

    2015-01-01

    Sample size and computational uncertainty were varied in order to investigate sample efficiency and convergence of the sampling based method for uncertainty propagation. Transport code MCNPX was used to simulate a LWR model and allow the mapping, from uncertain inputs of the benchmark experiment, to uncertain outputs. Random sampling efficiency was improved through the use of an algorithm for selecting distributions. Mean range, standard deviation range and skewness were verified in order to obtain a better representation of uncertainty figures. Standard deviation of 5 pcm in the propagated uncertainties for 10 n-samples replicates was adopted as convergence criterion to the method. Estimation of 75 pcm uncertainty on reactor k eff was accomplished by using sample of size 93 and computational uncertainty of 28 pcm to propagate 1σ uncertainty of burnable poison radius. For a fixed computational time, in order to reduce the variance of the uncertainty propagated, it was found, for the example under investigation, it is preferable double the sample size than double the amount of particles followed by Monte Carlo process in MCNPX code. (author)

  1. Propagation of SLF/ELF electromagnetic waves

    CERN Document Server

    Pan, Weiyan

    2014-01-01

    This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).

  2. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    mantle material was supplied by the ascendance of a hot asthenosphere triggered by the roll-back of the Paleo-Tethyan oceanic lithosphere. The rising melts were accompanied by fractional crystallization and encountered no or minor crustal contamination en route to the surface. Taking into account these geochemical data and integrating them with regional geological evidence, we propose a slab roll-back model; this model suggests that the Gokcedere gabbroic pluton originated in a back-arc extensional environment associated with the southward subduction of the Paleo-Tethyan oceanic lithosphere during the early Jurassic period. Such an extensional event led to the opening of the northern branch of the Neotethys as a back-arc basin. Consequently, we conclude that the gabbroic pluton was related to intensive extensional tectonic events, which peaked during the early Jurassic in response to the roll-back of Paleo-Tethyan oceanic slab in the final stage of oceanic closure.

  3. The effect of quintic nonlinearity on the propagation characteristics of dispersion managed optical solitons

    International Nuclear Information System (INIS)

    Konar, S.; Mishra, Manoj; Jana, S.

    2006-01-01

    The role of quintic nonlinearity on the propagation characteristics of optical solitons in dispersion managed optical communication systems has been presented in this paper. It has been shown that quintic nonlinearity has only marginal influence on single pulse propagation. However, numerical simulation has been undertaken to reveal that quintic nonlinearity reduces collision distance between neighbouring pulses of the same channel. It is found that for lower map strength the collapse distance between intra channel pulses is very much sensitive to the dispersion map strength

  4. Numerical investigation on the prefabricated crack propagation of FV520B stainless steel

    Directory of Open Access Journals (Sweden)

    Juyi Pan

    Full Text Available FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress–strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10−3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3–43.4 MPa. The maximum value of stress–strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10−4. On the crack tip, the stress changed as 32.24–40.16 MPa, the strain is at 1.292 × 10−4–1.897 × 10−4. Keywords: FV520B, Crack propagation, Mises stress, Stress–strain, Numerical investigation

  5. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  6. Propagation of intense laser pulses in an underdense plasma

    International Nuclear Information System (INIS)

    Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.

    1994-01-01

    Experiments carried out with a laser beam focused into a vacuum chamber onto a 3-mm long, pulsed hydrogen jet, at powers close to the critical power required for relativistic self focusing, have shown that an underdense plasma is able to significantly reduce the divergence of an intense laser pulse. The propagation mode is in good agreement with theoretical predictions of relativistic self focusing. 2 figs., 8 refs

  7. ACTS Propagation Measurements in Maryland and Virginia

    Science.gov (United States)

    Dissanayake, Asoka; Lin, Kuan-Ting

    1996-01-01

    Rapid growth in new satellite services incorporating very small aperture terminals (VSAT) and ultra small aperture terminals (USAT) is expected in the coming years. Small size terminals allow for widespread use of satellite services in small business and domestic applications. Due to congestion of lower frequency bands such as C and Ku, most of these services will use Ka-band (2/20 GHz) frequencies. Propagation impairments produced by the troposphere is a limiting factor for the effective use of the 20/30 GHz band and the use of smaller Earth terminals makes it difficult to provide sufficient link margins for propagation related outages. In this context, reliable prediction of propagation impairments for low margin systems becomes important. Due to the complexity of propagation phenomena propagation modeling is mainly attempted on an empirical basis. As such, the availability of reliable measured data that extend to probability levels well in excess of the traditional limit of 1 percent is of great importance in the development, validation, and refinement of propagation models. The beacon payload on the Advanced Communications Technology Satellite (ACTS) together with the propagation measurement terminals developed under the NASA ACTS propagation program provide an excellent opportunity to collect such data on a long-term basis. This paper presents the results of ACTS propagation measurements conducted in the Washington, DC metropolitan area by COMSAT Laboratories.

  8. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  9. Group symmetries and information propagation

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1980-01-01

    Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned

  10. Mechanisms of seizure propagation in 2-dimensional centre-surround recurrent networks.

    Directory of Open Access Journals (Sweden)

    David Hall

    Full Text Available Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1-100 mm/s observed in two animal-slice-based models of epilepsy: (1 low extracellular [Formula: see text], which creates excess excitation and (2 introduction of gamma-aminobutyric acid (GABA antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular [Formula: see text] model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.

  11. Uncertainty Propagation in OMFIT

    Science.gov (United States)

    Smith, Sterling; Meneghini, Orso; Sung, Choongki

    2017-10-01

    A rigorous comparison of power balance fluxes and turbulent model fluxes requires the propagation of uncertainties in the kinetic profiles and their derivatives. Making extensive use of the python uncertainties package, the OMFIT framework has been used to propagate covariant uncertainties to provide an uncertainty in the power balance calculation from the ONETWO code, as well as through the turbulent fluxes calculated by the TGLF code. The covariant uncertainties arise from fitting 1D (constant on flux surface) density and temperature profiles and associated random errors with parameterized functions such as a modified tanh. The power balance and model fluxes can then be compared with quantification of the uncertainties. No effort is made at propagating systematic errors. A case study will be shown for the effects of resonant magnetic perturbations on the kinetic profiles and fluxes at the top of the pedestal. A separate attempt at modeling the random errors with Monte Carlo sampling will be compared to the method of propagating the fitting function parameter covariant uncertainties. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656.

  12. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    Science.gov (United States)

    Bradley, Ben K.

    orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.

  13. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    Science.gov (United States)

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  14. Formulary for neutron propagation in sodium-steel media for the fast reactor shields

    International Nuclear Information System (INIS)

    Bouteau, F.; Caumette, P.; Khairallah, A.; Oceraies, Y.; Devillers, C.

    1975-01-01

    The simplified calculational tool (''formulary'') for neutron propagation in the shields of fast reactors, being developed at CEA, has two objectives: to reduce the cost of the major part of design calculations, without a significant loss of accuracy; to facilitate the adjustment of the calculational tool with the results of the program of integral propagation experiments, which is conducted in parallel with the development of the calculational method. The version 0 (i.e. before any adjustment) of the formulary and a first test of its validity as compared to the results of integral measurements are presented [fr

  15. Propagating separable equalities in an MDD store

    DEFF Research Database (Denmark)

    Hadzic, Tarik; Hooker, John N.; Tiedemann, Peter

    2008-01-01

    We present a propagator that achieves MDD consistency for a separable equality over an MDD (multivalued decision diagram) store in pseudo-polynomial time. We integrate the propagator into a constraint solver based on an MDD store introduced in [1]. Our experiments show that the new propagator pro...... provides substantial computational advantage over propagation of two inequality constraints, and that the advantage increases when the maximum width of the MDD store increases....

  16. Many Masses on One Stroke:. Economic Computation of Quark Propagators

    Science.gov (United States)

    Frommer, Andreas; Nöckel, Bertold; Güsken, Stephan; Lippert, Thomas; Schilling, Klaus

    The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients). Based on the decomposition M/κ = 1/κ-D of the Wilson mass matrix, using QMR, one can carry out inversions on a whole trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage. Moreover, the symmetry γ5M = M†γ5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become — in the critical regime of small quark masses — competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.

  17. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  18. The impact of countermeasure propagation on the prevalence of computer viruses.

    Science.gov (United States)

    Chen, Li-Chiou; Carley, Kathleen M

    2004-04-01

    Countermeasures such as software patches or warnings can be effective in helping organizations avert virus infection problems. However, current strategies for disseminating such countermeasures have limited their effectiveness. We propose a new approach, called the Countermeasure Competing (CMC) strategy, and use computer simulation to formally compare its relative effectiveness with three antivirus strategies currently under consideration. CMC is based on the idea that computer viruses and countermeasures spread through two separate but interlinked complex networks-the virus-spreading network and the countermeasure-propagation network, in which a countermeasure acts as a competing species against the computer virus. Our results show that CMC is more effective than other strategies based on the empirical virus data. The proposed CMC reduces the size of virus infection significantly when the countermeasure-propagation network has properties that favor countermeasures over viruses, or when the countermeasure-propagation rate is higher than the virus-spreading rate. In addition, our work reveals that CMC can be flexibly adapted to different uncertainties in the real world, enabling it to be tuned to a greater variety of situations than other strategies.

  19. Plasminogen stimulates propagation of protease-resistant prion protein in vitro.

    Science.gov (United States)

    Mays, Charles E; Ryou, Chongsuk

    2010-12-01

    To clarify the role of plasminogen as a cofactor for prion propagation, we conducted functional assays using a cell-free prion protein (PrP) conversion assay termed protein misfolding cyclic amplification (PMCA) and prion-infected cell lines. Here, we report that plasminogen stimulates propagation of the protease-resistant scrapie PrP (PrP(Sc)). Compared to control PMCA conducted without plasminogen, addition of plasminogen in PMCA using wild-type brain material significantly increased PrP conversion, with an EC(50) = ∼56 nM. PrP conversion in PMCA was substantially less efficient with plasminogen-deficient brain material than with wild-type material. The activity stimulating PrP conversion was specific for plasminogen and conserved in its kringle domains. Such activity was abrogated by modification of plasminogen structure and interference of PrP-plasminogen interaction. Kinetic analysis of PrP(Sc) generation demonstrated that the presence of plasminogen in PMCA enhanced the PrP(Sc) production rate to ∼0.97 U/μl/h and reduced turnover time to ∼1 h compared to those (∼0.4 U/μl/h and ∼2.5 h) obtained without supplementation. Furthermore, as observed in PMCA, plasminogen and kringles promoted PrP(Sc) propagation in ScN2a and Elk 21(+) cells. Our results demonstrate that plasminogen functions in stimulating conversion processes and represents the first cellular protein cofactor that enhances the hypothetical mechanism of prion propagation.

  20. Methodologies of Uncertainty Propagation Calculation

    International Nuclear Information System (INIS)

    Chojnacki, Eric

    2002-01-01

    After recalling the theoretical principle and the practical difficulties of the methodologies of uncertainty propagation calculation, the author discussed how to propagate input uncertainties. He said there were two kinds of input uncertainty: - variability: uncertainty due to heterogeneity, - lack of knowledge: uncertainty due to ignorance. It was therefore necessary to use two different propagation methods. He demonstrated this in a simple example which he generalised, treating the variability uncertainty by the probability theory and the lack of knowledge uncertainty by the fuzzy theory. He cautioned, however, against the systematic use of probability theory which may lead to unjustifiable and illegitimate precise answers. Mr Chojnacki's conclusions were that the importance of distinguishing variability and lack of knowledge increased as the problem was getting more and more complex in terms of number of parameters or time steps, and that it was necessary to develop uncertainty propagation methodologies combining probability theory and fuzzy theory

  1. Diversity and Stability of Lactic Acid Bacteria in Rye Sourdoughs of Four Bakeries with Different Propagation Parameters.

    Directory of Open Access Journals (Sweden)

    Ene Viiard

    Full Text Available We identified the lactic acid bacteria within rye sourdoughs and starters from four bakeries with different propagation parameters and tracked their dynamics for between 5-28 months after renewal. Evaluation of bacterial communities was performed using plating, denaturing gradient gel electrophoresis, and pyrosequencing of 16S rRNA gene amplicons. Lactobacillus amylovorus and Lactobacillus frumenti or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus panis prevailed in sourdoughs propagated at higher temperature, while ambient temperature combined with a short fermentation cycle selected for Lactobacillus sanfranciscensis, Lactobacillus pontis, and Lactobacillus zymae or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus zymae. The ratio of species in bakeries employing room-temperature propagation displayed a seasonal dependence. Introduction of different and controlled propagation parameters at one bakery (higher fermentation temperature, reduced inoculum size, and extended fermentation time resulted in stabilization of the microbial community with an increased proportion of L. helveticus and L. pontis. Despite these new propagation parameters no new species were detected.

  2. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  3. Economic and Environmental Assessment of Seed and Rhizome Propagated Miscanthus in the UK

    Directory of Open Access Journals (Sweden)

    Astley Hastings

    2017-06-01

    Full Text Available Growth in planted areas of Miscanthus for biomass in Europe has stagnated since 2010 due to technical challenges, economic barriers and environmental concerns. These limitations need to be overcome before biomass production from Miscanthus can expand to several million hectares. In this paper, we consider the economic and environmental effects of introducing seed based hybrids as an alternative to clonal M. x giganteus (Mxg. The impact of seed based propagation and novel agronomy was compared with current Mxg cultivation and used in 10 commercially relevant, field scale experiments planted between 2012 and 2014 in the United Kingdom, Germany, and Ukraine. Economic and greenhouse gas (GHG emissions costs were quantified for the following production chain: propagation, establishment, harvest, transportation, storage, and fuel preparation (excluding soil carbon changes. The production and utilization efficiency of seed and rhizome propagation were compared. Results show that new hybrid seed propagation significantly reduces establishment cost to below £900 ha-1. Calculated GHG emission costs for the seeds established via plugs, though relatively small, was higher than rhizomes because fossil fuels were assumed to heat glasshouses for raising seedling plugs (5.3 and 1.5 kg CO2 eq. C Mg [dry matter (DM]-1, respectively. Plastic mulch film reduced establishment time, improving crop economics. The breakeven yield was calculated to be 6 Mg DM ha-1 y-1, which is about half average United Kingdom yield for Mxg; with newer seeded hybrids reaching 16 Mg DM ha-1 in second year United Kingdom trials. These combined improvements will significantly increase crop profitability. The trade-offs between costs of production for the preparation of different feedstock formats show that bales are the best option for direct firing with the lowest transport costs (£0.04 Mg-1 km-1 and easy on-farm storage. However, if pelleted fuel is required then chip harvesting is

  4. X-ray amplifier energy deposition scaling with channeled propagation

    International Nuclear Information System (INIS)

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-01-01

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  5. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  6. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width.

    Science.gov (United States)

    Learn, R; Feigenbaum, E

    2016-06-01

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  7. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  8. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  9. Laser beam propagation generation and propagation of customized light

    CERN Document Server

    Forbes, Andrew

    2014-01-01

    ""The text is easy to read and is accompanied by beautiful illustrations. It is an excellent book for anyone working in laser beam propagation and an asset for any library.""-Optics & Photonics News, July 2014

  10. Role of Compressibility on Tsunami Propagation

    Science.gov (United States)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development

  11. Quantum treatment of field propagation in a fiber near the zero dispersion wavelength

    Science.gov (United States)

    Safaei, A.; Bassi, A.; Bolorizadeh, M. A.

    2018-05-01

    In this report, we present a quantum theory describing the propagation of the electromagnetic radiation in a fiber in the presence of the third order dispersion coefficient. We obtained the quantum photon-polariton field, hence, we provide herein a coupled set of operator forms for the corresponding nonlinear Schrödinger equations when the third order dispersion coefficient is included. Coupled stochastic nonlinear Schrödinger equations were obtained by applying a positive P-representation that governs the propagation and interaction of quantum solitons in the presence of the third-order dispersion term. Finally, to reduce the fluctuations near solitons in the first approximation, we developed coupled stochastic linear equations.

  12. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    Science.gov (United States)

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  13. Rapid Vegetative Propagation Method for Carob

    OpenAIRE

    Hamide GUBBUK; Esma GUNES; Tomas AYALA-SILVA; Sezai ERCISLI

    2011-01-01

    Most of fruit species are propagated by vegetative methods such as budding, grafting, cutting, suckering, layering etc. to avoid heterozygocity. Carob trees (Ceratonia siliqua L.) are of highly economical value and are among the most difficult to propagate fruit species. In the study, air-layering propagation method was investigated first time to compare wild and cultivated (�Sisam�) carob types. In the experiment, one year old carob limbs were air-layered on coco peat medium by wrapping with...

  14. Direct Position Determination of Unknown Signals in the Presence of Multipath Propagation

    Directory of Open Access Journals (Sweden)

    Jianping Du

    2018-03-01

    Full Text Available A novel geolocation architecture, termed “Multiple Transponders and Multiple Receivers for Multiple Emitters Positioning System (MTRE” is proposed in this paper. Existing Direct Position Determination (DPD methods take advantage of a rather simple channel assumption (line of sight channels with complex path attenuations and a simplified MUltiple SIgnal Classification (MUSIC algorithm cost function to avoid the high dimension searching. We point out that the simplified assumption and cost function reduce the positioning accuracy because of the singularity of the array manifold in a multi-path environment. We present a DPD model for unknown signals in the presence of Multi-path Propagation (MP-DPD in this paper. MP-DPD adds non-negative real path attenuation constraints to avoid the mistake caused by the singularity of the array manifold. The Multi-path Propagation MUSIC (MP-MUSIC method and the Active Set Algorithm (ASA are designed to reduce the dimension of searching. A Multi-path Propagation Maximum Likelihood (MP-ML method is proposed in addition to overcome the limitation of MP-MUSIC in the sense of a time-sensitive application. An iterative algorithm and an approach of initial value setting are given to make the MP-ML time consumption acceptable. Numerical results validate the performances improvement of MP-MUSIC and MP-ML. A closed form of the Cramér–Rao Lower Bound (CRLB is derived as a benchmark to evaluate the performances of MP-MUSIC and MP-ML.

  15. Direct Position Determination of Unknown Signals in the Presence of Multipath Propagation.

    Science.gov (United States)

    Du, Jianping; Wang, Ding; Yu, Wanting; Yu, Hongyi

    2018-03-17

    A novel geolocation architecture, termed "Multiple Transponders and Multiple Receivers for Multiple Emitters Positioning System (MTRE)" is proposed in this paper. Existing Direct Position Determination (DPD) methods take advantage of a rather simple channel assumption (line of sight channels with complex path attenuations) and a simplified MUltiple SIgnal Classification (MUSIC) algorithm cost function to avoid the high dimension searching. We point out that the simplified assumption and cost function reduce the positioning accuracy because of the singularity of the array manifold in a multi-path environment. We present a DPD model for unknown signals in the presence of Multi-path Propagation (MP-DPD) in this paper. MP-DPD adds non-negative real path attenuation constraints to avoid the mistake caused by the singularity of the array manifold. The Multi-path Propagation MUSIC (MP-MUSIC) method and the Active Set Algorithm (ASA) are designed to reduce the dimension of searching. A Multi-path Propagation Maximum Likelihood (MP-ML) method is proposed in addition to overcome the limitation of MP-MUSIC in the sense of a time-sensitive application. An iterative algorithm and an approach of initial value setting are given to make the MP-ML time consumption acceptable. Numerical results validate the performances improvement of MP-MUSIC and MP-ML. A closed form of the Cramér-Rao Lower Bound (CRLB) is derived as a benchmark to evaluate the performances of MP-MUSIC and MP-ML.

  16. Direct Position Determination of Unknown Signals in the Presence of Multipath Propagation

    Science.gov (United States)

    Yu, Hongyi

    2018-01-01

    A novel geolocation architecture, termed “Multiple Transponders and Multiple Receivers for Multiple Emitters Positioning System (MTRE)” is proposed in this paper. Existing Direct Position Determination (DPD) methods take advantage of a rather simple channel assumption (line of sight channels with complex path attenuations) and a simplified MUltiple SIgnal Classification (MUSIC) algorithm cost function to avoid the high dimension searching. We point out that the simplified assumption and cost function reduce the positioning accuracy because of the singularity of the array manifold in a multi-path environment. We present a DPD model for unknown signals in the presence of Multi-path Propagation (MP-DPD) in this paper. MP-DPD adds non-negative real path attenuation constraints to avoid the mistake caused by the singularity of the array manifold. The Multi-path Propagation MUSIC (MP-MUSIC) method and the Active Set Algorithm (ASA) are designed to reduce the dimension of searching. A Multi-path Propagation Maximum Likelihood (MP-ML) method is proposed in addition to overcome the limitation of MP-MUSIC in the sense of a time-sensitive application. An iterative algorithm and an approach of initial value setting are given to make the MP-ML time consumption acceptable. Numerical results validate the performances improvement of MP-MUSIC and MP-ML. A closed form of the Cramér–Rao Lower Bound (CRLB) is derived as a benchmark to evaluate the performances of MP-MUSIC and MP-ML. PMID:29562601

  17. Effect of antibiotics on Agave fourcroydes Lem in vitro propagation

    Directory of Open Access Journals (Sweden)

    Enildo Abreu

    2016-01-01

    Full Text Available High microbial contamination on henequen (Agave fourcroydes Lem in vitro propagation reduces its efficiency. This work aimed to determine the effect of the use of antibiotics in the control of bacterial contaminants of this culture. Bacterial contaminants were identified and their susceptibility to different antibiotics it were determined. The two best-acting antibiotics were added to the propagation medium and the number of explants contaminated with bacteria and necrotics was quantified. The antibiotic and concentration that did not cause phytotoxicity to the explants and where the lowest percentage of contamination was obtained it was used to continue the propagation of the plants. These were transferred to the acclimatization stage and at 30 days of culture the number of live plants and the number of roots per plant were quantified. In addition, the length of the roots (cm was measured and the leaf area was calculated. Micrococcus spp., Pseudomonas spp., Agrobacterium spp., Bacillus subtilis and Bacillus licheniformis were found. The antibiotics tested inhibited the in vitro growth of the isolated contaminants and the best results were obtained with Ticar and Cefotaxime. Added to the plant propagation medium, Ticar was phytotoxic over 50 mg l-1 and cefotaxime could be used at 100 mg l-1 without causing damage to the explants. The results showed that the plants that came from the culture medium with cefotaxime 100 mg l-1 showed a significant increase of the variables evaluated in the acclimatization stage.   Key words: betalactamic, henequen, micropropagation

  18. On the power propagation time of a graph

    OpenAIRE

    Bozeman, Chassidy

    2016-01-01

    In this paper, we give Nordhaus-Gaddum upper and lower bounds on the sum of the power propagation time of a graph and its complement, and we consider the effects of edge subdivisions and edge contractions on the power propagation time of a graph. We also study a generalization of power propagation time, known as $k-$power propagation time, by characterizing all simple graphs on $n$ vertices whose $k-$power propagation time is $n-1$ or $n-2$ (for $k\\geq 1$) and $n-3$ (for $k\\geq 2$). We determ...

  19. Analysis of foliage effects on mobile propagation in dense urban environments

    Science.gov (United States)

    Bronshtein, Alexander; Mazar, Reuven; Lu, I.-Tai

    2000-07-01

    Attempts to reduce the interference level and to increase the spectral efficiency of cellular radio communication systems operating in dense urban and suburban areas lead to the microcellular approach with a consequent requirement to lower antenna heights. In large metropolitan areas having high buildings this requirement causes a situation where the transmitting and receiving antennas are both located below the rooftops, and the city street acts as a type of a waveguiding channel for the propagating signal. In this work, the city street is modeled as a random multislit waveguide with randomly distributed regions of foliage parallel to the building boundaries. The statistical propagation characteristics are expressed in terms of multiple ray-fields approaching the observer. Algorithms for predicting the path-loss along the waveguide and for computing the transverse field structure are presented.

  20. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  1. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spangler, Scott Wilmer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  2. Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy

    Science.gov (United States)

    Wahl, N.; Hennig, P.; Wieser, H. P.; Bangert, M.

    2017-07-01

    , while run-times of sampling-based computations are linear in the number of fractions. Using sum sampling within APM, uncertainty propagation can only be accelerated at the cost of reduced accuracy in variance calculations. For probabilistic plan optimization, we were able to approximate the necessary pre-computations within seconds, yielding treatment plans of similar quality as gained from exact uncertainty propagation. APM is suited to enhance the trade-off between speed and accuracy in uncertainty propagation and probabilistic treatment plan optimization, especially in the context of fractionation. This brings fully-fledged APM computations within reach of clinical application.

  3. Spectral transfer functions of body waves propagating through a stratified medium. Part 1: Basic theory by means of matrix propagators

    International Nuclear Information System (INIS)

    Macia, R.; Correig, A.M.

    1987-01-01

    Seismic wave propagation is described by a second order differential equation for medium displacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This system of differential equations is solved by means of Matrix Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (author) 14 refs

  4. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  5. A Potential Method for Body and Surface Wave Propagation in Transversely Isotropic Half- and Full-Spaces

    Directory of Open Access Journals (Sweden)

    Mehdi Raoofian Naeeni

    2016-12-01

    Full Text Available The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations for potential functions. In this paper, the secular equations for determination of body and surface wave velocities are derived in terms of both elasticity coefficients and the direction of propagation. In particular, the longitudinal, transverse and Rayleigh wave velocities are determined in explicit forms. It is also shown that in transversely isotropic materials, a Rayleigh wave may propagate in different manner from that of isotropic materials. Some numerical results for synthetic transversely isotropic materials are also illustrated to show the behavior of wave motion due to anisotropic nature of the problem.

  6. Using special functions to model the propagation of airborne diseases

    Science.gov (United States)

    Bolaños, Daniela

    2014-06-01

    Some special functions of the mathematical physics are using to obtain a mathematical model of the propagation of airborne diseases. In particular we study the propagation of tuberculosis in closed rooms and we model the propagation using the error function and the Bessel function. In the model, infected individual emit pathogens to the environment and this infect others individuals who absorb it. The evolution in time of the concentration of pathogens in the environment is computed in terms of error functions. The evolution in time of the number of susceptible individuals is expressed by a differential equation that contains the error function and it is solved numerically for different parametric simulations. The evolution in time of the number of infected individuals is plotted for each numerical simulation. On the other hand, the spatial distribution of the pathogen around the source of infection is represented by the Bessel function K0. The spatial and temporal distribution of the number of infected individuals is computed and plotted for some numerical simulations. All computations were made using software Computer algebra, specifically Maple. It is expected that the analytical results that we obtained allow the design of treatment rooms and ventilation systems that reduce the risk of spread of tuberculosis.

  7. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  8. Universal self-similarity of propagating populations.

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d-dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common--yet arbitrary--motion pattern; each particle has its own random propagation parameters--emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles' displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles' underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  9. Universal self-similarity of propagating populations

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d -dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common—yet arbitrary—motion pattern; each particle has its own random propagation parameters—emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles’ displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles’ underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  10. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  11. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  12. Feynman propagator and space-time transformation technique

    International Nuclear Information System (INIS)

    Nassar, A.B.

    1987-01-01

    We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)

  13. The quark propagator in a covariant gauge

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Leinweber, D.B.; Williams, A.G.; Zanotti, J.M.

    2000-01-01

    Full text: The quark propagator is one of the fundamental building blocks of QCD. Results strongly depend on the ansatz for the propagator. Direct simulations of QCD on a space time lattice can provide guidance and constraints on the analytic structure of the quark propagator. On the lattice the infrared and asymptotic behaviour of the quark propagator is of particular interest since it is a reflection of the accuracy of the discretised quark action. In the deep infrared region, artefacts associated with the finite size of the lattice spacing become small. This is the most interesting region as nonperturbative physics lies here. However, the ultraviolet behaviour at large momentum of the propagator will in general strongly deviate from the correct continuum behaviour. This behaviour will be action dependent. Some interesting progress has been made in improving the ultraviolet behaviour of the propagator. A method, recently developed and referred to as tree-level correction, consists of using the knowledge of the tree-level behaviour to eliminate the obvious lattice artefacts. Tree-level correction represents a crucial step in extracting meaningful results for the mass function and the renormalisation function outside of the deep infrared region. The mass function is particularly interesting as it provides insights into the constituent quark mass as a measure of the nonperturbative physics. In this poster I will present results from the analytic structure of the propagator in recent lattice studies for a variety of fermion actions in lattice QCD. I will also present the new ratio method used to tree-level correct these quark propagators

  14. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    Science.gov (United States)

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  15. Propagation of transition fronts in nonlinear chains with non-degenerate on-site potentials

    Science.gov (United States)

    Shiroky, I. B.; Gendelman, O. V.

    2018-02-01

    We address the problem of transition front propagation in chains with a bi-stable nondegenerate on-site potential and a nonlinear gradient coupling. For generic nonlinear coupling, one encounters a special regime of transitions, characterized by extremely narrow fronts, far supersonic velocities of the front propagation, and long waves in the oscillatory tail. This regime can be qualitatively associated with a shock wave. The front propagation can be described with the help of a simple reduced-order model; the latter delivers a kinetic law, which is almost not sensitive to the fine details of the on-site potential. Besides, it is possible to predict all main characteristics of the transition front, including its velocity, as well as the frequency and the amplitude of the oscillatory tail. Numerical results are in good agreement with the analytical predictions. The suggested approach allows one to consider the effects of an external pre-load, the next-nearest-neighbor coupling and the on-site damping. When the damping is moderate, it is possible to consider the shock propagation in the damped chain as a perturbation of the undamped dynamics. This approach yields reasonable predictions. When the damping is high, the transition front enters a completely different asymptotic regime of a subsonic kink. The gradient nonlinearity generically turns negligible, and the propagating front converges to the regime described by a simple exact solution for a continuous model with linear coupling.

  16. Application of propagation calculations in air quality control

    International Nuclear Information System (INIS)

    Kuelske, S.

    1993-01-01

    This paper describes the development of a methodics of propagation calculation since the foundation of the 'Landesanstalt fuer Immissionsschutz' in 1963, and its practical use in air quality control. In this context, it deals with methods for calculating stack heights and the Gaussian propagation model adopted by the Technical Code on Clean Air, the propagation of flue gas emitted via cooling towers, the propagation of accidentally released substances, odours and automobile emissions, and with flow and propagation calculation for the proximity zone of buildings as well as for meteorological fields with space and time variations and topographically varied terrain. (orig.) [de

  17. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  18. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  19. Multiple cracks initiation and propagation behavior of stainless steel in high temperature water environment

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo

    2001-01-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  20. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Science.gov (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Initiation and propagation of multiple cracks of stainless steel in high temperature water environment

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  2. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  3. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  4. A representation independent propagator. Pt. 1. Compact Lie groups

    International Nuclear Information System (INIS)

    Tome, W.A.

    1995-01-01

    Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)

  5. Thermoelastic wave propagation in laminated composites plates

    Directory of Open Access Journals (Sweden)

    Verma K. L.

    2012-12-01

    Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.

  6. Content Propagation in Online Social Networks

    NARCIS (Netherlands)

    Blenn, N.

    2014-01-01

    This thesis presents methods and techniques to analyze content propagation within online social networks (OSNs) using a graph theoretical approach. Important factors and different techniques to analyze and describe content propagation, starting from the smallest entity in a network, representing a

  7. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    Science.gov (United States)

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  8. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  9. An FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded with Conductors

    KAUST Repository

    Yucel, Abdulkadir C.

    2018-02-05

    A fast and memory efficient 3D full wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method - fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts.

  10. Radio Propagation in Open-pit Mines

    DEFF Research Database (Denmark)

    Portela Lopes de Almeida, Erika; Caldwell, George; Rodriguez Larrad, Ignacio

    2017-01-01

    In this paper we present the results of an extensive measurement campaign performed at two large iron ore mining centers in Brazil at the 2.6 GHz band. Although several studies focusing on radio propagation in underground mines have been published, measurement data and careful analyses for open......-pit mines are still scarce. Our results aim at filling this gap in the literature. The research is motivated by the ongoing mine automation initiatives, where connectivity becomes critical. This paper presents the first set of results comprising measurements under a gamut of propagation conditions. A second...... paper detailing sub-GHz propagation is also in preparation. The results indicate that conventional wisdom is wrong, in other words, radio-frequency (RF) propagation in surface mines can be far more elaborate than plain free-space line-of-sight conditions. Additionally, the old mining adage “no two mines...

  11. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  12. Designing for sustained adoption: A model of developing educational innovations for successful propagation

    Science.gov (United States)

    Khatri, Raina; Henderson, Charles; Cole, Renée; Froyd, Jeffrey E.; Friedrichsen, Debra; Stanford, Courtney

    2016-06-01

    uses significant feedback from potential adopters to develop a strong product suitable for use in many settings. Interactive dissemination uses personal interactions to reach and motivate potential users. Support of adopters is missing from typical propagation practice and is important to reduce the burden of implementation and increases the likelihood of successful adoption.

  13. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  14. Network propagation in the cytoscape cyberinfrastructure.

    Science.gov (United States)

    Carlin, Daniel E; Demchak, Barry; Pratt, Dexter; Sage, Eric; Ideker, Trey

    2017-10-01

    Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.

  15. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  16. Propagation of synchrotron radiation through nanocapillary structures

    International Nuclear Information System (INIS)

    Bjeoumikhov, A.; Bjeoumikhova, S.; Riesemeier, H.; Radtke, M.; Wedell, R.

    2007-01-01

    The propagation of synchrotron radiation through nanocapillary structures with channel sizes of 200 nm and periods in the micrometer size has been studied experimentally. It was shown that the propagation through individual capillary channels has a mode formation character. Furthermore it was shown that during the propagation through capillary channels the coherence of synchrotron radiation is partially conserved. Interference of beams propagating through different capillary channels is observed which leads to a periodically modulated distribution of the radiation intensity in a plane far from the exit of the structure. These investigations are of high relevance for the understanding of X-ray transmission through nanocapillaries and the appearance of wave properties at this size scale

  17. Network-based analysis of software change propagation.

    Science.gov (United States)

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  18. Wave propagation through an electron cyclotron resonance layer

    International Nuclear Information System (INIS)

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N ' 'parallel to'' ≅ v t /c, an O-mode beam is shown to exhibit a strong wiggle in the trajectory of the centre of the beam when passing through the fundamental electron cyclotron resonance. The effects are largest for low temperatures and close to perpendicular propagation. Predictions from standard dielectric wave energy fluxes are inconsistent with the trajectory of the beam. Qualitatively identical results are obtained for the X-mode second harmonic. In contrast, the X-mode at the fundamental resonance shows significant deviations form cold plasma propagation only for strongly oblique propagation and/or high temperatures. On the basis of the obtained results a practical suggestion is made for ray tracing near electron cyclotron resonance. (Author)

  19. Self-propagating solar light reduction of graphite oxide in water

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece); Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece)

    2017-01-01

    Highlights: • Graphite oxide was partially reduced by solar light irradiation in water media. • No addition of catalysts nor reductive agent were used for the reduction. • Specific capacitance increased stepwise with increase of irradiation time. • Self-propagating reduction of graphene oxide by solar light is suggested. - Abstract: Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp{sup 2} domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.

  20. The ghost propagator in Coulomb gauge

    International Nuclear Information System (INIS)

    Watson, P.; Reinhardt, H.

    2011-01-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  1. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  2. Influence of Flavors on the Propagation of E-Cigarette–Related Information: Social Media Study

    Science.gov (United States)

    Zhou, Jiaqi; Zeng, Daniel Dajun; Tsui, Kwok Leung

    2018-01-01

    Background Modeling the influence of e-cigarette flavors on information propagation could provide quantitative policy decision support concerning smoking initiation and contagion, as well as e-cigarette regulations. Objective The objective of this study was to characterize the influence of flavors on e-cigarette–related information propagation on social media. Methods We collected a comprehensive dataset of e-cigarette–related discussions from public Pages on Facebook. We identified 11 categories of flavors based on commonly used categorizations. Each post’s frequency of being shared served as a proxy measure of information propagation. We evaluated a set of regression models and chose the hurdle negative binomial model to characterize the influence of different flavors and nonflavor control variables on e-cigarette–related information propagation. Results We found that 5 flavors (sweet, dessert & bakery, fruits, herbs & spices, and tobacco) had significantly negative influences on e-cigarette–related information propagation, indicating the users’ tendency not to share posts related to these flavors. We did not find a positive significance of any flavors, which is contradictory to previous research. In addition, we found that a set of nonflavor–related factors were associated with information propagation. Conclusions Mentions of flavors in posts did not enhance the popularity of e-cigarette–related information. Certain flavors could even have reduced the popularity of information, indicating users’ lack of interest in flavors. Promoting e-cigarette–related information with mention of flavors is not an effective marketing approach. This study implies the potential concern of users about flavorings and suggests a need to regulate the use of flavorings in e-cigarettes. PMID:29572202

  3. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Wang, Dewei; Min, Yonggang; Yu, Youhai; Peng, Bo

    2014-01-01

    Graphical abstract: - Highlights: • Few layers graphene was obtained by laser induced self-propagating reduction. • The process is ultrafast without assistance of any high temperate/vacuum environment. • The as-prepared graphene exhibits excellent electrochemical performance. • The superior capacitive behavior is owing to its unique structures. - Abstract: Focused laser beam induced self-propagating reaction has been developed for fabrication of graphene rapidly and efficiently through simultaneous reduction and exfoliation of graphite oxide (GO) process. This chemical-free approach can realize the reduction and exfoliation at room temperature without assistance of any high temperature/vacuum environment. We found that the small sized spot can trigger an ultrafast and highly thermal transferred process by self-propagating reaction at ambient conditions. Benefiting from its high surface area and unique structure, the laser induced self-propagating reaction reduced graphene (LIG) shows excellent capacitive performance. Considering that the cost-effective and feasible process, this facile technique presented here will not only provide a promising method for production of graphene on an industrial scale, but also put forward the application graphene materials in energy storage and conversion

  4. An efficient ray tracing method for propagation prediction along a mobile route in urban environments

    Science.gov (United States)

    Hussain, S.; Brennan, C.

    2017-07-01

    This paper presents an efficient ray tracing algorithm for propagation prediction in urban environments. The work presented in this paper builds upon previous work in which the maximum coverage area where rays can propagate after interaction with a wall or vertical edge is described by a lit polygon. The shadow regions formed by buildings within the lit polygon are described by shadow polygons. In this paper, the lit polygons of images are mapped to a coarse grid superimposed over the coverage area. This mapping reduces the active image tree significantly for a given receiver point to accelerate the ray finding process. The algorithm also presents an efficient method of quickly determining the valid ray segments for a mobile receiver moving along a linear trajectory. The validation results show considerable computation time reduction with good agreement between the simulated and measured data for propagation prediction in large urban environments.

  5. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  6. NASA Perspective and Modeling of Thermal Runaway Propagation Mitigation in Aerospace Batteries

    Science.gov (United States)

    Shack, P.; Iannello, C.; Rickman, S.; Button, R.

    2014-01-01

    NASA has traditionally sought to reduce the likelihood of a single cell thermal runaway (TR) in their aerospace batteries to an absolute minimum by employing rigorous screening program of the cells. There was generally a belief that TR propagation resulting in catastrophic failure of the battery was a forgone conclusion for densely packed aerospace lithium-ion batteries. As it turns out, this may not be the case. An increasing number of purportedly TR propagation-resistant batteries are appearing among NASA partners in the commercial sector and the Department of Defense. In the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. Unfortunately, there are no best-practice guidelines for this work in the Agency, so the first project team attempting to meet these requirements would have an undue burden placed upon them. A NASA engineering Safety Center (NESC) team set out to perform pathfinding activities for meeting those requirements. This presentation will provide contextual background to this effort, as well as initial results in attempting to model and simulate TR heat transfer and propagation within battery designs.

  7. Propagation properties of dielectric-lined hollow cylindrical metallic waveguides for THz waves

    International Nuclear Information System (INIS)

    Huang Binke; Zhao Chongfeng

    2013-01-01

    For the rigorous analysis of the propagation properties of dielectric-lined hollow cylindrical metallic waveguides operating in the THz range of frequencies, the characteristic equation for propagation constants is derived from the electromagnetic field equations and the boundary conditions of the dielectric-lined waveguides. The propagation constant of the dominant hybrid HE 11 mode can be obtained by solving the characteristic equation with the improved Muller method. The classical relaxation-effect model for the conductivity is adopted to describe the frequency dispersive behavior of normal metals for the metallic waveguide wall. For a 1.8 mm bore diameter silver waveguide with the inner surface coated with a 17 μm-thick layer of polystyrene(PS) film, the transmission losses of HE 11 mode can be reduced to the level below 1 dB/m at 1.5-3.0 THz, and the dispersion is relatively small for HE 11 mode. In addition, with the PS film thickness increasing, the transmission losses of HE 11 mode increase first and then decrease for a 2.2 mm bore diameter silver waveguide at 2.5 THz, and the minimum loss can be achieved by adopting the optimum dielectric layer thickness. (authors)

  8. Modeling Passive Propagation of Malwares on the WWW

    Science.gov (United States)

    Chunbo, Liu; Chunfu, Jia

    Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.

  9. Network propagation in the cytoscape cyberinfrastructure.

    Directory of Open Access Journals (Sweden)

    Daniel E Carlin

    2017-10-01

    Full Text Available Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.

  10. A semi-analytical solution for viscothermal wave propagation in narrow gaps with arbitrary boundary conditions.

    NARCIS (Netherlands)

    Wijnant, Ysbrand H.; Spiering, R.M.E.J.; Blijderveen, M.; de Boer, Andries

    2006-01-01

    Previous research has shown that viscothermal wave propagation in narrow gaps can efficiently be described by means of the low reduced frequency model. For simple geometries and boundary conditions, analytical solutions are available. For example, Beltman [4] gives the acoustic pressure in the gap

  11. Energy model for rumor propagation on social networks

    Science.gov (United States)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  12. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation

    Directory of Open Access Journals (Sweden)

    Sara Calafate

    2015-05-01

    Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  13. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    Science.gov (United States)

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study.

    Science.gov (United States)

    Sundt, Danielle; Gamper, Nikita; Jaffe, David B

    2015-12-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na(+) channels. A model containing only fast voltage-gated Na(+) and delayed-rectifier K(+) channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca(2+)-dependent K(+) current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na(+)-K(+) pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca(2+)-dependent K(+) current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. Copyright © 2015 the American Physiological Society.

  15. Soluble Aβ aggregates can inhibit prion propagation.

    Science.gov (United States)

    Sarell, Claire J; Quarterman, Emma; Yip, Daniel C-M; Terry, Cassandra; Nicoll, Andrew J; Wadsworth, Jonathan D F; Farrow, Mark A; Walsh, Dominic M; Collinge, John

    2017-11-01

    Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrP C ). Ligands that bind to PrP C can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrP C , and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrP C and emphasize the bidirectional nature of the interplay between Aβ and PrP C in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common. © 2017 The Authors.

  16. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  17. Magnetosheath Propagation Time of Solar Wind Directional Discontinuities

    Science.gov (United States)

    Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.

    2018-05-01

    Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.

  18. In vitro propagation of Irvingia gabonensis

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... Full-grown plantlets were obtained and work is in progress on mass propagation. ... subsequent mass propagation to produce seedlings for farmers, and to improve food security and ... Shooting and rooting were observed, and full grown plantlets were obtained. ¼ MS +0.2 mg KIN. +0.1 mg NAA. Rooting ...

  19. Propagation of microwaves in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G; Ferrari, A [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica Generale; Cambridge Univ. (UK). Inst. of Astronomy)

    1981-12-01

    We discuss the dispersion relation of linearly-polarized waves, propagating along a strong background magnetic field embedded in an electron-positron plasma. The results are then applied to the study of the propagation conditions of coherent curvature radio radiation inside neutron stars magnetospheres, as produced by electric discharges following current pulsar models.

  20. Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels

    International Nuclear Information System (INIS)

    Esarey, E.; Schroeder, C. B.; Shadwick, B. A.; Wurtele, J. S.; Leemans, W. P.

    2000-01-01

    Nonparaxial propagation of ultrashort, high-power laser pulses in plasma channels is examined. In the adiabatic limit, pulse energy conservation, nonlinear group velocity, damped betatron oscillations, self-steepening, self-phase modulation, and shock formation are analyzed. In the nonadiabatic limit, the coupling of forward Raman scattering (FRS) and the self-modulation instability (SMI) is analyzed and growth rates are derived, including regimes of reduced growth. The SMI is found to dominate FRS in most regimes of interest. (c) 2000 The American Physical Society

  1. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  2. Against dogma: On superluminal propagation in classical electromagnetism

    Science.gov (United States)

    Weatherall, James Owen

    2014-11-01

    It is deeply entrenched dogma that relativity theory prohibits superluminal propagation. It is also experimentally well-established that under some circumstances, classical electromagnetic fields propagate through a dielectric medium with superluminal group velocities and superluminal phase velocities. But it is usually claimed that these superluminal velocities do not violate the relativistic prohibition. Here I analyze electromagnetic fields in a dielectric medium within a framework for understanding superluminal propagation recently developed by Geroch (1996, 2011) and elaborated by Earman (2014). I will argue that for some parameter values, electromagnetic fields do propagate superluminally in the Geroch-Earman sense.

  3. Measuring propagation speed of Coulomb fields

    Energy Technology Data Exchange (ETDEWEB)

    Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)

    2015-03-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)

  4. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste...... Pressure Level (SPL).......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...... of unsteady flow around it and time dependent source characteristics. For the acoustics modelling we employ the Parabolic Equation (PE) method while Large Eddy Simulation (LES) as well as synthetically generated turbulence fields are used to generate the medium flow upon which sound propagates. Unsteady...

  5. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation.

    Science.gov (United States)

    Cui, Zhi; Ni, Nathan C; Wu, Jun; Du, Guo-Qing; He, Sheng; Yau, Terrence M; Weisel, Richard D; Sung, Hsing-Wen; Li, Ren-Ke

    2018-01-01

    Background: The post-myocardial infarction (MI) scar interrupts electrical impulse propagation and delays regional contraction, which contributes to ventricular dysfunction. We investigated the potential of an injectable conductive biomaterial to restore scar tissue conductivity and re-establish synchronous ventricular contraction. Methods: A conductive biomaterial was generated by conjugating conductive polypyrrole (PPY) onto chitosan (CHI) backbones. Trypan blue staining of neonatal rat cardiomyocytes (CMs) cultured on biomaterials was used to evaluate the biocompatibility of the conductive biomaterials. Ca 2+ imaging was used to visualize beating CMs. A cryoablation injury rat model was used to investigate the ability of PPY:CHI to improve cardiac electrical propagation in the injured heart in vivo . Electromyography was used to evaluate conductivity of scar tissue ex vivo . Results: Cell survival and morphology were similar between cells cultured on biomaterials-coated and uncoated-control dishes. PPY:CHI established synchronous contraction of two distinct clusters of spontaneously-beating CMs. Intramyocardial PPY:CHI injection into the cryoablation-induced injured region improved electrical impulse propagation across the scarred tissue and decreased the QRS interval, whereas saline- or CHI-injected hearts continued to have delayed propagation patterns and significantly reduced conduction velocity compared to healthy controls. Ex vivo evaluation found that scar tissue from PPY:CHI-treated rat hearts had higher signal amplitude compared to those from saline- or CHI-treated rat heart tissue. Conclusions: The PPY:CHI biomaterial is electrically conductive, biocompatible and injectable. It improved synchronous contraction between physically separated beating CM clusters in vitro . Intra-myocardial injection of PPY:CHI following cardiac injury improved electrical impulse propagation of scar tissue in vivo .

  6. Propagation in a waveguide with range-dependent seabed properties.

    Science.gov (United States)

    Holland, Charles W

    2010-11-01

    The ocean environment contains features affecting acoustic propagation that vary on a wide range of time and space scales. A significant body of work over recent decades has aimed at understanding the effects of water column spatial and temporal variability on acoustic propagation. Much less is understood about the impact of spatial variability of seabed properties on propagation, which is the focus of this study. Here, a simple, intuitive expression for propagation with range-dependent boundary properties and uniform water depth is derived. It is shown that incoherent range-dependent propagation depends upon the geometric mean of the seabed plane-wave reflection coefficient and the arithmetic mean of the cycle distance. Thus, only the spatial probability distributions (pdfs) of the sediment properties are required. Also, it is shown that the propagation over a range-dependent seabed tends to be controlled by the lossiest, not the hardest, sediments. Thus, range-dependence generally leads to higher propagation loss than would be expected, due for example to lossy sediment patches and/or nulls in the reflection coefficient. In a few instances, propagation over a range-dependent seabed can be calculated using range-independent sediment properties. The theory may be useful for other (non-oceanic) waveguides.

  7. Research on Trust Propagation Models in Reputation Management Systems

    Directory of Open Access Journals (Sweden)

    Zhiyuan Su

    2014-01-01

    Full Text Available Feedback based reputation systems continue to gain popularity in eCommerce and social media systems today and reputation management in large social networks needs to manage cold start and sparseness in terms of feedback. Trust propagation has been widely recognized as an effective mechanism to handle these problems. In this paper we study the characterization of trust propagation models in the context of attack resilience. We characterize trust propagation models along three dimensions: (i uniform propagation and conditional propagation, (ii jump strategies for breaking unwanted cliques, and (iii decay factors for differentiating recent trust history from remote past history. We formally and experimentally show that feedback similarity is a critical measure for countering colluding attacks in reputation systems. Without feedback similarity guided control, trust propagations are vulnerable to different types of colluding attacks.

  8. Influence of Flavors on the Propagation of E-Cigarette-Related Information: Social Media Study.

    Science.gov (United States)

    Zhou, Jiaqi; Zhang, Qingpeng; Zeng, Daniel Dajun; Tsui, Kwok Leung

    2018-03-23

    Modeling the influence of e-cigarette flavors on information propagation could provide quantitative policy decision support concerning smoking initiation and contagion, as well as e-cigarette regulations. The objective of this study was to characterize the influence of flavors on e-cigarette-related information propagation on social media. We collected a comprehensive dataset of e-cigarette-related discussions from public Pages on Facebook. We identified 11 categories of flavors based on commonly used categorizations. Each post's frequency of being shared served as a proxy measure of information propagation. We evaluated a set of regression models and chose the hurdle negative binomial model to characterize the influence of different flavors and nonflavor control variables on e-cigarette-related information propagation. We found that 5 flavors (sweet, dessert & bakery, fruits, herbs & spices, and tobacco) had significantly negative influences on e-cigarette-related information propagation, indicating the users' tendency not to share posts related to these flavors. We did not find a positive significance of any flavors, which is contradictory to previous research. In addition, we found that a set of nonflavor-related factors were associated with information propagation. Mentions of flavors in posts did not enhance the popularity of e-cigarette-related information. Certain flavors could even have reduced the popularity of information, indicating users' lack of interest in flavors. Promoting e-cigarette-related information with mention of flavors is not an effective marketing approach. This study implies the potential concern of users about flavorings and suggests a need to regulate the use of flavorings in e-cigarettes. ©Jiaqi Zhou, Qingpeng Zhang, Daniel Dajun Zeng, Kwok Leung Tsui. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 23.03.2018.

  9. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard

    2014-11-01

    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  10. ADVANCES IN THE PROPAGATION OF RAMBUTAN TREE

    Directory of Open Access Journals (Sweden)

    RENATA APARECIDA DE ANDRADE

    2017-12-01

    Full Text Available ABSTRACT The reality of Brazilian fruit farming is demonstrating increasing demand for sustainable information about native and exotic fruit, which can diversify and elevate the efficiency of fruit exploitation. Research on propagation of fruits tree is very important so that it can provide a protocol for suitable multiplication of this fruitful. Due to the great genetic diversity of rambutan plants, it is recommended the use of vegetative propagated plants. This research aimed to evaluate the propagation of rambutan by cuttings, layering and grafting, as well as seed germination and viability without storage. The results of this research indicate that this species can be successfully propagated by layering, grafting and seeds. We also observed that the germination percentage of seeds kept inside the fruits for six days were not influenced by the different substrates used in this experiment.

  11. An accelerated training method for back propagation networks

    Science.gov (United States)

    Shelton, Robert O. (Inventor)

    1993-01-01

    The principal objective is to provide a training procedure for a feed forward, back propagation neural network which greatly accelerates the training process. A set of orthogonal singular vectors are determined from the input matrix such that the standard deviations of the projections of the input vectors along these singular vectors, as a set, are substantially maximized, thus providing an optimal means of presenting the input data. Novelty exists in the method of extracting from the set of input data, a set of features which can serve to represent the input data in a simplified manner, thus greatly reducing the time/expense to training the system.

  12. Distributed Software-Attestation Defense against Sensor Worm Propagation

    Directory of Open Access Journals (Sweden)

    Jun-Won Ho

    2015-01-01

    Full Text Available Wireless sensor networks are vulnerable to sensor worm attacks in which the attacker compromises a few nodes and makes these compromised nodes initiate worm spread over the network, targeting the worm infection of the whole nodes in the network. Several defense mechanisms have been proposed to prevent worm propagation in wireless sensor networks. Although these proposed schemes use software diversity technique for worm propagation prevention under the belief that different software versions do not have common vulnerability, they have fundamental drawback in which it is difficult to realize the aforementioned belief in sensor motes. To resolve this problem, we propose on-demand software-attestation based scheme to defend against worm propagation in sensor network. The main idea of our proposed scheme is to perform software attestations against sensor nodes in on-demand manner and detect the infected nodes by worm, resulting in worm propagation block in the network. Through analysis, we show that our proposed scheme defends against worm propagation in efficient and robust manner. Through simulation, we demonstrate that our proposed scheme stops worm propagation at the reasonable overhead while preventing a majority of sensor nodes from being infected by worm.

  13. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  14. Propagation considerations in land mobile satellite transmission

    Science.gov (United States)

    Vogel, W. J.; Smith, E. K.

    1985-01-01

    It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided.

  15. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    the existence and propagation of four waves in the medium. Three of the waves are ... predicted infinite speed for propagation of ther- mal signals. Lord and ..... saturated reservoir rock (North-sea Sandstone) is chosen for the numerical model ...

  16. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. α-Synuclein Immunotherapy Blocks Uptake and Templated Propagation of Misfolded α-Synuclein and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Hien T. Tran

    2014-06-01

    Full Text Available Accumulation of misfolded alpha-synuclein (α-syn into Lewy bodies (LBs and Lewy neurites (LNs is a major hallmark of Parkinson’s disease (PD and dementia with LBs (DLB. Recent studies showed that synthetic preformed fibrils (pffs recruit endogenous α-syn and induce LB/LN pathology in vitro and in vivo, thereby implicating propagation and cell-to-cell transmission of pathological α-syn as mechanisms for the progressive spread of LBs/LNs. Here, we demonstrate that α-syn monoclonal antibodies (mAbs reduce α-syn pff-induced LB/LN formation and rescue synapse/neuron loss in primary neuronal cultures by preventing both pff uptake and subsequent cell-to-cell transmission of pathology. Moreover, intraperitoneal (i.p. administration of mAb specific for misfolded α-syn into nontransgenic mice injected intrastriatally with α-syn pffs reduces LB/LN pathology, ameliorates substantia nigra dopaminergic neuron loss, and improves motor impairments. We conclude that α-syn antibodies could exert therapeutic effects in PD/DLB by blocking entry of pathological α-syn and/or its propagation in neurons.

  18. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  19. Topology optimization of wave-propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  20. A Workflow-Oriented Approach To Propagation Models In Heliophysics

    Directory of Open Access Journals (Sweden)

    Gabriele Pierantoni

    2014-01-01

    Full Text Available The Sun is responsible for the eruption of billions of tons of plasma andthe generation of near light-speed particles that propagate throughout the solarsystem and beyond. If directed towards Earth, these events can be damaging toour tecnological infrastructure. Hence there is an effort to understand the causeof the eruptive events and how they propagate from Sun to Earth. However, thephysics governing their propagation is not well understood, so there is a need todevelop a theoretical description of their propagation, known as a PropagationModel, in order to predict when they may impact Earth. It is often difficultto define a single propagation model that correctly describes the physics ofsolar eruptive events, and even more difficult to implement models capable ofcatering for all these complexities and to validate them using real observational data.In this paper, we envisage that workflows offer both a theoretical andpractical framerwork for a novel approach to propagation models. We definea mathematical framework that aims at encompassing the different modalitieswith which workflows can be used, and provide a set of generic building blockswritten in the TAVERNA workflow language that users can use to build theirown propagation models. Finally we test both the theoretical model and thecomposite building blocks of the workflow with a real Science Use Case that wasdiscussed during the 4th CDAW (Coordinated Data Analysis Workshop eventheld by the HELIO project. We show that generic workflow building blocks canbe used to construct a propagation model that succesfully describes the transitof solar eruptive events toward Earth and predict a correct Earth-impact time

  1. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  2. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  3. A photon propagator on de Sitter in covariant gauges

    NARCIS (Netherlands)

    Domazet, S.; Prokopec, T.

    2014-01-01

    We construct a de Sitter invariant photon propagator in general covariant gauges. Our result is a natural generalization of the Allen-Jacobson photon propagator in Feynman gauge. Our propagator reproduces the correct response to a point static charge and the one-loop electromagnetic stress-energy

  4. The effect of various parameters of large scale radio propagation models on improving performance mobile communications

    Science.gov (United States)

    Pinem, M.; Fauzi, R.

    2018-02-01

    One technique for ensuring continuity of wireless communication services and keeping a smooth transition on mobile communication networks is the soft handover technique. In the Soft Handover (SHO) technique the inclusion and reduction of Base Station from the set of active sets is determined by initiation triggers. One of the initiation triggers is based on the strong reception signal. In this paper we observed the influence of parameters of large-scale radio propagation models to improve the performance of mobile communications. The observation parameters for characterizing the performance of the specified mobile system are Drop Call, Radio Link Degradation Rate and Average Size of Active Set (AS). The simulated results show that the increase in altitude of Base Station (BS) Antenna and Mobile Station (MS) Antenna contributes to the improvement of signal power reception level so as to improve Radio Link quality and increase the average size of Active Set and reduce the average Drop Call rate. It was also found that Hata’s propagation model contributed significantly to improvements in system performance parameters compared to Okumura’s propagation model and Lee’s propagation model.

  5. Uncertainty Propagation in an Ecosystem Nutrient Budget.

    Science.gov (United States)

    New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...

  6. Interactive Simulation and Visualization of Lamb Wave Propagation in Isotropic and Anisotropic Structures

    International Nuclear Information System (INIS)

    Moll, J; Schulte, R T; Fritzen, C-P; Rezk-Salama, C; Klinkert, T; Kolb, A

    2011-01-01

    Structural health monitoring systems allow a continuous surveillance of the structural integrity of operational systems. As a result, it is possible to reduce time and costs for maintenance without decreasing the level of safety. In this paper, an integrated simulation and visualization environment is presented that enables a detailed study of Lamb wave propagation in isotropic and anisotropic materials. Thus, valuable information about the nature of Lamb wave propagation and its interaction with structural defects become available. The well-known spectral finite element method is implemented to enable a time-efficient calculation of the wave propagation problem. The results are displayed in an interactive visualization framework accounting for the human perception that is much more sensitive to motion than to changes in color. In addition, measurements have been conducted experimentally to record the full out-of-plane wave-field using a Laser-Doppler vibrometry setup. An aluminum structure with two synthetic cuts has been investigated, where the elongated defects have a different orientation with respect to the piezoelectric actuator. The resulting wave-field is also displayed interactively showing that the scattered wave-field at the defect is highly directional.

  7. Ion stochastic heating by obliquely propagating magnetosonic waves

    International Nuclear Information System (INIS)

    Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui

    2012-01-01

    The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.

  8. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  9. Progressive retry for software error recovery in distributed systems

    Science.gov (United States)

    Wang, Yi-Min; Huang, Yennun; Fuchs, W. K.

    1993-01-01

    In this paper, we describe a method of execution retry for bypassing software errors based on checkpointing, rollback, message reordering and replaying. We demonstrate how rollback techniques, previously developed for transient hardware failure recovery, can also be used to recover from software faults by exploiting message reordering to bypass software errors. Our approach intentionally increases the degree of nondeterminism and the scope of rollback when a previous retry fails. Examples from our experience with telecommunications software systems illustrate the benefits of the scheme.

  10. Neutrino propagation in a fluctuating sun

    International Nuclear Information System (INIS)

    Burgess, C.P.; Michaud, D.

    1997-01-01

    We adapt to neutrino physics a general formulation for particle propagation in fluctuating media, initially developed for applications to electromagnetism and neutron optics. In leading approximation this formalism leads to the usual MSW effective Hamiltonian governing neutrino propagation through a medium. Next-to-leading contributions describe deviations from this description, which arise due to neutrino interactions with fluctuations in the medium. We compute these corrections for two types of fluctuations: (i) microscopic thermal fluctuations and (ii) macroscopic fluctuations in the medium s density. While the first of these reproduces standard estimates, which are negligible for applications to solar neutrinos, we find that the second can be quite large, since it grows in size with the correlation length of the fluctuation. We consider two models in some detail. For fluctuations whose correlations extend only over a local region in space of length l, appreciable effects for MSW oscillations arise if (δn/n) 2 l approx-gt 100m or so. Alternatively, a crude model of helioseismic p-waves gives appreciable effects only when (δn/n)approx-gt 1%. In general the dominant effect is to diminish the quality of the resonance, making the suppression of the 7 Be neutrinos a good experimental probe of fluctuations deep within the sun. Fluctuations can also provide a new mechanism for reducing the solar neutrino flux, giving an energy-independent suppression factor of 1/2 away from the resonant region, even for small vacuum mixing angles. copyright 1997 Academic Press, Inc

  11. Noise propagation in iterative reconstruction algorithms with line searches

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2003-01-01

    In this paper we analyze the propagation of noise in iterative image reconstruction algorithms. We derive theoretical expressions for the general form of preconditioned gradient algorithms with line searches. The results are applicable to a wide range of iterative reconstruction problems, such as emission tomography, transmission tomography, and image restoration. A unique contribution of this paper comparing to our previous work [1] is that the line search is explicitly modeled and we do not use the approximation that the gradient of the objective function is zero. As a result, the error in the estimate of noise at early iterations is significantly reduced

  12. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  13. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Renaud, G; Bosch, J G; Ten Kate, G L; De Jong, N; Van der Steen, A F W; Shamdasani, V; Entrekin, R

    2012-01-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image. (fast track communication)

  14. Tropical Cyclone Propagation

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation or why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 deg to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  15. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  16. [Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method].

    Science.gov (United States)

    Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu

    2014-10-01

    This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.

  17. Modeling and simulation of ocean wave propagation using lattice Boltzmann method

    Science.gov (United States)

    Nuraiman, Dian

    2017-10-01

    In this paper, we present on modeling and simulation of ocean wave propagation from the deep sea to the shoreline. This requires high computational cost for simulation with large domain. We propose to couple a 1D shallow water equations (SWE) model with a 2D incompressible Navier-Stokes equations (NSE) model in order to reduce the computational cost. The coupled model is solved using the lattice Boltzmann method (LBM) with the lattice Bhatnagar-Gross-Krook (BGK) scheme. Additionally, a special method is implemented to treat the complex behavior of free surface close to the shoreline. The result shows the coupled model can reduce computational cost significantly compared to the full NSE model.

  18. Propagation of sound waves in ducts

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  19. Propagation and wavefront ambiguity of linear nondiffracting beams

    Science.gov (United States)

    Grunwald, R.; Bock, M.

    2014-02-01

    Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.

  20. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-01-01

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models

  1. Markov transitions and the propagation of chaos

    International Nuclear Information System (INIS)

    Gottlieb, A.

    1998-01-01

    The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also show that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution

  2. Thermal propagation and stability in superconducting films

    International Nuclear Information System (INIS)

    Gray, K.E.; Kampwirth, R.T.; Zasadzinski, J.F.; Ducharme, S.P.

    1983-01-01

    Thermal propagation and stable hot spots (normal domains) are studied in various high Tsub(c) superconducting films (Nb 3 Sn, Nb, NbN and Nb 3 Ge). A new energy balance is shown to give reasonable quantitative agreement of the dependence of the propagation velocity on the length of short normal domains. The steady state (zero velocity) measurements indicate the existence of two distinct situations for films on high thermal conductivity (sapphire) substrates. For low power per unit area the film and substrate have the same temperature, and the thermal properties of the substrate dominate. However, for higher power densities in short hot spots, the coupling is relatively weak and the thermal properties of the film alone are important. Here a connection is made between the critical current stability of superconducting films and a critical hot spot size for thermal propagation. As a result efficient heat removal is shown to dominate the stabilisation of superconducting films. The strong and weak coupling situations also lead to modifications of the models for propagation velocities on sapphire substrates. Self-healing of hot spots and other phenomena in superconducting film are explained. The potential use of the thermal propagation model in applications of superconductors, especially switches is discussed. (author)

  3. Petrogenesis of Cretaceous shoshonitic rocks in the northern Wuyi Mountains, South China: A result of the roll-back of a flat-slab?

    Science.gov (United States)

    Li, Wu-Xian; Li, Xian-Hua; Wang, Xuan-Ce; Yang, Dong-Sheng

    2017-09-01

    Potassic magmatism is commonly linked to post-/late-orogenic environments, such as foundering or convection thinning of continental lithosphere. Their petrogenesis is crucial for constraining the chemical and physical properties of the remnant sub-continental lithospheric mantle. Here we report new SHRIMP zircon U-Pb ages, whole rock geochemical results and Sr-Nd and zircon Hf isotope data from four potassic plutons (the Da'an, Yingcheng, Zixi and Honggong plutons) in the northern Wuyi Mountains, South China. SHRIMP U-Pb zircon analyses indicate that these potassic rocks formed at 139-126 Ma. They are characterized by high SiO2 (56-73%) and K2O (3.8-6.7%), with a K2O/Na2O ratio of 2.18-2.04, plotting within the field of high-SiO2 shoshonites. Their ISr and εNd(t) values vary from 0.7077 to 0.7162 and - 5.66 to - 10.52, respectively. The initial zircon εHf(t) values range from 2.3 to - 13.1, corresponding to TDM modal ages between 707 and 1330 Ma. These geochemical and isotope characteristics indicate that these shoshonites derived from a subduction-modified ancient subcontinental lithospheric mantle, and then underwent significantly fractional crystallization of K-feldspar, plagioclase, and accessory minerals, such as apatite and Fe-Ti oxides during magma ascent. We interpret that asthenospheric mantle upwelling (caused by eastward roll-back of a flat-slab?) triggered partial melting of the metasomatized lithospheric mantle to result in the Early Cretaceous shoshonitic magmatism in the northern Wuyi Mountains. An integration of our new results with compiled data from the interior of the South China Block reveals that the arc-like geochemical signature is confined to the Wuyi Mountains region, but becomes little or even invisible toward inland in South China. This implies that the far-field effects of the early Mesozoic subduction only reached the Wuyi Mountains, ca. 500 km away from the trench, consistent with flat or shallow subduction models.

  4. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  5. Nonequilibrium theory of flame propagation

    International Nuclear Information System (INIS)

    Merzhanov, A.G.

    1995-01-01

    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  6. Mitigate the tent-induced perturbation in ignition capsules by supersonic radiation propagation

    Science.gov (United States)

    Dai, Zhensheng; Gu, Jianfa; Zheng, Wudi

    2017-10-01

    In the inertial confinement fusion (ICF) scheme, to trap the alpha particle products of the D-T reaction, the capsules needs to be imploded and compressed with high symmetry In the laser indirect drive scheme, the capsules are held at the center of high-Z hohlraums by thin membranes (tents). However, the tents are recognized as one of the most important contributors to hot spot asymmetries, areal density perturbations and reduced performance. To improve the capsule implosion performance, various alternatives such as the micro-scale rods, a larger fill-tube and a low-density foam layer around the capsule have been presented. Our simulations show that the radiation propagates supersonically in the low-density foam layer and starts to ablate the capsule before the perturbations induced by the tents reach the ablating fronts. The tent induced perturbations are remarkably weakened when they are propagating in the blow-off plasma.

  7. Blackmail propagation on small-world networks

    Science.gov (United States)

    Shao, Zhi-Gang; Jian-Ping Sang; Zou, Xian-Wu; Tan, Zhi-Jie; Jin, Zhun-Zhi

    2005-06-01

    The dynamics of the blackmail propagation model based on small-world networks is investigated. It is found that for a given transmitting probability λ the dynamical behavior of blackmail propagation transits from linear growth type to logistical growth one with the network randomness p increases. The transition takes place at the critical network randomness pc=1/N, where N is the total number of nodes in the network. For a given network randomness p the dynamical behavior of blackmail propagation transits from exponential decrease type to logistical growth one with the transmitting probability λ increases. The transition occurs at the critical transmitting probability λc=1/, where is the average number of the nearest neighbors. The present work will be useful for understanding computer virus epidemics and other spreading phenomena on communication and social networks.

  8. Quantum dynamics via a time propagator in Wigner's phase space

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1995-01-01

    We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown that ...... as a part of the sampling function. ©1995 American Institute of Physics....

  9. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  10. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    Science.gov (United States)

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating

  11. Ground-state projection multigrid for propagators in 4-dimensional SU(2) gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.

    1991-09-01

    The ground-state projection multigrid method is studied for computations of slowly decaying bosonic propagators in 4-dimensional SU(2) lattice gauge theory. The defining eigenvalue equation for the restriction operator is solved exactly. Although the critical exponent z is not reduced in nontrivial gauge fields, multigrid still yields considerable speedup compared with conventional relaxation. Multigrid is also able to outperform the conjugate gradient algorithm. (orig.)

  12. Propagating semantic information in biochemical network models

    Directory of Open Access Journals (Sweden)

    Schulz Marvin

    2012-01-01

    Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.

  13. A solid state lightning propagation speed sensor

    Science.gov (United States)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.

  14. ADVANCES IN PEACH, NECTARINE AND PLUM PROPAGATION

    Directory of Open Access Journals (Sweden)

    NEWTON ALEX MAYER

    2017-12-01

    Full Text Available ABSTRACT Nursery trees of stone fruits (Prunus spp. are traditionally produced by union of two distinct genotypes - the rootstock and the scion - which, by grafting, form a composite plant that will be maintained throughout of all plant life. In Brazil, the rootstocks are predominantly seed propagated and therefore usually results in heterogeneous trees for vigor and edaphic adaptation. However, with advances in rootstock breeding programs that released cultivars and certification in several countries (notably in Europe, the system will come gradually evolving for vegetative propagation (cuttings and tissue culture and use of seeds of selected rootstocks with specific characteristics and potted nursery trees production. For scion cultivar propagation, the budding system (with its many variations has predominantly been adopted in major producing countries. This review had as objective to comment main propagation methods adopted for rootstocks and scion in peach, nectarine and plum, and recent technical progress obtained as well as the needs of improvement for nursery tree production.

  15. A Study of Malware Propagation via Online Social Networking

    Science.gov (United States)

    Faghani, Mohammad Reza; Nguyen, Uyen Trang

    The popularity of online social networks (OSNs) have attracted malware creators who would use OSNs as a platform to propagate automated worms from one user's computer to another's. On the other hand, the topic of malware propagation in OSNs has only been investigated recently. In this chapter, we discuss recent advances on the topic of malware propagation by way of online social networking. In particular, we present three malware propagation techniques in OSNs, namely cross site scripting (XSS), Trojan and clickjacking types, and their characteristics via analytical models and simulations.

  16. The gluon propagator in momentum space

    International Nuclear Information System (INIS)

    Bernard, C.; Soni, A.

    1992-01-01

    We consider quenched QCD on a 16 3 x40 lattice at β=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others

  17. Crack propagation along polymer/non-polymer interfaces

    NARCIS (Netherlands)

    Vellinga, Willem-Pier; Fedorov, Alexander; De Hosson, Jeff T.

    2007-01-01

    Mechanisms of the propagation of crack fronts along interfaces between a glassy polymer and metal or glass are discussed. Specifically, the systems studied are Poly-Ethylene Terephthalate (PETG) spin-coated on A1, PETG-glass and PETG hot-pressed on Cr-sputtered glass. Cracks studied propagate in an

  18. Nonuniqueness of self-propagating spiral galaxy models

    International Nuclear Information System (INIS)

    Freedman, W.L.; Madore, B.F.

    1984-01-01

    We demonstrate the nonuniqueness of the basic assumptions leading to spiral structure in self-propagating star formation models. Even in the case where star formation occurs purely spontaneously and does not propagate, we have generated spiral structure by adopting the radically different assumption where star formation is systematically inhibited

  19. Advertising to Early Trend Propagators: Evidence from Twitter

    OpenAIRE

    Lambrecht, A.; Tucker, C. M.; Wiertz, C.

    2018-01-01

    In the digital economy, influencing and controlling the spread of information is a key concern for firms. One way firms try to achieve this is to target firm communications to consumers who embrace and propagate the spread of new information on emerging and `trending' topics on social media. However, little is known about whether early trend propagators are indeed responsive to firm-sponsored messages. To explore whether early propagators of trending topics respond to advertising messages, we...

  20. Advertising to early trend propagators: evidence from Twitter

    OpenAIRE

    Lambrecht, A; Tucker, C; Wiertz, C

    2018-01-01

    In the digital economy, influencing and controlling the spread of information is a key concern for firms. One way firms try to achieve this is to target firm communications to consumers who embrace and propagate the spread of new information on emerging and `trending' topics on social media. However, little is known about whether early trend propagators are indeed responsive to firm-sponsored messages. To explore whether early propagators of trending topics respond to advertising messages, we...

  1. The Weinberg propagators

    International Nuclear Information System (INIS)

    Dvoeglazov, V.V.

    1997-01-01

    An analog of the j = 1/2 Feynman-Dyson propagator is presented in the framework of the j = 1 Weinberg's theory. The basis for this construction is the concept of the Weinberg field as a system of four field functions differing by parity and by dual transformations. (orig.)

  2. Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?

    Science.gov (United States)

    Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat

    2014-01-01

    Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with

  3. Crack propagation studies and bond coat properties in thermal

    Indian Academy of Sciences (India)

    High threshold load at the interface between the ceramic layer and the bond coat was required to propagate the crack further into the bond coat. Once the threshold load was surpassed the crack propagated into the brittle bond coat without an appreciable increase in the load. At temperatures of 800°C the crack propagated ...

  4. Polarity-specific high-level information propagation in neural networks.

    Science.gov (United States)

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.

  5. Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway

    International Nuclear Information System (INIS)

    Coman, Paul T.; Darcy, Eric C.; Veje, Christian T.; White, Ralph E.

    2017-01-01

    Highlights: •Heat propagation during thermal runaway (TR) in a battery pack with aluminum heat sink was analyzed. •TR in the battery pack, triggered by a novel internal short circuit device (ISCD) was modeled. •A 2D geometry and model couplings reduce computation time significantly. •Small air gaps and mica paper in combination with a thermally conductive matrix increase safety in battery packs. -- Abstract: This paper presents a numerical model used for analyzing heat propagation as a safety feature in a custom-made battery pack. The pack uses a novel technology consisting of an internal short circuit device implanted in a cell to trigger thermal runaway. The goal of the study is to investigate the importance of wrapping cylindrical battery cells (18650 type) in a thermally and electrically insulating mica sleeve, to fix the cells in a thermally conductive aluminum heat sink. By modeling the full-scale pack using a 2D model and coupling the thermal model with an electrochemical model, good agreement with a 3D model and experimental data was found (less than 6%). The 2D modeling approach also reduces the computation time considerably (from 11 h to 25 min) compared to using a 3D model. The results showed that the air trapped between the cell and the boreholes of the heat sink provides a good insulation which reduces the temperature of the adjacent cells during thermal runaway. At the same time, a highly conductive matrix dissipates the heat throughout its thermal mass, reducing the temperature even further. It was found that for designing a safe battery pack which mitigates thermal runaway propagation, a combination of small insulating layers wrapped around the cells, and a conductive heat sink is beneficial.

  6. Quantum state propagation in linear photonic bandgap structures

    International Nuclear Information System (INIS)

    Severini, S; Tricca, D; Sibilia, C; Bertolotti, M; Perina, Jan

    2004-01-01

    In this paper we investigate the propagation of a generic quantum state in a corrugated waveguide, which reproduces a photonic bandgap structure. We find the conditions that assure the outcoming state to preserve the quantum properties of the incoming state. Then, focusing on a particular quantum state (realized by two counter-propagating coherent states), we study the possibility of preserving the quantum properties of this particular double coherent state even in the presence of absorption phenomena during propagation in the structure

  7. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. [Washington Univ., St. Louis, MO (United States). Dept. of Physics; Parrinello, C. [New York Univ., NY (United States). Dept. of Physics]|[Brookhaven National Lab., Upton, NY (United States); Soni, A. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    We consider quenched QCD on a 16{sup 3}{times}40 lattice at {beta}=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  8. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); Parrinello, C. (New York Univ., NY (United States). Dept. of Physics Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    We consider quenched QCD on a 16[sup 3][times]40 lattice at [beta]=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  9. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Dept. of Physics, Washington Univ., St. Louis, MO (United States)); Parrinello, C. (Physics Dept., New York Univ., NY (United States) Physics Dept., Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Physics Dept., Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    We consider quenched QCD on a 16[sup 3] x 40 lattice at [beta] = 6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others. (orig.)

  10. Propagation of ionization waves during ignition of fluorescent lamps

    International Nuclear Information System (INIS)

    Langer, R; Tidecks, R; Horn, S; Garner, R; Hilscher, A

    2008-01-01

    The propagation of the first ionization wave in a compact fluorescent lamp (T4 tube with standard electrodes) during ignition was investigated for various initial dc-voltages (both polarities measured against ground) and gas compositions (with and without mercury). In addition the effect of the presence of a fluorescent powder coating was studied. The propagation velocity of the initial wave was measured by an assembly of photomultipliers installed along the tube, which detected the light emitted by the wave head. The propagation was found to be faster for positive than for negative polarity. This effect is explained involving processes in the electrode region as well as in the wave head. Waves propagate faster in the presence of a fluorescent powder coating than without it and gases of lighter mass show a faster propagation than gases with higher mass

  11. The effect of convection and shear on the damping and propagation of pressure waves

    Science.gov (United States)

    Kiel, Barry Vincent

    Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection

  12. Effect of surface conditions on blast wave propagation

    International Nuclear Information System (INIS)

    Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il

    2016-01-01

    We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface

  13. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  14. Finite Element Analysis of the Propagation of Acoustic Waves Along Waveguides Immersed in Water

    Science.gov (United States)

    Hladky-Hennion, A.-C.; Langlet, P.; de Billy, M.

    1997-03-01

    The finite element approach has previously been used, with the help of the ATILA code, to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal of Sound and Vibration, 194,119-136 (1996)]. In this paper an extension of the technique to the analysis of the propagation of acoustic waves in immersed waveguides is presented. In the proposed approach, the problem is reduced to a bidimensional problem, in which only the cross-section of the guide and the surrounding fluid domain are meshed by using finite elements. Then, wedges the top angles of which vary, are studied and the finite element results of the wedge wave speed are compared with experimental results. Finally, the conclusion indicates a way to extend this approach to waveguides of any cross-section.

  15. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  16. The effect of lower-hybrid waves on the propagation of hydromagnetic waves

    International Nuclear Information System (INIS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro

    1988-01-01

    Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)

  17. Effect of Antioxidants, Amino Acids and Plant Growth Regulators on in vitro Propagation of Rosa centifolia.

    Science.gov (United States)

    Akhtar, Gulzar; Jaskani, Muhammad Jafar; Sajjad, Yasar; Akram, Ahsan

    2016-03-01

    Rosa centifoliais commercially propagated by asexual means but in vitro propagation ensure the production of disease free and healthy plants and browning of explants creates hurdle in their multiplication. The aim was to reduce oxidative browning of shoots of R. centifolia in MS medium during in vitro propagation. Axillary buds of R. centifolia were sterilized with 70% ethyl alcohol for 4 min and 5% sodium hypochlorite for 2 min followed by three washing with sterilized double distilled water. In order to control oxidative browning, Ascorbic acid (100 mg.L -1 ), citric acid (100 mg.L -1 ) and activated charcoal (3 g.L -1 ) were used while to control withering of shoots, different concentrations (3.0 mg.L -1 , 6.0 mg.L -1 , 9.0 mg.L -1 ) of either glutamine, asparagine and proline were put into trial. Different concentrations of Benzyl aminopurine (BAP) and naphthalene acetic acid (NAA) were used for in vitro shoot and root formation. Minimum browning percentage (20%) was achieved in the presence of activated charcoal (3.0 g.L -1 ) and pretreatment of explants with running tap water. Asparagin (9.0 mg.L -1 ) produced maximum shooting (93%), minimum withering (6.67%), and it took longer period (27 days) for shoots to wither. BAP (3.0 mg.L -1 ) + NAA (0.5 mg.L -1 ) was produced the highest number of shoots (1.63), in a shortest periods (9 days). For root production, NAA (1.5 mg.L -1 ) + BAP (0.5 mg.L -1 ) reduced the time to 11 days with maximum number of roots (4.33) and root length (4.20 cm). The supplement of activated charcoal (3.0 g.L -1 ), a sparagin (9.0 mg.L -1 ) and combination of BAP and NAA in the MS medium is effective for in vitro propagation of R. centifolia.

  18. Electromagnetic wave propagation in relativistic magnetized plasmas

    International Nuclear Information System (INIS)

    Weiss, I.

    1985-01-01

    An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored

  19. Propagation and diffusion-limited extinction of nonadiabatic heterogeneous flame in the SHS process

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1994-01-01

    Nonadiabatic heterogeneous flame propagation and extinction in self-propagating high-temperature synthesis (SHS) are analyzed based on a premixed mode of propagation for the bulk flame supported by the nonpremixed reaction of dispersed nonmetals in the liquid metal. The formulation allows for volumetric heat loss throughout the bulk flame, finite-rate Arrhenius reaction at the particle surface, and temperature-sensitive Arrhenius mass diffusion in the liquid. Results show that, subsequent to melting of the metal, the flame structure consists of a relatively thin diffusion-consumption/convection zone followed by a relatively thick convection-loss zone, that the flame propagation rate decreases with increasing heat loss, that at a critical heat-loss rate the flame extinguishes as indicated by the characteristic turning-point behavior, that the surface reaction is diffusion limited such that the nonlinear, temperature-sensitive nature of the system is actually a consequence of the Arrhenius mass diffusion, and that extinction is sensitively affected by the mixture ratio, the degree of dilution, the initial temperature of the compact, and the size of the nonmetal particles. An explicit expression is derived for the normalized mass burning rate, which exhibits the characteristic turning point and shows that extinction occurs when this value is reduced to e -1/2 , which is the same as that for the nonadiabatic gaseous premixed flame. It is further shown that the theoretical results agree well with available experimental data, indicating that the present formulation captures the essential features of the nonadiabatic heterogeneous SHS processes and its potential for extension to describe other SHS phenomena

  20. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  1. Graviton propagator from background-independent quantum gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2006-10-13

    We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.

  2. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  3. Spinor and isospinor structure of relativistic particle propagators

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shvartsman, Sh.M.

    1993-07-01

    Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs

  4. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  5. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    Science.gov (United States)

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the

  6. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks

    Science.gov (United States)

    Kemp, Z. D. C.

    2018-04-01

    Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.

  7. ADVANCES IN PROPAGATION OF GRAPEVINE IN THE WORLD

    Directory of Open Access Journals (Sweden)

    DANIEL SANTOS GROHS

    2017-12-01

    Full Text Available ABSTRACT Grapevine production by classical grafting methods and in commercial scale emerged over 130 years. This system remained handmade until the mid-1950s, when the first international certification programs aimed at obtaining mother plants with high viral sanity emerged. The necessity to increase the scale of production on industrial model and plant material production based on minimum morphological standards appeared at the end of the 1960s. Along the 1970s, research unlocked knowledge on semi-automated grafting, process hygiene, use of plant growth regulators and understanding of physiological events of rootstock-scion compatibility, callus formation and rooting. So, until the mid-2000s, certification schemes and propagation processes advanced little in technical standard. However, grapevine growing areas were expanded and demands for plant material increased, and new diseases emerged from contaminated nurseries. These new diseases (new viral complexes, phytoplasmas, bacteria and grapevine trunk diseases were discovered by high-sensitivity diagnostic methods. Today, there is a new discussion on the nursery segment worldwide. The propagation techniques have been reviewed from the perspective of reducing the incidence of new diseases and minimum physiological damage of nursery plants during the production stages. Therefore, technological innovations regarding equipment, practices and production inputs have been incorporated in new certification schemes. However, despite these advantages, these schemes have become more complex and multidisciplinary than previous ones, bringing difficulties in adaptation of nurserymen.

  8. Crack propagation at stresses below the fatigue limit.

    Science.gov (United States)

    Holden, F. C.; Hyler, W. S.; Marschall, C. W.

    1967-01-01

    Crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting of alternating stress cycles crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting role of alternating stress cycles

  9. Molecular dynamics simulation of propagating cracks

    Science.gov (United States)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  10. Crack Propagation by Finite Element Method

    OpenAIRE

    H. Ricardo, Luiz Carlos

    2017-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...

  11. Ballistic propagation of turbulence front in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Sugita, Satoru; Itoh, Kimitaka; Itoh, Sanae-I; Yagi, Masatoshi; Fuhr, Guillaume; Beyer, Peter; Benkadda, Sadruddin

    2012-01-01

    The flux-driven nonlinear simulation of resistive ballooning mode turbulence with tokamak edge geometry is performed to study the non-steady component in the edge turbulence. The large-scale and dynamical events in transport are investigated in a situation where the mean flow is suppressed. Two types of dynamics are observed. One is the radial propagation of the pulse of pressure gradient, the other is the appearance/disappearance of radially elongated global structure of turbulent heat flux. The ballistic propagation is observed in the pulse of pressure gradient, which is associated with the front of turbulent heat flux. We focus on this ballistic propagation phenomenon. Both of the bump of pressure gradient and the front of heat flux propagate inward and outward direction. It is confirmed that the strong fluctuation propagates with the pulse front. It is observed that the number of pulses going outward is close to those going inward. This ballistic phenomenon does not contradict to the turbulence spreading theory. Statistical characteristics of the ballistic propagation of pulses are evaluated and compared with scaling laws which is given by the turbulence spreading theory. It is found that they give qualitatively good agreement. (paper)

  12. Breit-Wigner approximation for propagators of mixed unstable states

    International Nuclear Information System (INIS)

    Fuchs, Elina

    2016-10-01

    For systems of unstable particles that mix with each other, an approximation of the fully momentum- dependent propagator matrix is presented in terms of a sum of simple Breit-Wigner propagators that are multiplied with finite on-shell wave function normalisation factors. The latter are evaluated at the complex poles of the propagators. The pole structure of general propagator matrices is carefully analysed, and it is demonstrated that in the proposed approximation imaginary parts arising from absorptive parts of loop integrals are properly taken into account. Applying the formalism to the neutral MSSM Higgs sector with complex parameters, very good numerical agreement is found between cross sections based on the full propagators and the corresponding cross sections based on the described approximation. The proposed approach does not only technically simplify the treatment of propagators with non-vanishing off-diagonal contributions, it is shown that it can also facilitate an improved theoretical prediction of the considered observables via a more precise implementation of the total widths of the involved particles. It is also well-suited for the incorporation of interference effects arising from overlapping resonances.

  13. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    International Nuclear Information System (INIS)

    Klofai, Yerima; Essimbi, B Z; Jaeger, D

    2011-01-01

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  14. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  15. Propagation Characteristics of International Space Station Wireless Local Area Network

    Science.gov (United States)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  16. Wave propagation in a magnetically structured atmosphere. Pt. 2

    International Nuclear Information System (INIS)

    Roberts, B.

    1981-01-01

    Magnetic fields may introduce structure (inhomogeneity) into an otherwise uniform medium and thus change the nature of wave propagation in that medium. As an example of such structuring, wave propagation in an isolated magnetic slab is considered. It is supposed that disturbances outside the slab are laterally non-propagating. The effect of gravity is ignored. The field can support the propagation of both body and surface waves. The existence and nature of these waves depends upon the relative magnitudes of the sound speed c 0 and Alfven speed upsilonsub(A) inside the slab, and the sound speed csub(e) in the field-free environment. (orig./WL)

  17. Gauge-invariant dressed fermion propagator in massless QED3

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2006-01-01

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement

  18. Analysis of Error Propagation Within Hierarchical Air Combat Models

    Science.gov (United States)

    2016-06-01

    values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air...values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air engagement... PROPAGATION WITHIN HIERARCHICAL AIR COMBAT MODELS by Salih Ilaslan June 2016 Thesis Advisor: Thomas W. Lucas Second Reader: Jeffrey

  19. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS by Kum Leong Lee September...MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS 5. FUNDING NUMBERS 6. AUTHOR(S) Kum Leong Lee 7. PERFORMING ORGANIZATION NAME(S) AND...BLANK ii Approved for public release. Distribution is unlimited. MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS Kum Leong Lee

  20. Propagation of Gaussian Beams through Active GRIN Materials

    International Nuclear Information System (INIS)

    Gomez-Varela, A I; Flores-Arias, M T; Bao-Varela, C; Gomez-Reino, C; De la Fuente, X

    2011-01-01

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  1. Extending Femtosecond Filamentation of High Power Laser Propagating in the Atmosphere

    Science.gov (United States)

    Eisenmann, Shmuel; Sivan, Yonatan; Fibich, Gadi; Zigler, Arie

    2008-06-01

    We show experimentally for ultrashort laser pulses propagating in air, that the filamentation distance of intense laser pulses in the atmosphere can be extended and controlled with a simple double-lens setup. Using this method we were able to achieve a 20-fold delay of the filamentation distance of non-chirped 120 fs pulses propagating in air, from 16 m to 330 m. At 330 m, the collapsing pulse is sufficiently powerful to create plasma filaments. We also show that the scatter of the filaments at 330 m can be significantly reduced by tilting the second lens. We derive a simple formula for the filamentation distance, and confirm its agreement with the experimental results. We also observe that delaying the onset of filamentation increases the filament length. To the best of our knowledge, this is the longest distance reported in the literature at which plasma filaments were created and controlled. Finally, we show that the peak power at the onset of collapse is significantly higher with the double-lens setup, compared with the standard negative chirping approach.

  2. Wave propagations of curvilinear motors driven by partially laminated piezoelectric actuators

    International Nuclear Information System (INIS)

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Muensit, Supasarote; Tzou, Horn-Sen

    2008-01-01

    A piezoelectric arc stator is the key component delivering driving actions to an ultrasonic curvilinear motor. The arc stator drives the rotor along the arc structure to any specific angular position. Usually conventional stators in ultrasonic motors are fully bounded with piezoelectric patch actuators. To reduce production costs while maintaining similar driving characteristics, an arc stator partially bonded with piezoelectric actuators is proposed and its dynamic characteristics are analyzed in this study. The effect of actuator locations on the wave propagation is investigated. Both analytical and finite element results demonstrate similar dynamic responses. That is, the response of the wave propagation depends on specific locations of piezoelectric actuators. One of the two configurations investigated shows that the partially laminated piezoelectric actuator pattern can also generate rather steady traveling waves on the stator with consistent wave amplitude. This implies that the partially laminated actuator technique could be an alternative actuator pattern to the fully laminated actuators in the design of ultrasonic curvilinear motors or other finite-length ultrasonic motors

  3. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.

    2016-02-26

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  4. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Gibson, Richard L.; Vasilyeva, Maria

    2016-01-01

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  5. Vegetative propagation of Bambusa vulgaris

    Directory of Open Access Journals (Sweden)

    Rafael Malfitano Braga

    2017-06-01

    Full Text Available Bamboo is an important source of raw material of multiple uses. The development of simple techniques for its propagation is a practical way to enable its implementation in ownership of low technology. The present work had the objective of evaluating artisanal propagation methods for Bambusa vulgaris. Two types of propagules were tested, with buds budded or not, and three relative positions to the removal of vegetative material on the culm. The best propagule was with only one node, extracted from the lower thirds of the stem, presenting 72% of rooting. This result demonstrates its potential for seedling production of this species under low tech.

  6. Development of a wind farm noise propagation prediction model - project progress to date

    International Nuclear Information System (INIS)

    Robinson, P.; Bullmore, A.; Bass, J.; Sloth, E.

    1998-01-01

    This paper describes a twelve month measurement campaign which is part of a European project (CEC Project JOR3-CT95-0051) with the aim to substantially reduce the uncertainties involved in predicting environmentally radiated noise levels from wind farms (1). This will be achieved by comparing noise levels measure at varying distances from single and multiple sources over differing complexities of terrain with those predicted using a number of currently adopted sound propagation models. Specific objectives within the project are to: establish the important parameters controlling the propagation of wind farm noise to the far field; develop a planning tool for predicting wind farm noise emission levels under practically encountered conditions; place confidence limits on the upper and lower bounds of the noise levels predicted, thus enabling developers to quantify the risk whether noise emission from wind farms will cause nuisance to nearby residents. (Author)

  7. The structure of the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    The gluon propagator has been calculated for quenched QCD in the Landau gauge at {beta} = 6.0 for volumes 16{sup 3} x 48 and 32{sup 3} x 64, and at {beta} 6.2 for volume 24{sup 3} x 48. The large volume and different lattice spacings allow us to identify and minimise finite volume and finite lattice spacing artefacts. We also study the tensor structure of the gluon propagator, confirming that it obeys the lattice Landau gauge condition.

  8. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  9. Radial propagation of turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Samain, A.

    1993-12-01

    It is shown in this paper that a turbulence propagation can be due to toroidal or non linear mode coupling. An analytical analysis indicates that the toroidal coupling acts through a convection while the non linear effects induce a diffusion. Numerical simulations suggest that the toroidal propagation is usually the fastest process, except perhaps in some highly turbulent regimes. The consequence is the possibility of non local effects on the fluctuation level and the associated transport. (authors). 7 figs., 19 refs

  10. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides

    Science.gov (United States)

    Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen

    2018-05-01

    Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.

  11. Propagation of Nd magnetic phases in Nd/Sm(001) superlattices

    International Nuclear Information System (INIS)

    Soriano, S; Dufour, C; Dumesnil, K; Stunault, A

    2006-01-01

    The propagation of Nd long range magnetic order in the hexagonal and cubic sublattices has been investigated in double hexagonal compact Nd/Sm(001) superlattices by resonant x-ray magnetic scattering at the Nd L 2 absorption edge. For a superlattice with 3.7 nm thick Sm layers, the magnetic structure of the hexagonal sublattice propagates coherently through several bilayers, whereas the order in the cubic sublattice remains confined to single Nd blocks. For a superlattice with 1.4 nm thick Sm layers, the magnetic structures of both sublattices appear to propagate coherently through the superlattice. This is the first observation (i) of the long range coherent propagation of Nd order on the cubic sites between Nd blocks and (ii) of a different thickness dependence of the propagation of the Nd magnetic phases associated with the hexagonal and cubic sublattices. The propagation of the Nd magnetic order through Sm is interpreted in terms of generalized susceptibility of the Nd conduction electrons

  12. Laser beam trapping and propagation in cylindrical plasma columns

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1976-01-01

    An analysis of the scheme to heat magnetically confined plasma columns to kilovolt temperatures with a laser beam requires consideration of two propagation problems. The first question to be answered is whether stable beam trapping is possible. Since the laser beam creates its own density profile by heating the plasma, the propagation of the beam becomes a nonlinear phenomenon, but not necessarily a stable one. In addition, the electron density at a given time depends on the preceding history of both the medium and the laser pulse. A self-consistent time dependent treatment of the beam propagation and the medium hydrodynamics is consequently required to predict the behavior of the laser beam. Such calculations have been carried out and indicate that propagation of a laser beam in an initially uniform plasma can form a stable filament which alternately focuses and defocuses. An additional question that is discussed is whether diffractive losses associated with long propagation paths are significant

  13. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    Science.gov (United States)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  14. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    Science.gov (United States)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  15. Enhancing propagation characteristics of truncated localized waves in silica

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  16. Beam propagation

    International Nuclear Information System (INIS)

    Hermansson, B.R.

    1989-01-01

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  17. Time-translation noninvariance of temporal gauge propagator

    International Nuclear Information System (INIS)

    Lim, S.C.

    1992-07-01

    We show that within the framework of stochastic mechanics, the quantization of a free electromagnetic or Yang-Mills field in the temporal gauge can be consistently carried out. The resulting longitudinal component of the photon or gluon propagator is time-translation noninvariant. The exact form of the propagator depends on the additional boundary condition which fully fixes the temporal gauge. (author). 11 refs

  18. Preventing Unofficial Information Propagation

    Science.gov (United States)

    Le, Zhengyi; Ouyang, Yi; Xu, Yurong; Ford, James; Makedon, Fillia

    Digital copies are susceptible to theft and vulnerable to leakage, copying, or manipulation. When someone (or some group), who has stolen, leaked, copied, or manipulated digital documents propagates the documents over the Internet and/or distributes those through physical distribution channels many challenges arise which document holders must overcome in order to mitigate the impact to their privacy or business. This paper focuses on the propagation problem of digital credentials, which may contain sensitive information about a credential holder. Existing work such as access control policies and the Platform for Privacy Preferences (P3P) assumes that qualified or certified credential viewers are honest and reliable. The proposed approach in this paper uses short-lived credentials based on reverse forward secure signatures to remove this assumption and mitigate the damage caused by a dishonest or honest but compromised viewer.

  19. Propagation of truncated modified Laguerre-Gaussian beams

    Science.gov (United States)

    Deng, D.; Li, J.; Guo, Q.

    2010-01-01

    By expanding the circ function into a finite sum of complex Gaussian functions and applying the Collins formula, the propagation of hard-edge diffracted modified Laguerre-Gaussian beams (MLGBs) through a paraxial ABCD system is studied, and the approximate closed-form propagation expression of hard-edge diffracted MLGBs is obtained. The transverse intensity distribution of the MLGB carrying finite power can be characterized by a single bright and symmetric ring during propagation when the aperture radius is very large. Starting from the definition of the generalized truncated second-order moments, the beam quality factor of MLGBs through a hard-edged circular aperture is investigated in a cylindrical coordinate system, which turns out to be dependent on the truncated radius and the beam orders.

  20. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  1. Laser beam propagation in non-linearly absorbing media

    CSIR Research Space (South Africa)

    Forbes, A

    2006-08-01

    Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...

  2. Cosmic ray propagation with CRPropa 3

    International Nuclear Information System (INIS)

    Batista, R Alves; Evoli, C; Sigl, G; Van Vliet, A; Erdmann, M; Kuempel, D; Mueller, G; Walz, D; Kampert, K-H; Winchen, T

    2015-01-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 10 17 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python. (paper)

  3. Heat pulse propagation studies in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.

  4. Heat pulse propagation studies in TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab

  5. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  6. Mechanism for propagation of the step leader of streak lightning

    International Nuclear Information System (INIS)

    Golubev, A.I.; Zolotovskil, V.I.; Ivanovskil, A.V.

    1992-01-01

    A hypothetical scheme for the development of the step leader of streak lightning is discussed. The mathematical problem of modeling the propagation of the leader in this scheme is stated. The main parameters of the leader are estimated: the length and propagation velocity of the step, the average propagation velocity, etc. This is compared with data from observations in nature. The propagation of the leader is simulated numerically. Results of the calculation are presented for two 'flashes' of the step leader. 25 refs., 6 figs

  7. Project Integration Architecture: A Practical Demonstration of Information Propagation

    Science.gov (United States)

    Jones, William Henry

    2005-01-01

    One of the goals of the Project Integration Architecture (PIA) effort is to provide the ability to propagate information between disparate applications. With this ability, applications may then be formed into an application graph constituting a super-application. Such a super-application would then provide all of the analysis appropriate to a given technical system. This paper reports on a small demonstration of this concept in which a Computer Aided Design (CAD) application was connected to an inlet analysis code and geometry information automatically propagated from one to the other. The majority of the work reported involved not the technology of information propagation, but rather the conversion of propagated information into a form usable by the receiving application.

  8. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  9. An ellipsoidal calculus based on propagation and fusion.

    Science.gov (United States)

    Ros, L; Sabater, A; Thomas, F

    2002-01-01

    Presents an ellipsoidal calculus based solely on two basic operations: propagation and fusion. Propagation refers to the problem of obtaining an ellipsoid that must satisfy an affine relation with another ellipsoid, and fusion to that of computing the ellipsoid that tightly bounds the intersection of two given ellipsoids. These two operations supersede the Minkowski sum and difference, affine transformation and intersection tight bounding of ellipsoids on which other ellipsoidal calculi are based. Actually, a Minkowski operation can be seen as a fusion followed by a propagation and an affine transformation as a particular case of propagation. Moreover, the presented formulation is numerically stable in the sense that it is immune to degeneracies of the involved ellipsoids and/or affine relations. Examples arising when manipulating uncertain geometric information in the context of the spatial interpretation of line drawings are extensively used as a testbed for the presented calculus.

  10. Effects of laser beam propagation in a multilevel photoionization system

    International Nuclear Information System (INIS)

    Izawa, Y.; Nomaru, K.; Chen, Y. W.

    1995-01-01

    When the intense laser pulse propagates in the atomic vapor over a long distance, the laser pulse shape, the carrier frequency and the propagating velocity are greatly modified during the propagation by the resonant and/or the near-resonant interactions with atoms. We have been investigating these effects on the laser beam propagation experimentally and analytically. The simulation code named CEALIS-P has been developed, which employs the coupled three- level Bloch-Maxwell equations to study the atomic excitation and laser beam propagation simultaneously. Several features of the resonant and near-resonant effects based on the the self-induced transparency, the self-phase modulation and the nonlinear group velocity dispersion are described and the influences of such effects on the photoionization efficiency are analyzed.

  11. Conservation of Native Fishes of the San Francisco Estuary: Considerations for Artificial Propagation of Chinook Salmon, Delta Smelt, and Green Sturgeon

    Directory of Open Access Journals (Sweden)

    Joshua A. Israel

    2011-04-01

    Full Text Available Many native fishes in the San Francisco Estuary and its watersheds have reached all-time low abundances. Some of these declining species (e.g., Chinook salmon Oncorhynchus tschawytscha have been under artificial propagation for decades. For others (e.g., delta smelt, Hypomesus transpacificus, and green sturgeon, Acipenser medirostris, this management option is just beginning to be discussed and implemented. Propagation strategies, in which organisms spend some portion of their lives in captivity, pose well-documented genetic and ecological threats to natural populations. Negative impacts of propagation have been documented for all Central Valley Chinook salmon runs, but limited efforts have been made to adapt hatchery operations to minimize the genetic and ecological threats caused by propagated fishes. A delta smelt propagation program is undergoing intensive design and review for operations and monitoring. However, if limiting factors facing this species in its estuarine habitat are not effectively addressed, captive propagation may not be a useful conservation approach, regardless of how carefully the propagation activity is designed or monitored. Scientifically defensible, ecologically based restoration programs that include monitoring and research aimed at quantifying natural population vital rates should be fully implemented before there is any attempt to supplement natural populations of delta smelt. Green sturgeon are also likely to face risks from artificial propagation if a large–scale program is implemented before this species’ limiting factors are better understood. In each of these cases, restoring habitats, and reducing loss from human actions, are likely to be the best strategy for rebuilding and supporting self–sustaining populations.

  12. Domain wall propagation in Fe-rich amorphous microwires

    Energy Technology Data Exchange (ETDEWEB)

    Panina, L.V. [School of Comp. and Math., Univ. of Plymouth, Drake Circus, PL4 AA, Plymouth (United Kingdom); Ipatov, M.; Zhukova, V. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); Zhukov, A., E-mail: arkadi.joukov@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2012-05-01

    The domain wall (DW) propagation in magnetically bistable Fe{sub 74}Si{sub 11}B{sub 13}C{sub 2} amorphous microwires with metallic nucleus diameters of 12-16 {mu}m has been investigated in order to explain high DW velocities observed in Sixtus-Tonks like experiments. In micrometric wires, the boundary between two head-to-head domains is very elongated. The DW mobility normal to the wall surface is reduced by the domain aspect ratio and is in the range of a few m/s/Oe in the linear regime. The experimental results in the viscous regime could be quantitatively explained in terms of the domain length and normal mobility limited by the eddy currents and spin relaxation losses.

  13. Implementations of back propagation algorithm in ecosystems applications

    Science.gov (United States)

    Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed

    2015-05-01

    Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert

  14. Adaptive laser link reconfiguration using constraint propagation

    Science.gov (United States)

    Crone, M. S.; Julich, P. M.; Cook, L. M.

    1993-01-01

    This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications

  15. Are North Atlantic Multidecadal SST Anomalies Westward Propagating?

    NARCIS (Netherlands)

    Feng, Qingyi; Dijkstra, Hendrik

    2014-01-01

    The westward propagation of sea surface temperature (SST) anomalies is one of the main characteristics of one of the theories of the Atlantic Multidecadal Oscillation. Here we use techniques from complex network modeling to investigate the existence of the westward propagation in the North Atlantic

  16. Propagation of spatially entangled qudits through free space

    International Nuclear Information System (INIS)

    Lima, G.; Neves, Leonardo; Santos, Ivan F.; Padua, S.; Aguirre Gomez, J. G.; Saavedra, C.

    2006-01-01

    We show the propagation of entangled states of high-dimensional quantum systems. The qudits states were generated using the transverse correlation of the twin photons produced by spontaneous parametric down-conversion. Their free-space distribution was performed at the laboratory scale and the propagated states maintained a high fidelity with their original form. The use of entangled qudits allow an increase in the quantity of information that can be transmitted and may also guarantee more privacy for communicating parties. Therefore, studies about propagating entangled states of qudits are important for the effort of building quantum communication networks

  17. Numerical simulation methods for wave propagation through optical waveguides

    International Nuclear Information System (INIS)

    Sharma, A.

    1993-01-01

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  18. Multimodal imaging of spike propagation: a technical case report.

    Science.gov (United States)

    Tanaka, N; Grant, P E; Suzuki, N; Madsen, J R; Bergin, A M; Hämäläinen, M S; Stufflebeam, S M

    2012-06-01

    We report an 11-year-old boy with intractable epilepsy, who had cortical dysplasia in the right superior frontal gyrus. Spatiotemporal source analysis of MEG and EEG spikes demonstrated a similar time course of spike propagation from the superior to inferior frontal gyri, as observed on intracranial EEG. The tractography reconstructed from DTI showed a fiber connection between these areas. Our multimodal approach demonstrates spike propagation and a white matter tract guiding the propagation.

  19. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  20. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  1. Wave propagation model of heat conduction and group speed

    Science.gov (United States)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  2. Wave propagation on a plasma media

    International Nuclear Information System (INIS)

    Torres-Silva, H.; Villarroel-Gonzalez, C.; Reggiani, N.; Sakanaka, P.H.

    1995-01-01

    Chiral-media and ferrite media have been studied over the last decade for many applications. Chiral-media have been examined as coating for reducing radar cross section, for antennas and arrays, for antenna radomes in waveguides and for microstrip substrate. Here, we examine a chiral-plasma medium, where the plasma part of the composite medium is non-reciprocal due to the external magnetic field, to find the general dispersion relation giving the ω against K behavior, vector phasor Helmholtz based equations are derived. We determine the modal eigenvalue properties in the chiral-plasma medium, which is doubly anisotropic. For the case of waves which propagate parallel to the magnetic field is a cold magnetized chiro-plasma. We compare our results with the typical results obtained for a cold plasma. Also we obtain the chiral-Faraday rotation which can be compared with the typical Faraday rotation for a pair of right-and left-handed circularly polarized waves. (author). 5 refs., 2 figs

  3. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  4. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  5. Propagation Environment Assessment Using UAV Electromagnetic Sensors

    Science.gov (United States)

    2018-03-01

    losses can be taken into account when calculating propagation losses. To correlate the data correctly, the measured received signal power must be...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In this thesis, we attempt to build a picture of local propagation conditions by measuring ...operators to choose the optimal settings for the maximum detection range of their radar and radio systems. We also investigate the measurement system

  6. Diagnostics for the ATA beam propagation experiments

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Atchison, W.L.; Barletta, W.A.

    1981-11-01

    This report contains a discussion of the diagnostics required for the beam propagation experiment to be done with the ATA accelerator. Included are a list of the diagnostics needed; a description of the ATA experimental environment; the status of beam diagnostics available at Livermore including recent developments, and a prioritized list of accelerator and propagation diagnostics under consideration or in various stages of development

  7. k-Essence, superluminal propagation, causality and emergent geometry

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Mukhanov, Viatcheslav; Vikman, Alexander

    2008-01-01

    The k-essence theories admit in general the superluminal propagation of the perturbations on classical backgrounds. We show that in spite of the superluminal propagation the causal paradoxes do not arise in these theories and in this respect they are not less safe than General Relativity

  8. Morse oscillator propagator in the high temperature limit I: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2017-02-15

    In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagator to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.

  9. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  10. Current-controlled light scattering and asymmetric plasmon propagation in graphene

    Science.gov (United States)

    Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe

    2018-02-01

    We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.

  11. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per

    2015-01-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...

  12. Propagation of Aquilaria malaccensis seedlings through tissue culture techniques

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Zaiton Ahmad; Mohd Rafaie Abdul Salam; Nurhayati Irwan; Affrida Abu Hassan; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis or karas is the principal source of gaharu resin, which is used in many cultures for incense, perfumes and traditional medicines. The species is mainly propagated conventionally through seeds, cuttings and graftings. Propagation by seeds is usually a reliable method for other forest species, but for karas, this technique is inadequate to meet the current demand of seedling supplies. This is principally due to its low seed viability, low germination rate, delayed rooting of seedlings, long life-cycle and rare seed production. Tissue culture has several advantages over conventional propagation, especially for obtaining large number of uniform and high-yielding plantlets or clones. This paper presents the current progress on mass-propagation of Aquilaria malaccensis seedlings through tissue culture technique at Nuclear Malaysia. (author)

  13. Propagator of stochastic electrodynamics

    International Nuclear Information System (INIS)

    Cavalleri, G.

    1981-01-01

    The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics

  14. Photon Propagation through Linearly Active Dimers

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2017-06-01

    Full Text Available We provide an analytic propagator for non-Hermitian dimers showing linear gain or losses in the quantum regime. In particular, we focus on experimentally feasible realizations of the PT -symmetric dimer and provide their mean photon number and second order two-point correlation. We study the propagation of vacuum, single photon spatially-separable, and two-photon spatially-entangled states. We show that each configuration produces a particular signature that might signal their possible uses as photon switches, semi-classical intensity-tunable sources, or spatially entangled sources to mention a few possible applications.

  15. Optimization of directional elastic energy propagation

    DEFF Research Database (Denmark)

    Andreassen, Erik; Chang, Hannah R.; Ruzzene, Massimo

    2016-01-01

    The aim of this paper is to demonstrate how topology optimization can be used to design a periodically perforated plate, in order to obtain a tailored anisotropic group velocity profile. The main method is demonstrated on both low and high frequency bending wave propagation in an aluminum plate......, but is general in the sense that it could be used to design periodic structures with frequency dependent group velocity profiles for any kind of elastic wave propagation. With the proposed method the resulting design is manufacturable. Measurements on an optimized design compare excellently with the numerical...

  16. Sound Propagation An impedance Based Approach

    CERN Document Server

    Kim, Yang-Hann

    2010-01-01

    In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are

  17. Longitudinal Pipeline Scour Propagation Induced by Wave-Current Interaction For the South Sumatra-West Java Submarine Pipeline

    Science.gov (United States)

    Suntoyo; Perkasa, B.; Atikasari, T. J.; Wisudawan, A.

    2018-03-01

    Scouring process around subsea pipelines could reduce the soil bearing capacity which affected to the pipe stability. Scouring initial process against time should be known to discover scouring propagation. This paper aims to analyze the time scale calculation of 32 inch diameter in-trench pipe, until meet the maximum-scouring-depth stage. Embedment (e/D) variation is given to know the impact to the scour propagation. Wave and current condition presented to meet the real condition. Wave orbital particle velocity (Uw) is calculated to obtain the non-dimensional factors (Uc/(Uc+Uw)) and KC. The results showed according to the deeper pipe embedment, it takes longer time to reach the maximum scouring depth.

  18. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kai, E-mail: kaigao87@gmail.com [Department of Geology and Geophysics, Texas A& M University, College Station, TX 77843 (United States); Fu, Shubin, E-mail: shubinfu89@gmail.com [Department of Mathematics, Texas A& M University, College Station, TX 77843 (United States); Gibson, Richard L., E-mail: gibson@tamu.edu [Department of Geology and Geophysics, Texas A& M University, College Station, TX 77843 (United States); Chung, Eric T., E-mail: tschung@math.cuhk.edu.hk [Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Efendiev, Yalchin, E-mail: efendiev@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, TX 77843 (United States); Numerical Porous Media SRI Center (NumPor), King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-08-15

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  19. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    International Nuclear Information System (INIS)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-01-01

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system

  20. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    KAUST Repository

    Gao, Kai

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both boundaries and the interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  1. Simulation of excitation and propagation of pico-second ultrasound

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2016-01-01

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm

  2. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2016-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  3. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Kyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2014-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  4. Equivalence of Equilibrium Propagation and Recurrent Backpropagation

    OpenAIRE

    Scellier, Benjamin; Bengio, Yoshua

    2017-01-01

    Recurrent Backpropagation and Equilibrium Propagation are algorithms for fixed point recurrent neural networks which differ in their second phase. In the first phase, both algorithms converge to a fixed point which corresponds to the configuration where the prediction is made. In the second phase, Recurrent Backpropagation computes error derivatives whereas Equilibrium Propagation relaxes to another nearby fixed point. In this work we establish a close connection between these two algorithms....

  5. Bubble propagation in Hele-Shaw channels with centred constrictions

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    2018-04-01

    We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred occlusion (termed a rail) is introduced to provide a small axially uniform depth constriction. For bubbles wide enough to span the channel, the system’s behaviour is similar to that of semi-infinite fingers and a symmetric static solution is stable. Here, we focus on smaller bubbles, in which case the symmetric static solution is unstable and the static bubble is displaced towards one of the deeper regions of the channel on either side of the rail. Using a combination of experiments and numerical simulations of a depth-averaged model, we show that a bubble propagating axially due to a small imposed flow rate can be stabilised in a steady symmetric mode centred on the rail through a subtle interaction between stabilising viscous forces and destabilising surface tension forces. However, for sufficiently large capillary numbers Ca, the ratio of viscous to surface tension forces, viscous forces in turn become destabilising thus returning the bubble to an off-centred propagation regime. With decreasing bubble size, the range of Ca for which steady centred propagation is stable decreases, and eventually vanishes through the coalescence of two supercritical pitchfork bifurcations. The depth-averaged model is found to accurately predict all the steady modes of propagation observed experimentally, and provides a comprehensive picture of the underlying steady bifurcation structure. However, for sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady propagating state of changed topology.

  6. Slow light propagation in a thin optical fiber via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Patnaik, Anil K.; Liang, J.Q.; Hakuta, K.

    2002-01-01

    We propose a configuration that utilizes electromagnetically induced transparency (EIT) to tailor a fiber mode propagating inside a thin optical fiber and coherently control its dispersion properties to drastically reduce the group velocity of the fiber mode. The key to this proposal is that the evanescent field of the thin fiber strongly couples with the surrounding active medium, so that the EIT condition is met by the medium. We show how the properties of the fiber mode are modified due to the EIT medium, both numerically and analytically. We demonstrate that the group velocity of the modified fiber mode can be drastically reduced (≅44 m/sec) using the coherently prepared orthohydrogen doped in a matrix of parahydrogen crystal as the EIT medium

  7. Intraband effects on ultrafast pulse propagation in semiconductor ...

    Indian Academy of Sciences (India)

    High bit-rate (>10 Gb/s) signals are composed of very short pulses and propagation of such pulses through a semiconductor optical amplifier (SOA) requires consideration of intraband phenomena. Due to the intraband effects, the propagating pulse sees a fast recovering nonlinear gain which introduces less distortion in the ...

  8. Propagation of Porro "petal" beams through a turbulent atmosphere

    CSIR Research Space (South Africa)

    Burger, L

    2009-07-01

    Full Text Available . Construct a series of pseudo–random phase screens from the basis. 3. Implement optical wavefront changes from the pseudo–random phase screens. 4. Propagate the resulting beam to the far field and measure …. Page 11 Phase screen construction 20 40 60 80... constant h is height asl k is the wave number Atmospheric propagation Kolmogorov Turbulence Model Page 10 Atmospheric propagation How to measure turbulence 1. Decompose the turbulence model into a series of orthogonal functions (basis set). 2...

  9. Propagation law of impact elastic wave based on specific materials

    Directory of Open Access Journals (Sweden)

    Chunmin CHEN

    2017-02-01

    Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.

  10. Prestress mediates force propagation into the nucleus

    International Nuclear Information System (INIS)

    Hu Shaohua; Chen Jianxin; Butler, James P.; Wang Ning

    2005-01-01

    Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load (∼0.4 μm surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions

  11. An Immunization Strategy Based on Propagation Mechanism

    Directory of Open Access Journals (Sweden)

    Yixin Zhu

    2014-01-01

    Full Text Available With the ubiquity of smart phones, wearable equipment, and wireless sensors, the topologies of networks composed by them change along with time. The immunization strategies in which network immune nodes are chosen by analyzing the static aggregation network topologies have been challenged. The studies about interaction propagations between two pathogens show that the interaction can change propagation threshold and the final epidemic size of each other, which provides a new thinking of immunization method. The eradication or inhibition of the virus can be achieved through the spread of its opposite party. Here, we put forward an immunization strategy whose implementation does not depend on the analysis of network topology. The immunization agents are randomly placed on a few of individuals of network and spread out from these individuals on network in a propagation method. The immunization agents prevent virus infecting their habitat nodes with certain immune success rate. The analysis and simulation of evolution equation of the model show that immune propagation has a significant impact on the spread threshold and steady-state density of virus on a finite size of BA networks. Simulations on some real-world networks also suggest that the immunization strategy is feasible and effective.

  12. Propagation of coherent light pulses with PHASE

    Science.gov (United States)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  13. NDE errors and their propagation in sizing and growth estimates

    International Nuclear Information System (INIS)

    Horn, D.; Obrutsky, L.; Lakhan, R.

    2009-01-01

    The accuracy attributed to eddy current flaw sizing determines the amount of conservativism required in setting tube-plugging limits. Several sources of error contribute to the uncertainty of the measurements, and the way in which these errors propagate and interact affects the overall accuracy of the flaw size and flaw growth estimates. An example of this calculation is the determination of an upper limit on flaw growth over one operating period, based on the difference between two measurements. Signal-to-signal comparison involves a variety of human, instrumental, and environmental error sources; of these, some propagate additively and some multiplicatively. In a difference calculation, specific errors in the first measurement may be correlated with the corresponding errors in the second; others may be independent. Each of the error sources needs to be identified and quantified individually, as does its distribution in the field data. A mathematical framework for the propagation of the errors can then be used to assess the sensitivity of the overall uncertainty to each individual error component. This paper quantifies error sources affecting eddy current sizing estimates and presents analytical expressions developed for their effect on depth estimates. A simple case study is used to model the analysis process. For each error source, the distribution of the field data was assessed and propagated through the analytical expressions. While the sizing error obtained was consistent with earlier estimates and with deviations from ultrasonic depth measurements, the error on growth was calculated as significantly smaller than that obtained assuming uncorrelated errors. An interesting result of the sensitivity analysis in the present case study is the quantification of the error reduction available from post-measurement compensation of magnetite effects. With the absolute and difference error equations, variance-covariance matrices, and partial derivatives developed in

  14. Van Allen Probe observations of EMIC wave propagation in the inner magnetosphere

    Science.gov (United States)

    Saikin, A.; Zhang, J.; Smith, C. W.; Spence, H. E.; Torbert, R. B.; Kletzing, C.; Wygant, J. R.

    2017-12-01

    This study examines the propagation of inner magnetosphere (L vector, , analysis on all observed EMIC wave events to determine the direction of propagation, with bi-directionally propagating EMIC waves indicating the presence of the EMIC wave source region. EMIC waves were considered bi-directional (i.e., in the source region) if at least two wave packets exhibited opposing flux components, and (W/km2), consistently for 60 seconds. Events not observed to have opposing flux components are considered unidirectional. EMIC wave events observed at relatively high magnetic latitudes, generally, are found to propagate away from the magnetic equator (i.e., unidirectional). Bi-directionally propagating EMIC waves are preferably observed at lower magnetic latitudes. The occurrence rate, spatial distribution, and the energy propagation angle of both unidirectionally and bi-directionally propagating EMIC waves are examined with respect to L, MLT, and MLAT.

  15. Semiclassical propagation: Hilbert space vs. Wigner representation

    Science.gov (United States)

    Gottwald, Fabian; Ivanov, Sergei D.

    2018-03-01

    A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.

  16. Linear and Nonlinear Infrasound Propagation to 1000 km

    Science.gov (United States)

    2015-12-15

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0017 TR-2016-0017 LINEAR AND NONLINEAR INFRASOUND PROPAGATION TO 1000 KM Catherine de Groot-Hedlin Scripps...Nonlinear Infrasound Propagation to 1000 km 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Catherine de Groot

  17. Analysis of Accuracy and Epoch on Back-propagation BFGS Quasi-Newton

    Science.gov (United States)

    Silaban, Herlan; Zarlis, Muhammad; Sawaluddin

    2017-12-01

    Back-propagation is one of the learning algorithms on artificial neural networks that have been widely used to solve various problems, such as pattern recognition, prediction and classification. The Back-propagation architecture will affect the outcome of learning processed. BFGS Quasi-Newton is one of the functions that can be used to change the weight of back-propagation. This research tested some back-propagation architectures using classical back-propagation and back-propagation with BFGS. There are 7 architectures that have been tested on glass dataset with various numbers of neurons, 6 architectures with 1 hidden layer and 1 architecture with 2 hidden layers. BP with BFGS improves the convergence of the learning process. The average improvement convergence is 98.34%. BP with BFGS is more optimal on architectures with smaller number of neurons with decreased epoch number is 94.37% with the increase of accuracy about 0.5%.

  18. UWB Propagation through Walls

    Czech Academy of Sciences Publication Activity Database

    Schejbal, V.; Bezoušek, P.; Čermák, D.; NĚMEC, Z.; Fišer, Ondřej; Hájek, M.

    2006-01-01

    Roč. 15, č. 1 (2006), s. 17-24 ISSN 1210-2512 R&D Projects: GA MPO(CZ) FT-TA2/030 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ultra wide band * UWB antennas * UWB propagation * multipath effects Subject RIV: JB - Sensors, Measurment, Regulation

  19. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  20. Propagation of a laser beam in a time-varying waveguide

    International Nuclear Information System (INIS)

    Chapman, J.M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is examined. First, an extended paraxial procedure is developed for the case of an axially uniform waveguide. It is shown that the essential feature of an alternate focusing and defocusing beam is retained, but that the intensity distribution is cumulatively modified at the foci and at the outer portions of the beam as compared to that of the paraxial case. Second, some general features of paraxial beam propagation are examined for the case of axially varying waveguides. Finally, laser plasma coupling is examined for the case when laser heating generates a density distribution that is radially parabolic near the axis and when the energy absorbed over a focal length of a plasma lens is small. It is shown that stable or unstable beam propagation depends upon the relative magnitude of the density fluctuations which exist in the axial variation of the waveguides as a result of laser heating. When the fluctuations are small, the propagation is stable, and a simple algebraic expression is obtained which relates the beam diameter to the axially slow averaged variation in the waveguide. When the fluctuations are large, the propagation stability can be determined only by consistently combining plasma dynamics and beam propagation to interrelate the axial variation of the beam to that of the waveguide. In this case of beam propagation in a time-varying waveguide, it is shown that the global stability of the propagation depends upon the initial fluctuation growth rate compared to the initial time rate of change in the radial curvature of the waveguide

  1. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...

  2. A simple three dimensional wide-angle beam propagation method

    Science.gov (United States)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  3. Lamb wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Fromme, P.; Pizzolato, M.; Robyr, J-L; Masserey, B.

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness a...

  4. Analysis of Propagation Plans in NSF-Funded Education Development Projects

    Science.gov (United States)

    Stanford, Courtney; Cole, Renee; Froyd, Jeff; Henderson, Charles; Friedrichsen, Debra; Khatri, Raina

    2017-08-01

    Increasing adoption and adaptation of promising instructional strategies and materials has been identified as a critical component needed to improve science, technology, engineering, and mathematics (STEM) education. This paper examines typical propagation practices and resulting outcomes of proposals written by developers of educational innovations. These proposals were analyzed using the Designing for Sustained Adoption Assessment Instrument (DSAAI), an instrument developed to evaluate propagation plans, and the results used to predict the likelihood that a successful project would result in adoption by others. We found that few education developers propose strong propagation plans. Afterwards, a follow-up analysis was conducted to see which propagation strategies developers actually used to help develop, disseminate, and support their innovations. A web search and interviews with principal investigators were used to determine the degree to which propagation plans were actually implemented and to estimate adoption of the innovations. In this study, we analyzed 71 education development proposals funded by the National Science Foundation and predicted that 80% would be unsuccessful in propagating their innovations. Follow-up data collection with a subset of these suggests that the predictions were reasonably accurate.

  5. Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    Science.gov (United States)

    Aguilo, Miguel A.; Warner, James E.

    2017-01-01

    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.

  6. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  7. Cyclohexylmethyl Flavonoids Suppress Propagation of Breast Cancer Stem Cells via Downregulation of NANOG

    Directory of Open Access Journals (Sweden)

    Wen-Ying Liao

    2013-01-01

    Full Text Available Breast cancer stem cells (CSCs are highly tumorigenic and possess the capacity to self-renew. Recent studies indicated that pluripotent gene NANOG involves in regulating self-renewal of breast CSCs, and expression of NANOG is correlated with aggressiveness of poorly differentiated breast cancer. We initially confirmed that breast cancer MCF-7 cells expressed NANOG, and overexpression of NANOG enhanced the tumorigenicity of MCF-7 cells and promoted the self-renewal expansion of CD24−/lowCD44+ CSC subpopulation. In contrast, knockdown of NANOG significantly affected the growth of breast CSCs. Utilizing flow cytometry, we identified five cyclohexylmethyl flavonoids that can inhibit propagation of NANOG-positive cells in both breast cancer MCF-7 and MDA-MB231 cells. Among these flavonoids, ugonins J and K were found to be able to induce apoptosis in non-CSC populations and to reduce self-renewal growth of CD24−/lowCD44+ CSC population. Treatment with ugonin J significantly reduced the tumorigenicity of MCF-7 cells and efficiently suppressed formation of mammospheres. This suppression was possibly due to p53 activation and NANOG reduction as either addition of p53 inhibitor or overexpression of NANOG can counteract the suppressive effect of ugonin J. We therefore conclude that cyclohexylmethyl flavonoids can possibly be utilized to suppress the propagation of breast CSCs via reduction of NANOG.

  8. Propagation of positional error in 3D GIS

    NARCIS (Netherlands)

    Biljecki, Filip; Heuvelink, Gerard B.M.; Ledoux, Hugo; Stoter, Jantien

    2015-01-01

    While error propagation in GIS is a topic that has received a lot of attention, it has not been researched with 3D GIS data. We extend error propagation to 3D city models using a Monte Carlo simulation on a use case of annual solar irradiation estimation of building rooftops for assessing the

  9. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  10. Gauge-invariant dressed fermion propagator in massless QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2006-04-27

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED{sub 3} is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement.

  11. Interarrival times of message propagation on directed networks

    Science.gov (United States)

    Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J.

    2011-08-01

    One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network.

  12. Anomalous waves propagating at very high frequency in the atmosphere and their disturbances due to changes in refractivity profiles

    Directory of Open Access Journals (Sweden)

    Imtiaz Alam

    2018-03-01

    Full Text Available Anomalous waves propagation is severely affected due to almost always present variations in refractivity under various environmental conditions at different time, location and frequency. These conditions, representing different state of the atmosphere including e.g. foggy, rainy and cloudy etc., not only degrade the quality of the signal but sometimes completely eradicate the communication link. Such severe impact on propagation cannot be ignored by the designers of communication systems. The aim of this research is to present correlation between experimental and modelled link losses for variations in refractivity values recommended by International Telecommunication Union-Recommendations (ITU-R as well as that of standard profiles. To do so, a communication setup of 50 km over the Sea operating experimentally over a period of a year at 240 MHz is analyzed for different refractivity profiles and their impact on propagation. A median value is taken for every set of 6000 values taken from the recorded data set of more than 48 million experimental link losses. This reduces the huge data set of the experimental link losses to 8000 values only. This reduced data set of experimental and modelled link losses were correlated and investigated for different evaporation duct heights throughout the year. For the considered link, the ITU-R refractivity profile was found to perform better than the standard refractivity profile. However, the new findings as observed in this research, which may be helpful for the recommendations authorities, is the existing of evaporation duct up to 10 m height. Keywords: Parabolic equation, Link loss, Refractivity, Propagation, Troposphere, Very high frequency

  13. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    International Nuclear Information System (INIS)

    Tan, Sirui; Huang, Lianjie

    2014-01-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion

  14. A study on in vitro propagation of Castanopsis argentea

    Directory of Open Access Journals (Sweden)

    MUHAMMAD IMAM SURYA

    2017-03-01

    Full Text Available Abstract. Surya MI, Kurnita NI, Setyaningsih L, Ismaini L, Muttaqin Z. 2016. A study on in vitro propagation of Castanopsis argentea. Pros Sem Nas Masy Biodiv Indon 2: 10-15. Saninten (Castanopsis argentea is a keystone species that has highly potential as a food material. Mostly, the fruits of C. argentea are eaten by animals. It made us difficults to get the natural regeneration. In vitro propagation is an effort to produce considerable amounts of C. argentea. However, the information about in vitro propagation of C. argentea is still very limited. This study was aimed to determine the initiation methods to propagate C. argentea by in vitro propagation. Two methods of sterilization were used to sterilize the explant of seed and buds. Moreover, the explant was planted on modified MS and WPM. The results show that percentage of survival, number of buds and time of germination were found on seed explants sterilized by first method. The number of callus were found on bud explants sterilized by second method. Furthermore, planting media were not affected to the germination of seed explants, but affected to growth of bud explants.

  15. Severe hindrance of viral infection propagation in spatially extended hosts.

    Directory of Open Access Journals (Sweden)

    José A Capitán

    Full Text Available The production of large progeny numbers affected by high mutation rates is a ubiquitous strategy of viruses, as it promotes quick adaptation and survival to changing environments. However, this situation often ushers in an arms race between the virus and the host cells. In this paper we investigate in depth a model for the dynamics of a phenotypically heterogeneous population of viruses whose propagation is limited to two-dimensional geometries, and where host cells are able to develop defenses against infection. Our analytical and numerical analyses are developed in close connection to directed percolation models. In fact, we show that making the space explicit in the model, which in turn amounts to reducing viral mobility and hindering the infective ability of the virus, connects our work with similar dynamical models that lie in the universality class of directed percolation. In addition, we use the fact that our model is a multicomponent generalization of the Domany-Kinzel probabilistic cellular automaton to employ several techniques developed in the past in that context, such as the two-site approximation to the extinction transition line. Our aim is to better understand propagation of viral infections with mobility restrictions, e.g., in crops or in plant leaves, in order to inspire new strategies for effective viral control.

  16. Propagation of superconducting coherence via chiral quantum-Hall edge channels.

    Science.gov (United States)

    Park, Geon-Hyoung; Kim, Minsoo; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    2017-09-08

    Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.

  17. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  18. Quantum tomography and classical propagator for quadratic quantum systems

    International Nuclear Information System (INIS)

    Man'ko, O.V.

    1999-03-01

    The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

  19. Quark and gluon propagators in the spherical bag model

    Energy Technology Data Exchange (ETDEWEB)

    Kulish, Yu V [AN Ukrainskoj SSR, Fiziko-Tekhnicheskij Inst., Kharkov

    1983-12-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values.

  20. Quark and gluon propagators in the spherical bag model

    International Nuclear Information System (INIS)

    Kulish, Yu.V.

    1983-01-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values

  1. Characteristics of micro-propagated banana (Musa spp.) cultures ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... was conducted to assess the effect of NaCl and PEG separately as well as in combination on plant micro- propagation efficiency of banana (Musa spp.) cv., Basrai. In this experiment, 4-weeks old plantlets of the 3rd sub- culture with well propagation on MS2b nutrient were sub- cultured on three differentially ...

  2. Detecting electromagnetic cloaks using backward-propagating waves

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.

  3. Detecting electromagnetic cloaks using backward-propagating waves

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.

  4. On low-frequency whistler propagation in ionosphere

    International Nuclear Information System (INIS)

    Mazur, V.A.

    1988-01-01

    The propagation along the Earth surface of an electromagnetic wave with frequency below the ion gyrofrequency is theoretically investigated. In Hall layer of the ionosphere this wave is the whistler mode. It is shown that - contrary to previous works - Ohmic dissipation makes impossible the long-distance propagation of low-frequency whistlers. A many-layer model of the medium is used. The geomagnetic field is considered inclined. The eigen modes and evolution of the initial perturbation are considered

  5. Contribution to the study of neutron propagation in cavities; Contribution a l'etude de la propagation des neutrons dans les cavites

    Energy Technology Data Exchange (ETDEWEB)

    Hasselin, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    In large size cavities where the dimensions of the holes are greater than the mean free path of the radiations, the neutron propagation calculations are carried out by taking into account the effect of the medium surrounding the hole using a reflection coefficient or albedo. In this work the fast neutron albedos are obtained for various materials and these results are applied for a Monte-Carlo propagation calculation. A comparison of this calculation with experimental results shows the validity of the method. (author) [French] Dans les cavites de grandes dimensions, ou les dimensions des vides sont superieures au libre parcours moyen des rayonnements, le calcul de la propagation des neutrons se fait en essayant de rendre compte de l'effet du milieu entourant le vide, par un coefficient de reflexion ou albedo. Dans cette etude, sont d'une part obtenus des albedo en neutrons rapides sur divers materiaux, d'autre part ces resultats sont appliques pour un calcul de MONTE-CARLO de propagation. La comparaison entre le calcul et l'experience montre la validite de la methode. (auteur)

  6. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud; Alshareef, Husam N.

    2012-01-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates

  7. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  8. Query by Constraint Propagation in the Concept-Oriented Data Model

    Directory of Open Access Journals (Sweden)

    Alexandr Savinov

    2006-09-01

    Full Text Available The paper describes an approach to query processing in the concept-oriented data model. This approach is based on imposing constraints and specifying the result type. The constraints are then automatically propagated over the model and the result contains all related data items. The simplest constraint propagation strategy consists of two steps: propagating down to the most specific level using de-projection and propagating up to the target concept using projection. A more complex strategy described in the paper may consist of many de-projection/projection steps passing through some intermediate concepts. An advantage of the described query mechanism is that it does not need any join conditions because it uses the structure of the model for propagation. Moreover, this mechanism does not require specifying an access path using dimension names. Thus even rather complex queries can be expressed in simple and natural form because they are expressed by specifying what information is available and what related data we want to get.

  9. Propagation of an intense laser beam in a tapered plasma channel

    International Nuclear Information System (INIS)

    Jha, Pallavi; Singh, Ram Gopal; Upadhyaya, Ajay K.; Mishra, Rohit K.

    2008-01-01

    Propagation characteristics and modulation instability of an intense laser beam propagating in an axially tapered plasma channel, having a parabolic radial density profile, are studied. Using the source-dependent expansion technique, the evolution equation for the laser spot is set up and conditions for propagation of the laser beam with a constant spot size (matched beam) are obtained. Further, the dispersion relation and growth rate of modulation instability of the laser pulse as it propagates through linearly and quadratically tapered plasma channels, have been obtained

  10. Interactive Sound Propagation using Precomputation and Statistical Approximations

    Science.gov (United States)

    Antani, Lakulish

    Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.

  11. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  12. Propagation environments [Chapter 4

    Science.gov (United States)

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    An understanding of all factors influencing plant growth in a nursery environment is needed for the successful growth and production of high-quality container plants. Propagation structures modify the atmospheric conditions of temperature, light, and relative humidity. Native plant nurseries are different from typical horticultural nurseries because plants must be...

  13. Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-07-01

    Full Text Available Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and coalescence of hydraulic fracture network (HFN caused by fluid flow in rock formations. In this study, a coupled hydro-mechanical model was built based on synthetic rock mass (SRM method to investigate the effects of natural fracture (NF density on HFN propagation. Firstly, the geometrical structures of NF obtained from borehole images at the field scale were applied to the model. Secondly, the micro-parameters of the proposed model were validated against the interaction between NF and hydraulic fracture (HF in physical experiments. Finally, a series of numerical simulations were performed to study the mechanism of HFN propagation. In addition, confining pressure ratio (CPR and injection rate were also taken into consideration. The results suggested that the increase of NF density drives the growth of stimulated reservoir volume (SRV, concentration area of injection pressure (CAIP, and the number of cracks caused by NF. The number of tensile cracks caused by rock matrix decrease gradually with the increase of NF density, and the number of shear cracks caused by rock matrix are almost immune to the change of NF density. The propagation orientation of HFN and the breakdown pressure in rock formations are mainly controlled by CPR. Different injection rates would result in a relatively big difference in the gradient of injection pressure, but this difference would be gradually narrowed with the increase of NF density. Natural fracture density is the key factor that influences the percentages of different crack types in HFN, regardless of the value of CPR and injection rate. The proposed model may help predict HFN propagation and optimize fracturing treatment designs in

  14. Propagation of high-current fast electron beam in a dielectric target

    International Nuclear Information System (INIS)

    Klimo, O.; Debayle, A.; Tikhonchuk, V.T.

    2006-01-01

    , until they acquire enough energy for efficient collisional ionization. Then, the avalanche ionization starts and the further increase of cold electron density reduces plasma resistivity. The current of the rest of the electron beam is neutralized relatively easily. The electric field inside the beam is order of magnitude lower than in the ionization front and it drops to zero behind the beam. The evolution of the beam distribution along its propagation and the plasma produced inside the plastic target are studied. The propagation velocity of the ionization front is faster for higher beam densities in agreement with analytical model. The energy loss of the beam due to Ohmic heating influences its propagation significantly on the distance of order of tens of em. The losses are stronger for lower density beams and the average energy lost per beam electron is significantly higher than the collisional losses. For the higher beam density, the two-stream instability may develop behind the ionization front. This work was partly funded by the Czech Ministry of Education. Youth and Sports project LC528. The support by the COST Office under project COST-STSM-P14-01494 is gratefully acknowledged.

  15. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  16. Mathematical Modelling of Tsunami Propagation 1EZE, C. L.; 2UKO ...

    African Journals Online (AJOL)

    MICHAEL

    propagation of waves in the open ocean; (c) propagation of waves in shallow water and on the shore. The development of numerical models to describe tsunami wave generation, propagation and interaction with complicated topography such as bays or harbours and the resulting flooding has advanced to the stage where ...

  17. Multipoint propagators for non-Gaussian initial conditions

    International Nuclear Information System (INIS)

    Bernardeau, Francis; Sefusatti, Emiliano; Crocce, Martin

    2010-01-01

    We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.

  18. Simulation of action potential propagation in plants.

    Science.gov (United States)

    Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir

    2011-12-21

    Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. On the propagation of a coupled saturation and pressure front

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  20. Global Bifurcation of a Novel Computer Virus Propagation Model

    Directory of Open Access Journals (Sweden)

    Jianguo Ren

    2014-01-01

    Full Text Available In a recent paper by J. Ren et al. (2012, a novel computer virus propagation model under the effect of the antivirus ability in a real network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate virus propagation in the network.

  1. An analysis of superluminal propagation becoming subluminal in highly dispersive media

    Science.gov (United States)

    Nanda, L.

    2018-05-01

    In this article the time-moments of the Poynting vector associated with an electromagnetic pulse are used to characterize the traversal time and the pulse width as the pulse propagates through highly dispersive media. The behaviour of these quantities with propagation distance is analyzed in two physical cases: Lorentz absorptive medium, and Raman gain doublet amplifying medium. It is found that the superluminal pulse propagation in these two cases with anomalous dispersion is always accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation.

  2. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  3. Massive propagators in instanton fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Lee, C.

    1978-01-01

    Green's functions for massive spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corresponding Green's functions of massive scalar particles

  4. Interface fatigue crack propagation in sandwich X-joints – Part I: Experiments

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian

    2013-01-01

    Correlation technique was used to locate the crack tip and monitor the crack growth. For the specimens with H45 core, unstable crack growth took place initially. Following the unstable propagation, the crack propagated in the core underneath the resin-rich cell layer approaching the interface. However......, the crack did not kink into the interface. For the specimens with H100 core, the crack propagated initially in the core and then returned into the interface and continued to propagate in the interface. For the specimens with H250 core, the crack initially propagated in the core and then kinked...

  5. Fast H.264/AVC FRExt intra coding using belief propagation.

    Science.gov (United States)

    Milani, Simone

    2011-01-01

    In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.

  6. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  7. Quantum Graphical Models and Belief Propagation

    International Nuclear Information System (INIS)

    Leifer, M.S.; Poulin, D.

    2008-01-01

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described

  8. Belief propagation and loop series on planar graphs

    International Nuclear Information System (INIS)

    Chertkov, Michael; Teodorescu, Razvan; Chernyak, Vladimir Y

    2008-01-01

    We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed

  9. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  10. Enhancement of in vitro Guayule propagation

    Science.gov (United States)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R. (Inventor)

    1982-01-01

    A method for stimulating in vitro propagation of Guayule from a nutrient medium containing Guayule tissue by adding a substituted trialkyl amine bioinducing agent to the nutrient medium is described. Selective or differentiated propagation of shoots or callus is obtained by varying the amounts of substituted trialky amine present in the nutrient medium. The luxuriant growth provided may be processed for its poly isoprene content or may be transferred to a rooting medium for production of whole plants as identical clones of the original tissue. The method also provides for the production of large numbers of Guayule plants having identical desirable properties such as high polyisoprene levels.

  11. Propagation of ultrahigh-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2009-06-15

    We briefly describe the energy loss processes of ultrahigh-energy protons, heavier nuclei and {gamma}-rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic-ray energy spectrum in propagation by the energy loss processes and the charged cosmic-ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh-energy cosmic rays goes into {gamma}-rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.

  12. Nonlinear propagation of ultrashort laser pulses in transparent media

    International Nuclear Information System (INIS)

    Vincotte, A.

    2006-10-01

    We present different aspects of the propagation of ultrashort laser pulses in transparent media. First, we derive the propagation equations starting from the Maxwell equations. We remind of the main physical phenomena undergone by ultrashort and powerful laser pulses. First self-focusing occurs, owing to the Kerr response of the medium. This self-focusing is stopped by plasma generation from the laser-induced ionization of the ambient atoms. The propagation of the wave generates a super-continuum through self-phase modulation. We recall the main results concerning the simple and multiple filamentation of an intense wave, induced by the beam inhomogeneities and which take place as soon as the beam power is above critical. In a second part, we investigate the influence of high-order nonlinearities on the propagation of the beam and especially on its filamentation pattern. To control the multi-filamentation process, we investigate in a third part the propagation of beams with special designs, namely; Gradient- and vortex-shaped beams. We justify the robustness of this latter kind of optical objects. Eventually, we investigate multi-filamentation patterns of femtosecond pulses in a fog tube and in cells of ethanol doped with coumarin, for different beam configurations. (author)

  13. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  14. Voltage tunable plasmon propagation in dual gated bilayer graphene

    Science.gov (United States)

    Farzaneh, Seyed M.; Rakheja, Shaloo

    2017-10-01

    In this paper, we theoretically investigate plasmon propagation characteristics in AB and AA stacked bilayer graphene (BLG) in the presence of energy asymmetry due to an electrostatic field oriented perpendicularly to the plane of the graphene sheet. We first derive the optical conductivity of BLG using the Kubo formalism incorporating energy asymmetry and finite electron scattering. All results are obtained for room temperature (300 K) operation. By solving Maxwell's equations in a dual gate device setup, we obtain the wavevector of propagating plasmon modes in the transverse electric (TE) and transverse magnetic (TM) directions at terahertz frequencies. The plasmon wavevector allows us to compare the compression factor, propagation length, and the mode confinement of TE and TM plasmon modes in bilayer and monolayer graphene sheets and also to study the impact of material parameters on plasmon characteristics. Our results show that the energy asymmetry can be harnessed to increase the propagation length of TM plasmons in BLG. AA stacked BLG shows a larger increase in the propagation length than AB stacked BLG; conversely, it is very insensitive to the Fermi level variations. Additionally, the dual gate structure allows independent modulation of the energy asymmetry and the Fermi level in BLG, which is advantageous for reconfiguring plasmon characteristics post device fabrication.

  15. Error propagation analysis for a sensor system

    International Nuclear Information System (INIS)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm

  16. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  17. Large scale propagation intermittency in the atmosphere

    Science.gov (United States)

    Mehrabi, Ali

    2000-11-01

    Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.

  18. Thermal effects on parallel-propagating electron cyclotron waves

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1987-01-01

    Thermal effects on the dispersion of right-handed electron cyclotron waves propagating parallel to a uniform, ambient magnetic field are investigated in the strictly non-relativistic ('classical') and weakly relativistic approximations for real frequency and complex wave vector. In each approximation, the two branches of the RH mode reconnect near the cyclotron frequency as the plasma temperature is increased or the density is lowered. This reconnection occurs in a manner different from that previously assumed at parallel propagation and from that at perpendicular propagation, giving rise to a new mode near the cold plasma cut-off frequency ωsub(xC). For both parallel and perpendicular propagation, it is noted that reconnection occurs approximately when the cyclotron linewidth equals the width of the stop-band in the cold plasma dispersion relation. Inclusion of weakly relativistic effects is found to be necessary for quantitative calculations and for an accurate treatment of the new mode near ωsub(xC). Weakly relativistic effects also modify the analytic properties of the dispersion relation so as to introduce a new family of weakly damped and undamped solutions. (author)

  19. Invertible propagator for plane wave illumination of forward-scattering structures.

    Science.gov (United States)

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  20. Rotating and propagating LIB stabilized by self-induced magnetic field

    International Nuclear Information System (INIS)

    Murakami, H.; Aoki, T.; Kawata, S.; Niu, K.

    1984-01-01

    Rotating motion of a propagating LIB is analyzed in order to suppress the mixed mode of the Kelvin-Helmholtz instability, the tearing instability and the sausage instability by the action of a self-induced magnetic field in the axial direction. The beams are assumed to be charge-neutralized but not current-neutralized. The steady-state solutions of a propagating LIB with rotation are first obtained numerically. Through the dispersion relation with respect to the ikonal type of perturbations, which are added to the steady-state solutions, the growth rates of instabilities appearing in an LIB are obtained. It is concluded that if the mean rotating velocity of an LIB is comparable to the propagation velocity, the instability disappears in the propagating ion beam. (author)

  1. Fatigue crack propagation under elastic plastic medium at elevated temperature

    International Nuclear Information System (INIS)

    Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.

    1980-01-01

    The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)

  2. Multilayer Network Modeling of Change Propagation for Engineering Change Management

    Science.gov (United States)

    2010-06-01

    generalization, rather than statistical generalization. As such, a single case can be used to advance a theory, similarly to how scientific experiments are...ation 411 PNC C ac 2 C PC Not Predicted & Propagated wI Comunication ENot Predicted & Not Propagated w ConPnCcation 04 PPC 5CPredicted & Propagated w...Engineering Management 48(3): 292-306. 5. Clark, J. and Holton, D.A. (2005). A First Look at Graph Theory. World Scientific . 6. Clarkson P.J., Simons, C

  3. Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M.; Hossain, M.M.; Crosby, D.G.; Rahman, M.K.; Rahman, S.S. [School of Petroleum Engineering, The University of New South Wales, 2052 Sydney (Australia)

    2002-08-01

    This paper presents results of a comprehensive study involving analytical, numerical and experimental investigations into transverse fracture propagation from horizontal wells. The propagation of transverse hydraulic fractures from horizontal wells is simulated and investigated in the laboratory using carefully designed experimental setups. Closed-form analytical theories for Mode I (opening) stress intensity factors for idealized fracture geometries are reviewed, and a boundary element-based model is used herein to investigate non-planar propagation of fractures. Using the mixed mode fracture propagation criterion of the model, a reasonable agreement is found with respect to fracture geometry, net fracture pressures and fracture propagation paths between the modeled fractures and the laboratory tested fractures. These results suggest that the propagation of multiple fractures requires higher net pressures than a single fracture, the underlying reason of which is theoretically justified on the basis of local stress distribution.

  4. Photon propagator and pair production in stationary electric field

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Olejnik, V.P.

    1978-01-01

    Effects related to pair production by an external field are discussed. It is shown that vacuum instability against pair production leads to an essential difference between the propagator and Feynman Green's function. Analysis of Yang-Feldman equations and of boundary conditions imposed upon the Green's function shows that using Feynman Green's function as a propagator contradicts the causality principle. The physical causality principle is satisfied by Heisenberg Green's function for which usual Schwinger-Dyson equations cannot be formulated. Heisenberg and Feynman Green's functions coincide for the case of stable vacuum state. All calculations are carried out using the technique of the so-called generalized Green's functions in terms of which the propagators are written. The polarization operator in the electric field is calculated in the one-loop approximation. Its' general structure is found. The photon propagator is obtained. Self oscillations of the photon vacuum are determined. It is shown that new modes correspond to collective excitations of the type ''photon+electron-positron pairs''

  5. Hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1982-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels

  6. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  7. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  8. Propagation calculation for reactor cases

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanhua [School of Power and Energy Engineering, Shanghai Jiao Tong Univ., Shanghai (China); Moriyama, K.; Maruyama, Y.; Nakamura, H.; Hashimoto, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-11-01

    The propagation of steam explosion for real reactor geometry and conditions are investigated by using the computer code JASMINE-pro. The ex-vessel steam explosion is considered, which is described as follow: during the accident of reactor core meltdown, the molten core melts a hole at the bottom of reactor vessel and causes the higher temperature core fuel being leaked into the water pool below reactor vessel. During the melt-water mixing interaction process, the high temperature melt evaporates the cool water at an extreme high rate and might induce a steam explosion. A steam explosion could experience first the premixing phase and then the propagation explosion phase. For a propagation calculation, we should know the information about the initial fragmentation time, the total melt mass, premixing region size, initial void fraction and distribution of the melt volume fraction, and so on. All the initial conditions used in this calculation are based on analyses from some simple assumptions and the observation from the experiments. The results show that the most important parameter for the initial condition of this phase is the total mass and its initial distribution. This gives the requirement for a premixing calculation. On the other hand, for higher melt volume fraction case, the fragmentation is strong so that the local pressure can exceed over the EOS maximum pressure of the code, which lead to the incorrect calculation or divergence of the calculation. (Suetake, M.)

  9. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  10. Propagation of human spermatogonial stem cells in vitro.

    Science.gov (United States)

    Sadri-Ardekani, Hooman; Mizrak, Sefika C; van Daalen, Saskia K M; Korver, Cindy M; Roepers-Gajadien, Hermien L; Koruji, Morteza; Hovingh, Suzanne; de Reijke, Theo M; de la Rosette, Jean J M C H; van der Veen, Fulco; de Rooij, Dirk G; Repping, Sjoerd; van Pelt, Ans M M

    2009-11-18

    Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Propagation of spermatogonial stem cells over time. Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and

  11. Pathways of seizure propagation from the temporal to the occipital lobe.

    Science.gov (United States)

    Jacobs, Julia; Dubeau, François; Olivier, André; Andermann, Frederick

    2008-12-01

    Propagation of ictal epileptic discharges influences the clinical appearance of seizures. Fast propagation from the occipital to temporal lobe has been well described, but until now the reverse direction of spread has not been emphasized. We describe two patients who experienced ictal propagation from temporal to occipital regions. One case presented with amaurosis during a seizure with temporal onset and temporal-occipital spread. In the second, temporal-occipital spread was documented during a seizure, which continued in the occipital lobe for six minutes. Depth electrode studies suggested the temporal ictal onset of seizures in both patients. Propagation from temporal to occipital lobe structures must be considered in the assessment of patients who have seizures with both temporal and occipital features. The propagation may have predictive value for their surgical outcome. The underlying anatomical structure might be the inferior longitudinal fasciculus.

  12. Propagated failure analysis for non-repairable systems considering both global and selective effects

    International Nuclear Information System (INIS)

    Wang Chaonan; Xing Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable binary systems subject to competing failure propagation and failure isolation events with both global and selective failure effects. A propagated failure that originates from a system component causes extensive damage to the rest of the system. Global effect happens when the propagated failure causes the entire system to fail; whereas selective effect happens when the propagated failure causes only failure of a subset of system components. In both cases, the failure propagation that originates from some system components (referred to as dependent components) can be isolated because of functional dependence between the dependent components and a component that prevents the failure propagation (trigger components) when the failure of the trigger component happens before the occurrence of the propagated failure. Most existing studies focus on the analysis of propagated failures with global effect. However, in many cases, propagated failures affect only a subset of system components not the entire system. Existing approaches for analyzing propagated failures with selective effect are limited to series-parallel systems. This paper proposes a combinatorial method for the propagated failure analysis considering both global and selective effects as well as the competition with the failure isolation in the time domain. The proposed method is not limited to series-parallel systems and has no limitation on the type of time-to-failure distributions for the system components. The method is verified using the Markov-based method. An example of computer memory systems is analyzed to demonstrate the application of the proposed method.

  13. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  14. Crack propagation of brittle rock under high geostress

    Science.gov (United States)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  15. Contribution to the study of neutron propagation in cavities; Contribution a l'etude de la propagation des neutrons dans les cavites

    Energy Technology Data Exchange (ETDEWEB)

    Hasselin, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    In large size cavities where the dimensions of the holes are greater than the mean free path of the radiations, the neutron propagation calculations are carried out by taking into account the effect of the medium surrounding the hole using a reflection coefficient or albedo. In this work the fast neutron albedos are obtained for various materials and these results are applied for a Monte-Carlo propagation calculation. A comparison of this calculation with experimental results shows the validity of the method. (author) [French] Dans les cavites de grandes dimensions, ou les dimensions des vides sont superieures au libre parcours moyen des rayonnements, le calcul de la propagation des neutrons se fait en essayant de rendre compte de l'effet du milieu entourant le vide, par un coefficient de reflexion ou albedo. Dans cette etude, sont d'une part obtenus des albedo en neutrons rapides sur divers materiaux, d'autre part ces resultats sont appliques pour un calcul de MONTE-CARLO de propagation. La comparaison entre le calcul et l'experience montre la validite de la methode. (auteur)

  16. Propagation speed of gamma radiation in brass

    International Nuclear Information System (INIS)

    Cavalcante, Jose T.P.D.; Silva, Paulo R.J.; Saitovich, Henrique

    2009-01-01

    The propagation speed (PS) of visible light -represented by a short frequency range in the large frame of electromagnetic radiations (ER) frequencies- in air was measured during the last century, using a great deal of different methods, with high precision results being achieved. Presently, a well accepted value, with very small uncertainty, is c= 299,792.458 Km/s) (c reporting to the Latin word celeritas: 'speed swiftness'). When propagating in denser material media (MM), such value is always lower when compared to the air value, with the propagating MM density playing an important role. Until present, such studies focusing propagation speeds, refractive indexes, dispersions were specially related to visible light, or to ER in wavelengths ranges dose to it, and with a transparent MM. A first incursion in this subject dealing with γ-rays was performed using an electronic coincidence counting system, when the value of it's PS was measured in air, C γ(air) 298,300.15 Km/s; a method that went on with later electronic improvements. always in air. To perform such measurements the availability of a γ-radiation source in which two γ-rays are emitted simultaneously in opposite directions -as already used as well as applied in the present case- turns out to be essential to the feasibility of the experiment, as far as no reflection techniques could be used. Such a suitable source was the positron emitter 22 Na placed in a thin wall metal container in which the positrons are stopped and annihilated when reacting with the medium electrons, in such way originating -as it is very well established from momentum/energy conservation laws - two gamma-rays, energy 511 KeV each, both emitted simultaneously in opposite directions. In all the previous experiments were used photomultiplier detectors coupled to NaI(Tl) crystal scintillators, which have a good energy resolution but a deficient time resolution for such purposes. Presently, as an innovative improvement, were used BaF 2

  17. Study on Knowledge Propagation in Complex Networks Based on Preferences, Taking Wechat as Example

    Directory of Open Access Journals (Sweden)

    Si-hua Chen

    2014-01-01

    Full Text Available As platform based on users’ relationship to acquire, share, and propagate knowledge, Wechat develops very rapidly and becomes an important channel to spread knowledge. This new way to propagate knowledge is quite different from the traditional media way which enables knowledge to be spread surprisingly in Wechat. Based on complex network theory and the analysis of the factors which influence the knowledge propagation in Wechat, this paper summarizes the behavior preferences of Wechat users in knowledge propagation and establishes a Wechat knowledge propagation model. By the simulation experiment, this paper tests the model established and finds some important thresholds in knowledge propagation in Wechat. The findings are valuable for further studying the knowledge propagation in Wechat and provide theoretical proof for forecasting the scale and influence of knowledge propagation.

  18. Propagation velocity analysis of a single blob in the SOL

    International Nuclear Information System (INIS)

    Sugita, Satoru; Yagi, Masatoshi; Itoh, Sanae-I.; Itoh, Kimitaka

    2008-01-01

    Nonlinear simulation of plasma blob propagation in the tokamak scrape-off layer is reported. Three types of model equations are introduced and the simulation results are compared. It is found that in the parameter regime where the intercharge instability appears during the propagation process, the theoretical model of propagation velocity determined by the initial blob size provides a good approximation of the simulation results. In the regime where the Kelvin-Helmholtz instability appears, however, the blob velocity saturates at a lower value. (author)

  19. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro.

    Science.gov (United States)

    Kibler, Andrew B; Durand, Dominique M

    2011-09-01

    In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes, which are thought to play an important role in epileptiform hyperexcitability. 4-Aminopyridine (4-AP), microelectrodes, and voltage-sensitive dye imaging were employed to investigate tissue excitability. In 50-μm 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal-septal direction could be suppressed with glutamatergic receptor antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22 ± 0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  20. Spin factor and spinor structure of Dirac propagator in constant field

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Cruz, W. da [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zlatev, S.I. [Sergipe Univ., Aracaju, SE (Brazil). Dept. de Fisica

    1996-06-01

    We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger`s one but the equivalence can be checked. (author). 21 refs.

  1. Spin factor and spinor structure of Dirac propagator in constant field

    International Nuclear Information System (INIS)

    Gitman, D.M.; Cruz, W. da; Zlatev, S.I.

    1996-01-01

    We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger's one but the equivalence can be checked. (author). 21 refs

  2. Proton-beam propagation through wall-confined plasma channel stabilized against sausage instability

    International Nuclear Information System (INIS)

    Nakahama, Masao; Nemoto, Masahiro; Masugata, Katsumi; Ito, Michiaki; Matsui, Masao; Yatsui, Kiyoshi

    1986-01-01

    Experimental results are presented of proton-beam (energy ∼ 650 keV) propagation through wall-confined plasma channel that is stabilized against sausage instability by an externally-applied longitudinal magnetic field. Significant improvement of beam-propagation efficiency has been obtained of ∼ 70 % compared with the previous experiment of ∼ 55 % without the magnetic field. The propagation can also be available up to ∼ 30 % even in a non-propagation region in a non-stabilized channel. (author)

  3. Vegetative Propagation and the Genetic Improvement of North American Hardwoods

    Science.gov (United States)

    R. E. Farmer

    1973-01-01

    Progress and problems in vegetative propagation of important North American hardwoods are reviewed with emphasis on rooting cuttings and the application of propagation techniques in breeding research. Some problems in rooting physiology are discussed.

  4. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial

  5. Study of phonon propagation in water using picosecond ultrasonics

    International Nuclear Information System (INIS)

    Yang, F; Atay, T; Dang, C H; Grimsley, T J; Che, S; Ma, J; Zhang, Q; Nurmikko, A V; Maris, H J

    2007-01-01

    The propagation of ultra-short sound pulses in water is studied by using the picosecond ultrasonic technique. A sound pulse is generated when light is absorbed in a metal transducer film deposited onto a substrate. The sound propagates across a thin layer of water and is then reflected back to the surface at which it was generated. The efficiency of optoacoustic detection of the reflected sound is enhanced through the use of a resonant optical cavity. We show that the variation of the shape of the returning sound pulse with propagation distance agrees with that calculated by using the attenuation of sound in water that has been measured at lower frequencies

  6. Propagation of singularities for linearised hybrid data impedance tomography

    Science.gov (United States)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  7. Factors Enabling Information Propagation in a Social Network Site

    DEFF Research Database (Denmark)

    Magnani, Matteo; Montesi, Danilo; Rossi, Luca

    2013-01-01

    A relevant feature of Social Network Sites is their ability to propagate units of information and create large distributed conversations. This phenomenon is particularly relevant because of the speed of information propagation, which is known to be much faster than within traditional media......, and because of the very large amount of people that can potentially be exposed to information items. While many general formal models of network propagation have been developed in different research fields, in this chapter we present the result of an empirical study on a Large Social Database (LSD) aimed...... at measuring specific socio-technical factors enabling information spreading in Social Network Sites....

  8. A finite Hankel algorithm for intense optical beam propagation in saturable medium

    International Nuclear Information System (INIS)

    Bardin, C.; Babuel-Peyrissac, J.P.; Marinier, J.P.; Mattar, F.P.

    1985-01-01

    Many physical problems, especially light-propagation, that involve the Laplacian operator, are naturally connected with Fourier or Hankel transforms (in case of axial symmetry), which both remove the Laplacian term in the transformed space. Sometimes the analytical calculation can be handled at its end, giving a series or an integral representation of the solution. Otherwise, an analytical pre-treatment of the original equation may be done, leading to numerical computation techniques as opposed to self-adaptive stretching and rezoning techniques, which do not use Fourier or Hankel transforms. The authors present here some basic mathematical properties of infinite and finite Hankel transform, their connection with physics and their adaptation to numerical calculation. The finite Hankel transform is well-suited to numerical computation, because it deals with a finite interval, and the precision of the calculation can be easily controlled by the number of zeros of J 0 (x) to be taken. Moreover, they use a special quadrature formula which is well connected to integral conservation laws. The inconvenience of having to sum a series is reduced by the use of vectorized computers, and in the future will be still more reduced with parallel processors. A finite-Hankel code has been performed on CRAY-XMP in order to solve the propagation of a CW optical beam in a saturable absorber. For large diffractions or when a very small radial grid is required for the description of the optical field, this FHT algorithm has been found to perform better than a direct finite-difference code

  9. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  10. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  11. Alternative model of thrust-fault propagation

    Science.gov (United States)

    Eisenstadt, Gloria; de Paor, Declan G.

    1987-07-01

    A widely accepted explanation for the geometry of thrust faults is that initial failures occur on deeply buried planes of weak rock and that thrust faults propagate toward the surface along a staircase trajectory. We propose an alternative model that applies Gretener's beam-failure mechanism to a multilayered sequence. Invoking compatibility conditions, which demand that a thrust propagate both upsection and downsection, we suggest that ramps form first, at shallow levels, and are subsequently connected by flat faults. This hypothesis also explains the formation of many minor structures associated with thrusts, such as backthrusts, wedge structures, pop-ups, and duplexes, and provides a unified conceptual framework in which to evaluate field observations.

  12. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    Science.gov (United States)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  13. Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Erckmann, V; Gasparino, U; Hartfuss, H J; Kuehner, G; Maassberg, H; Stroth, U; Tutter, M [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); W7-AS Team; ECRH Group IPF Stuttgart; Gyrotron Group KFK Karlsruhe

    1992-11-01

    Heat wave propagation experiments have been carried out on the Wendelstein 7-AS stellarator. The deposition of electron cyclotron resonance heating power is highly localized in the plasma centre, so that power modulation produces heat waves which propagate away from the deposition volume. Radiometry of the electron cyclotron emission is used to measure the generated temperature perturbation. The propagation time delay of the temperature perturbation as a function of distance to the power deposition region is used to determine the electron thermal conductivity [chi][sub e]. This value is then compared with the value determined by global power balance. In contrast to sawtooth propagation experiments in tokamaks, it is found that the value of [chi][sub e] from heat wave propagation is comparable to that calculated by power balance. In addition, inward propagating waves were produced by choosing a power deposition region away from the plasma centre. Experiments were carried out at 70 GHz in the ordinary mode and at 140 GHz in the extraordinary mode. Variations of the modulation power amplitude have demonstrated that the inferred value of [chi][sub e] is independent of the amplitude of the induced temperature perturbations. (author). 29 refs, 11 figs, 5 tabs.

  14. Effect of material parameters on stress wave propagation during fast upsetting

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-jin; CHENG Li-dong

    2008-01-01

    Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.

  15. The propagation of Escherichia Coli and of conservative tracers. A comparison

    International Nuclear Information System (INIS)

    Alexander, I.; Seiler, K.P.

    1982-01-01

    The propagation of Escherichia Coli (ATCC 11229, Gelsenkirchen) is compared with that of conservative tracers in groundwater. The experiments were performed with injection quantities of 10 7 , 10 8 , 10 10 and 10 11 of Escherichia Coli. Both, bacteria and conservative tracers pass their maximum at the same instant in the observation gauges. With injection quantities of more than 10 8 , the propagation of the Escherichia Coli sets in at the same time as it begins with the dyes. When the quantities range below 10 8 , the propagation begins after that of conservative tracers, because Coli bacteria were measured with a lower degree of detecting sensitivity than the tracers. With Coli injection quantities ranging above 10 10 , an increased filtering of these bacteria can be observed. Coli bacteria propagate more laterally than conservative tracers, however it could not be proved that this lateral propagation depends on the bacteria concentration. (orig.) [de

  16. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  17. Modeling of SCC initiation and propagation mechanisms in BWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Hans, E-mail: Hans.Hoffmeister@hsu-hh.de [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany); Klein, Oliver [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany)

    2011-12-15

    increasing global stresses. In accordance with respective experimental literature data it is shown that decreasing chloride and increasing pH levels of the primary bulk water at 288 Degree-Sign C reduce the total crack propagation rates including anodic path corrosion as well as hydrogen cracking. It is also demonstrated that crack propagation rates can be significantly suppressed by hydrogen water chemistry (HWC) that leads to reduction of bulk surface corrosion potentials. As a conclusion the extended SSC-model for nickel supplies quantitative insight into the frequently controversially discussed high temperature SCC mechanisms of a basic alloying element of BWR components.

  18. Research on Propagation Model of Malicious Programs in Ad Hoc Wireless Network

    Directory of Open Access Journals (Sweden)

    Weimin GAO

    2014-01-01

    Full Text Available Ad Hoc wireless network faces more security threats than traditional network due to its P2P system structure and the limited node resources. In recent years, malicious program has become one of the most important researches on international network security and information security. The research of malicious programs on wireless network has become a new research hotspot in the field of malicious programs. This paper first analyzed the Ad Hoc network system structure, security threats, the common classification of malicious programs and the bionic propagation model. Then starting from the differential equations of the SEIR virus propagation model, the question caused by introducing the SEIR virus propagation model in Ad Hoc wireless network was analyzed. This paper improved the malicious program propagation model through introducing the network topology features and concepts such as immunization delay, and designed an improved algorithm combined with the dynamic evolution of malware propagation process. Considering of the network virus propagation characteristics, network characteristics and immunization strategy to improve simulation model experiment analysis, the experimental results show that both the immunization strategy and the degrees of node can affect the propagation of malicious program.

  19. Numerical simulation of transoceanic propagation and run-up of tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Sik; Yoon Sung-Bum [Hanyang University, Seoul(Korea)

    2001-04-30

    The propagation and associated run-up process of tsunami are numerically investigated in this study. A transoceanic propagation model is first used to simulate the distant propagation of tsunamis. An inundation model is then employed to simulate the subsequent run-up process near coastline. A case study is done for the 1960 Chilean tsunami. A detailed maximum inundation map at Hilo Bay is obtained and compared with field observation and other numerical model, predictions. A very reasonable agreement is observed. (author). refs., tabs., figs.

  20. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America