WorldWideScience

Sample records for reducing respirable dust

  1. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  2. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  3. Respirable dust and respirable silica exposure in Ontario gold mines.

    Science.gov (United States)

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  4. 75 FR 64411 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2010-10-19

    ... industries, such as mining, by reducing workplace deaths and improving the health of coal miners. This..., enhanced enforcement, collaborative outreach, and education and training. The initiative will reduce, and... reducing the respirable coal mine dust levels, miners continue to develop black lung. Based on recent data...

  5. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    Science.gov (United States)

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2018-02-01

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  6. Respirable quartz hazard associated with coal mine roof bolter dust

    International Nuclear Information System (INIS)

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  7. Characterization of respirable mine dust and diesel particulate matter

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  8. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  9. Assessment of respirable dust exposures in an opencast coal mine.

    Science.gov (United States)

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  10. Respirable dust meter locates super polluters in traffic

    NARCIS (Netherlands)

    Schmidt-Ott's, A.; Kurniawan, A.; Schrauwers, A.

    2006-01-01

    The Netherlands is having trouble with the EU standards for respirable dust (PM 10). The Dutch Council of State recently blocked a number of residential development projects because local conditions failed to meet the PM 10 standard. Research by the Nano Structured Materials group at TU Delft shows

  11. 30 CFR 71.100 - Respirable dust standard.

    Science.gov (United States)

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... shall be measured with an approved sampling device and expressed in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations). ...

  12. Reducing dust and allergen exposure in bakeries

    Directory of Open Access Journals (Sweden)

    Howard J Mason

    2017-12-01

    Full Text Available Bakers have a continuing high incidence of occupational allergic asthma. In factory bakeries they are exposed not only to flour dust containing allergens, but also improvers whose ingredients enhance the strength and workability of the dough and its speed of rising. Improvers are flour-based but can contain added soya, fungal or bacterial enzymes that are also allergenic, as well as vegetable oil, calcium sulphate/silicate and organic esters. This study investigated the dustiness of the components used in factory bakeries and whether altering improver ingredients could reduce dust and allergen exposure. A standardised rotating drum test was employed on the individual components, as well as a representative improver and three practicable improver modifications by decreasing calcium sulphate, calcium silicate or increasing oil content. Levels of dust, the allergens wheat flour amylase inhibitor (WAAI and soya trypsin inhibitor (STI were measured in the generated inhalable, thoracic and respirable sized fractions. A “scooping and pouring” workplace simulation was also performed. Initial tests showed that dustiness of several wheat flours was relatively low, and even lower for soya flour, but increased in combination with some other improver components. All three improver modifications generally reduced levels of dust, STI and WAAI, but increasing oil content significantly decreased dust and STI in comparison to the standard improver and those improvers with reduced calcium silicate or sulphate. The simulation demonstrated that increased oil content reduced inhalable levels of gravimetric dust, STI and WAAI. Changing improver formulation, such as increasing oil content of flour by a small amount, may represent a simple, practical method of reducing bakery workers’ exposure to dust and allergens where improvers are used. It may be a useful adjunct to engineering control, changes to work practices and appropriate training in reducing the risk to

  13. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    Science.gov (United States)

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  14. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Science.gov (United States)

    2010-07-01

    ... District Manager and posting. 71.301 Section 71.301 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... plan; approval by District Manager and posting. (a) The District Manager will approve respirable dust control plans on a mine-by-mine basis. When approving respirable dust control plans, the District Manager...

  15. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Quantification of Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals

    CSIR Research Space (South Africa)

    Phillips, H

    2003-08-01

    Full Text Available Advisory Committee Project Summary Project Title: Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals-SIM020604 Author(s): H.R.Phillips and B. K. Belle Agency: University of Witwatersrand Report Date: July2003... Related Projects: Health 607, Sim 02-06-03 Category: Occupational Health Applied Research Occupational Hygiene Summary Project SIM020604 was formulated to determine the Inherent Respirable Dust Generation Potential (IRDGP) of various South...

  17. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers.

    NARCIS (Netherlands)

    Huizer, D.; Spee, T.; Lumens, M.E.G.L.; Kromhout, H.

    2010-01-01

    BACKGROUND: Construction workers are educated at vocational training centers before they begin their working lives. Future bricklayers and their instructors are exposed to respirable dust and possibly to hazardous respirable crystalline silica from trial mortar. METHODS: Thirty-six personal air

  18. 77 FR 38323 - Proposed Extension of Existing Information Collection; Respirable Coal Mine Dust Sampling

    Science.gov (United States)

    2012-06-27

    ... Information Collection; Respirable Coal Mine Dust Sampling AGENCY: Mine Safety and Health Administration... Sampling'' to more accurately reflect the type of information that is collected. Chronic exposure to... dust levels since 1970 and, consequently, the prevalence rate of black lung among coal miners, severe...

  19. Building an industry-wide occupational exposure database for respirable mineral dust - experiences from the IMA dust monitoring programme

    International Nuclear Information System (INIS)

    Houba, Remko; Jongen, Richard; Vlaanderen, Jelle; Kromhout, Hans

    2009-01-01

    Building an industry-wide database with exposure measurements of respirable mineral dust is a challenging operation. The Industrial Minerals Association (IMA-Europe) took the initiative to create an exposure database filled with data from a prospective and ongoing dust monitoring programme that was launched in 2000. More than 20 industrial mineral companies have been collecting exposure data following a common protocol since then. Recently in 2007 ArboUnie and IRAS evaluated the quality of the collected exposure data for data collected up to winter 2005/2006. The data evaluated was collected in 11 sampling campaigns by 24 companies at 84 different worksites and considered about 8,500 respirable dust measurements and 7,500 respirable crystalline silica. In the quality assurance exercise four criteria were used to evaluate the existing measurement data: personal exposure measurements, unique worker identity, sampling duration not longer than one shift and availability of a limit of detection. Review of existing exposure data in the IMA dust monitoring programme database showed that 58% of collected respirable dust measurements and 62% of collected respirable quartz could be regarded as 'good quality data' meeting the four criteria mentioned above. Only one third of the measurement data included repeated measurements (within a sampling campaign) that would allow advanced statistical analysis incorporating estimates of within- and between-worker variability in exposure to respirable mineral dust. This data came from 7 companies comprising measurements from 23 sites. Problematic data was collected in some specific countries and to a large extent this was due to local practices and legislation (e.g. allowing 40-h time weighted averages). It was concluded that the potential of this unique industry-wide exposure database is very high, but that considerable improvements can be made. At the end of 2006 relatively small but essential changes were made in the dust monitoring

  20. Level and distribution of employee exposures to total and respirable wood dust in two Canadian sawmills.

    Science.gov (United States)

    Teschke, K; Hertzman, C; Morrison, B

    1994-03-01

    Personal respirable (N = 230) and total (N = 237) dust measurements were made in two coastal British Columbia sawmills using a sampling strategy that randomly selected workers from all jobs in the mills over two seasons. Information about job title, department, season, weather conditions, location of the job relative to wood-cutting machines, and control measures also was collected at the time of sampling. Only 16 respirable wood dust samples were above the detection limit of 0.08 mg/m3; all 16 had levels industry, but most sawmill investigations report mean wood dust concentrations lower than those measured in the furniture and cabinetmaking industries, where concerns about wood dust exposures initially were raised.

  1. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Science.gov (United States)

    2010-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

  2. A Standard Characterization Methodology for Respirable Coal Mine Dust Using SEM-EDX

    Directory of Open Access Journals (Sweden)

    Rachel Sellaro

    2015-12-01

    Full Text Available A key consideration for responsible development of mineral and energy resources is the well-being of workers. Respirable dust in mining environments represents a serious concern for occupational health. In particular, coal miners can be exposed to a variety of dust characteristics depending on their work activities, and some exposures may pose risk for lung diseases like CWP and silicosis. As underscored by common regulatory frameworks, respirable dust exposures are generally characterized on the basis of total mass concentration, and also the silica mass fraction. However, relatively little emphasis has been placed on other dust characteristics that may be important in terms of identifying health risks. Comprehensive particle-level analysis to estimate chemistry, size, and shape distributions of particles is possible. This paper describes a standard methodology for characterization of respirable coal mine dust using scanning electron microscopy (SEM with energy dispersive X-ray (EDX. Preliminary verification of the method is shown based several dust samples collected from an underground mine in Central Appalachia.

  3. Filter penetration and breathing resistance evaluation of respirators and dust masks.

    Science.gov (United States)

    Ramirez, Joel; O'Shaughnessy, Patrick

    2017-02-01

    The primary objective of this study was to compare the filter performance of a representative selection of uncertified dust masks relative to the filter performance of a set of NIOSH-approved N95 filtering face-piece respirators (FFRs). Five different models of commercially available dust masks were selected for this study. Filter penetration of new dust masks was evaluated against a sodium chloride aerosol. Breathing resistance (BR) of new dust masks and FFRs was then measured for 120 min while challenging the dust masks and FFRs with Arizona road dust (ARD) at 25°C and 30% relative humidity. Results demonstrated that a wide range of maximum filter penetration was observed among the dust masks tested in this study (3-75% at the most penetrating particle size (p masks did not vary greatly (8-13 mm H 2 O) but were significantly different (p mask. Microscopic analysis of the external layer of each dust mask and FFR suggests that different collection media in the external layer influences the development of the dust layer and therefore affects the increase in BR differently between the tested models. Two of the dust masks had penetration values masks, those with penetration > 15%, had quality factors ranging between 0.04-0.15 primarily because their initial BR remained relatively high. These results indicate that some dust masks analysed during this research did not have an expected very low BR to compensate for their high penetration.

  4. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air...) All single air-purifying respirator filter units will be tested in an atmosphere concentration of 100...

  5. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    Science.gov (United States)

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. 30 CFR 90.209 - Respirable dust samples; transmission by operator.

    Science.gov (United States)

    2010-07-01

    ... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.209 Respirable dust samples; transmission by operator. (a) The operator shall transmit within 24 hours after the end of the sampling shift all samples...

  7. 30 CFR 71.101 - Respirable dust standard when quartz is present.

    Science.gov (United States)

    2010-07-01

    ... during each shift to which each miner is exposed at or below a concentration of respirable dust computed... per cubic meter of air as measured with an approved sampling device and in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations...

  8. 30 CFR 70.101 - Respirable dust standard when quartz is present.

    Science.gov (United States)

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... of air as measured with an approved sampling device and in terms of an equivalent concentration determined in accordance with § 70.206 (Approved sampling devices; equivalent concentrations), computed by...

  9. 30 CFR 90.210 - Respirable dust samples; report to operator.

    Science.gov (United States)

    2010-07-01

    ... MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.210 Respirable dust samples; report to operator. (a) The Secretary shall... for voiding any samples; and, (7) The Social Security Number of the part 90 miner. (b) Upon receipt...

  10. Assessment of respirable dust and its free silica contents in different Indian coalmines.

    Science.gov (United States)

    Mukherjee, Ashit K; Bhattacharya, Sanat K; Saiyed, Habibullah N

    2005-04-01

    Assessment of respirable dust, personal exposures of miners and free silica contents in dust were undertaken to find out the associated risk of coal workers' pneumoconiosis in 9 coal mines of Eastern India during 1988-91. Mine Research Establishment (MRE), 113A Gravimetric Dust Sampler (GDS) and personal samplers (AFC 123), Cassella, London, approved by Director General of Mines Safety (DGMS) were used respectively for monitoring of mine air dust and personal exposures of miners. Fourier Transform Infra-red (FTIR) Spectroscopy determined free silica in respirable dusts. Thermal Conditions like Wet Bulb Globe Temperature (WBGT) index, humidity and wind velocity were also recorded during monitoring. The dust levels in the face return air of both, Board & Pillar (B&P) and Long Wall (LW) mining were found above the permissible level recommended by DGMS, Govt. of India. The drilling, blasting and loading are the major dusty operations in B&P method. Exposures of driller and loader were varied between, 0.81-9.48 mg/m3 and 0.05-9.84 mg/m3 respectively in B&P mining, whereas exposures of DOSCO loader, Shearer operator and Power Support Face Worker were varied between 2.65-9.11 mg/m3, 0.22-10.00 mg/m3 and 0.12-9.32 mg/m3 respectively in LW mining. In open cast mining, compressor and driller operators are the major exposed groups. The percentage silica in respirable dusts found below 5% in all most all the workers except among query loaders and drillers of open cast mines.

  11. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  12. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Milz, Sheryl A; Wagner, Cynthia D; Bisesi, Michael S; Ames, April L; Khuder, Sadik; Susi, Pam; Akbar-Khanzadeh, Mahboubeh

    2010-12-01

    Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m³ using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the

  13. Estimation of respirable dust exposure among coal miners in South Africa.

    Science.gov (United States)

    Naidoo, Rajen; Seixas, Noah; Robins, Thomas

    2006-06-01

    The use of retrospective occupational hygiene data for epidemiologic studies is useful in determining exposure-outcome relationships, but the potential for exposure misclassification is high. Although dust sampling in the South African coal industry has been a legal requirement for several decades, these historical data are not readily adequate for estimating past exposures. This study describes the respirable coal mine dust levels in three South African coal mines over time. Each of the participating mining operations had well-documented dust sampling information that was used to describe historical trends in dust exposure. Investigator-collected personal dust samples were taken using standardized techniques from the face, backbye (underground jobs not at the coal face), and surface from 50 miners at each mine, repeated over three sampling cycles. Job histories and exposure information was obtained from a sample of 684 current miners and 188 ex-miners. Linear models were developed to estimate the exposure levels associated with work in each mine, exposure zone, and over time using a combination of operator-collected historical data and investigator-collected samples. The estimated levels were then combined with work history information to calculate cumulative exposure metrics for the miner cohort. The mean historical and investigator-collected respirable dust levels were within international norms and South African standards. Silica content of the dust samples was also below the 5% regulatory action level. Mean respirable dust concentrations at the face, based on investigator-collected samples, were 0.9 mg/m(3), 1.3 mg/m(3), and 1.9 mg/m(3) at Mines 1, 2, and 3, respectively. The operator-collected samples showed considerable variability across exposure zones, mines, and time, with the annual means at the face ranging from 0.4 mg/m(3) to 2.9 mg/m(3). Statistically significant findings were found between operator- and investigator-collected dust samples. Model

  14. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  15. The cost of respirable coal mine dust: an analysis based on new black lung claims

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.; Lichtman, K. [US Bureau of Mines, Pittsburgh, PA (United States). Dept. of the Interior

    1997-12-01

    The article provides summation of the monetary costs of new compensation claims associated with levels of unmitigated respirable coal mine dust and the resultant lung disease known as black lung and compares these compensation costs to the cost of dust control technology research by the US Bureau of Mines. It presents an analysis of these expenditures and projects these costs over the period from 1991 to 2010, based on projected future new claims which are assumed to be approved for federal and state benefit payment. Since current and future dust control research efforts cannot change past claim histories, a valid comparison of future research spending with other incurred costs must examine only the cost of future new claims. The bias of old claim costs was eliminated in this analysis by examining only claims since 1980. The results estimate that for an expected 339 new approved claims annually from 1991 to 2010, the Federal Trust Fund costs will be 985 million dollars. During this same period, state black lung compensation is estimated to be 18.2 billion dollars. The Bureau of Mines dust control research expenditures are estimated as 0.44% of the projected future black lung-related costs. 9 refs., 4 figs., 3 tabs.

  16. Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry.

    Science.gov (United States)

    Hedmer, Maria; Karlsson, Jan-Eric; Andersson, Ulla; Jacobsson, Helene; Nielsen, Jörn; Tinnerberg, Håkan

    2014-08-01

    Welding fume consists of metal fumes, e.g., manganese (Mn) and gases, e.g., ozone. Particles in the respirable dust (RD) size range dominate. Exposure to welding fume could cause short- and long-term respiratory effects. The prevalence of work-related symptoms among mild steel welders was studied, and the occupational exposure to welding fumes was quantified by repeated measurements of RD, respirable Mn, and ozone. Also the variance components were studied. A questionnaire concerning airway symptoms and occupational history was answered by 79% of a cohort of 484 welders. A group of welders (N = 108) were selected and surveyed by personal exposure measurements of RD and ozone three times during 1 year. The welders had a high frequency of work-related symptoms, e.g., stuffy nose (33%), ocular symptoms (28%), and dry cough (24%). The geometric mean exposure to RD and respirable Mn was 1.3 mg/m(3) (min-max 0.1-38.3 mg/m(3)) and 0.08 mg/m(3) (min-max <0.01-2.13 mg/m(3)), respectively. More than 50% of the Mn concentrations exceeded the Swedish occupational exposure limit (OEL). Mainly, low concentrations of ozone were measured, but 2% of the samples exceeded the OEL. Of the total variance for RD, 30 and 33% can be attributed to within-worker variability and between-company variability, respectively. Welders had a high prevalence of work-related symptom from the airways and eyes. The welders' exposure to Mn was unacceptably high. To reduce the exposure further, control measures in the welding workshops are needed. Correct use of general mechanical ventilation and local exhaust ventilation can, for example, efficiently reduce the exposure.

  17. 30 CFR 90.301 - Respirable dust control plan; approval by District Manager; copy to part 90 miner.

    Science.gov (United States)

    2010-07-01

    ... District Manager; copy to part 90 miner. 90.301 Section 90.301 Mineral Resources MINE SAFETY AND HEALTH... control plan; approval by District Manager; copy to part 90 miner. (a) The District Manager will approve... District Manager shall consider whether: (1) The respirable dust control measures would be likely to...

  18. Measurement of Lung Cancer Tumor Markers in a Glass Wool Company Workers Exposed to Respirable Synthetic Vitreous Fiber and Dust

    Directory of Open Access Journals (Sweden)

    Shabnam Abtahi

    2018-01-01

    Full Text Available Background: Occupational exposures to respirable synthetic vitreous fiber (SVF and dust are associated with many lung diseases including lung cancer. Low-dose computed tomography is used for screening patients who are highly suspicious of having lung carcinoma. However, it seems not to be cost-effective. Serum biomarkers could be a useful tool for the surveillance of occupational exposure, by providing the possibility of diagnosing lung cancer in its early stages. Objective: To determine if serum carcinoembryonic antigen (CEA and cytokeratin fragment (CYFRA 21-1 levels in workers exposed more than normal population to respirable SVF and dust may be used as indicators of progression towards lung cancer. Methods: An analytic cross-sectional study, including 145 personnel of a glass wool company, along with 25 age-matched healthy individuals, was conducted to investigate the relationship between occupational exposure to respirable SVFs and dust and serum levels of two lung/pleura serum tumor markers, CEA and CYFRA 21-1, measured by ELISA. Results: Individuals exposed to higher than the recommended levels of respirable SVF had higher serum concentrations of CEA and CYFRA 21-1, compared to controls (p=0.008 and 0.040, respectively, as well as in comparison to those exposed to lower than recommended OSHA levels (p=0.046 and 0.033, respectively. Workers with >9 years work experience, had significantly (p=0.045 higher levels of serum CYFRA 21-1 than those with ≤9 years of experience. Conclusion: It seems that working for >9 years in sites with detectable levels of respirable SVF and dust would increase the levels of known lung cancer serum tumor markers. Transferring these workers to sites with respirable SVF concentrations lower than the limit of detection in the air is recommended.

  19. A Computer-Controlled SEM-EDX Routine for Characterizing Respirable Coal Mine Dust

    Directory of Open Access Journals (Sweden)

    Victoria Johann-Essex

    2017-01-01

    Full Text Available A recent resurgence in coal workers’ pneumoconiosis (or “black lung” and concerns over other related respiratory illnesses have highlighted the need to elucidate characteristics of airborne particulates in occupational environments. A better understanding of particle size, aspect ratio, or chemical composition may offer new insights regarding causal factors of such illnesses. Scanning electron microscopy analysis using energy dispersive X-ray (SEM-EDX can be used to estimate these particle characteristics. If conducted manually, such work can be very time intensive, limiting the number of particles that can be analyzed. Moreover, potential exists for user bias in interpretation of EDX spectra. A computer-controlled (CC routine, on the other hand, can allow similar analysis at a much faster rate, increasing total particle counts and reproducibility of results. This paper describes a CCSEM-EDX routine specifically developed for analysis of respirable dust samples from coal mines. The routine is verified based on reliability of results obtained on samples of known materials, and reproducibility of results obtained on a set of 10 dust samples collected in the field. The characteristics of the field samples are also discussed with respect to mine occupational environments.

  20. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; MacCalman, L. [Institute of Occupational Medicine, Edinburgh (United Kingdom)

    2010-04-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coal workers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18 000 men from 10 British collieries. External analyses used standardised mortality ratios (SMRs), comparing observed mortality with reference rates from the regions in which the collieries were situated. Causes investigated include lung and stomach cancers, chronic obstructive pulmonary disease and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease showed increases with increased exposure to respirable dust. This paper adds to the evidence on the long-term effects of exposure to coalmine dust on mortality from respiratory diseases.

  1. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Brian G Miller; Laura MacCalman [Institute of Occupational Medicine, Edinburgh (United Kingdom)

    2010-04-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coal workers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18?000 men from 10 British collieries. External analyses used standardised mortality ratios (SMRs), comparing observed mortality with reference rates from the regions in which the collieries were situated. Causes investigated include lung and stomach cancers, chronic obstructive pulmonary disease and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease showed increases with increased exposure to respirable dust. This paper adds to the evidence on the long-term effects of exposure to coalmine dust on mortality from respiratory diseases.

  2. Endotoxin and dust at respirable and nonrespirable particle sizes are not consistent between cage- and floor-housed poultry operations.

    Science.gov (United States)

    Kirychuk, Shelley P; Reynolds, Stephen J; Koehncke, Niels K; Lawson, Joshua; Willson, Philip; Senthilselvan, Ambikaipakan; Marciniuk, Darcy; Classen, Henry L; Crowe, Trever; Just, Natasha; Schneberger, David; Dosman, James A

    2010-10-01

    Individuals engaged in work in intensive animal houses experience some of the highest rates of occupationally related respiratory symptoms. Organic dust and in particular endotoxin has been most closely associated with respiratory symptoms and lung function changes in workers. It has previously been shown that for intensive poultry operations, type of poultry housing [cage-housed (CH) versus floor-housed (FH)] can influence the levels of environmental contaminants. The goal of the study was to determine the differences in endotoxin and dust levels at different size fractions between CH and FH poultry operations. Fifteen CH and 15 FH poultry operations were sampled for stationary measurements (area) of dust and associated endotoxin. Fractioned samples were collected utilizing Marple cascade impactors. Gravimetric and endotoxin analysis were conducted on each of the filters. When assessed by individual Marple stage, there was significantly greater airborne endotoxin concentration (endotoxin units per cubic meter) in the size fraction >9.8 μm for the FH operations whereas at the size fraction 1.6-3.5 μm, the CH operations had significantly greater airborne endotoxin concentration than the FH operations. Endotoxin concentration in the dust mass (endotoxin units per milligram) was significantly greater in the CH operations as compared to the FH operations for all size fractions >1.6 μm. As such, endotoxin in the respirable fraction accounted for 24% of the total endotoxin in the CH operations whereas it accounted for only 11% in the FH operations. There was significantly more dust in all size fractions in the FH operations as compared to the CH poultry operations. There is more endotoxin in the presence of significantly lower dust levels in the respirable particle size fractions in CH poultry operations as compared to the FH poultry operations. This difference in respirable endotoxin may be important in relation to the differential respiratory response experienced by

  3. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  4. Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements.

    Science.gov (United States)

    Halterman, Andrew; Sousan, Sinan; Peters, Thomas M

    2017-12-15

    In 2016, the Mine Safety and Health Administration required the use of continuous monitors to measure respirable dust in mines and better protect miner health. The Personal Dust Monitor, PDM3700, has met stringent performance criteria for this purpose. In a laboratory study, respirable mass concentrations measured with the PDM3700 and a photometer (personal DataRam, pDR-1500) were compared to those measured gravimetrically for five aerosols of varying refractive index and density (diesel exhaust fume, welding fume, coal dust, Arizona road dust (ARD), and salt [NaCl] aerosol) at target concentrations of 0.38, 0.75, and 1.5 mg m-3. For all aerosols except coal dust, strong, near-one-to-one, linear relationships were observed between mass concentrations measured with the PDM3700 and gravimetrically (diesel fume, slope = 0.99, R2 = 0.99; ARD, slope = 0.98, R2 = 0.99; and NaCl, slope = 0.95, R2 = 0.99). The slope deviated substantially from unity for coal dust (slope = 0.55; R2 = 0.99). Linear relationships were also observed between mass concentrations measured with the pDR-1500 and gravimetrically, but one-to-one behavior was not exhibited (diesel fume, slope = 0.23, R2 = 0.76; coal dust, slope = 0.54, R2 = 0.99; ARD, slope = 0.61, R2 = 0.99; NaCl, slope = 1.14, R2 = 0.98). Unlike the pDR-1500, mass concentrations measured with the PDM3700 appear independent of refractive index and density, suggesting that it could have applications in a variety of occupational settings. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. 15 years of monitoring occupational exposure to respirable dust and quartz within the European industrial minerals sector.

    Science.gov (United States)

    Zilaout, Hicham; Vlaanderen, Jelle; Houba, Remko; Kromhout, Hans

    2017-07-01

    In 2000, a prospective Dust Monitoring Program (DMP) was started in which measurements of worker's exposure to respirable dust and quartz are collected in member companies from the European Industrial Minerals Association (IMA-Europe). After 15 years, the resulting IMA-DMP database allows a detailed overview of exposure levels of respirable dust and quartz over time within this industrial sector. Our aim is to describe the IMA-DMP and the current state of the corresponding database which due to continuation of the IMA-DMP is still growing. The future use of the database will also be highlighted including its utility for the industrial minerals producing sector. Exposure data are being obtained following a common protocol including a standardized sampling strategy, standardized sampling and analytical methods and a data management system. Following strict quality control procedures, exposure data are consequently added to a central database. The data comprises personal exposure measurements including auxiliary information on work and other conditions during sampling. Currently, the IMA-DMP database consists of almost 28,000 personal measurements which have been performed from 2000 until 2015 representing 29 half-yearly sampling campaigns. The exposure data have been collected from 160 different worksites owned by 35 industrial mineral companies and comes from 23 European countries and approximately 5000 workers. The IMA-DMP database provides the European minerals sector with reliable data regarding worker personal exposures to respirable dust and quartz. The database can be used as a powerful tool to address outstanding scientific issues on long-term exposure trends and exposure variability, and importantly, as a surveillance tool to evaluate exposure control measures. The database will be valuable for future epidemiological studies on respiratory health effects and will allow for estimation of quantitative exposure response relationships. Copyright © 2017 The

  6. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.

    Science.gov (United States)

    Notø, Hilde P; Nordby, Karl-Christian; Eduard, Wijnand

    2016-05-01

    The aims of this study were to examine the relationships and establish conversion factors between 'total' dust, respirable, thoracic, and inhalable aerosol fractions measured by parallel personal sampling on workers from the production departments of cement plants. 'Total' dust in this study refers to aerosol sampled by the closed face 37-mm Millipore filter cassette. Side-by-side personal measurements of 'total' dust and respirable, thoracic, and inhalable aerosol fractions were performed on workers in 17 European and Turkish cement plants. Simple linear and mixed model regressions were used to model the associations between the samplers. The total number of personal samples collected on 141 workers was 512. Of these 8.4% were excluded leaving 469 for statistical analysis. The different aerosol fractions contained from 90 to 130 measurements and-side-by side measurements of all four aerosol fractions were collected on 72 workers.The median ratios between observed results of the respirable, 'total' dust, and inhalable fractions relative to the thoracic aerosol fractions were 0.51, 2.4, and 5.9 respectively. The ratios between the samplers were not constant over the measured concentration range and were best described by regression models. Job type, position of samplers on left or right shoulder and plant had no substantial effect on the ratios. The ratios between aerosol fractions changed with different air concentrations. Conversion models for estimation of the fractions were established. These models explained a high proportion of the variance (74-91%) indicating that they are useful for the estimation of concentrations based on measurements of a different aerosol fraction. The calculated uncertainties at most observed concentrations were below 30% which is acceptable for comparison with limit values (EN 482, 2012). The cement industry will therefore be able to predict the health related aerosol fractions from their former or future measurements of one of the

  7. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  8. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  9. Concentrations and size distribution of inhalable and respirable dust among sugar industry workers: a pilot study in Khon Kaen, Thailand.

    Science.gov (United States)

    Sakunkoo, Pornpun; Chaiear, Naesinee; Chaikittiporn, Chalermchai; Sadhra, Steven

    2011-11-01

    There has been very limited information regarding bagasse exposure among workers in sugar industries as well as on health outcomes. The authors determined the occupational exposure of sugar industry workers in Khon Kaen to airborne bagasse dust. The size of the bagasse dust ranged from 0.08 to 9 µm with the highest size concentration of 2.1 to 4.7 µm. The most common size had a geometric mean diameter of 5.2 µm, with a mass concentration of 6.89 mg/m(3)/log µm. The highest mean values of inhalable and respirable dust were found to be 9.29 mg/m(3) from February to April in bagasse storage, 5.12 mg/m(3) from May to September, and 4.12 mg/m(3) from October to January. Inhalable dust concentrations were 0.33, 0.47, and 0.41 mg/m(3), respectively. Workers are likely to be exposed to high concentrations of bagasse dust and are at risk of respiratory diseases. Preventive measures, both in the form of engineering designs and personal protective devices, should be implemented.

  10. Total and respirable dust exposures among carpenters and demolition workers during indoor work in Denmark

    DEFF Research Database (Denmark)

    Kirkeskov, Lilli; Hanskov, Dorte Jessing Agerby; Brauer, Charlotte

    2016-01-01

    BACKGROUND: Within the construction industry the risk of lung disorders depends on the specific professions probably due to variations in the levels of dust exposure, and with dust levels depending on the work task and job function. We do not know the extent of exposure in the different professions...... was 3.90 (95 % confidence interval 1.13-13.5) mg/m(3). Dust exposure varied depending on work task for both professions. The dustiest work occurred during demolition, especially when it was done manually. Only few workers used personal respiratory protection and only while performing the dustiest work...... or the variation between the different work tasks. The purpose of this study was therefore to assess if there were differences in dust exposure between carpenters and demolition workers who were expected to have low and high dust exposure, respectively. METHODS: Through interviews of key persons...

  11. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    Science.gov (United States)

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.

  12. In vitro release of arachidonic acid and in vivo responses to respirable fractions of cotton dust

    International Nuclear Information System (INIS)

    Thomson, T.A.; Edwards, J.H.; Al-Zubaidy, T.S.; Brown, R.C.; Poole, A.; Nicholls, P.J.

    1986-01-01

    It was considered that the fall in lung function seen after exposure to cotton dust may be attributable in part to the activity of arachidonic acid metabolites, such as leucotrienes as well as to the more established release of histamine by cotton dust. However, we found that cotton and barley dusts elicited poor release of arachidonic acid from an established macrophage like cell line compared with that observed with other organic dusts. In the experimental animal, pulmonary cellular responses to both cotton and barley dust were similar to those evoked by moldy hay and pigeon dropping dusts, although after multiple doses a more severe response was seen to cotton and barley. Since both moldy hay and pigeon droppings elicit a greater arachidonic acid release than cotton or barley, a role for arachidonic acid in inducing the cellular response is less likely than other factors. There are limitations to our conclusions using this system, i.e., the arachidonic acid may be released in a nonmetabolized form, although it is noted that the two dusts with the greatest arachidonic acid release produce their clinical responses in humans largely by hypersensitivity mechanisms

  13. Accelerating Net Terrestrial Carbon Uptake During the Warming Hiatus Due to Reduced Respiration

    Science.gov (United States)

    Ballantyne, Ashley; Smith, William; Anderegg, William; Kauppi, Pekka; Sarmiento, Jorge; Tans, Pieter; Shevliakova, Elena; Pan, Yude; Poulter, Benjamin; Anav, Alessandro; hide

    2017-01-01

    The recent warming hiatus presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Here we combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantly accelerated from - 0.007 +/- 0.065 PgC yr(exp -2) over the warming period (1982 to 1998) to 0.119 +/- 0.071 PgC yr(exp -2) over the warming hiatus (19982012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration that is correlated (r = 0.58; P = 0.0007) and sensitive ( y = 4.05 to 9.40 PgC yr(exp -1) per C) to land temperatures. Global land models do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model including soil temperature and moisture observations better captures the reduced respiration.

  14. The solubility of thorium and uranium from respirable monazite bearing dust in simulated lung and gut fluids

    International Nuclear Information System (INIS)

    Twining, J.; McGlinn, P.; Hart, K.

    1993-01-01

    The accurate assessment of the radiological dose to workers in the mineral sands industry requires information on the human bio-availability of thorium and uranium from monazite bearing respirable dust. The results of a short-term test to determine some of the solubility characteristics of these radionuclides are presented, together with a discussion on the optimum methods which may be applied to longer term studies. The solubility of thorium and uranium were found to be generally less than that of the parent monazite bearing dust in simulated lung and gut fluids over the one month extraction period. In particular, thorium was up to two orders of magnitude less soluble than its host mineral matrix. Assuming that the conservative nature of these radioactive constituents can be extrapolated to longer term exposures, these results imply that radiological dose estimates to the lung should be increased. Solubility of both elements was proportional to particle size. An exponential increase in solubility with decreasing diameter was observed, which implies a time variable solubility. There was also some indication of preferential solubility of radium progeny in both decay series. These factors may have to be accounted for in model estimates of committed dose. 16 refs., 4 tabs., 2 figs

  15. Effect of gas and dust emissions on respiration and chemical constituents of Parmelia physodes

    Energy Technology Data Exchange (ETDEWEB)

    Klee, R

    1970-01-01

    Pieces of bark covered with Parmelia physodes were punched out and placed into plastic plates. These explants were tested as bioindicators for air pollution in outdoor exposure and under controlled laboratory conditions. The outdoor experiments were carried out at Frankfurt M. For the laboratory experiments, SO/sub 2/ and coke ash (often found as components of air pollution) were chosen. The criteria used to evaluate the effects of emissions were mortality rate, the intensity of respiration, the destruction of chloroplast and an increase in organic and inorganic sulfur.

  16. Utilizing adequate intake line curtain air quantities to maintain respirable dust compliance

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, M.J.; Tomko, D.M.; Rumbaugh, V.E. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technical Center

    2010-07-01

    Mine operators are obligated to ensure the effectiveness of their dust controls and implement practices to minimize the generation of dust in their mines. The 2 main types of face ventilation are blowing and exhaust ventilation. With blowing face ventilation, intake air is directed behind a line curtain or through ventilation tubing and then discharged from the end of the line curtain toward the working face. This paper presented specific information for mine operators regarding where and when exhausting or blowing ventilation will be used. Mine operators should establish the line curtain for directing the face ventilating air as a specific distance from the point of deepest penetration of the face. The location of curtains where roof bolting is being performed should also be specified. The distance from the face is important to the effectiveness of ventilation. 4 refs., 3 tabs., 2 figs.

  17. Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Directory of Open Access Journals (Sweden)

    Furukawa Yoko

    2005-10-01

    Full Text Available Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III, was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III species even in the systems in which Fe(III was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III in our laboratory systems proceeded through the following: (1 alteration of NAu-1 and concurrent release of Fe(III from the octahedral sheets of NAu-1; and (2 subsequent microbial respiration of Fe(III.

  18. Sulphur loading of respirable and inhalable dust at a platinum smelter / Swanepoel J.D.

    OpenAIRE

    Swanepoel, Johannes Deon.

    2012-01-01

    The contribution that sulphur, in the form of sulphates, has on ill health is still a focal point of many a study, especially in environmental studies depicting the effects that particulate air pollution has on health. Although the implication of sulphur on particulate matter is not yet well defined, numerous studies do state that the presence of sulphur on particulate matter contributes to poor health. Sulphur adhered to dust has been associated with cardiovascular mortality and the ability ...

  19. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests.

    Science.gov (United States)

    Moore, David J P; Trahan, Nicole A; Wilkes, Phil; Quaife, Tristan; Stephens, Britton B; Elder, Kelly; Desai, Ankur R; Negron, Jose; Monson, Russell K

    2013-06-01

    Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km(2) valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6-7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8-10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    Science.gov (United States)

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall.

  1. Research and development in dust and silicosis suppression

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, H

    1975-08-21

    MAK values of 4 mg/m/sup 3/ for respirable dust containing quartz and 0.15 mg/m/sup 3/ for respirable quartz dust have been established for 5 years' exposure in West German hard coal mines. Routine gravimetric measurements were introduced in 1974 and these are supplemented by the digital Tyndallometer which indicates short-term variations. Gravimetric measurements have indicated the main sources of dust and improved dust suppression measures have considerably reduced respirable dust concentrations in some cases, e.g., by seam infusion, by spraying of the face machine path and at crushers, and by dedusters on heading machines.

  2. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.

    Science.gov (United States)

    Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean

    2017-05-01

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in

  3. Mortality over an extended follow-up period in coal workers exposed to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; MacCalman, L.; Hutchison, P.A.

    2009-10-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coalworkers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18,000 men from 10 collieries. External analyses used standardised mortality ratios, comparing observed mortality with reference rates from the regions in which the pits were situated. Causes investigated include lung and stomach cancers, nonmalignant respiratory diseases, and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease, and specifically chronic obstructive pulmonary disease and pneumoconiosis, showed increases with increased exposure to respirable dust. 60 refs.

  4. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components.

    Science.gov (United States)

    Housley, D G; Bérubé, K A; Jones, T P; Anderson, S; Pooley, F D; Richards, R J

    2002-07-01

    The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.

  5. Earlier vegetation green-up has reduced spring dust storms.

    Science.gov (United States)

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  6. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration

    Directory of Open Access Journals (Sweden)

    Linda A. Villani

    2016-10-01

    Full Text Available Objective: The sodium-glucose transporter 2 (SGLT2 inhibitors Canagliflozin and Dapagliflozin are recently approved medications for type 2 diabetes. Recent studies indicate that SGLT2 inhibitors may inhibit the growth of some cancer cells but the mechanism(s remain unclear. Methods: Cellular proliferation and clonogenic survival were used to assess the sensitivity of prostate and lung cancer cell growth to the SGLT2 inhibitors. Oxygen consumption, extracellular acidification rate, cellular ATP, glucose uptake, lipogenesis, and phosphorylation of AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase, and the p70S6 kinase were assessed. Overexpression of a protein that maintains complex-I supported mitochondrial respiration (NDI1 was used to establish the importance of this pathway for mediating the anti-proliferative effects of Canagliflozin. Results: Clinically achievable concentrations of Canagliflozin, but not Dapagliflozin, inhibit cellular proliferation and clonogenic survival of prostate and lung cancer cells alone and in combination with ionizing radiation and the chemotherapy Docetaxel. Canagliflozin reduced glucose uptake, mitochondrial complex-I supported respiration, ATP, and lipogenesis while increasing the activating phosphorylation of AMPK. The overexpression of NDI1 blocked the anti-proliferative effects of Canagliflozin indicating reductions in mitochondrial respiration are critical for anti-proliferative actions. Conclusion: These data indicate that like the biguanide metformin, Canagliflozin not only lowers blood glucose but also inhibits complex-I supported respiration and cellular proliferation in prostate and lung cancer cells. These observations support the initiation of studies evaluating the clinical efficacy of Canagliflozin on limiting tumorigenesis in pre-clinical animal models as well epidemiological studies on cancer incidence relative to other glucose lowering therapies in clinical populations. Keywords: AMP

  7. Respirable coal dust exposure and respiratory symptoms in South-African coal miners: A comparison of current and ex-miners

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, R.N.; Robins, T.G.; Seixas, N.; Lalloo, U.G.; Becklake, M. [University of KwaZuluNatal, Congella (South Africa). Nelson R Mandela School of Medicine

    2006-06-15

    Dose-response associations between respirable dust exposure and respiratory symptoms and between symptoms and spirometry outcomes among currently employed and formerly employed South-African coal miners were investigated. Work histories, interviews, and spirometry and cumulative exposure were assessed among 684 current and 212 ex-miners. Results: Lower prevalences of symptoms were found among employed compared with ex-miners. Associations with increasing exposure for symptoms of phlegm and past history of tuberculosis were observed, whereas other symptom prevalences were higher in the higher exposure categories. Symptomatic ex-miners exhibited lower lung-function compared to the nonsymptomatic. Compared with published data, symptoms rates were low in current miners but high in ex-miners. Although explanations could include the low prevalence of smoking and/or reporting/selection bias, a 'Survivor' and/or a 'hire' effect is more likely, resulting in an underestimation of the dust-related effect.

  8. Additives for reducing the toxicity of respirable crystalline silica. SILIFE project

    Science.gov (United States)

    Monfort, Eliseo; López-Lilao, Ana; Escrig, Alberto; Jesus Ibáñez, Maria; Bonvicini, Guliana; Creutzenberg, Otto; Ziemann, Christina

    2017-10-01

    Prolonged inhalation of crystalline silica particles has long been known to cause lung inflammation and development of the granulomatous and a fibrogenic lung disease known as silicosis. The International Agency for Research on Cancer (IARC) has classified Respirable Crystalline Silica (RCS) in the form of quartz and cristobalite from occupational sources as carcinogenic for humans (category 1). In this regard, numerous studies suggest that the toxicity of quartz is conditioned by the surface chemistry of the quartz particles and by the density and abundance of silanol groups. Blocking these groups to avoid their interaction with cellular membranes would theoretically be possible in order to reduce or even to eliminate the toxic effect. In this regard, the main contribution of the presented research is the development of detoxifying processes based on coating technologies at industrial scale, since the previous studies reported on literature were carried out at lab scale. The results obtained in two European projects showed that the wet method to obtain quartz surface coatings (SILICOAT project) allows a good efficiency in inhibiting the silica toxicity, and the preliminary results obtained in an ongoing project (SILIFE) suggest that the developed dry method to coat quartz surface is also very promising. The development of both coating technologies (wet and a dry) should allow these coating technologies to be applied to a high variety of industrial activities in which quartz is processed. For this reason, a lot of end-users of quartz powders will be potentially benefited from a reduced risk associated to the exposure to RCS.

  9. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  10. Phytoremediation Reduces Dust Emissions from Metal(loid)-Contaminated Mine Tailings.

    Science.gov (United States)

    Gil-Loaiza, Juliana; Field, Jason P; White, Scott A; Csavina, Janae; Felix, Omar; Betterton, Eric A; Sáez, A Eduardo; Maier, Raina M

    2018-04-27

    Environmental and health risk concerns relating to airborne particles from mining operations have focused primarily on smelting activities. However, there are only three active copper smelters and less than a dozen smelters for other metals compared to an estimated 500000 abandoned and unreclaimed hard rock mine tailings in the US that have the potential to generate dust. The problem can also extend to modern tailings impoundments, which may take decades to build and remain barren for the duration before subsequent reclamation. We examined the impact of vegetation cover and irrigation on dust emissions and metal(loid) transport from mine tailings during a phytoremediation field trial at the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site. Measurements of horizontal dust flux following phytoremediation reveals that vegetated plots with 16% and 32% canopy cover enabled an average dust deposition of 371.7 and 606.1 g m -2 y -1 , respectively, in comparison to the control treatment which emitted dust at an average rate of 2323 g m -2 y -1 . Horizontal dust flux and dust emissions from the vegetated field plots are comparable to emission rates in undisturbed grasslands. Further, phytoremediation was effective at reducing the concentration of fine particulates, including PM 1 , PM 2.5 , and PM 4 , which represent the airborne particulates with the greatest health risks and the greatest potential for long-distance transport. This study demonstrates that phytoremediation can substantially decrease dust emissions as well as the transport of windblown contaminants from mine tailings.

  11. Exogenous Nitrogen Addition Reduced the Temperature Sensitivity of Microbial Respiration without Altering the Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2017-12-01

    Full Text Available Atmospheric nitrogen (N deposition is changing in both load quantity and chemical composition. The load effects have been studied extensively, whereas the composition effects remain poorly understood. We conducted a microcosm experiment to study how N chemistry affected the soil microbial community composition characterized by phospholipid fatty acids (PLFAs and activity indicated by microbial CO2 release. Surface and subsurface soils collected from an old-growth subtropical forest were supplemented with three N-containing materials (ammonium, nitrate, and urea at the current regional deposition load (50 kg ha-1 yr-1 and incubated at three temperatures (10, 20, and 30°C to detect the interactive effects of N deposition and temperature. The results showed that the additions of N, regardless of form, did not alter the microbial PLFAs at any of the three temperatures. However, the addition of urea significantly stimulated soil CO2 release in the early incubation stage. Compared with the control, N addition consistently reduced the temperature dependency of microbial respiration, implying that N deposition could potentially weaken the positive feedback of the warming-stimulated soil CO2 release to the atmosphere. The consistent N effects for the surface and subsurface soils suggest that the effects of N on soil microbial communities may be independent of soil chemical contents and stoichiometry.

  12. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    Science.gov (United States)

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  13. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    Science.gov (United States)

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  14. Advanced transfer chute reduces dust at lower cost

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C. [Benetech Inc. (United States)

    2005-10-01

    Dominion Resources' Kincaid Generating Station in Illinois is recognized as a leader in handling and burning PRB coal. Since being named the Powder Plant of the Year in 2001 and 2004 by the PRB Coal Users' Group, Kincaid has improved its coal handling by installing an InteliFlo controlled-flow transfer chute from Benetech. The InteliFlo design eliminates the need for skirt boards, conveyor discharge hoods, and complex load bed designs, and reduces O & M costs. 4 figs.

  15. Cardiomyocyte mitochondrial respiration is reduced by receptor for advanced glycation end-product signaling in a ceramide-dependent manner.

    Science.gov (United States)

    Nelson, Michael B; Swensen, Adam C; Winden, Duane R; Bodine, Jared S; Bikman, Benjamin T; Reynolds, Paul R

    2015-07-01

    Cigarette smoke exposure is associated with an increased risk of cardiovascular complications. The role of advanced glycation end products (AGEs) is already well established in numerous comorbidities, including cardiomyopathy. Given the role of AGEs and their receptor, RAGE, in activating inflammatory pathways, we sought to determine whether ceramides could be a mediator of RAGE-induced altered heart mitochondrial function. Using an in vitro model, we treated H9C2 cardiomyocytes with the AGE carboxy-methyllysine before mitochondrial respiration assessment. We discovered that mitochondrial respiration was significantly impaired in AGE-treated cells, but not when cotreated with myriocin, an inhibitor of de novo ceramide biosynthesis. Moreover, we exposed wild-type and RAGE knockout mice to secondhand cigarette smoke and found reduced mitochondrial respiration in the left ventricular myocardium from wild-type mice, but RAGE knockout mice were protected from this effect. Finally, conditional overexpression of RAGE in the lungs of transgenic mice elicited a robust increase in left ventricular ceramides in the absence of smoke exposure. Taken together, these findings suggest a RAGE-ceramide axis as an important contributor to AGE-mediated disrupted cardiomyocyte mitochondrial function. Copyright © 2015 the American Physiological Society.

  16. Control of dust hazards in mines

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V

    1981-09-01

    This paper analyzes health hazards associated with air pollution by respirable coal dust which causes pneumoconioses. The following directions in pneumoconioses prevention are discussed: improved protective systems (e.g. respirators), mining schemes optimized from a health hazards point of view, correct determination of the maximum permissible level of respirable dusts, reducing working time. Safety regulations in the USSR on the critical amount of coal dust in the miner respiratory system are insufficient as the 20 g limit is too high and does not guarantee safety. Using regression analysis influence of the factors which cause pneumoconioses is analyzed. This influence is described by an equation which considers the following factors: number of shifts associated with contact of a miner with coal dusts, dust concentration in mine air, amount of air with coal dust being respirated, miner's age, years as miner, coal rank. It is stated that use of the proposed equation (derived by computer calculations) permits the safe working time to be correctly determined considering all factors which cause pneumoconioses.

  17. Effectiveness of interventions to reduce flour dust exposures in supermarket bakeries in South Africa.

    Science.gov (United States)

    Baatjies, Roslynn; Meijster, Tim; Heederik, Dick; Sander, Ingrid; Jeebhay, Mohamed F

    2014-12-01

    A recent study of supermarket bakery workers in South Africa demonstrated that 25% of workers were sensitised to flour allergens and 13% had baker's asthma. Evidence on exposure reduction strategies using specifically designed interventions aimed at reducing the risk of baker's asthma is scarce. The aim of this study was to evaluate the effectiveness of different control measures to reduce airborne flour dust exposure using a randomised design. A group-randomised study design was used to assign 30 bakeries of a large supermarket chain store to two intervention groups and a control group, of which 15 bakeries were studied. Full-shift environmental personal samples were used to characterise exposure to flour dust and wheat and rye allergens levels pre-intervention (n=176) and post-intervention (n=208). The overall intervention effect revealed a 50% decrease in mean flour dust, wheat and rye allergen exposure. The reduction in exposure was highest for managers (67%) and bakers (47%), and lowest for counterhands (23%). For bakers, the greatest reduction in flour dust was associated with control measures such as the use of the mixer lid (67%), divider oil (63%) or focused training (54%). However, the greatest reduction (80%) was observed when using a combination of all control measures. A specially designed intervention strategy reduced both flour dust and allergen levels. Best results were observed when combining both engineering controls and training. Further studies will investigate the long-term health impact of these interventions on reducing the disease burden among this group of bakers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. 77 FR 59667 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirable...

    Science.gov (United States)

    2012-09-28

    ... operator to protect miners from exposure to excessive dust levels. The respirable coal mine dust sampling... for OMB Review; Comment Request; Respirable Coal Mine Dust Sampling ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respirable Coal Mine Dust Sampling,'' to the Office of...

  19. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  20. Reducing uncertainty in dust monitoring to detect aeolian sediment transport responses to land cover change

    Science.gov (United States)

    Webb, N.; Chappell, A.; Van Zee, J.; Toledo, D.; Duniway, M.; Billings, B.; Tedela, N.

    2017-12-01

    Anthropogenic land use and land cover change (LULCC) influence global rates of wind erosion and dust emission, yet our understanding of the magnitude of the responses remains poor. Field measurements and monitoring provide essential data to resolve aeolian sediment transport patterns and assess the impacts of human land use and management intensity. Data collected in the field are also required for dust model calibration and testing, as models have become the primary tool for assessing LULCC-dust cycle interactions. However, there is considerable uncertainty in estimates of dust emission due to the spatial variability of sediment transport. Field sampling designs are currently rudimentary and considerable opportunities are available to reduce the uncertainty. Establishing the minimum detectable change is critical for measuring spatial and temporal patterns of sediment transport, detecting potential impacts of LULCC and land management, and for quantifying the uncertainty of dust model estimates. Here, we evaluate the effectiveness of common sampling designs (e.g., simple random sampling, systematic sampling) used to measure and monitor aeolian sediment transport rates. Using data from the US National Wind Erosion Research Network across diverse rangeland and cropland cover types, we demonstrate how only large changes in sediment mass flux (of the order 200% to 800%) can be detected when small sample sizes are used, crude sampling designs are implemented, or when the spatial variation is large. We then show how statistical rigour and the straightforward application of a sampling design can reduce the uncertainty and detect change in sediment transport over time and between land use and land cover types.

  1. Effect of reducing indoor air pollution on women's respiratory symptoms and lung function: the RESPIRE Randomized Trial, Guatemala.

    Science.gov (United States)

    Smith-Sivertsen, Tone; Díaz, Esperanza; Pope, Dan; Lie, Rolv T; Díaz, Anaite; McCracken, John; Bakke, Per; Arana, Byron; Smith, Kirk R; Bruce, Nigel

    2009-07-15

    Exposure to household wood smoke from cooking is a risk factor for chronic obstructive lung disease among women in developing countries. The Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) is a randomized intervention trial evaluating the respiratory health effects of reducing indoor air pollution from open cooking fires. A total of 504 rural Mayan women in highland Guatemala aged 15-50 years, all using traditional indoor open fires, were randomized to either receive a chimney woodstove (plancha) or continue using the open fire. Assessments of chronic respiratory symptoms and lung function and individual measurements of carbon monoxide exposure were performed at baseline and every 6 months up to 18 months. Use of a plancha significantly reduced carbon monoxide exposure by 61.6%. For all respiratory symptoms, reductions in risk were observed in the plancha group during follow-up; the reduction was statistically significant for wheeze (relative risk = 0.42, 95% confidence interval: 0.25, 0.70). The number of respiratory symptoms reported by the women at each follow-up point was also significantly reduced by the plancha (odds ratio = 0.7, 95% confidence interval: 0.50, 0.97). However, no significant effects on lung function were found after 12-18 months. Reducing indoor air pollution from household biomass burning may relieve symptoms consistent with chronic respiratory tract irritation.

  2. Field evaluation of air-blocking shelf for dust control on blasthole drills

    Energy Technology Data Exchange (ETDEWEB)

    J. Drew Potts; W. Randolph Reed [Office of Mine Safety and Health Research, NIOSH, Pittsburgh, PA (United States). Dust Control, Ventilation, and Toxic Substance Branch

    2011-03-15

    In previous studies, an air-blocking shelf has been shown to be successful in reducing respirable dust leakage from the drill shroud in a laboratory setting. Dust reductions of up to 81% were achieved with the shelf under operating conditions consisting of a 1.9:1 collector-to-bailing airflow ratio and a 5.1-cm gap between the shroud and ground. Recent research focused on evaluating the shelf on two actual operating blasthole drills, in much more severe environments. In the field, the shelf reduced dust levels in the areas surrounding one operating blasthole drill by 70%. Dust reductions measured in the immediate vicinity of the shroud were reduced by 66% at one mine and 81% at the other mine. These field tests confirm that the air-blocking shelf is useful for reducing respirable dust generation from blasthole drills.

  3. Development of water scrubbers to reduce fine dust emission from poultry houses

    NARCIS (Netherlands)

    Ogink, N.W.M.; Aarnink, A.J.A.; Harn, van J.; Melse, R.W.; Cambra-Lopez, M.

    2010-01-01

    Poultry housings with litter are a major contributor to fine dust emissions (PM10/PM2.5) in the Netherlands. Poultry producers are in need of dust mitigation options that are cost effective. Such an option could be provided by adequately designed water scrubbers. Catchment of dust particles by water

  4. Plasma C3d levels of young farmers correlate with respirable dust exposure levels during normal work in swine confinement buildings

    DEFF Research Database (Denmark)

    Hoffmann, Hans Jürgen; Iversen, Martin; Brandslund, Ivan

    2003-01-01

    Work in swine confinement buildings leads to an inflammatory response and may be associated with increased levels of acute phase proteins. We compared the inflammatory response of a control group of young former farm workers with age-matched former farm workers who had previously developed the lo...... in response to respiratory dust, more so amongst cases than in the control group. Acute exposure, with work related levels of organic dust containing endotoxin, leads to a weak systemic inflammatory response....

  5. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    Science.gov (United States)

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used

  6. Reducing Uncertainty in the Daycent Model of Heterotrophic Respiration with a More Mechanistic Representation of Microbial Processes.

    Science.gov (United States)

    Berardi, D.; Gomez-Casanovas, N.; Hudiburg, T. W.

    2017-12-01

    Improving the certainty of ecosystem models is essential to ensuring their legitimacy, value, and ability to inform management and policy decisions. With more than a century of research exploring the variables controlling soil respiration, a high level of uncertainty remains in the ability of ecosystem models to accurately estimate respiration with changing climatic conditions. Refining model estimates of soil carbon fluxes is a high priority for climate change scientists to determine whether soils will be carbon sources or sinks in the future. We found that DayCent underestimates heterotrophic respiration by several magnitudes for our temperate mixed conifer forest site. While traditional ecosystem models simulate decomposition through first order kinetics, recent research has found that including microbial mechanisms explains 20 percent more spatial heterogeneity. We manipulated the DayCent heterotrophic respiration model to include a more mechanistic representation of microbial dynamic and compared the new model with continuous and survey observations from our experimental forest site in the Northern Rockies ecoregion. We also calibrated the model's sensitivity to soil moisture and temperature to our experimental data. We expect to improve the accuracy of the model by 20-30 percent. By using a more representative and calibrated model of soil carbon dynamics, we can better predict feedbacks between climate and soil carbon pools.

  7. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients

    DEFF Research Database (Denmark)

    Maynard, Scott; Hejl, Anne-Mette; Dinh, Tran Thuan Son

    2015-01-01

    AIMS: Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics...... as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay...... on adjustments for gender and/or age. CONCLUSIONS: This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD....

  8. 42 CFR 84.1130 - Respirators; description.

    Science.gov (United States)

    2010-10-01

    ...; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84...., dust clouds produced in mining, quarrying, and tunneling, and in dusts produced during industrial... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying...

  9. Effective mitigation efforts to reduce road dust near industrial sites: assessment by mobile pollution surveys.

    Science.gov (United States)

    DeLuca, Patrick F; Corr, Denis; Wallace, Julie; Kanaroglou, Pavlos

    2012-05-15

    Assessment of spatial variation of fugitive dust sources, particularly road dust track-out from industrial sites and its subsequent re-suspension is difficult with fixed air quality monitoring stations given their sparse distribution and the highly localized nature of road dust. Mobile monitoring was employed to measure levels of road dust in the industrial area of the City of Hamilton, Ontario, Canada. Results of this monitoring were used in a Fugitive Dust Control workshop held for local stakeholders, where fugitive dust control solutions were presented. After the workshop, the City of Hamilton and cooperative industrial groups executed enhanced street cleaning and individual industries and facilities performed on-site control activities. Post-workshop mobile air monitoring was performed for comparison to the initial values to determine effectiveness of these approaches. A regression model testing the difference pre- and post-workshop yielded a statistically significant difference in PM(10) measurements demonstrating improvement. The average value of PM(10) prior to the workshop was 114 μg/m(3). Post-workshop the average value dropped to 73 μg/m(3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Recommendations for reducing the effect of grain dust on the lungs. Canadian Thoracic Society Standards Committee.

    Science.gov (United States)

    Becklake, M; Broder, I; Chan-Yeung, M; Dosman, J A; Ernst, P; Herbert, F A; Kennedy, S M; Warren, P W

    1996-11-15

    To assess the appropriateness of the current Canadian standards for exposure to grain dust in the workplace. The current permissible exposure limit of 10 mg of total grain dust per cubic metre of air (expressed as mg/m3) as an 8-hour time-weighted average exposure, or a lower permissible exposure limit. Acute symptoms of grain-dust exposure, such as cough, phlegm production, wheezing and dyspnea, similar chronic symptoms, and spirometric deficits revealing obstructive or restrictive disease. Articles published from 1924 to December 1993 were identified from Index Medicus and the bibliographies of pertinent articles. Subsequent articles published from 1994 (when the recommendations were approved by the Canadian Thoracic Society Standards Committee) to June 1996 were retrieved through a search of MEDLINE, and modification of the recommendations was not found to be necessary. Studies of interest were those that linked measurements of total grain dust levels to the development of acute and chronic respiratory symptoms and changes in lung function in exposed workers. Papers on the effects of grain dust on workers in feed mills were not included because other nutrients such as animal products may have been added to the grain. Unpublished reports (e.g., to Labour Canada) were included as sources of information. A high value was placed on minimizing the biological harm that grain dust has on the lungs of grain workers. A permissible exposure limit of 5 mg/m3 would control the short-term effects of exposure to grain dust on workers. Evidence is insufficient to determine what level is needed to prevent long-term effects. The economic implications of implementing a lower permissible exposure limit have not been evaluated. The current Canadian standards for grain-dust exposure should be reviewed by Labour Canada and the grain industry. A permissible exposure level of 5 mg/m3 is recommended to control short-term effects. Further measurements that link the levels of exposure to

  11. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  12. Studying the effectiveness of activated carbon R95 respirators in reducing the inhalation of combustion by-products in Hanoi, Vietnam: a demonstration study

    Directory of Open Access Journals (Sweden)

    Wertheim Heiman FL

    2012-09-01

    Full Text Available Abstract Background Urban air pollution is an increasing health problem, particularly in Asia, where the combustion of fossil fuels has increased rapidly as a result of industrialization and socio-economic development. The adverse health impacts of urban air pollution are well established, but less is known about effective intervention strategies. In this demonstration study we set out to establish methods to assess whether wearing an R95 activated carbon respirator could reduce intake of polycyclic aromatic hydrocarbons (PAH in street workers in Hanoi, Vietnam. Methods In this demonstration study we performed a cross-over study in which non-smoking participants that worked at least 4 hours per day on the street in Hanoi were randomly allocated to specific respirator wearing sequences for a duration of 2 weeks. Urines were collected after each period, i.e. twice per week, at the end of the working day to measure hydroxy PAHs (OH-PAH using gas chromatography/high resolution mass spectrometry. The primary endpoint was the urinary concentration of 1-hydroxypyrene (1-OHP. Results Forty-four participants (54.5% male, median age 40 years were enrolled with the majority being motorbike taxi drivers (38.6% or street vendors (34.1%. The baseline creatinine corrected urinary level for 1-OHP was much higher than other international comparisons: 1020 ng/g creatinine (IQR: 604–1551. Wearing a R95 mask had no significant effect on 1-OHP levels: estimated multiplicative effect 1.0 (95% CI: 0.92-1.09 or other OH-PAHs, except 1-hydroxynaphthalene (1-OHN: 0.86 (95% CI: 0.11-0.96. Conclusions High levels of urine OH-PAHs were found in Hanoi street workers. No effect was seen on urine OH-PAH levels by wearing R95 particulate respirators in an area of high urban air pollution, except for 1-OHN. A lack of effect may be de to gaseous phase PAHs that were not filtered efficiently by the respirator. The high levels of urinary OH-PAHs found, urges for effective

  13. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    Science.gov (United States)

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  14. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille F; Skovbro, Mette

    2009-01-01

    Reduced oxidative capacity of skeletal muscle has been proposed to lead to accumulation of intramyocellular triglyceride (IMTG) and insulin resistance. We have measured mitochondrial respiration before and after a 10% low-calorie-induced weight loss in young obese women to examine the relationship...... between mitochondrial function, IMTG, and insulin resistance. Nine obese women (age, 32.3 years [SD, 3.0]; body mass index, 33.4 kg/m(2) [SD, 2.6]) completed a 53-day (SE, 3.8) very low calorie diet (VLCD) of 500 to 600 kcal/d without altering physical activity. The target of the intervention was a 10...... resistance in young obese women and do not support a direct relationship between IMTG and insulin sensitivity in young obese women during weight loss....

  15. Engineering solutions applied to pneumatic drills to reduce losses of dust from dressed seeds

    Directory of Open Access Journals (Sweden)

    D. Pochi

    2013-09-01

    Full Text Available Neonicotinoid insecticides (imidacloprid, clothianidin, thiamethoxam and fipronil for maize (Zea mays L. seed dressing have been claimed to play a role in honey bee (Apis mellifera L. decline, since pneumatic precision drills used for sowing contribute to the dispersion of the abrasion dust produced by dressed seeds. The active ingredients (a.i. can contaminate the environment and can lead to the exposure of operators and bystanders during sowing operations. To achieve a significant reduction of dust drift and to enhance the safety for the operators, CRA-ING studied and developed novel engineering solutions applicable to drills, based on an air-recycling/filtering system. In the first system, the air’s excess is forced outward through suitable filters placed on the modified lid of the seed hopper. It can be easily applied to commercial drills in use. The second system was specifically designed for new drills. It consists of a collector duct that receives the air expelled from the vacuum fan opening, creating constant pressure conditions. Part of the air is recycled into the seed hoppers, as the air in excess is directed outward through a single main filter. A third system, based on the second one, entails the use of an electrostatic filter to improve its efficiency. Moreover, to avoid the operator’s exposure to the dust during the seed loading, we show an integrated solution based on the use of a modified pre-charged plastic container that replace the drill’s hoppers. Preliminary tests ascertained the regular seed distribution with the drills equipped with the prototypes. Then, trials were carried out at fixed point and in field, for detecting the amounts of the drifted a.i., using commercial maize seed dressed with thiamethoxam, imidacloprid, clothianidin and fipronil. The test results show powder and a.i. drift reductions up to a maximum of 94.5% measured at ground level (with fipronil as a.i. as a consequence of the use of the

  16. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  17. Evidence for Reduced, Carbon-rich Regions in the Solar Nebula from an Unusual Cometary Dust Particle

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, Bradley T.; Stroud, Rhonda M. [Materials Science and Technology Division, Naval Research Laboratory, Code 6366, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Nittler, Larry R. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Kilcoyne, A. L. David, E-mail: bradley.degregorio@nrl.navy.mil [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 7R0222, Berkeley, CA 94720 (United States)

    2017-10-20

    Geochemical indicators in meteorites imply that most formed under relatively oxidizing conditions. However, some planetary materials, such as the enstatite chondrites, aubrite achondrites, and Mercury, were produced in reduced nebular environments. Because of large-scale radial nebular mixing, comets and other Kuiper Belt objects likely contain some primitive material related to these reduced planetary bodies. Here, we describe an unusual assemblage in a dust particle from comet 81P/Wild 2 captured in silica aerogel by the NASA Stardust spacecraft. The bulk of this ∼20 μ m particle is comprised of an aggregate of nanoparticulate Cr-rich magnetite, containing opaque sub-domains composed of poorly graphitized carbon (PGC). The PGC forms conformal shells around tiny 5–15 nm core grains of Fe carbide. The C, N, and O isotopic compositions of these components are identical within errors to terrestrial standards, indicating a formation inside the solar system. Magnetite compositions are consistent with oxidation of reduced metal, similar to that seen in enstatite chondrites. Similarly, the core–shell structure of the carbide + PGC inclusions suggests a formation via FTT reactions on the surface of metal or carbide grains in warm, reduced regions of the solar nebula. Together, the nanoscale assemblage in the cometary particle is most consistent with the alteration of primary solids condensed from a C-rich, reduced nebular gas. The nanoparticulate components in the cometary particle provide the first direct evidence from comets of reduced, carbon-rich regions that were present in the solar nebula.

  18. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  19. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces

    Science.gov (United States)

    Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700

  20. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.

    Science.gov (United States)

    Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.

  1. Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates.

    Science.gov (United States)

    Cavaleri, Molly A; Coble, Adam P; Ryan, Michael G; Bauerle, William L; Loescher, Henry W; Oberbauer, Steven F

    2017-10-01

    Changes in tropical forest carbon sink strength during El Niño Southern Oscillation (ENSO) events can indicate future behavior under climate change. Previous studies revealed ˜6 Mg C ha -1  yr -1 lower net ecosystem production (NEP) during ENSO year 1998 compared with non-ENSO year 2000 in a Costa Rican tropical rainforest. We explored environmental drivers of this change and examined the contributions of ecosystem respiration (RE) and gross primary production (GPP) to this weakened carbon sink. For 1998-2000, we estimated RE using chamber-based respiration measurements, and we estimated GPP in two ways: using (1) the canopy process model MAESTRA, and (2) combined eddy covariance and chamber respiration data. MAESTRA-estimated GPP did not statistically differ from GPP estimated using approach 2, but was ˜ 28% greater than published GPP estimates for the same site and years using eddy covariance data only. A 7% increase in RE (primarily increased soil respiration) and a 10% reduction in GPP contributed equally to the difference in NEP between ENSO year 1998 and non-ENSO year 2000. A warming and drying climate for tropical forests may yield a weakened carbon sink from both decreased GPP and increased RE. Understanding physiological acclimation will be critical for the large carbon stores in these ecosystems. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Respirator field performance factors

    International Nuclear Information System (INIS)

    Skaggs, B.J.; DeField, J.D.; Strandberg, S.W.; Sutcliffe, C.R.

    1985-01-01

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  3. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  4. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Dennis, G.W.; Bushaw, L.L.

    1993-10-01

    Wind tunnel tests were performed of three fugitive dust control agents derived from potato and sugar beet products. These materials are being considered for use as dust suppressants to reduce the potential for transport of radioactive materials by wind from radioactive waste construction and remediation sites. Soil and dust control agent type, solution concentrations, application quantities, aging (or drying) conditions, surface disturbance, and wind and saltating sand eolian erosive stresses were selected and controlled to simulate application and exposure of excavated soil surfaces in the field. A description of the tests, results, conclusions, and recommendations are presented in this report. The results of this study indicate that all three dust control agents can protect exposed soil surfaces from extreme eolian stresses. It is also clear that the interaction and performance of each agent with various soil types may differ dramatically. Thus, soils similar to that received from ML should be best protected by high concentration (∼2.5%) solutions of potato starch at low water application levels (∼1 to 2 L/m 2 ). Because the effectiveness of PS on this soil type is degraded after a moderate amount of simulated rainfall, other options or additives should be considered if surfaces are to be protected for long intervals or during periods of intermittent rainfall and hot, windy conditions. On the other hand, XDCA should be considered when excavating sandy soils. It should be noted, however, that because the Hanford soil test results are based on a small number of tests, it would be prudent to perform additional tests prior to selecting a fugitive dust control agent for use at the Hanford Site. While fermented potato waste was not the best fixative used on either soil, it did perform reasonably well on both soil types (better than XDCA on Idaho soil and better than PS on Hanford soil)

  5. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Science.gov (United States)

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  6. Maatregelen ter vermindering van fijnstofemissie uit de pluimveehouderij; studie naar mogelijkheden van aanbrengen waterfilm op strooisel = Measures to reduce fine dust emissions from poultry houses; possibility of supplying a waterfilm on litter

    NARCIS (Netherlands)

    Ellen, H.H.; Harn, van J.

    2010-01-01

    In this desk study the possibilities of reducing fine dust emission from poultry housings by applying a water film on bedding material was studied. This measure can be perspective in laying hens, but not in broilers and parent stock.

  7. Choosing the right respirator

    International Nuclear Information System (INIS)

    Bidwell, J.

    1997-01-01

    Selecting respirators to help protect workers from airborne contaminants can be a confusing process. The consequences of selecting the incorrect respirator can be intimidating, and worker safety and health may be dramatically and irreparably affected if an inappropriate respirator is chosen. When used in the workplace, a formal respiratory protection program must be established covering the basic requirements outlined in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Education and training must be properly emphasized and conducted periodically. Maintenance, cleaning, and storage programs must be established and routinely followed for reusable respirators. The process of establishing a respiratory protection program can be broken down into four basic steps: Identify respiratory hazards and concentrations; understand the contaminants effects on workers' health; select appropriate respiratory protection; and train in proper respirator use and maintenance. These four steps are the foundation for establishing a basic respirator protection program. Be sure to consult state and federal OSHA requirements to ensure that the program complies. Leading industrial respirator manufacturers should be able to assist with on-site training and education in this four-step process, in addition to helping employers train their workers and conduct respirator fit testing

  8. Evaluation of Simultaneous Exposure to Flour Dust and Airborne Fungal Spores in Milling Plant

    Directory of Open Access Journals (Sweden)

    Alireza Dehdashti

    2016-01-01

    Full Text Available Background and Objectives: Wheat flour as an organic allergen particle has an extensive respiratory exposure in milling industry and related industries. Simultaneous exposure to flour dust and fungal spores causes infectious disease, cancers, and impaired pulmonary function tests. This research was carried out with the aim of assessing the concentration of respirable flour particles, determining the type, and concentration of fungal spores in breathing air of workers in milling industries. Methods: In this descriptive cross-sectional study, 42 area samples were collected on filter and analyzed gravimetrically. Using a specific sampling pump, sampling of bioaerosols and sabro dextrose agar medium of fungal spores, was performed. Microscopic analysis was applied to detect and quantify microorganisms as colony per cubic meter. Results: The mean and standard deviation of total respirable particles in the breathing air of workers was 6/57±1/69mg/m3, which exceeded occupational exposure limit. The concentration of fungal spores in workers’ breathing air ranged from 42 to 310 colony per cubic meter. The percentage of respirable to total dust particles produced in sieve vibration, bagging, and milling sections, were determined 67.83%, 32%, and 62.2%, respectively. Conclusion: The results of this study revealed that the concentration of respirable particles in wheat milling process exceeded the recommended level and the concentration of fungal spores was at the average level of occupational exposure according to ACGIH recommendation. Therefore, engineering controls are required in flour milling process to reduce the exposure of workers.

  9. Pulmonary inflammation and crystalline silica in respirable coal ...

    Indian Academy of Sciences (India)

    Unknown

    This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. [Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J and Castranova V 2003 Pulmonary inflammation and ...

  10. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  11. Preparation of Reducing Sugar Hydrolyzed from High-Lignin Coconut Coir Dust Pretreated by the Recycled Ionic Liquid [mmim][dmp] and Combination with Alkaline

    Directory of Open Access Journals (Sweden)

    Hanny Frans Sangian

    2015-03-01

    Full Text Available This study aims to produce reducing sugar hydrolyzed from substrate, coconut coir dust pretreated by recycled ionic liquid and its combination with alkaline. The 1H NMR and FTIR were performed to ver-ify the synthesized ionic liquid methylmethylimidazolium dimethyl phosphate ([mmim][dmp]. The structure of pretreated substrates was analyzed by XRD measurement. The used ionic liquid was recy-cled twice to re-employ for substrate pretreatment. The treated- and untreated-coconut coir dust were hydrolyzed into sugars using pure cellulase. The reaction, which called an enzymatic hydrolysis, was conducted at 60 °C, pH 3, for 48 h. The yields of sugar hydrolyzed from fresh IL-pretreated, 1R*IL-pretreated and 2R*IL-pretreated substrates were of 0.19, 0.15 and 0.15 g sugar / g cellu-lose+hemicellulose, respectively. Pretreatment with NaOH or the combination of NaOH+IL resulted in yields of reducing sugars of 0.25, 0.28 g/g, respectively. When alkaline combined with the recycled ionic liquids, NaOH+1R*IL, NaOH+2R*IL in the pretreatment, the yields of sugar were relatively similar to those obtained using alkaline followed by fresh ionic liquid. If the mixture enzymes, cellu-lase+xylanase, used to liberate sugars from fresh IL-pretreated, or recycled IL-pretreated substrates, the amount of sugar (concentration or yield increased slightly compared to that employing a single cel-lulase. These findings showed that recycled IL pretreatment of the high-lignin lignocellulose, coconut coir dust, is a new prospect for the economical manufacture of fermentable sugars and biofuel in the coming years. © 2015 BCREC UNDIP. All rights reservedReceived: 1st July 2014; Revised: 5th September 2014; Accepted: 5th September 2014 How to Cite: Sangian, H.F., Kristian, J., Rahma, S., Dewi, H., Puspasari, D., Agnesty, S., Gunawan, S., Widjaja, A. (2015. Preparation of Reducing Sugar Hydrolyzed from High-Lignin Coconut Coir Dust Pretreated by the Recycled Ionic Liquid [mmim

  12. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  13. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  14. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers

    Science.gov (United States)

    Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele

    2016-01-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio

  15. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  16. Soil respiration is stimulated by elevated CO2 and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE)

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; van der Linden, Leon; Ibrom, Andreas

    2012-01-01

    This study investigated the impact of predicted future climatic and atmospheric conditions on soil respiration (RS) in a Danish Calluna‐Deschampsia‐heathland. A fully factorial in situ experiment with treatments of elevated atmospheric CO2 (+130 ppm), raised soil temperature (+0.4 °C) and extended...... summer drought (5–8% precipitation exclusion) was established in 2005. The average RS, observed in the control over 3 years of measurements (1.7 μmol CO2 m−2 sec−1), increased 38% under elevated CO2, irrespective of combination with the drought or temperature treatments. In contrast, extended summer...... due to reduced plant growth or changes in soil water holding capacity. An empirical model that predicts RS from soil temperature, soil moisture and plant biomass was developed and accounted for 55% of the observed variability in RS. The model predicted annual sums of RS in 2006 and 2007...

  17. Quantification of dust generating sources in gold and platinum mines.

    CSIR Research Space (South Africa)

    Biffi, M

    2003-03-01

    Full Text Available of workers from harmful respirable dust as well as projections for future work. Summary of dust levels from test mines Dust Levels [mg/m³] Mine Mine Type Dust Source Min Max Avg Crystalline Silica [%] Intake 0.09 1.57 0.46 Tips 0.23 0.65 0... ? The movement of people and rolling stock along haulages, travelling ways and production areas liberating settled dust, ? Rock crushing. ? Screening, grinding, milling and pulverising of the ore during processing. ? Backfill placement. Good practice...

  18. Development of an Advanced Respirator Fit Test Headform (Postprint)

    Science.gov (United States)

    2012-11-01

    N95 filtering facepiece respirators (FFRs) for pro - tection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking...requiredto wear respirators to reduce their exposure to air- borne hazards.(1) The U.S. Occupational Safety and Health Administration ( OSHA ) Respiratory...13 workplace protection factors.(9,10). Inward leakage (IL) of con - taminants into a respirator facepiece has been described as a combination of

  19. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  20. Dust and radon: the legal implications

    International Nuclear Information System (INIS)

    Van Sittert, J.M.O.

    1990-01-01

    It is known that radon gas is not generally considered to be a major problem when encountered in the working environment. However, in its process of decay, a series of four short lived daughter products are formed. In a dust-laden atmosphere these daughter products, which are ionized readily, attach to the particulate material and when inhaled are deposited in the alveoli of the lungs. Therefore, if respirable dust is controlled, the effects of radon daughters will also be minimized. The legal requirements for dust control in South Africa and their implications are discussed. 1 ill

  1. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  2. NOS module - reducing the nitrogen oxides and dust emissions of wood-fired systems; NOS-Modul. Installation und Test - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, B.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the potential of reducing dust and nitrogen oxides emissions of biomass-fired systems. Two prototype installations are described with capacities of 70 - 300 kW and 150 - 500 kW, the latter being a mobile installation installed together with a silo in a container. The prototypes can burn problematical biomass such as cereals, chicken droppings, damp wood-chippings and straw. Various factors and configurations influencing the formation of emissions are examined. Cyclone technology, a catalyst using chrome-nickel shavings and a ceramic heat-exchanger are discussed. Measurements made are presented in tabular and graphical form and discussed.

  3. An Extensive Study on Dynamical aspects of Dust Storm over the United Arab Emirates during 18-20 March 2012

    Science.gov (United States)

    Basha, Ghouse; Phanikumar, Devulapalli V.; Ouarda, Taha B. M. J.

    2015-04-01

    On 18 March 2012, a super dust storm event occurred over Middle East (ME) and lasted for several hours. Following to this, another dust storm occurred on early morning of 20 March 2012 with almost higher intensity. Both these storms reduced the horizontal visibility to few hundreds of meters and represented as one of the most intense and long duration dust storms over United Arab Emirates (UAE) in recent times. These storms also reduced the air quality in most parts of the ME implying the shutdown of Airports, schools and hundreds of people were hospitalized with respirational problems. In the context of the above, we have made a detailed study on the dynamical processes leading to triggering of dust storm over UAE and neighboring regions. We have also analyzed its impact on surface, and vertical profiles of background parameters and aerosols during the dust storm period by using ground-based, space borne, dust forecasting model, and reanalysis data sets. The synoptic and dynamic conditions responsible for the occurrence of the dust storm are discussed extensively by using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim reanalysis data sets. The Impact of dust storm on surface and upper air radiosonde measurements and aerosol optical properties are also investigated before, during and after the dust storm event. During the dust storm, surface temperature decreased by 15oC when compared to before and after the event. PM10 values significantly increased maximum of about 1600µg/m3. Spatial variation of Aerosol Optical Depth (AOD) from Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) aerosol index (AI) exhibited very high values during the event and source region can be identified of dust transport to our region with this figure. The total attenuated backscatter at 550nm from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite shows the vertical extent of dust up to 8km. The dynamics of this event is

  4. Maatregelen ter vermindering van fijnstofemissie uit de pluimveehouderij : verkenning effecten alternatieve lichtschema's op fijnstofemissie bij leghennen = Measures to reduce fine dust from poultry houses : investigation of the effects of light regimes on fine dust in layer houses

    NARCIS (Netherlands)

    Emous, van R.A.; Ogink, N.

    2010-01-01

    Light intensity has a large effect on the activity of laying hens. A lower intensity gives less activity and thus less emission of fine dust. The effect on the welfare of hens is difficult to estimate.

  5. State of the art in monitoring respirable mine aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Volkwein, J.C.; Mischler, S.E.; Thimons, E.D.; Timko, R.J.; Kissell, F.N.

    2005-07-01

    The Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) has been developing several new tools to help miners monitor respirable coal dust, silica, and diesel particulate matter. This paper discusses three main topics. First, the latest results of the person wearable dust monitor (PDM), developed by Rupprecht and Patashnick under CDC contract. The PDM was tested side by side with conventional samplers at a number of US coal mines and results indicated that the PDM was comparable to conventional samplers. Second, improvements to the Dust Dosimeter monitoring technique that includes a new pump with built in pressure transducer and algorithm to convert differential pressure to dust concentration have shown good precision. Third, advances in the use of the detector tube technique to monitor tailpipe diesel emissions and ambient diesel particulate matter show that strong correlations exist between differential pressure measurement and elemental carbon in the samplers. 3 figs.

  6. New municipal solid waste processing technology reduces volume and provides beneficial reuse applications for soil improvement and dust control

    Science.gov (United States)

    A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...

  7. Cattle respiration facility

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Weisbjerg, Martin Riis

    2012-01-01

    In Denmark, the emission rate of methane from dairy cows has been calculated using the IPCC standard values for dairy cows in Western countries, due to the lack of national data. Therefore, four respiration chambers for dairy cows were built with the main purpose of measuring methane, but also...

  8. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  9. In vitro toxicology of respirable Montserrat volcanic ash.

    Science.gov (United States)

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the

  10. Plant Respiration and Climate Change Effects

    International Nuclear Information System (INIS)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO 2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO 2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO 2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO 2 . These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO 2 . The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO 2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO 2 release. (au)

  11. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  12. Respirators. Does your face fit

    Energy Technology Data Exchange (ETDEWEB)

    Caro, N M; Else, D

    1981-04-01

    The authors carried out a survey of face sizes of men and women of four different ethnic origins and carried out face-seal leakage trials on four corresponding test panels. No single respirator design is likely to fit all members of the workforce, and it may be necessary to stock respirators from more than one manufacturers.Three or four different respirators or size of respirator may be needed. However, the use of lossely-fitting respirators such as Airsteam helmets could remove the necessity for exhaustive fitting procedures.

  13. Demonstration of a dust control system for boom-type roadheader. Open-file report September 1979-July 1981

    International Nuclear Information System (INIS)

    Burnett, M.; Pokora, R.J.; Muldoon, T.

    1981-09-01

    This program was initiated by the Bureau of Mines to quantify the respirable dust problem caused by the use of roadheaders in underground metal-nonmetal mines with special emphasis on this problem in uranium mines. The objective was to develop methods or equipment to alleviate respirable dust and to implement a solution in a mine. Attempts to quantify the dust problem were made by a survey of MSHA records, a survey of State nine enforcement agencies, a survey of mine records, and dust measurements taken at two mines using roadheaders. The results are not conclusive because of limited and sometimes less than useful data; however, the study does indicate that a serious dust problem could and may exist. The report discusses the available data concerning respirable dust problems and presents a solution that can potentially help to solve the problem. The solution requires the use of blowing ventilation, onboard dust extraction at the source, filtration, and continued continued use of water sprays

  14. Dust exposure and pneumoconiosis in a South African pottery. 1. Study objectives and dust exposure.

    Science.gov (United States)

    Rees, D; Cronje, R; du Toit, R S

    1992-07-01

    Dust exposure and pneumoconiosis were investigated in a South African pottery that manufactured wall tiles and bathroom fittings. This paper describes the objectives of the investigation and presents dust measurement data. x Ray diffraction showed that the clays used by the pottery had a high quartz content (range 58%-23%, mean 38%). Exposure to respirable dust was measured for 43 workers and was highest (6.6 mg/m3) in a bathroom fitting fettler. Quartz concentrations in excess of 0.1 mg/m3 were found in all sections of the manufacturing process from slip production to biscuit firing and sorting. The proportion of quartz in the respirable dust of these sections was 24% to 33%. This is higher than is usually reported in English potteries. Four hundred and six (80%) of the 509 workers employed at the pottery were potentially at risk of occupational lung disease. The finding of large numbers of pottery workers exposed to unacceptable dust concentrations is not surprising as poor dust control was found in all six wall tile and sanitary ware factories surveyed by the National Centre for Occupational Health between 1973 and 1989. Dust related occupational disease can be expected in potters for many years to come.

  15. Worker exposure to silica dust in South African non-mining industries in Gauteng: An exploratory study

    CSIR Research Space (South Africa)

    Khoza, NN

    2012-06-01

    Full Text Available %, and sandblasting 2.4%. The overall maximum and minimum exposures were 5.772 and 0.009 mg/m?, respectively. Conclusion: Workers are potentially at high risk of contracting silicosis and other diseases associated with respirable silica dust. Dust control... and monitoring were inadequate in the industries visited. It is recommended that an in-depth study be conducted and that airborne dust-control programmes be implemented. Key words: non-mining industries, silica dust, respirable crystalline silica dust...

  16. 41 CFR 50-204.50 - Gases, vapors, fumes, dusts, and mists.

    Science.gov (United States)

    2010-07-01

    ... Soapstone 20 Talc 20 Portland cement 50 Graphite (natural) 15 Coat dust (respirable fraction less than 5% Si...-selector with the following characteristics: Aerodynamic diameter (unit density sphere) Percent passing...

  17. Abnormal mitochondrial respiration in failed human myocardium.

    Science.gov (United States)

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  18. Investigating respirable particulates (PM10) around the world's largest mercury mine, Almaden, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, W.; Jones, T. [Cardiff Univ., Cardiff, Wales (United Kingdom). Dept. of Earth Sciences; Moreno, T.; Richards, R. [Cardiff Univ., Cardiff, Wales (United Kingdom). School of Biosciences; Higueras, P. [Almaden Univ. of Castilla-La Mancha, Almaden (Spain). Dept. of Geological Engineering

    2003-07-01

    The Almaden area in Spain has been mined for mercury since pre-Roman days. There is no evidence for significant contamination of the groundwater supply, since the lack of pyrite in the mercury deposits has prevented the formation of acid mine drainage. However, the main recognized environmental problem related to mercury mining has been the progressive poisoning of workers who are in direct contact with mercury vapours. This paper presents results of a study in which dust samples were collected from former mining and urban locations around Almaden. The samples were processed to extract their fine, respirable fraction. Mining activities have left contaminated ground, which under semi-arid conditions has created respirable mercury-bearing dusts. In some places the ground is severely contaminated with mercury as cinnabar and as schuetteite. Some of the contaminated areas are used for livestock grazing and growing plants for human consumption. A higher incidence of mercury-bearing particles is found in the finer fraction. The sizes of the mercury-bearing resuspended particles at all sites varies from inhalable dust, through respirable dust, to fine and ultrafine size capable of reaching the deepest levels of the lung alveoli. The most significant contamination is associated with old processing plants. Dust samples collected from Almaden, a town of 6,500 inhabitants, were found to contain significant amounts of respirable mercury-bearing aerosols.

  19. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  20. Penetration of asbestos fibers in respirator filters

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  1. 30 CFR 70.100 - Respirable dust standards.

    Science.gov (United States)

    2010-07-01

    ... mine atmosphere during each shift to which each miner in the active workings of each mine is exposed at... sampling device and in terms of an equivalent concentration determined in accordance with § 70.206 (Approved sampling devices; equivalent concentrations). (b) Each operator shall continuously maintain the...

  2. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran.

    Science.gov (United States)

    Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali

    2008-08-01

    The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.

  3. GPK helmets protecting from gas and dusts

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, Eh.G.; Kogan, Yu.A.; Mazanenko, V.P.

    1983-08-01

    The GPK protective helmet with an integrated respirator system protecting a miner's respiratory system and eyes from gases and dusts is described. The system uses compressed air from the mine compressed air system. Air is supplied to the respirator by an elastic rubber pipe to 30 m long. The air cools the miner's head under the helmet and passes between a protective shield and the miner's face protecting eyes and the respiratory system. Air supply ranges from 100 to 150 l/min. The air supplied to the respirator is cleaned by a filter. The GPK system weighs 1.2 kg. The system has been tested under laboratory conditions and in two coal mines under operational conditions at longwall faces and during mine drivage. Tests showed that the GPK guarantees efficient cooling and protection from dust. Design of the GPK helmet with a respirator is shown in two schemes. Technical specifications of the system are given.

  4. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  5. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    OpenAIRE

    Hasan Guler; Fikret Ata

    2010-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate ;#948;Pe(k) were co...

  6. Did Respiration or Photosynthesis Come First

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    The similarity of the mechanisms in photosynthetic and in oxidative phosphorylation suggests a common origin ( convers ion hypothesis). It is proposed that an early form of electron flow with oxidative phosphorylation ("prerespiration"), to terminal electron acceptors available in a reducing biosphere, was supplemented by a photocatalyst capable of a redox reaction. In this way, cyclic photophosphorylation arose. Further stages in evolution were reverse electron flow powered by ATP, to make NADH as a reductant for CO2 , and subsequently noncyclic electron flow. These processes concomitantly provided the oxidants indispensable for full development of oxidative phosphorylation, i.e. for normal respiration: sulphate, O2 and with participation of the nitrificants, nitrite and nitrate. Thus, prerespiration preceded photosynthesis, and this preceded respiration. It is also suggested that nonredox photoprocesses of the Halobacterium type are not part of the mainstream of bioenergetic evolution. They do not lead to photoprocesses with electron flow. (author)

  7. Effects of long-term microgravitation exposure on cell respiration of the rat musculus soleus fibers.

    Science.gov (United States)

    Veselova, O M; Ogneva, I V; Larina, I M

    2011-07-01

    Cell respiration of the m. soleus fibers was studied in Wistar rats treated with succinic acid and exposed to microgravitation for 35 days. The results indicated that respiration rates during utilization of endogenous and exogenous substrates and the maximum respiration rate decreased in animals subjected to microgravitation without succinate treatment. The respiration rate during utilization of exogenous substrate did not increase in comparison with that on endogenous substrates. Succinic acid prevented the decrease in respiration rate on endogenous substrates and the maximum respiration rate. On the other hand, the respiration rate on exogenous substrates was reduced in vivarium control rats receiving succinate in comparison with intact control group. That could indicate changed efficiency of complex I of the respiratory chain due to reciprocal regulation of the tricarbonic acid cycle.

  8. Glycolysis-respiration relationships in a neuroblastoma cell line.

    Science.gov (United States)

    Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua

    2013-04-01

    Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Respiration in spiders (Araneae).

    Science.gov (United States)

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  10. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  11. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  12. Interpreting, measuring, and modeling soil respiration

    Science.gov (United States)

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  13. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  14. Exposure to dust and its particle size distribution in shoe manufacture and repair workplaces measured with GRIMM laser dust monitor.

    Science.gov (United States)

    Stroszejn-Mrowca, Grazyna; Szadkowska-Stańczyk, Irena

    2003-01-01

    Owing to a diversified technological process and a great variety of products and materials used in shoe manufacture, workers may be exposed to dusts that contain different chemicals and particles of various shapes and sizes. The aim of this study was to assess the dust exposure, taking account of concentration of particular size fractions according to the European Standard Norm, and to analyze particle size distribution in inhalable dust at selected workplaces in a modern shoe manufacture plant and in a small shoe repair workshop in comparison with other industrial branches. In these two workplaces, the concentrations of dust, representing the inhalable, thoracic, and respirable fractions, were measured with the GRIMM 1.105 laser dust monitor. The particle size distribution in inhaled dust in the most characteristic workposts was analyzed. In the shoe manufacture plant, the concentrations ranged from 124 microg/m3 (leather cutting out) to 724 microg/m3 (scouring and milling of soles); concentrations of the thoracic and respirable fractions in the same workposts ranged from 74 microg/m3 to 412 microg/m3 and from 24 microg/m3 to 120 microg/m3, respectively. In the shoe repair workshop, the recorded concentrations were higher: the values ranged from 521 microg/m3 (gluing of shoes and soles, zipper exchange and heel abrasion) to 916 microg/m3 (uppers sewing and heel scouring) for the inhaled fraction; from 335 microg/m3 to 499 microg/m3 for the thoracic fraction; and from 88 microg/m3 to 120 microg/m3 for the respirable fraction. The mass median aerodynamic diameters of inhalable dust particles fell within the limits of 6.2-25.0 mm. Dust with the smallest particles (MMAD = 6.2 mm) was observed in shoe brushing and polishing, and with the largest particles (MMAD = 25.0 mm) in uppers sewing. The modern process of shoe manufacture is characterized by very low concentrations of inhalable dust and its fractions, they are considerably lower than occupational exposure limits

  15. Dust collector

    Energy Technology Data Exchange (ETDEWEB)

    Sahourin, H.

    1988-03-22

    This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.

  16. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  17. Effect of fluorine and of beta-indolacetic acid on the respiration of root tissue

    Energy Technology Data Exchange (ETDEWEB)

    Pilet, P E

    1964-01-01

    The auxin, beta-indolacetic acid, (BIAA) inhibited the elongation of Lens culinaris roots at all concentrations. At high concentrations fluoride had an inhibitor effect, but it had a stimulatory effect on root growth at low concentrations. BIAA mildly stimulated respiration at low concentrations and inhibited oxygen absorption at high concentrations. At concentrations stimulating respiration fluoride was found to reduce these stimulating effects caused by BIAA. Therefore, fluoride and BIAA acted as antagonists in their effect on respiration.

  18. Dust-Tolerant Intelligent Electrical Connection System

    Science.gov (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  19. 76 FR 12648 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2011-03-08

    ... be appropriate to use on a short-term basis. 13. The proposed rule addresses (1) which occupations... suggested alternative timeframes, particularly in light of the CPDM's limited memory capacity of about 20... the risk that they will suffer material impairment of health or functional capacity over their working...

  20. Determinants of dust exposure in tunnel construction work.

    Science.gov (United States)

    Bakke, Berit; Stewart, Patricia; Eduard, Wijnand

    2002-11-01

    In tunnel construction work, dust is generated from rock drilling, rock bolting, grinding, scaling, and transport operations. Other important dust-generating activities are blasting rock and spraying wet concrete on tunnel walls for strength and finishing work. The aim of this study was to identify determinants of dust exposure in tunnel construction work and to propose control measures. Personal exposures to total dust, respirable dust, and alpha-quartz were measured among 209 construction workers who were divided into 8 job groups performing similar tasks: drill and blast workers, shaft drilling workers, tunnel boring machine workers, shotcreting operators, support workers, concrete workers, outdoor concrete workers, and electricians. Information on determinants was obtained from interviewing the workers, observation by the industrial hygienist responsible for the sampling, and the job site superintendent. Multivariate regression models were used to identify determinants associated with the dust exposures within the job groups. The geometric mean exposure to total dust, respirable dust, and alpha-quartz for all tunnel workers was 3.5 mg/m(3) (GSD = 2.6), 1.2 mg/m(3) (GSD = 2.4), and 0.035 mg/m(3) (GSD = 5.0), respectively. A total of 15 percent of the total dust measurements, 5 percent of the respirable dust, and 21 percent of the alpha-quartz exceeded the Norwegian OELs of 10 mg/m(3), 5 mg/m(3), and 0.1 mg/m(3), respectively. Job groups with highest geometric mean total dust exposure were shotcreting operators (6.8 mg/m(3)), tunnel boring machine workers (6.2 mg/m(3)), and shaft drilling workers (6.1 mg/m(3)). The lowest exposed groups to total dust were outdoor concrete workers (1.0 mg/m(3)), electricians (1.4 mg/m(3)), and support workers (1.9 mg/m(3)). Important determinants of exposure were job group, job site, certain tasks (e.g., drilling and scaling), the presence of a cab, and breakthrough of the tunnel. The use of ventilated, closed cabs appeared to be

  1. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  2. Assessment of occupational exposure to wood dust in the Polish furniture industry

    Directory of Open Access Journals (Sweden)

    Małgorzata Szewczyńska

    2017-02-01

    Full Text Available Background: Occupational exposure to wood dust can be responsible for many different harmful health effects, especially in workers employed in the wood industry. The assessment of wood dust adverse effects to humans, as well as the interpretation of its concentration measurements carried out to assess potential occupational exposure are very difficult. First of all, it is due to possible occurrence of different kind of wood dust in the workplace air, namely wood dust from dozens of species of trees belonging to 2 kinds of botanical gymnosperms and angiosperms, as well as to its different chemical composition. Material and Methods: Total dust and respirable wood dust in the workplace air in the furniture industry was determined using the filtration-gravimetric method in accordance with Polish Standards PN-Z-04030-05:1991 and PN-Z-04030-06:1991. Air samples were collected based on the principles of individual dosimetry. Results: Total dust concentrations were 0.84–13.92 mg/m3 and inhalable fraction concentrations, obtained after the conversion of total dust by applying a conversion factor of 1.59, were 1.34–22.13 mg/m3. Respirable fraction concentrations were 0.38–4.04 mg/m3, which makes approx. 25% of the inhalable fraction on average. The highest concentrations occurred in grinding and the lowest during milling processes of materials used in the manufacture of furniture. Conclusions: The results indicate that the share of respirable fraction in the inhalable fraction of wood dust is considerable. Due to the determination of the threshold limit value (TLV for the inhalable fraction of wood dust, it is necessary to replace the previously used samplers for total dust with samplers that provide quantitative separation of wood dust inhalable fractions in accordance with the convention of this fraction as defined in PN-EN 481:1998. Med Pr 2017;68(1:45–60

  3. Facepiece leakage and fitting of respirators

    International Nuclear Information System (INIS)

    White, J.M.

    1978-05-01

    The ways in which airborne contaminants can penetrate respirators and the factors which affect the fit of respirators are discussed. The fit of the respirator to the face is shown to be the most critical factor affecting the protection achieved by the user. Qualitative and quantitative fit testing techniques are described and their application to industrial respirator programs is examined. Quantitative measurement of the leakage of a respirator while worn can be used to numerically indicate the protection achieved. These numbers, often referred to as protection factors, are sometimes used as the basis for selecting suitable respirators and this practice is reviewed. (author)

  4. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  5. Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, R; Boushel, R; Almdal, T

    2010-01-01

    mitochondrial respiration per milligram muscle was measured in saponin-treated skinned muscle fibres using high-resolution respirometry. RESULTS: Mitochondrial respiration per milligram muscle was lower in T2DM compared to controls at baseline and decreased during ROSI treatment but increased during PIO...... of ROSI and PIO on mitochondrial respiration, and also show that insulin sensitivity can be improved independently of changes in mitochondrial respiration. We confirm that mitochondrial respiration is reduced in T2DM compared to age- and BMI-matched control subjects....

  6. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Science.gov (United States)

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  7. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  8. Use of Facemasks and Respirators

    Centers for Disease Control (CDC) Podcasts

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  9. [Occupational exposure to silica dust by selected sectors of national economy in Poland based on electronic database].

    Science.gov (United States)

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Szadkowska-Stańczyk, Irena; Stroszejn-Mrowca, Grazyna

    2008-01-01

    To evaluate occupational exposure to dusts, the Nofer Institute of Occupational Medicine in Łódź, in collaboration with the Chief Sanitary Inspectorate, has developed the national database to store the results of routine dust exposure measurements performed by occupational hygiene and environmental protection laboratories in Poland in the years 2001-2005. It was assumed that the collected information will be useful in analyzing workers' exposure to free crystalline silica (WKK)-containing dusts in Poland, identyfing exceeded hygiene standards and showing relevant trends, which illustrate the dynamics of exposure in the years under study. Inhalable and respirable dust measurement using personal dosimetry were done according to polish standard PN-91/Z-04030/05 and PN-91/Z-04030/06. In total, 148 638 measurement records, provided by sanitary inspection services from all over Poland, were entered into the database. The database enables the estimation of occupational exposure to dust by the sectors of national economy, according to the Polish Classification of Activity (PKD) and by kinds of dust. The highest exposure level of inhalable and respirable dusts was found in coal mining. Also in this sector, almost 60% of surveys demonstrated exceeded current hygiene standards. High concentrations of both dust fractions (inhalable and respirable) and a considerable percentage of measurements exceeding hygiene standards were found in the manufacture of transport equipment (except for cars), as well as in the chemical, mining (rock, sand, gravel, clay mines) and construction industries. The highest percentage of surveys (inhalable and respirable dust) showing exceeded hygiene standards were observed for coal dust with different content of crystalline silica, organic dust containing more than 10% of SiO2, and highly fibrosis dust containing more than 50% of SiO2.

  10. The risk of pulmonary tuberculosis in underground copper miners in Zambia exposed to respirable silica: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kingsley Ngosa

    2016-08-01

    Full Text Available Abstract Background Pulmonary tuberculosis (PTB among underground miners exposed to silica remains a global problem. Although well described in gold and coal mining, risk in other mining entities are not as well documented. This study aims to determine dust-related dose response risk for PTB among underground miners exposed to silica dust in Zambia's copper mines. Methods A cross sectional study of in-service miners (n = 357 was conducted at Occupational Health and Safety Institute (OHSI, Zambia. A systematic review of medical data over a 5-year period from assessments conducted by doctors at OHSI and statutory silica exposure data (n = 16678 from the Mine Safety Department (MSD were analysed. Lifetime cumulative exposure metrics were calculated. Multivariate logistic regression analysis was used to determine the association between PTB and lifetime exposure to silica, while adjusting for various confounders. Results The median respirable silica dust level was 0.3 mg/m3 (range 0.1–1.3. The overall prevalence of PTB was 9.5 % (n = 34. High cumulative respirable silica dust category showed a statistically significant association with PTB (OR = 6.4 (95 % CI 1. 8–23 and a significant trend of increasing disease prevalence with increasing cumulative respirable silica dust categories was observed (ptrend < 0.01. Smoking showed a statistically significant association with PTB with OR = 4.3 (95 % CI 1.9–9.9. Conclusions Our results demonstrate the association of increased risk for certified active TB with cumulative respirable dust in a dose related manner among this sample of copper miners. There is need to intensify dust control measures and incorporate anti-smoking interventions into TB prevention and control programmes in the mines.

  11. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  12. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  13. 78 FR 18535 - Respirator Certification Fees

    Science.gov (United States)

    2013-03-27

    ... facepiece respirators. The North American respiratory protection market generated revenues around $1,830 million in 2007, the most recent data available.\\4\\ A summary of market segmentation, by respirator type... management. Of the U.S. respirator market of products approved by NIOSH, approximately 35 percent of approval...

  14. Contributions of dust exposure and cigarette smoking to emphysema severity in coal miners in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kuempel, E.D.; Wheeler, M.W.; Smith, R.J.; Vallyathan, V.; Green, F.H.Y. [NIOSH, Cincinnati, OH (United States)

    2009-08-15

    Previous studies have shown associations between dust exposure or lung burden and emphysema in coal miners, although the separate contributions of various predictors have not been clearly demonstrated. The objective was to quantitatively evaluate the relationship between cumulative exposure to respirable coal mine dust, cigarette smoking, and other factors on emphysema severity. The study group included 722 autopsied coal miners and nonminers in the United States. Data on work history, smoking, race, and age at death were obtained from medical records and questionnaire completed by next-of-kin. Emphysema was classified and graded using a standardized schema. Job-specific mean concentrations of respirable coal mine dust were matched with work histories to estimate cumulative exposure. Relationships between various metrics of dust exposure (including cumulative exposure and lung dust burden) and emphysema severity were investigated in weighted least squares regression models. Emphysema severity was significantly elevated in coal miners compared with nonminers among ever- and never-smokers (P < 0.0001). Cumulative exposure to respirable coal mine dust or coal dust retained in the lungs were significant predictors of emphysema severity (P < 0.0001) after accounting for cigarette smoking, age at death, and race. The contributions of coal mine dust exposure and cigarette smoking were similar in predicting emphysema severity averaged over this cohort. Coal dust exposure, cigarette smoking, age, and race are significant and additive predictors of emphysema severity in this study.

  15. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism.

    OpenAIRE

    Guidot, D M; Repine, J E; Kitlowski, A D; Flores, S C; Nelson, S K; Wright, R M; McCord, J M

    1995-01-01

    We determined that mitochondrial respiration reduced cytosolic oxidant stress in vivo and scavenged extramitochondrial superoxide anion (O2-.) in vitro. First, Saccharomyces cerevisiae deficient in both the cytosolic antioxidant cupro-zinc superoxide dismutase (Cu,Zn-SOD) and electron transport (Rho0 state) grew poorly (P 0.05) in all yeast. Seco...

  16. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  17. Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

    OpenAIRE

    Wilaiwan Sornpoon; Sebastien Bonnet; Poonpipope Kasemsap; Savitri Garivait

    2013-01-01

    The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to ...

  18. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  19. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  20. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  1. Contrasting respirable quartz and kaolin retention of lecithin surfactant and expression of membranolytic activity following phospholipase A2 digestion.

    Science.gov (United States)

    Wallace, W E; Keane, M J; Mike, P S; Hill, C A; Vallyathan, V; Regad, E D

    1992-11-01

    Respirable-sized quartz, a well-established fibrogenic mineral dust, is compared with kaolin in erythrocyte hemolysis assays after treatment with saline dispersion of dipalmitoyl phosphatidylcholine, a primary phospholipid component of pulmonary surfactant. Both dusts are rendered inactive after treatment, but the membranolytic activity is partly to fully restored after treatment with phospholipase A2, an enzyme normally associated with cellular plasma membranes and lysosomes. Phospholipid-coated dusts were incubated for periods of 2-72 h at a series of applied enzyme concentrations, and the adsorbed lipid species and hemolytic activity were quantitated at each time for both dusts. Surfactant was lost more readily from quartz than from kaolin, with consequent more rapid restoration of mineral surface hemolytic activity for quartz. Interactions of surfactant and mineral surface functional groups responsible for the mineral-specific rate differences, and implications for determining the mineral surface bioavailability of silica and silicate dusts, are discussed.

  2. Adaptation of the DP 50 dust meter for measuring dust content under isokinetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.; Novak, L.

    1985-03-01

    The DP 50 dust meter, developed by the Scientific Coal Research Institute Ostrava-Radvanice, is used for measuring dust content in the air in underground coal mines. Two versions of the system are used: a type developed in 1970 which is placed in a vertical position and used to measure the content of respirable coal particles in the air; and a type developed in 1983 for isokinetic measurement of dust content in the air. The latter is equipped with 8 cone-shaped adapters (with differing size and dimensions of the cone inlet adjusted to air flow rates from 0.25 to 8.00 m/s). Specifications of the 8 adapters are given in a table. The 1983 version of the DP 50 is placed in a horizontal position with the dust meter axis parallel to the direction of air flow ventilating a mine working. Recommendations for installation of dust meters in underground workings and effects of installation on measurement accuracy are discussed. 16 references.

  3. Glass Frit Clumping And Dusting

    International Nuclear Information System (INIS)

    Steimke, J. L.

    2013-01-01

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  4. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  5. Estimation of microbial respiration rates in groundwater by geochemical modeling constrained with stable isotopes

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1998-01-01

    Changes in geochemistry and stable isotopes along a well-established groundwater flow path were used to estimate in situ microbial respiration rates in the Middendorf aquifer in the southeastern United States. Respiration rates were determined for individual terminal electron acceptors including O 2 , MnO 2 , Fe 3+ , and SO 4 2- . The extent of biotic reactions were constrained by the fractionation of stable isotopes of carbon and sulfur. Sulfur isotopes and the presence of sulfur-oxidizing microorganisms indicated that sulfate is produced through the oxidation of reduced sulfur species in the aquifer and not by the dissolution of gypsum, as previously reported. The respiration rates varied along the flow path as the groundwater transitioned between primarily oxic to anoxic conditions. Iron-reducing microorganisms were the largest contributors to the oxidation of organic matter along the portion of the groundwater flow path investigated in this study. The transition zone between oxic and anoxic groundwater contained a wide range of terminal electron acceptors and showed the greatest diversity and numbers of culturable microorganisms and the highest respiration rates. A comparison of respiration rates measured from core samples and pumped groundwater suggests that variability in respiration rates may often reflect the measurement scales, both in the sample volume and the time-frame over which the respiration measurement is averaged. Chemical heterogeneity may create a wide range of respiration rates when the scale of the observation is below the scale of the heterogeneity

  6. Organization and effectivity of works on dust suppressing in the special zone of the Chernobyl' NPP

    International Nuclear Information System (INIS)

    Shimin, S.A.; Krapchatov, V.P.; Nad''yarnykh, G.V.; Komarov, V.I.; Andreev, Yu.B.; Samojlenko, Yu.N.

    1989-01-01

    In 1988 three methods of dust suppressing were used: regular watering of roads, chemical treatment of roadsides and dusting sections of area, long-time biologochemical fixation of open sections of area, including sowing with grass and simultaneous treatment by dust-suppressing compositions. Preliminary treatment of objects by polymeric compositions was an effective action to reduce dust-raising. 3 refs.; 3 figs

  7. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    Science.gov (United States)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  8. House dust mite control measures for asthma

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C.; Johansen, Helle Krogh

    2008-01-01

    BACKGROUND: The major allergen in house dust comes from mites. Chemical, physical and combined methods of reducing mite allergen levels are intended to reduce asthma symptoms in people who are sensitive to house dust mites. OBJECTIVES: To assess the effects of reducing exposure to house dust mite...... antigens in the homes of people with mite-sensitive asthma. SEARCH STRATEGY: PubMed and The Cochrane Library (last searches Nov 2007), reference lists. SELECTION CRITERIA: Randomised trials of mite control measures vs placebo or no treatment in people with asthma known to be sensitive to house dust mites......), the standardised mean difference was 0.00 (95% confidence interval (CI) -0.10 to 0.10). There were no statistically significant differences either in number of patients improved (relative risk 1.01, 95% CI 0.80 to 1.27), asthma symptom scores (standardised mean difference -0.04, 95% CI -0.15 to 0...

  9. Dust exposure, eye redness, eye cytology and mucous membrane irritation in a tobacco industry

    DEFF Research Database (Denmark)

    Kjærgaard, Søren K.; Pedersen, O.F.

    1989-01-01

    In a study of 75 workers employed in a tobacco factory producing cheroots we measured cellular contents of tear fluid, redness of eyes, discomfort, total (0–5.7 mg/m3) and respirable dust in the breathing zone and total ambient dust by stationary sampling (0.08–1.0 mg/m3). A matched group of 50 o...

  10. Microbes and Microstructure: Dust's Role in the Snowpack Evolution

    Science.gov (United States)

    Lieblappen, R.; Courville, Z.; Fegyveresi, J. M.; Barbato, R.; Thurston, A.

    2017-12-01

    Dust is a primary vehicle for transporting microbial communities to polar and alpine snowpacks both through wind distribution (dry deposition) and snowfall events (wet deposition). The resulting microbial community diversity in the snowpack may then resemble the source material properties rather than its new habitat. Dust also has a strong influence on the microstructural properties of snow, resulting in changes to radiative and mechanical properties. As local reductions in snowpack albedo lead to enhanced melting and a heterogeneous snow surface, the microbial communities are also impacted. Here we study the impact of the changing microstructure in the snowpack, its influence on microbial function, and the fate of dust particles within the snow matrix. We seek to quantify the changes in respiration and water availability with the onset of melt. Polar samples were collected from the McMurdo Ice Shelf, Antarctica in February, 2017, while alpine samples were collected from Silverton, CO from October to May, 2017 as part of the Colorado Dust on Snow (CDOS) network. At each site, coincident meteorological data provides temperature, wind, and radiative measurements. Samples were collected immediately following dust deposition events and after subsequent snowpack evolution. We used x-ray micro-computed tomography to quantify the microstructural evolution of the snow, while also imaging the microstructural distribution of the dust within the snow. The dust was then collected and analyzed for chemical and microbial activity.

  11. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.

    2011-01-01

    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  12. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    Science.gov (United States)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  13. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.

    2005-11-01

    Prolonged exposure to airborne respirable coal dust is responsible for coal workers pneumoconiosis (CWP), commonly called black lung. Health research studies have identified that the prevalence and severity of CWP are directly related to both the amount of dust exposure and the coal rank. The amount of airborne respirable dust (ARD) smaller than 10 micrometers generated from breakage of different coals varies widely. To investigate the cause, researchers for the National Institute for Occupational Safety and Health (NIOSH) have conducted experiments to identify the causes of airborne respirable dust liberation. Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals from eight mines. The results indicate that the proximate analysis of a coal sample can provide a very good indicator of the potential for a dust problem. For application to the coal mining, processing, and utilization industries, data from 977 US coal seams compiled by the Department of Energy (DoE) has been used to calculate this dust generation potential from an equation based on the NIOSH measured data. A simple procedure for this calculation is provided. 1 fig.

  14. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    International Nuclear Information System (INIS)

    Walsh, P T; Forth, A R; Clark, R D R; Dowker, K P; Thorpe, A

    2009-01-01

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  15. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  16. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    Science.gov (United States)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  17. Management effects on European cropland respiration

    DEFF Research Database (Denmark)

    Eugster, Werner; Moffat, Antje M.; Ceschia, Eric

    2010-01-01

    Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO2. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO2 as they occur under current climate and management conditions. Our....... This allowed us to address the question of how management activities influence ecosystem respiration. This was done by comparing respiration fluxes during 7, 14, and 28 days after the management with those observed during the matching time period before management. Median increases in respiration ranged from...... than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account for a subset of 13...

  18. Effects of respirator use on worker performance

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, R. [Yankee Atomic Electric Co., Bolton, MA (United States)

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that have been conducted during the last ten (10) years.

  19. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  20. Respirators: Supervisors Self-Study #43442

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  1. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  2. Exposure to grain dust in Great Britain.

    Science.gov (United States)

    Spankie, Sally; Cherrie, John W

    2012-01-01

    Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings.

  3. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  4. Lymphocyte respiration in children with Trisomy 21

    Directory of Open Access Journals (Sweden)

    Aburawi Elhadi H

    2012-12-01

    Full Text Available Abstract Background This study measured lymphocyte mitochondrial O2 consumption (cellular respiration in children with trisomy 21. Methods Peripheral blood mononuclear cells were isolated from whole blood of trisomy 21 and control children and these cells were immediately used to measure cellular respiration rate. [O2] was determined as a function of time from the phosphorescence decay rates (1/τ of Pd (II-meso-tetra-(4-sulfonatophenyl-tetrabenzoporphyrin. In sealed vials containing lymphocytes and glucose as a respiratory substrate, [O2] declined linearly with time, confirming the zero-order kinetics of O2 conversion to H2O by cytochrome oxidase. The rate of respiration (k, in μM O2 min-1, thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming that oxidation occurred in the mitochondrial respiratory chain. Results For control children (age = 8.8 ± 5.6 years, n = 26, the mean (± SD value of kc (in μM O2 per min per 107 cells was 1.36 ± 0.79 (coefficient of variation, Cv = 58%; median = 1.17; range = 0.60 to 3.12; -2SD = 0.61. For children with trisomy 21 (age = 7.2 ± 4.6 years, n = 26, the values of kc were 0.82 ± 0.62 (Cv = 76%; median = 0.60; range = 0.20 to 2.80, pp6.1 mU/L. Fourteen of 26 (54% children with trisomy 21 had kc values of 0.20 to 0.60 (i.e., kc positively correlated with body-mass index (BMI, R >0.302, serum creatinine (R >0.507, blood urea nitrogen (BUN, R >0.535 and albumin (R >0.446. Conclusions Children with trisomy 21 in this study have reduced lymphocyte bioenergetics. The clinical importance of this finding requires further studies.

  5. Exposure to respirable crystalline silica in South African farm workers

    International Nuclear Information System (INIS)

    Swanepoel, Andrew; Rees, David; Renton, Kevin; Kromhout, Hans

    2009-01-01

    Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.

  6. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    International Nuclear Information System (INIS)

    Wu Haicheng; Xie Baisong

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  7. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  8. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  9. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  10. Saharan dust, climate variability, and asthma in Grenada, the Caribbean.

    Science.gov (United States)

    Akpinar-Elci, Muge; Martin, Francis E; Behr, Joshua G; Diaz, Rafael

    2015-11-01

    Saharan dust is transported across the Atlantic and interacts with the Caribbean seasonal climatic conditions, becoming respirable and contributing to asthma presentments at the emergency department. This study investigated the relationships among dust, climatic variables, and asthma-related visits to the emergency room in Grenada. All asthma visits to the emergency room (n = 4411) over 5 years (2001-2005) were compared to the dust cover and climatic variables for the corresponding period. Variation in asthma was associated with change in dust concentration (R(2) = 0.036, p asthma was positively correlated with rainfall (R(2) = 0.055, p asthma visits were inversely related to mean sea level pressure (R(2) = 0.123, p = 0.006) and positively correlated with relative humidity (R(2) = 0.593, p = 0.85). Saharan dust in conjunction with seasonal humidity allows for inhalable particulate matter that exacerbates asthma among residents in the Caribbean island of Grenada. These findings contribute evidence suggesting a broader public health impact from Saharan dust. Thus, this research may inform strategic planning of resource allocation among the Caribbean public health agencies.

  11. Evaluation of respirable particle matter in gold mine tailings on the Witwatersrand

    International Nuclear Information System (INIS)

    Ojelede, M.E.; Annegarn, H.J.

    2007-01-01

    Within the Witwatersrand gold mining area of South Africa, wind-blown dust is a significant contributor to atmospheric air pollution brought to the fore with the reworking of old mine tailings. Approximately 40,000 hectares are covered with tailings in the Witwatersrand. Wind-erosion during late austral winter and early spring causes surfaces of these tailings to be exposed, particularly during higher wind speeds and in the absence of rainfall. Local residents complain as the surrounding areas experience unpleasant dust episodes. As a result of urban PM 10 and PM 2.5 respirable particulate matter, increased respiratory ailments, morbidity and mortality, and concerns about the health impacts of wind-blown mine tailings in South Africa have been reported. Since 1981, significant monitoring of dustfall has taken place on the Witwatersrand, however, characterization of the respirable fraction of gold mine tailings material and dustfall is lacking. This paper presented the results of a study that established the content of respirable particulate matter in exposed mine tailings and wind-blown dust, and their likely contributions to ambient air. The initial results of the particulate size distribution of material samples from tailings and dust deposits collected in ambient dustfall-monitors were provided. Particle size distributions from different deposit types include slimes and sand deposits, surface and core material, and wind-winnowed secondary deposits. Fractions of PM 10 in source and deposited material were also discussed. It was concluded that there was a significant fraction of PM 10 material in the mine tailings, and that further work to quantify the population exposure risk is needed. 11 refs., 1 tab., 6 figs

  12. Influence of temperature and organic matter content on soil respiration in a deciduous oak forest

    Directory of Open Access Journals (Sweden)

    Zsolt Kotroczó

    2014-12-01

    Full Text Available The increasing temperature enhances soil respiration differently depend on different conditions (soil moisture, soil organic matter, the activity of soil microbes. It is an essential factor to predicting the effect of climate change on soil respiration. In a temperate deciduous forest (North-Hungary we added or removal aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture and soil temperature. Soil CO2 efflux was measured at each plot using chamber based soil respiration measurements. We determined the temperature sensitivity of soil respiration. The effect of doubled litter was less than the effect of removal. We found that temperature was more influential in the control of soil respiration than soil moisture in litter removal treatments, particularly in the wetter root exclusion treatments (NR and NI (R2: 0.49-0.61. Soil moisture (R2: 0.18-0.24 and temperature (R2: 0.18-0.20 influenced soil respiration similarly in treatments, where soil was drier (Control, Double Litter, Double Wood. A significantly greater increase in temperature induced higher soil respiration were significantly higher (2-2.5-fold in root exclusion treatments, where soil was wetter throughout the year, than in control and litter addition treatments. The highest bacterial and fungal count was at the DL treatment but the differences is not significant compared to the Control. The bacterial number at the No Litter, No Root, No Input treatment was significantly lower at the Control. Similar phenomenon can be observed at the fungal too, but the differences are not significant. The results of soil respiration suggest that the soil aridity can reduce soil respiration increases with the temperature increase. Soil bacterial and fungal count results show the higher organic matter content and soil surface cover litter favors the activity.

  13. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2005-01-01

    significantly to ecosystem respiration during most phases of winter and summer in the two vegetation types. Ecosystem respiration rates through the year did not differ significantly between vegetation types despite substantial differences in biomass pools, soil depth and temperature regime. Most (76...... contributions of bulk soil organic matter and plant-associated carbon pools to ecosystem respiration is critical to predicting the response of arctic ecosystem net carbon balance to climate change. In this study, we determined the variation in ecosystem respiration rates from birch forest understory and heath......-92%) of the intra-annual variation in ecosystem respiration rates from these two common mesic subarctic ecosystems was explained using a first-order exponential equation relating respiration to substrate chemical quality and soil temperature. Removal of plants and their current year's litter significantly reduced...

  14. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  15. Respiration rate of stream insects measured in situ along a large altitude range

    DEFF Research Database (Denmark)

    Rostgaard, S.; Jacobsen, D.

    2005-01-01

    Field studies of respiration in stream insects are few in comparison with laboratory studies. To evaluate the influence of temperature and oxygen along altitudinal gradients we measured the respiration rate of fully acclimatized larval Trichoptera, Plecoptera and Ephemeroptera under similar field...... at 100 and 50% oxygen saturation indicated that highland animals reduced their oxygen uptake more than their counterparts in the lowland when oxygen availability decreased. The temperature response of respiration calculated between the insect assemblages at different altitudes showed a mean assemblage Q...

  16. Elemental Concentration of Inhalable and Respirable Particulate ...

    African Journals Online (AJOL)

    20537 and respirable foam for I.O.M sampler. The elemental composition (Co, Ni, Zn, Cu, Fe, Pb, Cr, Mn and Cd) were analyzed by using Atomic Absorption Spectrophotometric (AAS). The data generated were subjected to descriptive analysis. In inhalable fraction,the enrichment factor ranged from 1-73.3 while in respirable ...

  17. Respirators: APR Issuer Self Study 33461

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  18. Experience with dust suppression in mining a thick, dirty seam

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, D; Kohlhauer, H

    1975-11-20

    Dust suppression measures used when mining a thick, dirty seam are described. Dust sprays inside and outside the shearer drum helped to reduce coarse dust, but the resulting increase in moisture content of the coal limits the extent to which this method can be used. The shields were also fitted with sprays. Because of the dirt in the seam, continuous, remotely controlled deep infusion was used. This reduced the dust concentration from more than 10 mg/m/sup 3/ to between 3.9 and 6.6 mg/m/sup 3/.

  19. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  20. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    Science.gov (United States)

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  1. Pinus sylvestris switches respiration substrates under shading but not during drought

    Science.gov (United States)

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  2. Solar-Panel Dust Accumulation and Cleanings

    Science.gov (United States)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  3. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  4. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  5. Combustible dust tests

    Science.gov (United States)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  6. Electronic design of air dust concentration gauge

    International Nuclear Information System (INIS)

    Machaj, B.; Strzalkowski, J.; Krawczynska, B.

    1993-01-01

    A new version of isotope dust concentration gauge for monitoring airborne dust pollution of air employs a ready made personal computer as the control and processing unit in the gauge instead of specialized electronics. That solution of the gauge reduces the needed specialized electronics to a simple computer interface coupling the computer to the measuring head. This also reduced electronics of the measuring head itself, i.e. GM detector circuit, power supplies and electronic circuits to switch on/off driving motors. The functioning and operation of the gauge is controlled by the computer program that can be easily modified if needed. The computer program for the gauge enables automatic measurements of dust concentration. Up to fifty measuring cycles can be easily programmed for a day. The results of measurements are presented in the form of data collection, diagram of dust concentration distribution during one day, diagram of dust distribution during 30 successive days or diagram of average dust concentration distribution during a day which may be computed by combining data of the selected number of measurements. Recalibration of the gauge and checking up of the gauge are also carried out under the program control. (author). 6 refs, 9 figs

  7. Radiation dose to workers due to the inhalation of dust during granite fabrication

    International Nuclear Information System (INIS)

    Zwack, L M; Stewart, J H; McCarthy, J F; Allen, J G; McCarthy, W B

    2014-01-01

    There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr −1 ) and limits applicable to the general public (1 mSv yr −1 ). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m −3 over a full year had an estimated radiation dose of 0.062 mSv yr −1 . Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr −1 and 0.002 mSv yr −1 , respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr −1 . (paper)

  8. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  9. Reducing air pollution from electricity-generating large combustion plants in the European Union. An assessment of potential emission reductions of NO{sub X}, SO{sub 2} and dust

    Energy Technology Data Exchange (ETDEWEB)

    Lodewijks, P.; Pieper, H.; Van Wortswinkel, L. [ETC partner Flemish Institute for Technological Research (VITO) (Belgium); Boyce, B.; Adams, M.; Goossens, E. [EEA, Copenhagen (Denmark)

    2013-06-15

    An assessment of potential emission reductions of NO{sub X}, SO{sub 2} and dust - This report presents an assessment of the hypothetical emission reduction potential of NO{sub x}, SO{sub 2} and dust from more than 1 500 of Europe's large combustion plants that operated in 2009. Emissions of these air pollutants could be significantly lower if all plants were to meet the emission limit values as set out in European Union legislation. (Author)

  10. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China

    Science.gov (United States)

    Liu, Xiuping; Zhang, Wanjun; Zhang, Bin; Yang, Qihong; Chang, Jianguo; Hou, Ke

    2016-01-01

    The aim of this paper is to evaluate the diurnal variation in soil respiration under different land use types on Taihang Mountain, North China, and to understand its response to environmental factors (e.g., soil temperature and moisture) and forest management. Diurnal variations in soil respiration from plantations (Robinia pseudoacacia, Punica granatum, and Ziziphus jujuba), naturally regenerated forests (Vitex negundo var. heterophylla), grasslands (Bothriochloa ischaemum), and farmlands (winter wheat/summer maize) were measured using an LI-8100 automated soil CO2 flux system from May 2012 to April 2013. The results indicated that land use type had a significant effect on the diurnal variation of soil respiration. The diurnal soil respiration from farmlands was highest, followed by Ziziphus jujube, R. pseudoacacia, P. granatum, the lower soil CO2 efflux was found from B. ischaemum and V. negundo var. heterophylla. The diurnal soil respiration across different land use types was significantly affected by soil temperature and moisture, and their interaction. Precipitation-stimulated soil respiration increased more in soil with low water content and less in soil with high water content. The lower diurnal soil respiration from naturally regenerated forests suggests that naturally regenerated vegetation is the optimal vegetation type for reducing global warming.

  11. Calculation of risk for workers in dust working site

    Directory of Open Access Journals (Sweden)

    Geldová Erika

    2004-03-01

    Full Text Available The fibrogeneous dust is considered as a specific harmful substance in the mine working site. Such kind of dust cumulates in lungs and this fact usually results in lungs dusting, so - called pneumoconiosis. Thus, dustiness risk poses a probability of lungs damage by pneumoconiosis. For the calculation of dustiness risk it is needed to know the following data: the value of average dustiness kC in the working site per a definite time period, the dispersivity of dust “D” (it determines a portion of dust particles with a diameter under 5 µm, so - called respirable particles and the percentage content of quartz Qr in the respirable grain size fraction.The contribution presents the calculation of dustiness risk “R” according to the equation (1, where “R” is in percentage, “ša” is the analytically specific harmfulness and “KDc” is the total cumulative dust dose received by worker in time of its dust exposure.The total cumulative dust dose is calculated on the basis of the equation (4, where “kc” is the average dust concentration in the assessed time period, t–time of exposure, V –average amount of air inspired by exposed worker per time unit ( standardized on the value of 1,2 m3h-1,10-6-recalculation from mg to kg for “KDc”.If the values of “Qr”, “D” and “kc” during the worker exposure on a definite workplace are constant, the dustiness risk “R” is calculated according to the equation (1 and (5 respectively. In the case of “n” time intervals in that the values “Qr”, “D” and “kc” are known the dustiness risk “R” is calculated according to the equation (7. The total personal risk of worker is given by the equation (8.Conclusively, the influence of parameters change namely “Qr”, “D” and “kc” on the value of dustiness risk per equal time period is reported.

  12. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  13. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    Science.gov (United States)

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  14. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  15. Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling.

    Science.gov (United States)

    James, John T; Lam, Chiu-Wing; Santana, Patricia A; Scully, Robert R

    2013-04-01

    Brief exposures of Apollo astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure to lunar dust. The United States and other space faring nations intend to return to the moon for extensive exploration within a few decades. In the meantime, habitats for that exploration, whether mobile or fixed, must be designed to limit human exposure to lunar dust to safe levels. Herein we estimate safe exposure limits for lunar dust collected during the Apollo 14 mission. We instilled three respirable-sized (∼2 μ mass median diameter) lunar dusts (two ground and one unground) and two standard dusts of widely different toxicities (quartz and TiO₂) into the respiratory system of rats. Rats in groups of six were given 0, 1, 2.5 or 7.5 mg of the test dust in a saline-Survanta® vehicle, and biochemical and cellular biomarkers of toxicity in lung lavage fluid were assayed 1 week and one month after instillation. By comparing the dose--response curves of sensitive biomarkers, we estimated safe exposure levels for astronauts and concluded that unground lunar dust and dust ground by two different methods were not toxicologically distinguishable. The safe exposure estimates were 1.3 ± 0.4 mg/m³ (jet-milled dust), 1.0 ± 0.5 mg/m³ (ball-milled dust) and 0.9 ± 0.3 mg/m³ (unground, natural dust). We estimate that 0.5-1 mg/m³ of lunar dust is safe for periodic human exposures during long stays in habitats on the lunar surface.

  16. BOREAS TE-5 Soil Respiration Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  17. Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem.

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93 ± 0.43 µmol m-2 s-1) and the lowest values in algae-crusted soil (0.73 ± 0.31 µmol m-2 s-1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m-3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level.

  18. Impact of Environmental Factors and Biological Soil Crust Types on Soil Respiration in a Desert Ecosystem

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m−2 s−1) and the lowest values in algae-crusted soil (0.73±0.31 µmol m−2 s−1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m−3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  19. Spirit Feels Dust Gust

    Science.gov (United States)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  20. Lunar dust transport and potential interactions with power system components

    International Nuclear Information System (INIS)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers

  1. Lunar dust transport and potential interactions with power system components

    Energy Technology Data Exchange (ETDEWEB)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.

  2. Strength Characteristics of Quarry Dust in Replacement of Sand

    Science.gov (United States)

    Shyam Prakash, K.; Hanumantha Rao, Ch, Dr

    2017-08-01

    The replacement of natural fine aggregate by using quarry dust leads to consumption of generated quarry dust, the requirement of land fill area can be reduced and solves the natural sand scarcity problem. The sand availability as a fine aggregate at low cost which needs the reason to search as a alternative material. Even it causes saddle to dump the crusher dust at one place which causes environmental pollution. The chemical analysis, specific gravity, sieve analysis and compressive strength is identified for various percentage and grades of concrete by replacement of sand with quarry dust.

  3. [Assessment of occupational exposure to wood dust in the Polish furniture industry].

    Science.gov (United States)

    Szewczyńska, Małgorzata; Pośniak, Małgorzata

    2017-02-28

    Occupational exposure to wood dust can be responsible for many different harmful health effects, especially in workers employed in the wood industry. The assessment of wood dust adverse effects to humans, as well as the interpretation of its concentration measurements carried out to assess potential occupational exposure are very difficult. First of all, it is due to possible occurrence of different kind of wood dust in the workplace air, namely wood dust from dozens of species of trees belonging to 2 kinds of botanical gymnosperms and angiosperms, as well as to its different chemical composition. Total dust and respirable wood dust in the workplace air in the furniture industry was determined using the filtration-gravimetric method in accordance with Polish Standards PN-Z-04030-05:1991 and PN-Z-04030-06:1991. Air samples were collected based on the principles of individual dosimetry. Total dust concentrations were 0.84-13.92 mg/m3 and inhalable fraction concentrations, obtained after the conversion of total dust by applying a conversion factor of 1.59, were 1.34-22.13 mg/m3. Respirable fraction concentrations were 0.38-4.04 mg/m3, which makes approx. 25% of the inhalable fraction on average. The highest concentrations occurred in grinding and the lowest during milling processes of materials used in the manufacture of furniture. The results indicate that the share of respirable fraction in the inhalable fraction of wood dust is considerable. Due to the determination of the threshold limit value (TLV) for the inhalable fraction of wood dust, it is necessary to replace the previously used samplers for total dust with samplers that provide quantitative separation of wood dust inhalable fractions in accordance with the convention of this fraction as defined in PN-EN 481:1998. Med Pr 2017;68(1):45-60. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  4. Self-confinement of finite dust clusters in isotropic plasmas.

    Science.gov (United States)

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  5. How much work is expended for respiration?

    Science.gov (United States)

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  6. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  7. Radioisotope dust pollution monitor

    International Nuclear Information System (INIS)

    Szepke, R.; Harasimczuk, J.; Dobrowiecki, J.

    1990-01-01

    Measuring principles and specification of two dust monitors: station-type AMIZ and portable-type PIK-10 for ambient air pollution are presented. The first one, a fully automatic instrument is destined for permanent monitoring of air pollution in preset sampling time from .25 to 24 hours. The second one was developed as a portable working model. Both instruments display their results in digital form in dust concentration units. (author)

  8. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  9. Dust devil generation

    International Nuclear Information System (INIS)

    G Onishchenko, O; A Pokhotelov, O; Horton, W; Stenflo, L

    2014-01-01

    The equations describing axi-symmetric nonlinear internal gravity waves in an unstable atmosphere are derived. A hydrodynamic model of a dust devil generation mechanism in such an atmosphere is investigated. It is shown that in an unstably stratified atmosphere the convective plumes with poloidal motion can grow exponentially. Furthermore, it is demonstrated that these convective plumes in an atmosphere with weak large scale toroidal motion are unstable with respect to three-dimensional dust devil generation. (papers)

  10. Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

    Science.gov (United States)

    Jiang, Lifen; Shi, Fuchen; Li, Bo; Luo, Yiqi; Chen, Jiquan; Chen, Jiakuan

    2005-09-01

    The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.

  11. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  12. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  13. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  14. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it contains...

  15. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  16. Toxicity of lunar dust assessed in inhalation-exposed rats.

    Science.gov (United States)

    Lam, Chiu-wing; Scully, Robert R; Zhang, Ye; Renne, Roger A; Hunter, Robert L; McCluskey, Richard A; Chen, Bean T; Castranova, Vincent; Driscoll, Kevin E; Gardner, Donald E; McClellan, Roger O; Cooper, Bonnie L; McKay, David S; Marshall, Linda; James, John T

    2013-10-01

    Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.

  17. Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Santhipriya Inapurapu

    2017-01-01

    Full Text Available Objective(s: To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes in cytosol/mitochondrial compartments, reactive oxygen species production and respiratory control ratio. Results: Wild-type yeast grown on glycerol exhibited heightened sensitivity to cisplatin than yeast grown on glucose. Cisplatin (100 μM, although significantly reduced the growth of wild- type cells, only slightly altered the growth rate of Rho0 cells. Cisplatin treatment decreased both pHcyt and pHmit to a similar extent without affecting the pH difference. Cisplatin dose-dependently increased the oxidative stress in wild-type, but not in respiration-deficient Rho0 strain. Cisplatin decreased the respiratory control ratio. Conclusion: These results suggest that cisplatin toxicity is influenced by the respiratory capacity of the cells and the intracellular oxidative burden. Although cisplatin per se slightly decreased the respiration of yeast cells grown in glucose, it did not disturb the mitochondrial chemiosmotic gradient.

  18. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    Science.gov (United States)

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by

  19. Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath

    International Nuclear Information System (INIS)

    Nitter, T.; Aslaksen, T.K.; Melandsoe, F.; Havnes, O.

    1994-01-01

    The authors have examined the dynamics of a collection of charged dust particles in the plasma sheath above a large body in a fully ionized space plasma when the radius of the large body is much larger than the sheath thickness. The dust particles are charged by the plasma, and the forces on the dust particles are assumed to be from the electric field in the sheath and from gravitation only. These forces will often act in opposite direction and may balance, making dust suspension and collection possible. The dust particles are supplied by injection or by electrostatic levitation. The ability of the sheath to collect dust particles, will be optimal for a certain combination of gravitation and plasma and dust particle parameters. In a dense dust sheath, the charges on the dust particles contribute significantly to the total space charge, and collective effects become important. These effects will reduce the magnitude of the sheath electric field strength and the charge on the dust particles. As dust particles are collected, the dust sheath is stretched and the largest dust particles may drop out, because the sheath is no longer able to suspend them. In a tenuous dust sheath, the inner layer, from the surface and about one Debye length thick, will be unstable for dust particle motion, and dust will not collect there. In a dense dust sheath, collective effects will decrease the thickness of this inner dust-free layer, making dust collection closer to the surface possible. By linearization of the force and current equations, they find the necessary and sufficient conditions which resemble those of planetary system bodies, but the results may also be of relevance to some laboratory plasmas

  20. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  1. Soil Respiration And Respiration Partitioning In An Oak-Savannah With A History Of Fertilization

    Science.gov (United States)

    Morris, K. A.; Nair, R.; Schrumpf, M.; Migliavacca, M.

    2017-12-01

    Soil respiration is a combination of autotrophic and heterotrophic components. These components have different controls and structurally complex ecosystems such as oak-savannahs offer an opportunity to study strongly contrasting conditions (ie., soil from under trees versus open areas) in an environment with similar soil mineralogy and climatic patterns. To measure respiration coming from plant roots, fungal hyphae, and free-living microbes we established stations of soil cores comprised of three selectively permeable meshes under tree canopies and in open grassy areas of a Holm Oak (Quercus ilex) savannah in Extremadura, Spain. Large plots of this ecosystem had previously been fertilized as part of a stoichiometeric imbalance study (in 2015). Stations were installed in Dec. 2016 within four plots; control, N added, P added, and N+P added. Respiration from cores was measured in campaigns at key phenological stages with a portable Li-Cor 8100A unit. Six months after installation > 50% of soil respiration was attributable to free-living microbes. There is a persistent effect of the prior fertilization, resulting in increased soil respiration in open areas regardless of fertilizer type, while respiration from under tree canopies had a varied response. Soil under tree canopies showed distinct sensitivity to stoichiometric imbalance, meaning that addition of N or P alone either did not change respiration or decreased it slightly, while N+P stimulated respiration. We determined that respiration from free-living microbes is a major component of soil respiration even in the most active plant growing season. However, because of the lag between the time of fertilization and the time of measurement, it not possible to say whether treatment responses are due solely to nutrient status of the soil or whether changes in plant biomass and species composition also play a role. Additional work planned at the site will shed light on this uncertainty as well as the contribution of

  2. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  3. [Characteristics of Soil Respiration along Eroded Sloping Land with Different SOC Background on the Hilly Loess Plateau].

    Science.gov (United States)

    Chen, Gai; Xu, Ming-xiang; Zhang, Ya-feng; Wang, Chao-hua; Fan, Hui-min; Wang, Shan-shan

    2015-09-01

    This study aimed to characterize soil respiration along eroded sloping land at erosion and deposition area under different soil organic carbon(SOC) levels, and linked the relationship between soil respiration and soil temperature, soil moisture, SOC and slope position. Experiments were carried out in the plots of S type slopes include five different soil organic carbon levels in the Loess Hilly Region. The S type slopes were divided into control area at the top of the slope, erosion area at the middle of the slope and deposition area at the toe of the slope. We found that soil temperature had a greater impact on soil respiration in the deposition area, whereas soil moisture had a greater impact on soil respiration in the erosion area compared among control area, erosion area and deposition area. In addition, SOC was the most important factor affecting soil respiration, which can explain soil respiration variation 54. 72%, followed by soil moisture, slope position and soil temperature, which explain soil respiration variation 18. 86% , 16. 13% and 10. 29%, respectively. Soil respiration response to erosion showed obvious on-site and off-site effects along the eroded sloping land. Soil respiration in the erosion area was reduced by 21. 14% compared with control area, and soil respiration in the deposition area was increased by 21. 93% compared with control area. Erosion effect on source and sink of carbon emission was correlated with SOC content of the eroded sloping land. When SOC content was higher than 6. 82 g.kg-1, the slope. erosion tended to be a carbon sequestration process, and when SOC content was lower than 3.03 g.kg-1, the slope erosion tended to be a process of the carbon emission source. The model could reflect the relationship between soil respiration and independent variables of soil organic carbon content, soil temperature and moisture.

  4. Effects of grain dust on lungs prior to and following dust remediation.

    Science.gov (United States)

    Pahwa, Punam; Dosman, James A; McDuffie, Helen H

    2008-12-01

    To determine longitudinal estimates of pulmonary function decline in Canadian grain elevator workers before and after dust control by analyzing data collected from five regions of Canada over 15 years. Declines in forced expired volume in one second and forced vital capacity before and after dust control were estimated by using a generalized estimating equations approach. For grain workers who were in the grain industry for 20 or more years both before and after dust control: the mean annual loss of forced expired volume in one second was greatest among current smoking grain workers followed by ex-smokers and nonsmokers, respectively. Similar results were obtained for forced vital capacity. Grain dust control was effective in reducing decline in the lung function measurements among grain workers in all smoking and exposure categories.

  5. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. [The preparation and characterization of fine dusts carried out in the Clinica del Lavoro di Milano in support of experimental studies].

    Science.gov (United States)

    Occella, E; Maddalon, G; Peruzzo, G F; Foà, V

    1999-01-01

    This paper aims to illustrate the conditions selected at the Clinica del Lavoro of the University of Milan to prepare and analyze a large number of fine dust samples produced over a period of about 50 years, that were initially used for studies within the Clinic performed in its own facilities, and since 1956 were sent to other Italian and overseas laboratories (Luxembourg, UK, Germany, Norway, Sweden, South Korea, USA). The total quantity of material distributed (with maximum size 7-10 microns) was about 2 kg and consisted of the following mineral and artificial compounds: quartz, HF-treated quartz, tridymite, HF-treated tridymite, cristobalite, chromite, anthracite, quartz sand for foundry moulds, sand from the Lybian desert, vitreous silica, pumice, cement, as well small quantities of metallic oxides, organic resins, chrysotile, crocidolite, fibres (vitreous, cotton and polyamidic). About half of the entire quantity of dusts produced consisted of partially HF-treated tridymite. Initially, research on the etiology of silicosis used quartz dust samples, simply sieved or ventilated (consisting of classes finer than 0.04 mm, containing a 15-20% respirable fraction). From 1956 to 1960 the dusts were produced by manual grinding in an agate mortar, below about 10 microns, starting from quartz from Quincinetto (near Ivrea, Province of Turin), containing about 99.5% quartz: particle size and composition were checked using an optical-petrographic technique, with identification of the free and total silica content. Subsequently, the dusts used for biological research were obtained by grinding coarse material with a cast iron pestle and planetary mills, agate and corundum jars. The grinding products were sized by means of centrifugal classification, using the selector developed by N. Zurlo, ensuring control of dust size both optically and by means of wet levigators and hydraulic classifiers (in cooperation with the Institute of Mines of Turin Polytechnic School). After 1990

  7. Phenotypic characteristics of nitrate and 3-nitro-1-propionate-respiring enzymes of the obligate respiratory anaerobe Denitrobacterium detoxificans

    Science.gov (United States)

    Anaerobic respiration consumes reducing equivalents generated during fermentation thereby contributing to the maintenance of hydrogen homoeostasis in gut ecosystems. Nitrate and 3-nitro-1-propionate (NPA) are acceptors used by the nonfermentative, rumen anaerobe, Denitrobacterium detoxificans, whic...

  8. Grain elevator workers show work-related pulmonary function changes and dose-effect relationships with dust exposure.

    Science.gov (United States)

    Corey, P; Hutcheon, M; Broder, I; Mintz, S

    1982-01-01

    The purpose of this study was to determine whether grain handlers underwent work-related changes in their pulmonary function and, if so, to examine the dose-effect relationships with dust exposure. The pulmonary function of grain handlers was measured at the beginning and end of work shifts over a period of one week, during which their exposure to dust was measured daily. The results showed changes indicative of a within-day obstructive change, in addition to a small restrictive defect occurring over the course of a week. Civic outside labourers who were examined as a control group showed a similar within-week obstructive change without any associated restriction of lung volume. The data on the grain handlers were also used to examine the dose-effect relationships of dust exposure, both on baseline pulmonary function and on within-day changes in these measurements. The baseline flow rates of workers who did not wear a mask were found to vary inversely with their average exposure to respirable dust. In addition, the flow rates underwent a within-day decrease that varied directly with their corresponding exposure to respirable dust and was unrelated to mask wearing. The median of the slopes for this relationship indicated that 50% of the subjects had a decrease of at least 923 ml/s in the value of their Vmax50%VC for each 1 mg/m3 increase in the concentration of respirable dust. Non-respirable dust did not have a measurable effect either on the baseline or the within-day changes in pulmonary function. The acute changes were unaffected by age, duration of employment, or extent of smoking. PMID:7138793

  9. Effects of Ore dust pollution on the physical and chemical features ...

    African Journals Online (AJOL)

    Effects of wind-blown iron and manganese ore dust on the upper part of a sandy beach have been investigated. The fine ore dust was found to reduce the porosity and permeability of the sand by clogging the interstices. The presence of ore dust also greatly increased the rate of heating and cooling of beach sand. Further ...

  10. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  11. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Larsen, Steen; Helge, Jørn Wulff

    2013-01-01

    signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead a(2) (KD) AMPK mice and wild type (WT) littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism...... and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued...... the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems...

  12. Metabolic adaptations and reduced respiration of the copepod ...

    African Journals Online (AJOL)

    The results reveal a reduction by 96% of metabolic rate in deep-living, diapausing C5s relative to surface-dwelling, active individuals. Only 14.4% of this metabolic reduction is explained by the lower ambient temperature at depth and a Q10 value of 2.34. Therefore, the major fraction (81.6%) of the metabolic reduction is ...

  13. Maatregelen ter vermindering van fijnstofemissie uit de pluimveehouderij: indicatieve evaluatie van positieve ionisatie van uitgaande ventilatielucht = Measures to reduce fine dust emission from poultry: indicative evaluation of positive ionization of exhaust air

    NARCIS (Netherlands)

    Winkel, A.; Ogink, N.W.M.

    2010-01-01

    In this study a positive ionization system (end of pipe technique) is indicatively evaluated for its potential to remove fine dust from exhaust air of poultry houses. From this study it is concluded that the system can be effective and applicable.

  14. Characteristic of ambient airborne and respirable particulate around a non formal industrial area

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Mariana Marselina; Rita Mukhtar

    2016-01-01

    Characterization of airborne particulate matter and respirable particulate in Parung Panjang district especially on surrounding non formal used batteries industrial area has been carried out to follow up the previous results with respect to high concentrations of lead detected in Serpong area. Sampling of airborne particulate matter in Parung Panjang was conducted using Gent stacked filter unit sampler, while the respirable particulate matter samples collected using personal dust sampler in Parung Panjang as a non formal Industrial area and Sukarasa village as a control, during 2011-2012. The concentration of masses were determined gravimetrically, while for elemental concentrations by X-Ray based methods. The average of mass concentration of air ambient PM 2.5 and PM 10 in Parung Panjang were 27.3 ± 13.7 and 77.5 ± 17.1 μg.m -3 , respectively. While the average concentration of respirable particulate in non formal industrial and control areas were 260 ± 233 and 82 ± 38 μg.m -3 , respectively. The percentage of average Pb concentration in PM 2.5 and PM 2.5-10 were contribute up to 45 and 10 % of the mass concentration, respectively. The maximum percentage concentration of Pb in respirable particulate in industrial and control area were 12.11 and 0.27 %, respectively. These results showed that the Pb concentrations in respirable particulate in industrial area were significantly tens times higher than in the control area. The high concentration of Pb in Parung Panjang was the main key element came from the used lead battery industry and one of pollutant source that contributed to the Pb pollution in Serpong area. (author)

  15. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  16. Unraveling net carbon exchange into its component processes of photosynthesis and respiration

    Science.gov (United States)

    Ballantyne, A.

    2017-12-01

    The recent `warming hiatus' presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Herewe combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantlyaccelerated from 0.007+/-0.065 PgC yr-2 over the warming period (1982 to 1998) to 0.119+/-0.071 PgC yr-2 over thewarminghiatus (1998-2012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration thatis correlated (r2 0.58; P = 0.0007) and sensitive ( gamma= 4.05 to 9.40 PgC yr-1 per deg C) to land temperatures. Global landmodels do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model includingsoil temperature and moisture observations seems to better captures the reduced respiration.

  17. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Simplified pressure method for respirator fit testing.

    Science.gov (United States)

    Han, D; Xu, M; Foo, S; Pilacinski, W; Willeke, K

    1991-08-01

    A simplified pressure method has been developed for fit testing air-purifying respirators. In this method, the air-purifying cartridges are replaced by a pressure-sensing attachment and a valve. While wearers hold their breath, a small pump extracts air from the respirator cavity until a steady-state pressure is reached in 1 to 2 sec. The flow rate through the face seal leak is a unique function of this pressure, which is determined once for all respirators, regardless of the respirator's cavity volume or deformation because of pliability. The contaminant concentration inside the respirator depends on the degree of dilution by the flow through the cartridges. The cartridge flow varies among different brands and is measured once for each brand. The ratio of cartridge to leakflow is a measure of fit. This flow ratio has been measured on human subjects and has been compared to fit factors determined on the same subjects by means of photometric and particle count tests. The aerosol tests gave higher values of fit.

  19. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  20. Interstellar dust and extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1990-01-01

    It is noted that the term interstellar dust refers to materials with rather different properties, and that the mean extinction law of Seaton (1979) or Savage and Mathis (1979) should be replaced by the expression given by Cardelli et al. (1989), using the appropriate value of total-to-selective extinction. The older laws were appropriate for the diffuse ISM but dust in clouds differs dramatically in its extinction law. Dust is heavily processed while in the ISM by being included within clouds and cycled back into the diffuse ISM many times during its lifetime. Hence, grains probably reflect only a trace of their origin, although meteoritic inclusions with isotopic anomalies demonstrate that some tiny particles survive intact from a supernova origin to the present. 186 refs

  1. Dust control for draglines

    Energy Technology Data Exchange (ETDEWEB)

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  2. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  3. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  4. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  5. Use of Waste Marble Dust for Stabilization of Clayey Soil

    Directory of Open Access Journals (Sweden)

    Altug SAYGILI

    2015-11-01

    Full Text Available The main objective of this research is to investigate the possibility of utilizing waste marble dust in stabilizing problematic soils (especially swelling clays. The research work was divided into two sections. The first section deals with the shear strength parameters and swelling characteristics, the second section deals with the microstructural investigation of the improved problematic soils. The marble dust addition ratios which have been studied were 0 %, 5 %, 10 %, 20 % and 30 % by weight. Physical, mechanical and chemical properties of soil and marble dust samples were investigated. In addition, SEM analyses were performed on the specimens. Test results indicate that marble dust addition improved the shear strength parameters and reduced the swell potential of the tested clay samples. Marble dust had a noticeable role in the hydration process because of high calcium content. Obtained results showed that marble dust addition to the clay samples will reduce the cost of constructing structures on problematic soils, and finding new utilization areas for waste marble dust will decrease environmental pollution. Utilizing waste marble dust materials in problematic soils will have great contribution to the economy and conservation of resources.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.11966

  6. Respiratory health effects of occupational exposure to charcoal dust in Namibia

    Science.gov (United States)

    Kgabi, Nnenesi

    2016-01-01

    Background Charcoal processing activities can increase the risk of adverse respiratory outcomes. Objective To determine dose–response relationships between occupational exposure to charcoal dust, respiratory symptoms and lung function among charcoal-processing workers in Namibia. Methods A cross-sectional study was conducted with 307 workers from charcoal factories in Namibia. All respondents completed interviewer-administered questionnaires. Spirometry was performed, ambient and respirable dust levels were assessed in different work sections. Multiple logistic regression analysis estimated the overall effect of charcoal dust exposure on respiratory outcomes, while linear regression estimated the exposure-related effect on lung function. Workers were stratified according to cumulative dust exposure category. Results Exposure to respirable charcoal dust levels was above occupational exposure limits in most sectors, with packing and weighing having the highest dust exposure levels (median 27.7 mg/m3, range: 0.2–33.0 for the 8-h time-weighted average). The high cumulative dust exposure category was significantly associated with usual cough (OR: 2.1; 95% CI: 1.1–4.0), usual phlegm (OR: 2.1; 95% CI: 1.1–4.1), episodes of phlegm and cough (OR: 2.8; 95% CI: 1.1–6.1), and shortness of breath. A non-statistically significant lower adjusted mean-predicted % FEV1 was observed (98.1% for male and 95.5% for female) among workers with greater exposure. Conclusions Charcoal dust levels exceeded the US OSHA recommended limit of 3.5 mg/m3 for carbon-black-containing material and study participants presented with exposure-related adverse respiratory outcomes in a dose–response manner. Our findings suggest that the Namibian Ministry of Labour introduce stronger enforcement strategies of existing national health and safety regulations within the industry. PMID:27687528

  7. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, M.

    2010-01-01

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  8. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance (∼ 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located ∼1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage

  9. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    International Nuclear Information System (INIS)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-01-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions

  10. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    Science.gov (United States)

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  11. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Benjamin J. [Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484 (United States); El-Naggar, Mohamed Y., E-mail: mnaggar@usc.edu [Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484 (United States); Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089-0484 (United States)

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  12. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  13. Dust Creation in CNC Drilling of Wood Composites

    Directory of Open Access Journals (Sweden)

    Tomasz Rogoziński

    2015-04-01

    Full Text Available This paper presents the particle-size distribution of dust created by the drilling of selected wood composites, which was carried out using a CNC machine. The particle-size distribution was studied through two methods. Two analyses were performed: the sieve analysis of samples from the whole mass of collected dust and the laser diffraction analysis of the finest fraction isolated by sieving. The results presented general information about the particle-size distribution of the dust, as well as detailed information on the content of the finest particles. This information revealed that the particles might pose a potential risk to the health of workers employed in the woodworking industry. This potential risk is due to the possibility of their dispersion in the atmosphere surrounding the workplace and their size, which allows them to be respirable. The relationship between the fineness of the dust and the type of wood composite was also tested. Most ultrafine particles are formed during the drilling of fibreboards and are especially produced in traditional wet technology.

  14. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  15. From explosions to black lung: a history of efforts to control coal mine dust.

    Science.gov (United States)

    Weeks, J L

    1993-01-01

    Highlights in the history of efforts to prevent occupational lung disease among coal miners in the United States are reviewed. The Federal Coal Mine Health and Safety Act of 1969 is summarized, and the sources and effects of its provisions to prevent coal workers' pneumoconiosis are examined. Descriptions follow of the identification of coal workers' pneumoconiosis as a disease, identification of respirable coal mine dust as its cause, and establishment and enforcement of an exposure limit. The development of prevention efforts focusing on surveillance of both exposure and outcome and of enforcement of dust control methods is examined.

  16. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  17. Intrapulmonary reactions of workers exposed to dust and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, T; Nakadate, T; Sakurai, M; Sakurai, Y

    1984-01-01

    Forty-one dust-and-ozone-exposed and 37 nonexposed workers, belonging to the Research and Development Division of a photo-copier manufacturing industry, were examined to assess the effect of the exposure to carbon, iron and resin dust and ozone in the air of the work environment by means of questionnaires on their physical condition, smoking habits and exposure history by interview, chest X-rays, testing of ventilatory functions, transcutaneous PO2 (tcPO2) test and H2O2-induced hemolysis test. The following results were obtained. Respirable dust concentrations in the air of the work place were 0.1-1.0 mg/m3, total dust concentrations 0.2-2.0 mg/m3, and ozone concentrations 0.004-0.06 ppm (0.008-0.12 mg/m3). According to the Japanese Classification of Radiographs of Pneumoconioses, the exposed workers showed a higher rate of profusion 0/1 and over, and category 1 and over (1/0 and over) than the nonexposed workers. Ventilatory function testing revealed no difference between exposed workers and nonexposed workers, but small airway narrowing was suspected in smoking workers in comparison with nonsmoking workers. Transcutaneous PO2 showed no difference between exposed and nonexposed workers, between smoking and nonsmoking workers, and between any of the paired six combinations out of the four groups of workers, i.e., nonsmoking and nonexposed, nonsmoking and exposed, smoking and nonexposed, and smoking and exposed. It was estimated by H2O2-induced hemolysis test that smoking and/or dust exposure, especially long-term exposure, gave rise to aggravation of fragility of the erythrocyte membrane by lipid peroxidation with ozone or active oxygen produced by the reaction of dust and alveolar macrophages.

  18. Multi-laboratory testing of a screening method for world trade center (WTC) collapse dust

    International Nuclear Information System (INIS)

    Rosati, Jacky A.; Bern, Amy M.; Willis, Robert D.; Blanchard, Fredrick T.; Conner, Teri L.; Kahn, Henry D.; Friedman, David

    2008-01-01

    The September 11, 2001 attack on the World Trade Center (WTC) covered a large area of downtown New York City with dust and debris. This paper describes the testing of an analytical method designed to evaluate whether sampled dust contains dust that may have originated from the collapse of the WTC. Using dust samples collected from locations affected and not affected (referred to as 'background' locations) by the collapse, a scanning electron microscopy (SEM) analysis method was developed to screen for three materials that are believed to be present in large quantities in WTC dusts: slag wool, concrete, and gypsum. An inter-laboratory evaluation of the method was implemented by having eight laboratories analyze a number of 'blind' dust samples, consisting of confirmed background dust and confirmed background dust spiked with varying amounts of dust affected by the WTC collapse. The levels of gypsum and concrete in the spiked samples were indistinguishable from the levels in the background samples. Measurements of slag wool in dust demonstrated potential for distinguishing between spiked and background samples in spite of considerable within and between laboratory variability. Slag wool measurements appear to be sufficiently sensitive to distinguish dust spiked with 5% WTC-affected dust from 22 out of 25 background dust samples. Additional development work and inter-laboratory testing of the slag wool component will be necessary to improve the precision and accuracy of the method and reduce inter- and intra-laboratory variability from levels observed in the inter-laboratory evaluation

  19. Erosion of dust aggregates

    NARCIS (Netherlands)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple

  20. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, Marelene

    2005-01-01

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.

  1. From dust to life

    Science.gov (United States)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  2. Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures

    Directory of Open Access Journals (Sweden)

    Cristiane Fagundes

    2013-03-01

    Full Text Available In this study, the influence of storage temperature and passive modified packaging (PMP on the respiration rate and physicochemical properties of fresh-cut Gala apples (Malus domestica B. was investigated. The samples were packed in flexible multilayer bags and stored at 2 °C, 5 °C, and 7 °C for eleven days. Respiration rate as a function of CO2 and O2 concentrations was determined using gas chromatography. The inhibition parameters were estimated using a mathematical model based on Michaelis-Menten equation. The following physicochemical properties were evaluated: total soluble solids, pH, titratable acidity, and reducing sugars. At 2 °C, the maximum respiration rate was observed after 150 hours. At 5 °C and 7 °C the maximum respiration rates were observed after 100 and 50 hours of storage, respectively. The inhibition model results obtained showed a clear effect of CO2 on O2 consumption. The soluble solids decreased, although not significantly, during storage at the three temperatures studied. Reducing sugars and titratable acidity decreased during storage and the pH increased. These results indicate that the respiration rate influenced the physicochemical properties.

  3. Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro

    Science.gov (United States)

    Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak

    2015-01-01

    Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304

  4. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  5. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  6. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  7. LIMITATION OF SOIL RESPIRATION DURING DRY PERIOD

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Janouš, Dalibor; Acosta, Manuel

    2003-01-01

    Roč. 16, - (2003), s. 47-52. ISBN 80-7157-297-7 R&D Projects: GA MŠk LN00A141; GA AV ČR IBS6087005 Institutional research plan: CEZ:AV0Z6087904 Keywords : moisture * Norway spruce * precipitation * respiration * soil CO2 efflux Subject RIV: EH - Ecology, Behaviour

  8. Internal current generation in respiration chambers

    Science.gov (United States)

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  9. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  10. Evaluation of Dust Exposure among the Workers in Agricultural Industries in North-East India.

    Science.gov (United States)

    Dewangan, Krishna N; Patil, Mahesh R

    2015-11-01

    This study aims to quantify dust exposure among the workers in four different industrial settings: rice mills, flour mills, oil mills, and tea factories and to compare the obtained data with the permissible exposure limit (PEL) of Indian Union Ministry of Labour as well as to compare the dust exposure across activities and seasons. RespiCon(TM) particle sampler was used for collecting dust concentration in the breathing zone of the workers. In total, 149 workers participated in the study and 204 samples were collected. Samples were collected in the vicinity of different processing operations. Samples in the rice mills were collected for two consecutive years in two seasons; however samples from other industries were collected for 1 year. The results indicate that geometric mean (GM) of dust exposure was significantly (P workers are exposed to higher level of respirable dust as compared to the PEL, while total dust exposure to all the workers were higher than the PEL; thus, immediate reduction of dust exposure among the workers is necessary for preventing respiratory system impairment. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. [Analysis and prevention of dust pollution caused by 5 common prosthetic materials].

    Science.gov (United States)

    Yang, Xiang-Wen; Wei, Bin; Zhu, Cao-Yun; Qian, Liang; Li, Yi-Han

    2017-10-01

    To analyze and evaluate dust pollution in prosthodontic clinic and make proposal for reasonable protection. This study analyzed the particle size, element composition and dust concentration of 5 materials which were commonly used in dental restorations (veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin, advanced artificial teeth) by using scanning electron microscopy (SEM), X-ray energy dispersive spectrometer(EDS) and dust concentration laser tester, in order to assess the effects of prosthodontic dust posed on medical staff health and put forward reasonable suggestions for prevention and control of dust pollution. The particle size of veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin and advanced artificial teeth was (2.15±3.00), (33.78±24.33), (7.78±11.86), (31.16±44.35) and (28.45±39.21)μm, respectively. The time weighted average respirable dust concentration of veneering ceramics was 0.393 mg/m 2 which was beyond the scope of national security. Dust pollution is serious in prosthodontic clinic to which we should pay more attention and take appropriate prevention measures.

  12. Quantitative determination of alpha-quartz in airborne dust samples by x-ray diffraction

    International Nuclear Information System (INIS)

    Bayon, A.; Roca, M.

    1982-01-01

    The quantitative determination by X-ray diffractometry of alpha-quartz In airborne respirable dust samples on silver membrane filters is considered. A cobalt anode X-ray tube Is employed. NiO is used as Internal standard In order to compensate for both the variations of specimen absorption and the effect due to the nonuniformity of the incident X-ray beam and to the incomplete homogeneity on the filters of samples and standards. (Author) 17 refs

  13. Quantitative determination of alpha-quartz in airbone dust samples by X-ray diffraction

    International Nuclear Information System (INIS)

    Bayon, A.; Roca, M.

    1982-01-01

    The quantitative determination by X-ray diffractometry of alpha-quartz in airbone respirable dust samples on silver membrane filters is considered. A cobalt anode X-ray tube is employec. NiO is used as internal standard in order to compensate for both the variations of specimen absorption and the effect due to the nonuniformity of the incident X-ray beam and to the incomplete homogeneity on the filters of samples and standards. (auth.) [es

  14. Dust from southern Africa: rates of emission and biogeochemical properties

    Science.gov (United States)

    Bhattachan, A.; D'Odorico, P.; Zobeck, T. M.; Okin, G. S.; Dintwe, K.

    2012-12-01

    The stabilized linear dunefields in the southern Kalahari show signs of reactivation due to reduced vegetation cover owing to drought and/or overgrazing. It has been demonstrated with a laboratory dust generator that the southern Kalahari soils are good emitters of dust and that large-scale dune reactivation can potentially make the region an important dust source in the relatively low-dust Southern Hemisphere. We show that emergence of the southern Kalahari as a new dust source may affect ocean biogeochemistry as the soils are rich in soluble iron and the dust from the southern Kalahari commonly reaches the Southern Ocean. We investigate the biogeochemical properties of the fine fraction of soil from the Kalahari dunes and compare them to those of currently active dust sources such as the Makgadikgadi and the Etosha pans as well as other smaller pans in the region. Using field measurements of sediment fluxes and satellite images, we calculate the rates of dust emission from the southern Kalahari under different land cover scenarios. To assess the reversibility of dune reactivation in the southern Kalahari, we investigate the resilience of dunefield vegetation by looking at changes in soil nutrients, fine soil fractions, and seed bank in areas affected by intense denudation.

  15. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    Science.gov (United States)

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  16. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.

    Science.gov (United States)

    Hals, Ingrid K; Bruerberg, Simon Gustafson; Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20-22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets

  17. Geochemical importance of isotopic fractionation during respiration

    International Nuclear Information System (INIS)

    Schleser, G.; Foerstel, H.

    1975-01-01

    In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes

  18. Acceptable respiratory protection program and LASL respirator research

    International Nuclear Information System (INIS)

    Skaggs, B.J.

    1979-01-01

    A short history is presented on the LASL Respiratory Protection Training Programs. Then a discussion is given on the major points of an acceptable respiratory protection program utilizing the points required by the Occupational, Safety, and Health Administration (OSHA) Regulation 29 CFR 1910.134. Contributions to respirator research are reviewed. Discussion is presented under the following section headings: program administration; respirator selection; respirator use; fitting and training; respirator maintenance; medical clearance and surveillance; special problems; program evaluation; and documentation

  19. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    Soil respiration varied from 2.5 to 11.9 g CO2 m-2 d-1 and from 1.5 to 9.3 g CO2 m-2 d-1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root ...

  20. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  1. Nutrients and temperature additively increase stream microbial respiration

    Science.gov (United States)

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  2. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Science.gov (United States)

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  3. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable container...

  4. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  5. What controls respiration rate in stored sugarbeet roots

    Science.gov (United States)

    Although respiration is estimated to be responsible for 60 to 80% of the sucrose lost during storage, the mechanisms by which sugarbeet roots regulate their respiration rate are unknown. In plants, respiration rate is regulated by (1) available respiratory capacity, (2) cellular energy status, (3) ...

  6. Redefinition and global estimation of basal ecosystem respiration rate

    DEFF Research Database (Denmark)

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models sti...

  7. Quantifying soil respiration at landscape scales. Chapter 11

    Science.gov (United States)

    John B. Bradford; Michael G. Ryan

    2008-01-01

    Soil CO2, efflux, or soil respiration, represents a substantial component of carbon cycling in terrestrial ecosystems. Consequently, quantifying soil respiration over large areas and long time periods is an increasingly important goal. However, soil respiration rates vary dramatically in space and time in response to both environmental conditions...

  8. Induction by ethylene of cyanide-resistant respiration

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, T.; Laties, G.G.

    1976-05-17

    Ethylene and cyanide induce an increase in respiration in a variety of plant tissues, whereas ethylene has no effect on tissues whose respiration is strongly inhibited by cyanide. It is suggested that the existence of a cyanide-insensitive electron transport path is a prerequisite for stimulation of respiration by ethylene.

  9. Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii Monospecific and Mixed Forest Stands

    Directory of Open Access Journals (Sweden)

    Pedro Antonio Plaza-Álvarez

    2017-07-01

    Full Text Available Soil respiration is a major carbon pathway sensitive to environmental changes. Using prescribed burnings to reduce fuel accumulation and lower risks of large-scale wildfires has recently become more important. Prescribed burning can significantly alter the soil environment, but its effect in practice on soil respiration is not sufficiently understood. We evaluated the effects of prescribed burning on soil respiration before and after burning (May–July 2016. Prescribed burning was conducted in two natural pine areas by comparing a mixed stand of Pinus nigra Arn. ssp. salzmannii with Pinus pinaster Ait. to a pure stand of Pinus nigra Arn. ssp. salzmannii in the central Iberian Peninsula. Soil respiration was measured by an EGM-4 (Environmental Gas Monitor infrared gas analyser in both burned and unburned (control plots. Burnings were low-intensity, and slightly more energetic in the pure stand given its larger litter volume. Post-burning soil respiration followed a similar evolution to that in the control plots, but was greater in the pure stand burned zone and slightly lower in the burned plots in the mixed stand. No significant differences were found in any stand. Soil respiration significantly changed in temporal evolution due to increasing temperatures when summer began. We conclude that prescribed fire induces no changes in SR immediately after fire. This study helps understand how prescribed burnings can affect soil respiration in pure and mixed Spanish black pine forest stands.

  10. [Influence of traffic restriction on road and construction fugitive dust].

    Science.gov (United States)

    Tian, Gang; Li, Gang; Qin, Jian-Ping; Fan, Shou-Bin; Huang, Yu-Hu; Nie, Lei

    2009-05-15

    By monitoring the road and construction dust fall continuously during the "Good Luck Beijing" sport events, the reduction of road and construction dust fall caused by traffic restriction was studied. The contribution rate of road and construction dust to particulate matter of Beijing atmosphere environment, and the emission ratio of it to total local PM10 emission were analyzed. The results show that the traffic restriction reduces road and construction dust fall significantly. The dust fall average value of ring roads was 0.27 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.81 and 0.59 g x (m2 x d)(-1) 1 month and 7 days before. The dust fall average value of major arterial and minor arterial was 0.21 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.54 and 0.58 g x (m2 x d)(-1) 1 month and 7 days before. The roads emission reduced 60%-70% compared with before traffic restriction. The dust fall average values of civil architecture and utility architecture were 0.61 and 1.06 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 1.15 and 1.55 g x (m2 x d)(-1) 20 days before. The construction dust reduced 30%-47% compared with 20 days before traffic restriction. Road and construction dust emission are the main source of atmosphere particulate matter in Beijing, and its contribution to ambient PM10 concentration is 21%-36%. PM10 emitted from roads and constructions account for 42%-72% and 30%-51% of local emission while the local PM10 account for 50% and 70% of the total emission.

  11. Improvement of cement plant dust emission by bag filter system

    Science.gov (United States)

    Wahyu Purnomo, Chandra; Budhijanto, Wiratni; Alfisyah, Muziibu; Triyono

    2018-03-01

    The limestone quarry in PT Indocement Tunggal Prakarsa (ITP) in Cirebon is considered as a complex quarry in terms of chemical composition and material hardness. From the beginning of the plant operation up to the end of 2015, the dust removal was rely on electrostatic precipitator (EP) system. Whenever limestone from specific quarry zones were incorporated into Raw Mill (RM) feed or there was an upset condition, the dust emission increased significantly. Beside higher demand of electricity, an EP system requires lower gas inlet temperature in order to remove the dust effectively which requires larger cooling water in the previous gas conditioning tower to cool down gas from 400 °C to about 100 °C. By considering the drawbacks, the EP system was replaced by a bag filter (BF) system. The BF allows higher temperature of gas inlet and it has higher dust removal efficiency. In this study, the efficiency of the two different dust removal systems is compared. The effect of process variables i.e. RM feed, kiln feed, inlet temperature and pressure, and small size particle fraction to the dust emission are studied by multivariate linier regression analysis. It is observed that the BF system can reduce significantly the dust emission from 30 to 6 mg/m3 and in the same time reducing CO2 emission by 0.24 ton/year from the electricity consumption saving.

  12. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.

    2015-12-01

    > ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.

  13. The regulation of mitochondrial respiration by opening of mKCa channels is age-dependent

    NARCIS (Netherlands)

    Heinen, André; Winning, Adrian; Schlack, Wolfgang; Hollmann, Markus W.; Preckel, Benedikt; Frässdorf, Jan; Weber, Nina C.

    2008-01-01

    The protective potency of ischemic preconditioning decreases with increasing age. A key step in ischemic preconditioning is the opening of mitochondrial Ca(2+) sensitive K(+) (mK(Ca)) channels, which causes mild uncoupling of mitochondrial respiration. We hypothesized that aging reduces the effects

  14. Dust storm, northern Mexico

    Science.gov (United States)

    1983-01-01

    This large dust storm along the left side of the photo, covers a large portion of the state of Coahuila, Mexico (27.5N, 102.0E). The look angle of this oblique photo is from the south to the north. In the foreground is the Sierra Madre Oriental in the states Coahuila and Nuevo Leon with the Rio Grande River, Amistad Reservoir and Texas in the background.

  15. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    Science.gov (United States)

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  16. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    Science.gov (United States)

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    Science.gov (United States)

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-05

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens.

  18. ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir [Department of Physics, Faculty of Science, Golestan University, Gorgan 49138-15739 (Iran, Islamic Republic of)

    2016-02-01

    We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factor of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.

  19. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    T. D. Fairlie

    2010-04-01

    Full Text Available We use a 3-D global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3 ~10−3 much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk. This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  20. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  1. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest

    Science.gov (United States)

    E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger

    2006-01-01

    Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...

  2. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  3. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  4. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  5. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Science.gov (United States)

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  6. A MEMS turbine prototype for respiration harvesting

    Science.gov (United States)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  7. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  8. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  9. Configuration of Air Microfluidic Chip for Separating and Grading Respirable Dust

    Science.gov (United States)

    Zhu, Xiaofeng; Jia, Yiting; Sun, Jianhai; Zhao, Peiyue; Liu, Jinhua; Zhang, Yanni; Ning, Zhanwu

    2018-03-01

    Particulate matter (PM) is a category of airborne pollutants, and fine particles that have a diameter of 2.5 μm (PM2.5) or smaller are especially damaging to human health because of their ability to penetrate deep into our respiratory system, Therefore, Monitoring of PM is very important. In this work, an air micro- fluidic PM sensor based on MEMS was proposed, and numerical model of the sensor was simulated accurately. The sensor was able to separate particles according to their sizes, and then transports and deposits the selected particles using thermophoretic precipitation onto the surface of a microfabricated mass-sensitive film bulk acoustic resonator (FBAR), precisely weighing and providing the concentration of PM. The PM sensor has double stage separation function, and the primary separator can separate the particles with size of less 10 μm from the particles, and the secondary can separate particles with size of less 2.5 μm from the particles.

  10. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... shall be ground to pass 99+ percent through a 270-mesh sieve. (e) Samples of the test suspension will be taken during each test period for analysis. (f) The total amount of silica mist unretained in the...

  11. Chemical Characterization and Behavior of Respirable Fractions of Indoor Dusts Collected Near a Landfill Facility

    Directory of Open Access Journals (Sweden)

    Rheo B. Lamorena-Lim

    2016-06-01

    Full Text Available The study aims to determine the inorganic and organic phases in airborne particulate matter (PM collected near a landf ill facility. The establishments within the vicinity of the landfill considered in the study were a junk shop, a school, and a money changer shop. From the elemental analysis using inductively-coupled plasma mass spectrometry (ICP-MS, lead and cadmium were discovered to be more abundant in the total suspended particulate (TSP fraction, whereas copper was more abundant in the smaller PM2.5. Manganese, arsenic, strontium, cadmium, and lead were more abundant in the PM10 fraction than in PM2.5. The results of the chemical characterization were compiled and evaluated in a geochemical modelling code (PHREEQC to determine the potential speciation of these chemical constituents. Solution complexes of As, Pb, Cd and phthalates, and metal species, such as H2AsO3- , Cd2OH3+, Pb(OH3-, were predicted to form by the PHREEQC simulation runs once the endmember components interact with water. The results contribute to the background information on the potential impacts from exposure to airborne PM at workplaces around landfill facilities. Moreover, the data gathered provide a baseline for the chemical characterization and behavior of chemical constituents of PM possibly present in this specific type of environment.

  12. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    Science.gov (United States)

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  13. Photoelectric charging of dust grains

    International Nuclear Information System (INIS)

    Ignatov, A. M.

    2009-01-01

    Photoemission from the surface of a dust grain in vacuum is considered. It is shown that the cutoff in the energy spectrum of emitted electrons leads to the formation of a steady-state electron cloud. The equation describing the distribution of the electric potential in the vicinity of a dust grain is solved numerically. The dust grain charge is found as a function of the grain size.

  14. Influence of fly dust from coking plants on some biological processes of plants

    Energy Technology Data Exchange (ETDEWEB)

    Masek, V

    1972-03-01

    The influence of three typical samples of fly dust from a coking plant on enzymatic reactions, photosynthesis, chlorophyll concentration in leaves of bean plants was studied. The hydrolysis of starch with amylases and of the albumen with pepsin at 37 C and the inversion of sacharosis by invertase in a buffered environment were also examined. None of the three dust samples had a significant effect on enzymatic reactions. Applying the dust samples to the leaves of young bean plants reduced the intensity of photosynthesis and chlorophyll concentration. In aqueous extracts, the dust samples liberated only small quantities of nutrients, plants which were grown in a dust suspension showed no increase of dry substance and growth rate. A stimulating effect of the dust samples on root growth was determined. Mixing the dust samples with the soil influenced the accessibility of water to plants. 17 references, 6 figures, 9 tables.

  15. Simulation of the dust suppression process with foam in the areas of belt conveyors

    Directory of Open Access Journals (Sweden)

    Bespalov Vadim

    2017-01-01

    Full Text Available The article provides the analysis of the physical essence and simulation of the process of dust retention with foam in the air of working zones of belt conveyors transporting sand, crushed stone, gravel, coal, grain. In accordance with the proposed physical-energy concept of simulation of the process of dust control its physical essence is in a deliberate sequential action on the dust particles with previously prepared by the parameters external (additional dispersed systems. Use of dust retention technology foam method provides high efficiency of reducing the concentration of dust in the air of working areas of belt conveyors, which varies in the range of 85.0–99.0 %, which provides the standard level of dust contamination (MPC in air of working areas of listed industrial sources of formation and emission of dust.

  16. Dust in cosmic plasma environments

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  17. [Dust concentration analysis in non-coal mining. Exposure evaluation based on measurements performed by occupational hygiene laboratories in the years 2001-2005 in Poland].

    Science.gov (United States)

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Szadkowska-Stańczyk, Irena

    2011-01-01

    Non-coal mining includes the extraction of materials for construction (stone, gravel, sand and clay), chemical industry (salt and sulfur), metallurgy (metal ores, uranium and thorium) and other mining and quarrying. Regardless of the type of mining company one of the most common health hazards in this sector is exposure to high concentrations of dust occurring during the extraction of materials. Such activities as drilling, use of blasting agents, processing of raw material, its transportation and loading are the source of large amounts of dust containing crystalline silica. Data on exposure to dust, collected by industrial hygiene laboratories on the basis of dust concentration measurements in the work environment, were obtained from the sanitary inspection service. The analysis of dust concentrations at workplaces in non-coal mining covered the years 2001-2005. The average concentration of inhalable and respirable dust and the degree of results dispersion at workposts in different branches of non-coal mining (according to NACE rev1.1) were evaluated. Also there was estimated the percentage of surveys indicating dust concentrations above hygiene standards. Almost 5000 measurements of dust concentrations were performed in the years under study. The highest concentration of inhalable dust was noted for the production of salt (5.51 mg/m3), other mining and quarrying (4.30 mg/m3) and quarrying of slate (3.77 mg/m3). For respirable dust the highest concentrations were noted in other mining and quarrying (1.10 mg/m3), quarrying of slate (1.09 mg/m3) and quarrying of stone (0.81 mg/m3). Exposure to high concentrations of dust during the extraction of non-carbon is still an important hazard to human health. Almost for all workposts under study the excess of hygiene standards were observed.

  18. Exposure levels and determinants of inhalable dust exposure in bakeries.

    Science.gov (United States)

    Burstyn, I; Teschke, K; Kennedy, S M

    1997-12-01

    The study's objectives were to measure full-shift exposure to inhalable dust in bakeries and define the determinants of full-shift exposure. Inhalable dust was measured gravimetrically. Ninety-six bakery workers, employed in seven different bakeries, participated in the study. Two side-by-side full-shift inhalable dust samples were obtained from each study participant on a single occasion. Samples were collected on 18 days selected at random. During the entire sampling period, bakers were observed and information on 14 different tasks was recorded at 15 min intervals. Other production characteristics were also recorded for each sampling day. These task and production variables were used in statistical modelling to identify significant predictors of exposure. The mean full-shift inhalable dust exposure was 8.2 mg/m3 (range: 0.1-110 mg/m3). A regression model explained 79% of the variability in exposure. The model indicated that tasks such as weighing, pouring and operating dough-brakers and reversible sheeters increased the exposure, while packing, catching and decorating decreased the exposure. Bread and bun production lines were associated with increased full-shift inhalable dust exposure, while cake production and substitution of dusting with the use of divider oil were associated with decreased exposure. Production tasks and characteristics are strong predictors of personal full-shift exposures to flour dust among bakers; these can be altered to reduce exposure levels.

  19. Radiation, ventilation and dust studies at Agnew Lake mines

    International Nuclear Information System (INIS)

    Bigu, J.; Gangal, M.; Knight, G.; Regan, R.; Stefanich, W.

    1980-08-01

    Measurements of radon gas, radon and thoron decay products, ventilation, and aerosol (<= 0.13 μm) and respirable dust (<= 10 μm) concentrations were conducted at an underground uranium mine in the Agnew Lake, Ontario, area. Radon gas measurements were carried out with a radon gas continuous monitoring system, whereas the other variables were determined by grab-sampling techniques. Studies were conducted at three mine locations: a working stope, an exhaust area near the stope and a general intake area supplying fresh air to several stopes. Radiation and dust studies were carried out for different mining operations (mainly mucking and drilling) and environmental conditions. Underground barometric pressure did not seem to affect radon gas levels. No obvious effect on radiation and dust levels was readily observed nor could be correlated with underground meteorological data within the relatively narrow range the (meteorological) variables changed. Theoretical calculations for some radiation variables were done and compared with experimental values. Within the limitations of some of the calculations, overall fair agreement between experimental and theoretical data was found

  20. Dust Prevention and Low-Volume Road Construction in South Greenland

    DEFF Research Database (Denmark)

    Nielsen, Hans Rasmus; Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas

    2010-01-01

    The dust reducing agent Dustex, which is made by lignosulphonate, has some more qualities than reducing the dust amounts. In several cases it is shown that the stability is increased. This is documented under some conditions, but some investigations could still be carried out. The use of the prod...

  1. Foam property tests to evaluate the potential for longwall shield dust control.

    Science.gov (United States)

    Reed, W R; Beck, T W; Zheng, Y; Klima, S; Driscoll, J

    2018-01-01

    Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration's lower coal mine respirable dust standard of 1.5 mg/m 3 . Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control.

  2. Exposure to dust mixtures containing free crystalline silica and mineral fibers

    International Nuclear Information System (INIS)

    Wozniak, H.; Wiecek, E.; Bielichowska-Cybula, G.

    1996-01-01

    Exposure to dust mixture containing at the same time respirable mineral fibres and free crystalline silica may occur in Poland in mines and in the Lower Silesia plants processing mineral raw materials as well as in all plants which use asbestos products and MMMF. Workposts where thermal insulation is exchange with possible phase transformations during operations under conditions of high temperature, expose particularly complex problems. In the work environment of this kind, dust concentration of free crystalline silica becomes important but not sufficient criterion for evaluating working conditions and it may be misleading. A range of studies indispensable for the proper evaluation of exposure to dust, covering together with measurement of dust and SiO 2 concentrations, determination of the mineral composition of dust, was developed. It was also found that the acceptable level of risk for neoplastic disease, namely 10(-3) can be attained in the work environment only if the concentration ranges from 0.05 to 0.1 f/cm 3 , that is equal to 20% of MAC value which is now binding in Poland. Cancer risk (lung cancer and mesothelioma jointly) during a 20-year exposure to concentrations equal to present MAC values should be estimated as about 10(-2) what indicates that risk is too high and it is necessary to diminish MAC values for asbestos dust. (author). 17 refs, 3 tabs

  3. Toxicity of Lunar Dust in Lungs Assessed by Examining Biomarkers in Exposed Mice

    Science.gov (United States)

    Lam, C.-W.; James, J. T.; Zeidler-Erdely, P. C.; Castranova, V.; Young, S. H.; Quan, C. L.; Khan-Mayberry, N.; Taylor, L. A.

    2010-01-01

    NASA is contemplating to build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of soil, of which the finest portion is highly reactive dust. Dust samples of respirable sizes were aerodynamically isolated from two lunar soil samples of different maturities (cosmic exposure ages) collected during the Apollo 16 mission. The lunar dust samples, TiO2, or quartz, suspended in normal saline were given to groups of 5 C57 male mice by intrapharyngeal aspiration at 0. 1, 0.3, or 1.0 mg/mouse. Because lunar dust aggregates rapidly in aqueous media, some tests were conducted with dusts suspended in Survanta/saline (1:1). The mice were euthanized 7 or 30 days later, and their lungs were lavaged to assess the presence of toxicity biomarkers in bronchioalveolar lavage fluids. The overall results showed that the two lunar dust samples were similar in toxicity, they were more toxic than T102 , but less toxic than quartz. This preliminary study is a part of the large study to obtain data for setting exposure limits for astronauts living on the Moon

  4. Gravitational radiation from dust

    International Nuclear Information System (INIS)

    Isaacson, R.A.; Welling, J.S.; Winicour, J.

    1985-01-01

    A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems

  5. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  6. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  7. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  8. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  9. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Czajka

    2016-12-01

    Full Text Available Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN, a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs and proximal tubular cells (HK-2 were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer. In normoglycemia, HK-2 had significantly lower basal, ATP-linked and maximal respiration rates, and lower reserve capacity compared to HMCs. Hyperglycemia caused a down-regulation of all respiratory parameters within 4 days in HK-2 but not in HMCs. After 8 days of hyperglycemia, down-regulation of respiratory parameters persisted in tubular cells with compensatory up-regulated glycolysis. HMCs had reduced maximal respiration and reserve capacity at 8 days, and by 12 days had compromised mitochondrial respiration despite which they did not enhance glycolysis. These data suggest that diabetes is likely to lead to a cellular deficit in ATP production in both cell types, although with different sensitivities, and this mechanism could significantly contribute to the cellular damage seen in the diabetic kidney. Prevention of diabetes induced damage to renal mitochondrial respiration may be a novel therapeutic approach for the prevention/treatment of DN.

  10. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Science.gov (United States)

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  11. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  12. Engineering control technologies to reduce occupational silica exposures in masonry cutting and tuckpointing.

    Science.gov (United States)

    Meeker, John D; Cooper, Michael R; Lefkowitz, Daniel; Susi, Pam

    2009-01-01

    A number of tasks in construction generate worker overexposures to respirable crystalline silica dust, which is a significant contributor to occupational mortality and morbidity. This study evaluated the performance of commercially available engineering controls used in dusty construction tasks commonly performed by bricklayers. Local exhaust ventilation (LEV) controls for a portable abrasive cutter and for tuckpointing grinders were examined at a bricklayers' training center, as were two stationary wet saws. Personal breathing zone air samples were collected with and without the use of LEV or water suppression during simulated concrete block cutting, brick cutting, and tuckpointing. Compared with the use of no exposure control during block and brick cutting, the portable LEV unit significantly reduced mean respirable quartz exposures by 96% for block cutting and 91% for brick cutting (p controls (p control and no-control scenarios. These reductions with commercially available off-the-shelf tools demonstrate the effectiveness of engineering control interventions to reduce crystalline silica exposures in construction. Strategies to further improve control performance and approaches for increasing control interventions in construction are needed.

  13. Effects of fluoride and 6 benzylaminopurine on growth and respiration of corn and cotton roots

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C R

    1967-01-01

    Corn and cotton plants exhibit a wide difference in their susceptibility to atmospheric fluoride. Corn shows leaf lesions when 100 ..gamma../gm on a dry weight basis are accumulated but cotton can tolerate 5000 ..gamma../gm without showing leaf necrosis. A comparison of respirational response of potted seedlings of the two species to 10 ..gamma../M/sup 3/ HF caused an increase of about 10%. Addition of 2 x 10/sup 2/M F/sup -/ to solutions for germinating the plants showed that cotton accumulated about twice as much as F/sup -/ in seedling roots. Growth was reduced about one half by 2 x 10/sup -3/M F/sup -/ in both species but respirational rates of root tips from control and fluoride treated tissues were equal. Prolonged treatment of excised root tips with fluoride reduced respiration. Because fluoride causes cellular changes in roots similar to aging and kinetin seems to act to reverse these changes, corn was germinated with 2 x 10/sup -3/M F/sup -/ and increasing levels of 6-benzylaminopurine. Root growth inhibition (63%) was reversed significantly at 0.2 - 0.8..gamma.. ml. Respirational rates of root tips grown in fluoride, fluoride plus 6-benzylaminopurine and controls were equal.

  14. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus massoniana Forests in the Three Gorges Reservoir Area, China

    Science.gov (United States)

    Zeng, Lixiong; Huang, Zhilin; Lei, Jingpin; Zhou, Benzhi; Li, Maihe

    2014-01-01

    To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling. PMID:25004164

  15. Of data and dust

    CERN Multimedia

    Stephanie Hills

    2016-01-01

    The traditional image of an archive is one of dusty old boxes, books and papers. When your archive is digital, dust spells disaster. An innovative environmental sensor designed and built by a CERN IT specialist has become an essential element in the Laboratory’s data-preservation strategy.   The novel air particle monitoring sensor designed by CERN's Julien Leduc. CERN’s archive holds more than 130 petabytes of data from past and present high-energy physics experiments. Some of it is 40 years old, most of it needs to be kept forever, and all of it is held on tape cartridges (over 20,000 of them). The cartridges are held inside tape libraries with robotic arms that load them into tape drives where they can be read and written. Tape cartridges have many advantages over other data storage media, notably cost and long-term reliability, but topping the list of drawbacks is their vulnerability to contamination from airborne dust particles; a tiny piece of g...

  16. Radionuclides in house dust

    Energy Technology Data Exchange (ETDEWEB)

    Fry, F A; Green, N; Dodd, N J; Hammond, D J

    1985-04-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate authorising Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, although radionuclides originating rom the BNFL site can be detected in house dust, this source of contamination is a negligible route of exposure for members of the public in West Cumbria. This report presents the results of the Board's study of house dust in twenty homes in Cumbria during the spring and summer of 1984. A more intensive investigation is being carried out by Imperial College. (author)

  17. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  18. Dust forecasting system in JMA

    International Nuclear Information System (INIS)

    Mikami, M; Tanaka, T Y; Maki, T

    2009-01-01

    JMAs dust forecasting information, which is based on a GCM dust model, is presented through the JMA website coupled with nowcast information. The website was updated recently and JMA and MOE joint 'KOSA' website was open from April 2008. Data assimilation technique will be introduced for improvement of the 'KOSA' information.

  19. Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    Science.gov (United States)

    Long, Xin; Tie, Xuexi; Li, Guohui; Cao, Junji; Feng, Tian; Zhao, Shuyu; Xing, Li; An, Zhisheng

    2018-05-01

    In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall (GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from -5 to -15 % in the NCP, with a maximum reduction of -12.4 % (-19.2 µg m-3) in BTH and -7.6 % (-10.1 µg m-3) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the NCP

  20. Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    Directory of Open Access Journals (Sweden)

    X. Long

    2018-05-01

    Full Text Available In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall (GGW. Both the grass GGW and forest GGW are located between the dust source region (DSR and the densely populated North China Plain (NCP. To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei. When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from −5 to −15 % in the NCP, with a maximum reduction of −12.4 % (−19.2 µg m−3 in BTH and −7.6 % (−10.1 µg m−3 in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the

  1. Metal Dusting: Catastrophic Corrosion by Carbon

    Science.gov (United States)

    Young, David J.; Zhang, Jianqiang

    2012-12-01

    Reducing gases rich in carbon-bearing species such as CO can be supersaturated with respect to graphite at intermediate temperatures of about 400-700°C. Engineering alloys such as low-alloy and stainless steels, and heat-resisting iron-, nickel-, and cobalt-base alloys catalyze gas processes that release the carbon. An understanding of how the resulting carbon deposition can destroy alloys at a catastrophically rapid rate has been the objective of a great deal of research. The current review of recent work on metal dusting covers the mass transfer—principally carbon diffusion—and graphite nucleation processes involved. A clear distinction emerges between ferritic alloys, which form cementite and precipitate graphite within that carbide, and austenitics that nucleate graphite directly within the metal. The latter process is facilitated by the strong orientation relationship between the graphite and face-centered cubic (fcc) lattices. Strategies for the control of dusting are briefly outlined.

  2. [Comparative studies of personal and steady-state sampling for determining dust exposure in different job groups].

    Science.gov (United States)

    Cherneva, P; Lukanova, R

    1994-01-01

    The variability of the dust concentration in time and space, as well as the change of worker's place during the working process, define the necessity of introducing personal sampling in the hygiene control practice. However, the laboratory equipment with personal devices is still not sufficient. The aim of this work is to assess the dust exposure of the basic professional groups from the ore- and coal production in Bulgaria by personal sampling in comparative studies of the static ambient sampling used up to now. 63 full-shift investigations of the dust factor were performed on professional groups of miners of the polymetal and coal pits by static ambient devices-[Hygitest production] and personal [from firms "Casella", "Strolein" and "Gilian"] devices, after standardized methods. The results are data processed-by means of logarithmic normal distribution of the relation of the respirable dust concentrations, determined personally and by static ambient sampling. The limits of variation of this correlation are from 0.5 to 4.1 at average geometric value -0.95 and standard geometric deviation-1.8 i.e. both types of sampling are intersubstitutional for the examined groups and sites, as in the underground ores the professional risk of respirable dust is underestimated up to 4 times at static ambient sampling.

  3. Dust in flowing magnetized plasma

    International Nuclear Information System (INIS)

    Pandey, Birendra P.; Samarian, Alex A.; Vladimirov, Sergey V.

    2009-01-01

    Plasma flows occur in almost every laboratory device and interactions of flowing plasmas with near-wall impurities and/or dust significantly affects the efficiency and lifetime of such devices. The charged dust inside the magnetized flowing plasma moves primarily under the influence of the plasma drag and electric forces. Here, the charge on the dust, plasma potential, and plasma density are calculated self-consistently. The electrons are assumed non-Boltzmannian and the effect of electron magnetization and electron-atom collisions on the dust charge is calculated in a self-consistent fashion. For various plasma magnetization parameters viz. the ratio of the electron and ion cyclotron frequencies to their respective collision frequencies, plasma-atom and ionization frequencies, the evolution of the plasma potential and density in the flow region is investigated. The variation of the dust charge profile is shown to be a sensitive function of plasma parameters. (author)

  4. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    Science.gov (United States)

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.

  5. Partitioning of ecosystem respiration in a beech forest

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Ibrom, Andreas; Larsen, Klaus Steenberg

    2018-01-01

    Terrestrial ecosystem respiration (Reco) represents a major component of the global carbon cycle. It consists of many sub-components, such as aboveground plant respiration and belowground root and microbial respiration, each of which may respond differently to abiotic factors, and thus to global...... of Reco in a temperate beech forest at diel, seasonal and annual time scales. Reco was measured by eddy covariance while respiration rates from soil, tree stems and isolated coarse tree roots were measured bi-hourly by an automated closed-chamber system. Soil respiration (Rsoil) was measured in intact...... plots, and heterotrophic Rsoil was measured in trenched plots. Tree stem (Rstem) and coarse root (Rroot) respiration were measured by custom made closed-chambers. We found that the contribution of Rstem to total Reco varied across the year, by only accounting for 6% of Reco during winter and 16% during...

  6. Mitochondrial Respiration after One Session of Calf Raise Exercise in Patients with Peripheral Vascular Disease and Healthy Older Adults.

    Science.gov (United States)

    van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R

    2016-01-01

    Mitochondria are essential for energy production in the muscle cell and for this they are dependent upon a sufficient supply of oxygen by the circulation. Exercise training has shown to be a potent stimulus for physiological adaptations and mitochondria play a central role. Whether changes in mitochondrial respiration are seen after exercise in patients with a reduced circulation is unknown. The aim of the study was to evaluate the time course and whether one session of calf raise exercise stimulates mitochondrial respiration in the calf muscle of patients with peripheral vascular disease. One group of patients with peripheral vascular disease (n = 11) and one group of healthy older adults (n = 11) were included. Patients performed one session of continuous calf raises followed by 5 extra repetitions after initiation of pain. Healthy older adults performed 100 continuous calf raises. Gastrocnemius muscle biopsies were collected at baseline and 15 minutes, one hour, three hours and 24 hours after one session of calf raise exercise. A multi substrate (octanoylcarnitine, malate, adp, glutamate, succinate, FCCP, rotenone) approach was used to analyze mitochondrial respiration in permeabilized fibers. Mixed-linear model for repeated measures was used for statistical analyses. Patients with peripheral vascular disease have a lower baseline respiration supported by complex I and they increase respiration supported by complex II at one hour post-exercise. Healthy older adults increase respiration supported by electron transfer flavoprotein and complex I at one hour and 24 hours post-exercise. Our results indicate a shift towards mitochondrial respiration supported by complex II as being a pathophysiological component of peripheral vascular disease. Furthermore exercise stimulates mitochondrial respiration already after one session of calf raise exercise in patients with peripheral vascular disease and healthy older adults. ClinicalTrials.gov NCT01842412.

  7. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  8. A model of environmental behaviour of contaminated dust and its application to determining dust fluxes and residence times

    International Nuclear Information System (INIS)

    Allott, R.W.; Kelly, M.; Hewitt, C.N.

    1994-01-01

    A model has been developed to describe the temporal behaviour of the concentrations of a pollutant tracer within the urban environment of Barrow-in-Furness, NW England. The tracer used was 137 Cs derived primarily from wet deposition of the radioactive cloud from the Chernobyl reactor accident. The 137 Cs activity deposited during this primary event was supplemented by a small secondary atmospheric deposition input of resuspended activity. The model was validated against the measured temporal behaviour of 137 Cs in urban dust for two outdoor reservoirs in which the only observed input of dust and activity was by atmospheric deposition. Further modelling studies on other reservoirs (both outdoors and indoors) confirmed the existence of additional input influxes of dust and activity. The model enabled estimates of the magnitudes of these additional fluxes to be made and mean dust mass residence times to be calculated. These residence times correspond to environment half-lives of 170 ± 70 d outdoors and 20 ± 1 d indoors, for reservoirs which only receive a single primary input of a contaminant. Where secondary inputs of pollutants occur, the mean environmental half-lives of the pollutants increase by 50% for outdoor dust reservoirs and over 18-times for indoor reservoirs. This re-contamination of indoor dusts has implications in that attention should be paid to reducing outdoor contamination levels to ensure that attempts to reduce the levels of a pollutant indoors by cleaning are effective. (Author)

  9. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  10. COAL DUST EMISSION PROBLEM

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by

  11. An analysis of employee exposure to organic dust at large-scale composting facilities

    Science.gov (United States)

    Sykes, P.; Allen, J. A.; Wildsmith, J. D.; Jones, K. P.

    2009-02-01

    The occupational health implications from exposure to dust, endotoxin and 1-3 β Glucan at commercial composting sites are uncertain. This study aims to establish employee exposure levels to inhalable and respirable dust, endotoxin and 1-3 β Glucan during various operational practices in the composting process. Personal samples were collected and the inhalable and respirable dust fractions were determined by gravimetric analysis. Endotoxin concentrations were determined using a Limulus Amebocyte Lysate assay (LAL). 1-3 β Glucan levels were estimated using a specific blocking agent to establish the contribution that these compounds gave to the original endotoxin assay. Employees' exposure to dust was found to be generally lower than the levels stipulated in the Control of Substances Hazardous to Health Regulations (COSHH) 2002 (as amended), (median inhalable fraction 1.08 mg/m3, min 0.25 mg/m3 max 10.80 mg/m3, median respirable fraction 0.05 mg/m3, min 0.02 mg/m3, max 1.49 mg/m3). Determination of the biological component of the dust showed that employees' exposures to endotoxin were elevated (median 31.5 EU/m3, min 2.00 EU/m3, max 1741.78 EU/m3), particularly when waste was agitated (median 175.0 EU/m3, min 2.03 EU/m3, max 1741.78 EU/m3). Eight out of 32 (25%) of the personal exposure data for endotoxin exceeded the 200 EU/m3 temporary legal limit adopted in the Netherlands and thirteen out of 32 (40.6%) exceeded the suggested 50 EU/m3 guidance level suggested to protect workers from respiratory health effects. A significant correlation was observed between employee inhalable dust exposure and personal endotoxin concentration (r = 0.728, phealth risks associated with endotoxin exposure at composting sites. Employee exposure levels and dose-response disease mechanisms are not well understood at this present time. Consequently, in light of this uncertainty, it is recommended that a precautionary approach be adopted in managing the potential health risks associated

  12. Soil Respiration under Different Land Uses in Eastern China

    Science.gov (United States)

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  13. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Science.gov (United States)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  14. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Science.gov (United States)

    Havnes, O.; Surdal, L. H.; Philbrick, C. R.

    2009-03-01

    The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height ~81.5-83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was ~-3.5×109 e m-3 and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2-3 over a distance of ≲10 m, while the same change at their lower edges were much more gradual. The upper edge of this layer is also sharp, with a change in the probe current from zero to IDC=-10-11 A over ~10 m, while the same change at the low edge occurs over ~500 m. The second dust layer at ~85-92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was ~-108 e m-3. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=NdZd /n_e≲0.01. In spite of the dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to ~50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is θi≳20-35°. This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Næsheim, 2007) as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  15. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Indian Academy of Sciences (India)

    Unknown

    The linear regression relationship between soil respiration and root biomass was used to determine the .... 10 days, sieved 50 g soil samples were placed in a 100 ml beaker and a 250 ..... Comparatively, the method can take multi-samples by ...

  16. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  17. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust.

    Science.gov (United States)

    Seaman, Clara E; Shahan, Michael R; Beck, Timothy W; Mischler, Steven E

    2018-03-01

    Float coal dust, generated by mining operations, is distributed throughout mine airways by ventilating air designed to purge gases and respirable dust. Float coal dust poses an explosion hazard in the event of a methane ignition. Current regulation requires the application of inert rock dust in areas subjected to float coal dust in order to mitigate the hazard. An alternate method using water sprays, which have been effective in controlling respirable dust hazards, has been proposed as a way to control float coal dust generated on longwall faces. However, the knockdown efficiency of the proposed water sprays on float coal dust needs to be verified. This study used gravimetric isokinetic Institute of Occupational Medicine (IOM) samplers alongside a real-time aerosol monitor (Cloud Aerosol Spectrometer with polarization; CAS-POL) to study the effects of spray type, operating pressure, and spray orientation on knockdown efficiencies for seven different water sprays. Because the CAS-POL has not been used to study mining dust, the CAS-POL measurements were validated with respect to the IOM samplers. This study found that the CAS-POL was able to resolve the same trends measured by the IOM samplers, while providing additional knockdown information for specific particle size ranges and locations in the test area. In addition, the CAS-POL data was not prone to the same process errors, which may occur due to the handling of the IOM filter media, and was able to provide a faster analysis of the data after testing. This study also determined that pressure was the leading design criteria influencing spray knockdown efficiency, with spray type also having some effect and orientation having little to no effect. The results of this study will be used to design future full-scale float coal dust capture tests involving multiple sprays, which will be evaluated using the CAS-POL.

  18. [The development of a respiration and temperature monitor].

    Science.gov (United States)

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  19. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  20. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  1. Respirator studies for the ERDA Division of Safety, Standards, and Compliance. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Hack, A.L.; Davis, T.O.; Shafer, C.; Moore, T.O.; Richards, C.P.; Revoir, W.H.

    1976-08-01

    Major accomplishments during FY 1975 were the initiation of a respirator research program to investigate the physiological effects of wearing a respirator under stress, assisting ERDA contractors by providing information and training concerning respirator programs, quality assurance of respirators, and respirator applications. A newsletter of respirator developments for ERDA contractor personnel was published, and a Respirator Symposium was conducted

  2. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  3. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  4. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  5. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Patricia; Felix, Omar [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Alexander, Caitlin; Lutz, Eric [Division of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724 (United States); Ela, Wendell [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@arizona.edu [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2014-09-15

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure.

  6. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    International Nuclear Information System (INIS)

    Gonzales, Patricia; Felix, Omar; Alexander, Caitlin; Lutz, Eric; Ela, Wendell; Eduardo Sáez, A.

    2014-01-01

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure

  7. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  8. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  9. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Science.gov (United States)

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  10. Molecular underpinnings of nitrite effect on CymA-dependent respiration in Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Miao Jin

    2016-07-01

    Full Text Available Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs. In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP production, a second messenger required for activation of cAMP-receptor protein (Crp which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.

  11. Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Steffen Schulz

    2015-01-01

    Full Text Available Schizophrenia is a severe mental disorder associated with a significantly increased cardiovascular mortality rate. However, the underlying mechanisms leading to this cardiovascular disease (CVD are not fully known. Therefore, the objective of this study was to characterize the cardiorespiratory influence by investigating heart rate, respiration and the causal strength and direction of cardiorespiratory coupling (CRC, based mainly on entropy measures. We investigated 23 non-medicated patients with schizophrenia (SZ, comparing them to 23 age- and gender-matched healthy controls (CO. A significantly reduced complexity was found for the heart rate and a significantly increased complexity in respiration and CRC in SZ patients when compared to corresponding measurements from CO (p < 0.001. CRC analyses revealed a clear coupling, with a driver-responder relationship from respiration to heart rate in SZ patients. Moreover, a slight driver-responder relationship from heart rate to respiration could be recognized. These findings lead to the assumption that SZ should be considered to be a high-risk group for CVD. We hypothesize that the varying cardiorespiratory regulation contributes to the increased risk for cardiac mortality. Therefore, regular monitoring of the cardiorespiratory status of SZ is suggested to identify autonomic regulation impairment at an early stage—to develop timely and effective treatment and intervention strategies.

  12. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China

    Science.gov (United States)

    Shi, Guitao; Chen, Zhenlou; Bi, Chunjuan; Wang, Li; Teng, Jiyan; Li, Yuansheng; Xu, Shiyuan

    2011-01-01

    Urban and suburban road dust samples were collected in the most populated city of China, Shanghai. Size fractions of dust particles were analyzed; metal levels of the dust were also measured. Human exposure to individual toxic metals through road dust was assessed for both children and adults. The results showed that dust particles from urban and suburban road were presented similar size distribution pattern, with most particles in the range of 100-400 μm. Urban road dust consisted of higher proportions of inhalable, thoracic and respirable particles with increased risk of adverse effects to human. In general, mean grain sizes of urban road dust were smaller than suburban dust. Total organic carbon contents and levels of Pb, Cd, Cu, Zn, Ni, Cr in urban dust were higher than those of suburban dust. But the concentrations of As and Hg from suburban dust were higher, indicting a different main source. The exposure pathway which resulted in the highest level of risk for human exposed to road dust was ingestion of this material, which was followed by dermal contact. Except for some locations, risk values of both cancer and non-cancer obtained in this study were in the receivable range on the whole. Children had greater health risks than adults. The overall risks of non-cancer in urban area were higher than those in suburban area, but the values of cancer in the two areas were comparable. As for the aggregate noncarcinogenic risk, Pb was of most concern regarding the potential occurrence of health impacts. Of the three carcinogenic metals As, Cr and Cd, the only mean risk higher than 10 -6 was Cr, accounting for a great percentage (95%) of the overall risk of cancer. Hence, potentially adverse health effects arising from Pb and Cr in road dust should arouse wide concern.

  13. A dust-free dock

    Energy Technology Data Exchange (ETDEWEB)

    Merrion, D. [E & F Services Ltd. (United Kingdom)

    2002-10-01

    This paper describes the process of unloading coal, petcoke and other dusty products in environmentally-sensitive areas. It presents a case study of the deepwater Port of Foynes on the west coast of Ireland which imports animal feed, fertiliser, coal and cement clinker, where dockside mobile loaders (DMLs) have eliminated spillage and controlled dust, and a record case study of the Humber International Terminal in the UK, where air curtinas, dust suppression grids and EFFEX{reg_sign} filters overcome the dust problems. 2 photos.

  14. Triton's streaks as windblown dust

    Science.gov (United States)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  15. [Asthma due to grain dust].

    Science.gov (United States)

    Baur, X; Preisser, A; Wegner, R

    2003-06-01

    The actual literature as well as two case reports described in detail show that grain dust induces asthmatic reactions and ODTS which are obviously not of allergic origin. For diagnosis occupational-type exposure tests are decisive whereas allergological testing usually is not. Endotoxins which are present in the grain dust samples in high concentrations have to be regarded as the major causative components. To avoid irreversible lung function impairment a comprehensive early diagnosis is necessary. Generally, a remarkable reduction of exposure to dust with high levels of airborne endotoxin in agriculture has to be achieved since in many workplaces corresponding exposures are still rather high.

  16. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Directory of Open Access Journals (Sweden)

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  17. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  18. An overview of mineral dust modeling over East Asia

    Science.gov (United States)

    Chen, Siyu; Huang, Jianping; Qian, Yun; Zhao, Chun; Kang, Litai; Yang, Ben; Wang, Yong; Liu, Yuzhi; Yuan, Tiangang; Wang, Tianhe; Ma, Xiaojun; Zhang, Guolong

    2017-08-01

    East Asian dust (EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research, including dust emissions, long-range transport, radiative forcing (RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.

  19. Development of materials resistant to metal dusting degradation.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Zeng, Z.

    2006-04-24

    Metal dusting corrosion has been a serious problem in the petroleum and petrochemical industries, such as reforming and syngas production systems. This form of deterioration has led to worldwide material loss for 50 years. For the past three years, we have studied the mechanism of metal dusting for Fe- and Ni-base alloys. In this report, we present a correlation between the weight loss and depth of pits that form in Ni-base alloys. Nickel-base alloys were also tested at 1 and 14.8 atm (210 psi), in a high carbon activity environment. Higher system pressure was found to accelerate corrosion in most Ni-base alloys. To reduce testing time, a pre-pitting method was developed. Mechanical scratches on the alloy surface led to fast metal dusting corrosion. We have also developed preliminary data on the performance of weldments of several Ni-base alloys in a metal dusting environment. Finally, Alloy 800 tubes and plates used in a reformer plant were examined by scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy. The oxide scale on the surface of the Alloy 800 primarily consists of Fe{sub 1+x}Cr{sub 2-X}O{sub 4} spinel phase with high Fe content. Carbon can diffuse through this oxide scale. It was discovered that the growth of metal dusting pits could be stopped by means of a slightly oxidized alloy surface. This leads to a new way to solve metal dusting problem.

  20. Mine haul road fugitive dust emission and exposure characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.J.; Visser, A.T. [University of Pretoria, Pretoria (South Africa). Dept. of Mining Engineering

    2001-03-01

    Excessive dust generation from mine haul roads is a problem common to most surface coal mining operations. Optimal wearing course material selection parameters reduce, but do not toally eliminate the potential to produce dust. For existing operations, which may not have optimally designed and maintained roads, the problem of identifying the haul road dust defect, quantifying its impact on both safety and health and assigning priorities within the constraints of limited capital and manpower is problematic. This is reflected in the fact that most surface mine operators agree dust-free roads are desirable, but find it difficult to translate this into cost-effective betterment activities. The aim of this paper is to describe fugitive dust emission and exposure characteristics associated with ultra-heavy mine haul trucks running on unpaved mine haul roads. Models are described which enable mines to assess the likely dustiness of their chosen haul road material as a function of surface loading of fines, traffic types and volume, together with various material parameters. By combining these models with the results of quantitative exposure profiling, a mine can, in conjunction with the assessment, determine the most cost- and safety-effective haul road dust management strategy. 18 refs., 10 figs., 2 tabs.

  1. Charging of dust grains in a plasma with negative ions

    International Nuclear Information System (INIS)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-01-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended Q machine when SF 6 is admitted into the vacuum system. The relatively cold Q machine electrons (T e ≅0.2 eV) readily attach to SF 6 molecules to form SF 6 - negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ε, the ratio of the electron to positive ion density, is sufficiently small. The Q machine plasma is operated with K + positive ions (mass 39 amu) and SF 6 - negative ions (mass 146 amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains

  2. Charging of dust grains in a plasma with negative ions

    Science.gov (United States)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-05-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.

  3. Dust Allergens within Rural Northern Rocky Mountain Residences.

    Science.gov (United States)

    Weiler, Emily; Semmens, Erin; Noonan, Curtis; Cady, Carol; Ward, Tony

    2015-01-23

    To date, few studies have characterized allergens within residences located in rural areas of the northern Rocky Mountain region. In this study, we collected dust samples from 57 homes located throughout western Montana and northern Idaho. Dust samples were collected and later analyzed for dust mite allergens Der f 1 and Der p 1 , Group 2 mite allergens ( Der p 2 and Der f 2 ), domestic feline ( Fel d 1 ), and canine ( Can f 1 ). Indoor temperature and humidity levels were also measured during the sampling program, as were basic characteristics of each home. Dog (96%) and cat (82%) allergens were the most prevalent allergens found in these homes (even when a feline or canine did not reside in the home). Results also revealed the presence of dust mites. Seven percent (7%) of homes tested positive for Der p 1 , 19% of homes were positive for Der f 1 , and 5% of homes were positive for the Group 2 mite allergens. Indoor relative humidity averaged 27.0 ± 7.6% within the homes. Overall, humidity was not significantly associated with dust mite presence, nor was any of the other measured home characteristics. This study provides a descriptive assessment of indoor allergen presence (including dust mites) in rural areas of the northern Rocky Mountains, and provides new information to assist regional patients with reducing allergen exposure using in-home intervention strategies.

  4. Risk Assessment to Dust Exposure in Room Maintenance

    Directory of Open Access Journals (Sweden)

    Saiku Rokhim

    2017-04-01

    Full Text Available As one of the particulate chemicals, dust could occur in most of the production process and can create interference for workers health and safety. As one of the air pollution sources, dust could became a potential hazard which exist in room maintenances. Protection to workers is a must in order to reduce the risk of respiratory tract syndrome that often could be found in this cases. The aim of this study is to conduct a risk assessment to dust exposure in room maintenance, which held by contractors in PT. X (Persero building in Surabaya. This is an cross sectional study with obsevation approach. The object of this research is the repairing  works. The results indicate that the activities which could produce dust, such as: walls sanding using sandpaper, the tiles dismantle, sawmilling, the wood fiber refining, grinding, mixing and stirring cast  materials, and room cleaning. Dust produced from a variety of works including sanddust, cement, lime, wood and dust mixed with paint. The results show that three types of works considere as high-risk activity (value > 12-25, 3 types of work consider as midle risk activities (value > 5-12, and one activity considered as a low-risk work (grades 1-5. The dusk factors controlling should be held regularly, in order to minimize the risk leveln againts the workers.

  5. Changes in soil respiration after thinning activities in dense Aleppo pine forests

    Science.gov (United States)

    Llovet, Joan; Alonso, Macià; Cerdà, Artemi

    2015-04-01

    Forest fires are a widespread perturbation in Mediterranean areas, and they have tended to increase during the last decades (Pausas, 2004; Moreno et al, 1998). Aleppo pine (Pinus halepensis Mill) is dominant specie in some forest landscapes of western Mediterranean Basin, due to its capacity to colonize abandoned fields, and also due to afforestation practices mainly performed during the 20th century (Ruiz Navarro et al., 2009). Aleppo pine tends to die as consequence of forest fires, although it is able to disperse a high quantity of seeds which easily germinates. These dispersion and germination can result in dense forests with high inter and intra-specific competition, low diversity, low growth, and high fuel accumulation, increasing the risk of new forest fires. These forests of high density present ecological problems and management difficulties that require preventive treatments. Thinning treatments are common in these types of communities, but the management has to be oriented towards strengthening their functions. In the context of global change, better understandings of the implications of forest management practices in the carbon cycle are necessary. The objective of this study was to examine the evolution of seasonal soil respiration after treatment of selective thinning in dense Aleppo pine forests. The study area covers three localities placed in the Valencian Community (E Spain) affected by a forest fire in 1994. Thinning activities were done 16 years after the fire, reducing pine density from around 100,000 individuals per hectare to around 900 individuals per hectare. Soil respiration was measured in situ with a portable soil respiration instrument (LI-6400, LiCor, Lincoln, NB, USA) fitted with a soil respiration chamber (6400-09, LiCor, Lincoln, NB, USA). We installed 12 plots per treatment (control and thinned) and locality, being a total of 72 plots. We carried out 13 measurements covering a period of one year. We also estimated other related

  6. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  7. Reduction of airborne radioactive dust by means of a charged water spray.

    Science.gov (United States)

    Bigu, J; Grenier, M G

    1989-07-01

    An electrostatic precipitator based on charged water spray technology has been used in an underground uranium mine to control long-lived radioactive dust and short-lived aerosol concentration in a mine gallery where dust from a rock breaking/ore transportation operation was discharged. Two main sampling stations were established: one upstream of the dust precipitator and one downstream. In addition, dust samplers were placed at different locations between the dust discharge and the end of the mine gallery. Long-lived radioactive dust was measured using cascade impactors and nylon cyclone dust samplers, and measurement of the radioactivity on the samples was carried out by conventional methods. Radon and thoron progeny were estimated using standard techniques. Experiments were conducted under a variety of airflow conditions. A maximum radioactive dust reduction of about 40% (approximately 20% caused by gravitational settling) at a ventilation rate of 0.61 m3/sec was obtained as a result of the combined action of water scrubbing and electrostatic precipitation by the charged water spray electrostatic precipitator. This represents the optimum efficiency attained within the range of ventilation rates investigated. The dust reduction efficiency of the charged water spray decreased with increasing ventilation rate, i.e., decreasing air residence time, and hence, reduced dust cloud/charged water droplets mixing time.

  8. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    International Nuclear Information System (INIS)

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  9. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  10. Dust particle formation in silane plasmas

    NARCIS (Netherlands)

    Sorokin, M.

    2005-01-01

    Dust can be found anywhere: in the kitchen, in the car, in space… Not surprisingly we also see dust in commercial and laboratory plasmas. Dust can be introduced in the plasma, but it can also grow there by itself. In the microelectronics industry, contamination of the processing plasma by dust is an

  11. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  12. Emission-conditioned iron dusts and their effects on the growth and yield of agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Berge, H

    1966-01-01

    Experiments were performed to determine the effects of iron dusts from industrial plants in Germany on crops. For the purposes of the investigation, 1.5 g/day/m/sup 2/ of iron dust was spread over a designated farmland near Heiligenhaus. Potatoes were grown as the first experimental crop. Other crops studied were winter wheat and rye, rape and turnips. No yield reducing effect of iron dust resulted from the experiments. An actual yield-increasing effect of iron dust on the main product yields may be assumed, but cannot be proved with adequate statistical reliability.

  13. Methanol extract of grain dust shows complement fixing activity and other characteristics similar to tannic acid.

    Science.gov (United States)

    Skea, D; Broder, I

    1986-01-01

    We have found several similarities between tannic acid and grain dust extract prepared with methanol. Both formed a precipitate with IgG, and these interactions were inhibited by albumin. In addition, both preparations fixed complement; this activity was heat stable and was removed by prior adsorption of the preparations with hide powder. Adsorption with polyvinyl polypyrrolidone reduced the complement-fixing activity of tannic acid but not that of the methanol grain dust extract. The similarities between tannic acid and the methanol grain dust extract are consistent with the presence of a tannin or tanninlike material in grain dust. Images FIGURE 1. PMID:3709479

  14. Emphysema and pulmonary impairment in coal miners: Quantitative relationship with dust exposure and cigarette smoking

    Science.gov (United States)

    Kuempel, E. D.; Vallyathan, V.; Green, F. H. Y.

    2009-02-01

    Coal miners have been shown to be at increased risk of developing chronic obstructive pulmonary diseases including emphysema. The objective of this study was to determine whether lifetime cumulative exposure to respirable coal mine dust is a significant predictor of developing emphysema at a clinically-relevant level of severity by the end of life, after controlling for cigarette smoking and other covariates. Clinically-relevant emphysema severity was determined from the association between individuals' lung function during life (forced expiratory volume in one second, FEV1, as a percentage of predicted normal values) and emphysema severity at autopsy (as the proportion of lung tissue affected). In a logistic regression model, cumulative exposure to respirable coal mine dust was a statistically significant predictor of developing clinically-relevant emphysema severity, among both ever-smokers and never-smokers. The odds ratio for developing emphysema associated with FEV1 <80% at the cohort mean cumulative coal dust exposure (87 mg/m3 x yr) was 2.30 (1.46-3.64, 95% confidence limits), and at the cohort mean cigarette smoking (among smokers: 42 pack-years) was 1.95 (1.39-2.79).

  15. Physico-chemical characterization of grain dust in storage air of Bangalore.

    Science.gov (United States)

    Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R

    1998-06-01

    An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.

  16. Emphysema and pulmonary impairment in coal miners: quantitative relationship with dust exposure and cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    E.D. Kuempel; V. Vallyathan; F.H.Y. Green [National Institute for Occupational Safety and Health, Cincinnati, OH (United States)

    2009-07-01

    Coal miners have been shown to be at increased risk of developing chronic obstructive pulmonary diseases including emphysema. The objective of this study was to determine whether lifetime cumulative exposure to respirable coal mine dust is a significant predictor of developing emphysema at a clinically-relevant level of severity by the end of life, after controlling for cigarette smoking and other covariates. Clinically-relevant emphysema severity was determined from the association between individuals' lung function during life (forced expiratory volume in one second, FEV{sub 1}, as a percentage of predicted normal values) and emphysema severity at autopsy (as the proportion of lung tissue affected). In a logistic regression model, cumulative exposure to respirable coal mine dust was a statistically significant predictor of developing clinically-relevant emphysema severity, among both ever-smokers and never-smokers. The odds ratio for developing emphysema associated with FEV1 <80% at the cohort mean cumulative coal dust exposure (87 mg/m{sup 3} x yr) was 2.30 (1.46-3.64, 95% confidence limits), and at the cohort mean cigarette smoking (among smokers: 42 pack-years) was 1.95 (1.39-2.79). 20 refs., 2 figs., 2 tabs.

  17. Emphysema and pulmonary impairment in coal miners: Quantitative relationship with dust exposure and cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    Kuempel, E D [National Institute for Occupational Safety and Health, Education and Information Division, Risk Evaluation Branch, Cincinnati, Ohio (United States); Vallyathan, V [National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Pathology and Physiology Research Branch, Morgantown, West Virginia (United States); Green, F H Y, E-mail: ekuempel@cdc.go [Department of Pathology, Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada)

    2009-02-01

    Coal miners have been shown to be at increased risk of developing chronic obstructive pulmonary diseases including emphysema. The objective of this study was to determine whether lifetime cumulative exposure to respirable coal mine dust is a significant predictor of developing emphysema at a clinically-relevant level of severity by the end of life, after controlling for cigarette smoking and other covariates. Clinically-relevant emphysema severity was determined from the association between individuals' lung function during life (forced expiratory volume in one second, FEV{sub 1}, as a percentage of predicted normal values) and emphysema severity at autopsy (as the proportion of lung tissue affected). In a logistic regression model, cumulative exposure to respirable coal mine dust was a statistically significant predictor of developing clinically-relevant emphysema severity, among both ever-smokers and never-smokers. The odds ratio for developing emphysema associated with FEV{sub 1} <80% at the cohort mean cumulative coal dust exposure (87 mg/m{sup 3} x yr) was 2.30 (1.46-3.64, 95% confidence limits), and at the cohort mean cigarette smoking (among smokers: 42 pack-years) was 1.95 (1.39-2.79).

  18. Loess and Eolian Dust Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past environment derived from Loess and Eolian dust (silt-sized material deposited on the Earth surface by the surface winds. Parameter keywords describe...

  19. 75 FR 3881 - Combustible Dust

    Science.gov (United States)

    2010-01-25

    ..., rubber, drugs, dried blood, dyes, certain textiles, and metals (such as aluminum and magnesium..., furniture manufacturing, metal processing, fabricated metal products and machinery manufacturing, pesticide... standard that will comprehensively address the fire and explosion hazards of combustible dust. The Agency...

  20. Rethinking wood dust safety standards

    OpenAIRE

    Ratnasingam, Jega; Wai, Lim Tau; Ramasamy, Geetha; Ioras, Florin; Tadin, Ishak; Universiti Putra Malaysia; Buckinghamshire New University; Centre for Occupational Safety and Health Singapore

    2015-01-01

    The current universal work safety and health standards pertaining to wood dust in factories lack the localisation required. As a study has shown, there is a urgent need to reevaluate the current guidelines and practices.

  1. Simulation of Human Respiration with Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  2. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  3. Differential soil respiration responses to changing hydrologic regimes

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Howard E. Epstein; Daniel L. Welsch

    2009-01-01

    Soil respiration is tightly coupled to the hydrologic cycle (i.e., snowmelt and precipitation timing and magnitude). We examined riparian and hillslope soil respiration across a wet (2005) and a dry (2006) growing season in a subalpine catchment. When comparing the riparian zones, cumulative CO2 efflux was 33% higher, and peak efflux occurred 17 days earlier during the...

  4. Automatic patient respiration failure detection system with wireless transmission

    Science.gov (United States)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  5. Soil respiration response to experimental disturbances over 3 years

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Soung-Ryoul Ryu; Malcolm North; Jiquan Chen

    2006-01-01

    Soil respiration is a major pathway for carbon cycling in terrestrial ecosystems yet little is known about its response to natural and anthropogenic disturbances. This study examined soil respiration response to prescribed burning and thinning treatments in an old-growth, mixed-conifer forest on the western slope of the Sierra Nevada Mountains. Experimental treatments...

  6. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  7. Soil Respiration and Student Inquiry: A Perfect Match

    Science.gov (United States)

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  8. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  9. Biological action of coal dust formed during excavation of seams after physicochemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Gadzhiev, G P

    1982-03-01

    Destruction of the self-cleansing function of lungs by dust is important in the development of pneumoconiosis. It is expedient to study the influence of chemical substances, injected into coal seams to prevent methane bursts and reduce dust formation, on the physiologic mechanisms for the protection of the lungs from dust (macrophageal reaction of lungs, function of mucociliary transport). An investigation using 15, 24 and 50% solutions of binder KM/SUB/2 modified by polyvinyl alcohol, and 3% hydrochloric acid solution was conducted on 200 white rats. Reaction of rats treated with solutions of binder in different concentrations proved that accumulation of dust in lungs and lymph nodes was directly related to the strength of the solution. Three percent hydrochloric acid solution diminished dust accumulation in paratracheal lymph nodes and content of lipids and collagen in the lungs. Inhalation of dust treated with a 50% solution of binder KM/SUB/2 increases the deposit of dust in the lungs and increases fiber production. Therefore, solutions of more than 24% binder should not be used to treat coal. Solutions of 15% and 24% do not significantly affect the process of dust accumulation in the lungs. A 3% solution of hydrochloric acid reduces the dust-forming capacity of the coal mass. (13 refs.) (In Russian)

  10. Atmospheric dust events in central Asia: Relationship to wind, soil type, and land use

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-06-01

    Xinjiang Province in northwest China is one of the most important source regions of atmospheric dust in the world. Spatial-temporal characteristics of dust events in the province were investigated by time series analysis of annual dust event frequency and meteorological data collected at 101 meteorological stations from 1960 to 2007. Blowing dust frequency (BDF) and dust storm frequency (DSF) decreased with time in North, South, and East Xinjiang whereas floating dust frequency (FDF) decreased with time only in South and East Xinjiang. Dust concentrations were lower in North than in South Xinjiang and decreased with time in East Xinjiang. Wind significantly influenced the temporal trend in FDF, BDF, and DSF in South Xinjiang and DSF in North Xinjiang. Frequency of dust events was smaller by an order of magnitude in North (10.9 d yr-1) than in South Xinjiang (111.3 d yr-1), possibly due in part to higher annual precipitation in North Xinjiang. Floating dust was most frequently observed in East and South Xinjiang, while blowing dust was most frequently observed in North Xinjiang. The high frequency of floating dust in East and South Xinjiang is likely due to the enclosed terrain that characterizes these regions. Land use and soil type also influenced dust events. Although climate influences frequency of dust events, the occurrence of these events may be reduced most effectively by imposing better land management practices in deciduous forests or orchards characterized by saline soils in respectively North and East Xinjiang and meadows characterized by Guanyu soils in South Xinjiang.

  11. Estimation of efficiency of dust suppressing works at 30-km zone near the Chernobyl' NPP

    International Nuclear Information System (INIS)

    Bakin, R.I.; Tkachenko, A.V.; Sukhoruchkin, A.K.

    1989-01-01

    Data on efficiency of dust suppressing works at 30-km zone near NPP are analyzed. It is necessary: to reduce radionuclide content in the air in the spring, when the weather is dry, to conduct dust suppressing works on roads and sections of surface with nonfixed ground; in the summer, to wash roads every day. 3 figs

  12. Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS.

    Science.gov (United States)

    Carlström, Charlotte I; Loutey, Dana E; Wang, Ouwei; Engelbrektson, Anna; Clark, Iain; Lucas, Lauren N; Somasekhar, Pranav Y; Coates, John D

    2015-04-01

    Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30 °C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42 °C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms. Copyright © 2015, American Society for Microbiology. All Rights

  13. Physical properties of five grain dust types.

    OpenAIRE

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less tha...

  14. Efficient radiative transfer in dust grain mixtures

    OpenAIRE

    Wolf, S.

    2002-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially ...

  15. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-11-01

    strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. Importantly, the summer precipitation over the semi-arid strip south of Sahara, including Sahel, increases in response to dust radiative effect. The maximum response and sensitivity are predicted over this region. The sensitivity of the responses over Sahel, especially that of precipitation, is comparable to the mean state. Locally, the precipitation increase reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. As the region is characterized by the "Sahel drought", the predicted precipitation sensitivity to the dust loading over this region has a wide-range of socioeconomic implications. The present study, therefore, suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the MENA climate in general, and of Sahel in particular.

  16. Mechanical and Thermal Properties of R-High Density Polyethylene Composites Reinforced with Wheat Straw Particleboard Dust and Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Min Yu

    2018-01-01

    Full Text Available The effect of individual and combined particleboard dust (PB dust and basalt fibers (BFs on mechanical and thermal expansion performance of the filled virgin and recycled high density polyethylene (HDPE composites was studied. It was shown that the use of PB dust had a positive effect on improving mechanical properties and on reducing linear coefficient of thermal expansion (LCTE values of filled composites, because the adhesive of the particle board held the wheat straw fibers into bundles, which made PB dust have a certain aspect ratio and high strength. Compared with the commonly used commercial WPC products, the flexural strength of PB dust/VHDPE, PB dust/RHDPE, and PB dust/VHDPE/RHDEPE at 40 wt% loading level increased by 79.9%, 41.5%, and 53.9%, respectively. When 40 wt% PB dust was added, the crystallization degree of the composites based on three matrixes decreased to 72.5%, 45.7%, and 64.1%, respectively. The use of PB dust can help lower the composite costs and increase its recyclability. Mechanical properties and LCTE values of composites with combined BF and PB dust fillers varied with PB dust and BF ratio at a given total filler loading level. As the BF portion of the PB dust/BF fillers increased, the LCTE values decreased markedly, which was suggested to be able to achieve a desirable dimensional stability for composites. The process provides a useful route to further recycling of agricultural wastes.

  17. Controls on ecosystem and root respiration across a permafrost and wetland gradient in interior Alaska

    Science.gov (United States)

    McConnell, Nicole A.; Turetsky, Merritt R.; McGuire, A. David; Kane, Evan S.; Waldrop, Mark P.; Harden, Jennifer W.

    2013-01-01

    Permafrost is common to many northern wetlands given the insulation of thick organic soil layers, although soil saturation in wetlands can lead to warmer soils and increased thaw depth. We analyzed five years of soil CO2 fluxes along a wetland gradient that varied in permafrost and soil moisture conditions. We predicted that communities with permafrost would have reduced ecosystem respiration (ER) but greater temperature sensitivity than communities without permafrost. These predictions were partially supported. The colder communities underlain by shallow permafrost had lower ecosystem respiration (ER) than communities with greater active layer thickness. However, the apparent Q10 of monthly averaged ER was similar in most of the vegetation communities except the rich fen, which had smaller Q10 values. Across the gradient there was a negative relationship between water table position and apparent Q10, showing that ER was more temperature sensitive under drier soil conditions. We explored whether root respiration could account for differences in ER between two adjacent communities (sedge marsh and rich fen), which corresponded to the highest and lowest ER, respectively. Despite differences in root respiration rates, roots contributed equally (~40%) to ER in both communities. Also, despite similar plant biomass, ER in the rich fen was positively related to root biomass, while ER in the sedge marsh appeared to be related more to vascular green area. Our results suggest that ER across this wetland gradient was temperature-limited, until conditions became so wet that respiration became oxygen-limited and influenced less by temperature. But even in sites with similar hydrology and thaw depth, ER varied significantly likely based on factors such as soil redox status and vegetation composition.

  18. Development and clinical application of respiration gated irradiation system (ReGIS) in heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Osaka, Yasuhiro; Tsujii, Hirohiko; Mizoe, Jun-etsu

    1999-01-01

    In order to achieve maximal radiation dose concentration for thoraco-abdominal tumors and spare normal surrounding tissue in heavy ion therapy, compensation for respiration-related movement is desirable. Hence, a respiration-gated irradiation system (ReGIS) was introduced to the Heavy Ion Medical Accelerator in Chiba (HIMAC) in June 1996. In this report, the development and clinical application of ReGIS, as well as the analysis of respiration-related movement and reduction of target volumes are described. When using ReGIS, a sensor emitting infrared rays is attached to the thoracic or abdominal wall to measure respiratory movement. A position-sensitive device (camera) senses these rays to detect sensor locations and data are forwarded to a computer system. A curve representing respiratory cycles is displayed, upon which a trigger level that is part of a respiratory cycle (about a fourth or fifth of the expiratory phase). Beams can be delivered while the respiratory curve is under the trigger level. Thirty-five patients involving 37 irradiated sites (19 lung cancers, 13 hepatomas, 2 mediastinal tumors, and 3 metastatic lung tumors) were retrospectively analyzed. Target volumes were reduced an average of 29.5% (11.0 to 57.9%) using ReGIS. Average tumor respiration-related movement in gated phase was 3.7 mm (0 mm to 14.6 mm). Although irradiation using ReGIS took more time to perform (average 1.62 times non-gated irradiation), it was considered to be acceptable for routine heavy ion therapy. ReGIS has proved to be useful for compensation of respiration-related movement and reduction of target volume in radiotherapy, and this method is sufficiently simple for practical clinical application. (author)

  19. The role of alternative cyanide-insensitive respiration in plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raskin, Ilya

    1997-09-29

    This DOE funded research concentrated on the investigation of the role of respiration and oxidative stress in plant biology. Initially the authors concentrated on the possible role of cyanide-insensitive respiration in counteracting the deleterious effects of chilling stress. Although plants are considered to be poikilotherms, there are a few examples of thermogenesis, in which the tissue temperature increases well above ambient. They suggested that differences between thermogenic and non-thermogenic plants may be quantitative rather than qualitative, and that heat from increased respiration may have a local protective effect on the mitochondria, slowing or reducing the effects of chilling. They proposed that this is accomplished by a large increase in respiration, predominantly via the alternative pathway. They measured the increases in respiration, particularly via the alternative pathway, in response to chilling. They have also quantified the associated increases in heat evolution in response to chilling in a number of plant species using a microcalorimeter. For example, after 8 h exposure to 8 C, heat evolution in chilling-sensitive species increased 47--98%, compared to 7--22% for the chilling-resistant species. No increase in heat evolution was observed in the extremely chilling-sensitive ornamental Episcka cupreata (Hook). Increases in heat evolution were observed when plants were chilled in constant light or in the dark, but not when plants were chilled at high humidity. Heat evolution by mitochondria isolated from potato tuber slices were also measured. These values, together with measurements of the heat capacity of isolated mitochondria and counting of the mitochondria by flow cytometry, allow calculation of theoretical maximal rates of heating and the heat produced per mitochondrion. The obtained data was consistent with the protective role of respiratory heat production in cold-stressed plants.

  20. Grain dust and the lungs.

    Science.gov (United States)

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  1. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  2. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  3. Dust exposure in workers from grain storage facilities in Costa Rica.

    Science.gov (United States)

    Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M

    2017-08-01

    About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. A Global Database of Soil Respiration Data, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a soil respiration data database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration, the...

  5. A Global Database of Soil Respiration Data, Version 2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides an updated soil respiration database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration,...

  6. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    (HSO4−), nitrate (NO3−) and chloride (Cl−), on the surface of mineral particles. The subsequent neutralization reactions with the calcium cation form various salt compounds that cause the uptake of water vapor from the atmosphere, i.e., through the chemical aging of dust particles leading to an increase of 0.15 in the AOD under subsaturated conditions (July 2009 monthly mean). As a result of the radiative feedback on surface winds, dust emissions increased regionally. On the other hand, the aged dust particles, compared to the non-aged particles, are more efficiently removed by both wet and dry deposition due to the increased hygroscopicity and particle size (mainly due to water uptake). The enhanced removal of aged particles decreases the dust burden and lifetime, which indirectly reduces the dust AOD by 0.05 (monthly mean). Both processes can be significant (major dust outflow, July 2009), but the net effect depends on the region and level of dust chemical aging.

  7. [Effects of management regime on soil respiration from agroecosystems].

    Science.gov (United States)

    Chen, Shu-tao; Zhu, Da-wei; Niu, Chuan-po; Zou, Jian-wen; Wang, Chao; Sun, Wen-juan

    2009-10-15

    In order to examine the effects of management regime, such as nitrogen application and plowing method, on soil respiration from farmland, the static opaque chamber-gas chromatograph method was used to measure soil CO2 fluxes in situ. The field measurement was carried out for 5 growing seasons, which were the 2002-2003 wheat, 2003 maize and soybean, 2003-2004 wheat, 2004 maize and 2004-2005 wheat seasons. Our results showed that soil respiration increased in fertilizer-applied treatments compared with no fertilizer treatment after 3 times of fertilizer application on 9 November 2002, 14 February and 26 March 2003. And the most obvious increase appeared following the third fertilizer application. No significant difference in soil respiration was found among several fertilizer application treatments. The effect of plowing depth on soil respiration was contingent on preceding cropping practice. Over the 2003-2004 wheat-growing seasons (its preceding cropping practice was rice paddy), mean soil respiration rates were not significant different (p > 0.05) between no plowing treatment and shallow plowing treatment. The shallow plowing treatment CT2 led to higher soil CO2 losses compared with no plowing treatment of NT2 in the 2004 maize-growing season, however, the significant higher (p soil respiration rates occurred with no plowing treatment of NT3 in the following 2004-2005 wheat-growing season. Intensive plowing (25 cm depth), compared with no plowing practice (NT4), increased soil respiration significantly during the 2004-2005 wheat-growing season. Regression analysis showed that the exponential function could be employed to fit the relationship between soil respiration and temperature. The exponential relationship yielded the Q10 values which were varied from 1.26 to 3.60, with a mean value of 2.08. To evaluate the effect of temperature on soil respiration, the CO2 emission fluxes were normalized for each treatment and each crop growing season. Plotting the

  8. A novel hardware implementation for detecting respiration rate using photoplethysmography.

    Science.gov (United States)

    Prinable, Joseph; Jones, Peter; Thamrin, Cindy; McEwan, Alistair

    2017-07-01

    Asthma is a serious public health problem. Continuous monitoring of breathing may offer an alternative way to assess disease status. In this paper we present a novel hardware implementation for the capture and storage of a photoplethysmography (PPG) signal. The LED duty cycle was altered to determine the effect on respiratory rate accuracy. The oximeter was mounted to the left index finger of ten healthy volunteers. The breathing rate derived from the oximeter was validated against a nasal airflow sensor. The duty cycle of a pulse oximeter was changed between 5%, 10% and 25% at a sample rate of 500 Hz. A PPG signal and reference signal was captured for each duty cycle. The PPG signals were post processed in Matlab to derive a respiration rate using an existing Matlab toolbox. At a 25% duty cycle the RMSE was <;2 breaths per minute for the top performing algorithm. The RMSE increased to over 5 breaths per minute when the duty cycle was reduced to 5%. The power consumed by the hardware for a 5%, 10% and 25% duty cycle was 5.4 mW, 7.8 mW, and 15 mW respectively. For clinical assessment of respiratory rate, a RSME of <;2 breaths per minute is recommended. Further work is required to determine utility in asthma management. However for non-clinical applications such as fitness tracking, lower accuracy may be sufficient to allow a reduced duty cycle setting.

  9. Study on treatment of dust by dismantling

    International Nuclear Information System (INIS)

    Torikai, K.; Suzuki, K.

    1987-01-01

    In dismantling of nuclear reactors, various kinds of treatment of dust generated by cutting or dismantling concrete structures of components of reactors are evaluated for safety, cost, and performance comparing the work in air with water. A method of dust treatment for work in air is discussed. The dry method has an easy operation in practice and a good performance in the equipment, but has problem on the prevention from radioactive contamination by diffusion of dust in air. For the purpose of advancing the strong points and eliminating the weak points in dry method, an improved venturi scrubber system is proposed for dismantling work as a dust collecting system. The system consists of dust absorbing pipe, dust collector, separator of dust and water and dust transfer equipment to a storage of waste. This system would be expected to have better performance and lower operating cost in decommissioning nuclear reactors, especially, the number of dust filters, for example, HEPA filters, will be considerably saved

  10. Direct radiative effects during intense Mediterranean desert dust outbreaks

    Directory of Open Access Journals (Sweden)

    A. Gkikas

    2018-06-01

    Full Text Available The direct radiative effect (DRE during 20 intense and widespread dust outbreaks, which affected the broader Mediterranean basin over the period March 2000–February 2013, has been calculated with the NMMB-MONARCH model at regional (Sahara and European continent and short-term temporal (84 h scales. According to model simulations, the maximum dust aerosol optical depths (AODs range from  ∼  2.5 to  ∼  5.5 among the identified cases. At midday, dust outbreaks locally induce a NET (shortwave plus longwave strong atmospheric warming (DREATM values up to 285 W m−2; Niger–Chad; dust AODs up to  ∼  5.5 and a strong surface cooling (DRENETSURF values down to −337 W m−2, whereas they strongly reduce the downward radiation at the ground level (DRESURF values down to −589 W m−2 over the Eastern Mediterranean, for extremely high dust AODs, 4.5–5. During night-time, reverse effects of smaller magnitude are found. At the top of the atmosphere (TOA, positive (planetary warming DREs up to 85 W m−2 are found over highly reflective surfaces (Niger–Chad; dust AODs up to  ∼  5.5 while negative (planetary cooling DREs down to −184 W m−2 (Eastern Mediterranean; dust AODs 4.5–5 are computed over dark surfaces at noon. Dust outbreaks significantly affect the mean regional radiation budget, with NET DREs ranging from −8.5 to 0.5 W m−2, from −31.6 to 2.1 W m−2, from −22.2 to 2.2 W m−2 and from −1.7 to 20.4 W m−2 for TOA, SURF, NETSURF and ATM, respectively. Although the shortwave DREs are larger than the longwave ones, the latter are comparable or even larger at TOA, particularly over the Sahara at midday. As a response to the strong surface day-time cooling, dust outbreaks cause a reduction in the regional sensible and latent heat fluxes by up to 45 and 4 W m−2, respectively, averaged over land areas of the simulation domain. Dust outbreaks reduce the

  11. Stress level in wild harbour porpoises (Phocoena phocoena) during satellite tagging measured by respiration, heart rate and cortisol

    DEFF Research Database (Denmark)

    Eskesen, Ida Grønborg; Teilmann, J.; Geertsen, B. M.

    2009-01-01

    During satellite tagging of harbour porpoises (Phocoena phocoena), heart rate, respiration rate and cortisol value were measured to evaluate stress effects during handling and tagging. Respiration rates were obtained using video recordings, heart rates were recorded and serum cortisol levels were...... between cortisol and month of year, sex and body length. As high individual variations occurred in response to tagging of harbour porpoises, it is not possible to give general advice based oil the factors investigated, on how to reduce stress during handling. However, pouring water over the animal...

  12. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  13. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  14. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  15. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    International Nuclear Information System (INIS)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando; Ferreira-Junior, Jose Ribamar; Tzagoloff, Alexander; Barros, Mario H.

    2010-01-01

    Research highlights: → COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 , a synthetic diffusible ubiquinone. → The significance that purified Coq10p contains bound Q 6 was examined by testing over-expression of Coq10p on respiration. → Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. → Respiratory deficiency caused by more Coq10p was specific and restored by Q 2 in mitochondria or by Coq8p in cells. → Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 . Rescue of respiration by Q 2 is a characteristic of mutants blocked in coenzyme Q 6 synthesis. Unlike Q 6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q 6 . The physiological significance of earlier observations that purified Coq10p contains bound Q 6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q 2 . This suggests that in vivo binding of Q 6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.

  16. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil); Ferreira-Junior, Jose Ribamar [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo (Brazil); Tzagoloff, Alexander [Department of Biological Sciences, Columbia University, NY (United States); Barros, Mario H., E-mail: mariohb@usp.br [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-11-05

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains

  17. Iron mineralogy and bioaccessibility of dust generated from soils as determined by reflectance spectroscopy and magnetic and chemical properties--Nellis Dunes recreational area, Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Reynolds, Richard L.; Morman, Suzette A.; Moskowitz, Bruce; Kokaly, Raymond F.; Goossens, Dirk; Buck, Brenda J.; Flagg, Cody; Till, Jessica; Yauk, Kimberly; Berquó, Thelma S.

    2013-01-01

    Atmospheric mineral dust exerts many important effects on the Earth system, such as atmospheric temperatures, marine productivity, and melting of snow and ice. Mineral dust also can have detrimental effects on human health through respiration of very small particles and the leaching of metals in various organs. These effects can be better understood through characterization of the physical and chemical properties of dust, including certain iron oxide minerals, for their extraordinary radiative properties and possible effects on lung inflammation. Studies of dust from the Nellis Dunes recreation area near Las Vegas, Nevada, focus on characteristics of radiative properties (capacity of dust to absorb solar radiation), iron oxide mineral type and size, chemistry, and bioaccessibility of metals in fluids that simulate human gastric, lung, and phagolysosomal fluids. In samples of dust from the Nellis Dunes recreation area with median grain sizes of 2.4, 3.1, and 4.3 micrometers, the ferric oxide minerals goethite and hematite, at least some of it nanosized, were identified. In one sample, in vitro bioaccessibility experiments revealed high bioaccessibility of arsenic in all three biofluids and higher leachate concentration and bioaccessibility for copper, uranium, and vanadium in the simulated lung fluid than in the phagolysosomal fluid. The combination of methods used here to characterize mineral dust at the Nellis Dunes recreation area can be applied to global dust and broad issues of public health.

  18. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Temperature Dependence of Respiration in Larvae and Adult Colonies of the Corals Acropora tenuis and Pocillopora damicornis

    Directory of Open Access Journals (Sweden)

    Dwi Haryanti

    2015-06-01

    Full Text Available Although algal symbionts can become a source of reactive oxygen species under stressful conditions, symbiotic planulae of the coral Pocillopora damicornis are highly tolerant to thermal stress compared with non-symbiotic planulae of Acropora tenuis. As a first step to understand how P. damicornis planulae attain high stress tolerance, we compared the respiration rate and temperature dependence between symbiotic planulae of P. damicornis and non-symbiotic planulae of A. tenuis, as well as between larvae and adult branches within each species. Larvae and adult branches of both species had similar temperature dependency of respiration rate, with the temperature coefficient (Q10 values of about 2. Planula larvae of P. damicornis had a significantly lower respiration rate than that of A. tenuis larvae at 25–30 °C, but not at 32 °C, whereas adult branches of P. damicornis had a significantly higher respiration rate than that of A. tenuis branches at all temperatures. Thus, P. damicornis larvae appear to be capable of reducing their respiration rate to a greater extent than A. tenuis larvae, which could partly explain why P. damicornis larvae had high survivorship under thermal stress, although other antioxidant or photoprotective mechanisms should be investigated in the future.

  20. The Low Energy-Coupling Respiration in Zymomonas mobilis Accelerates Flux in the Entner-Doudoroff Pathway.

    Directory of Open Access Journals (Sweden)

    Reinis Rutkis

    Full Text Available Performing oxidative phosphorylation is the primary role of respiratory chain both in bacteria and eukaryotes. Yet, the branched respiratory chains of prokaryotes contain alternative, low energy-coupling electron pathways, which serve for functions other than oxidative ATP generation (like those of respiratory protection, adaptation to low-oxygen media, redox balancing, etc., some of which are still poorly understood. We here demonstrate that withdrawal of reducing equivalents by the energetically uncoupled respiratory chain of the bacterium Zymomonas mobilis accelerates its fermentative catabolism, increasing the glucose consumption rate. This is in contrast to what has been observed in other respiring bacteria and yeast. This effect takes place after air is introduced to glucose-consuming anaerobic cell suspension, and can be simulated using a kinetic model of the Entner-Doudoroff pathway in combination with a simple net reaction of NADH oxidation that does not involve oxidative phosphorylation. Although aeration hampers batch growth of respiring Z. mobilis culture due to accumulation of toxic byproducts, nevertheless under non-growing conditions respiration is shown to confer an adaptive advantage for the wild type over the non-respiring Ndh knock-out mutant. If cells get occasional access to limited amount of glucose for short periods of time, the elevated glucose uptake rate selectively improves survival of the respiring Z. mobilis phenotype.

  1. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    Science.gov (United States)

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.

  2. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  3. Temperature response of soil respiration largely unaltered with experimental warming

    Science.gov (United States)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  4. Changes in mitochondrial respiration in the human placenta over gestation.

    Science.gov (United States)

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta

  5. Cosmic dust investigations. Pt. 2

    International Nuclear Information System (INIS)

    Simpson, J.A.; Tuzzolino, A.J.

    1989-01-01

    A series of experiments have been completed using accelerator dust particles in the mass range ≅ 10 -9 -10 -6 g and velocity range ≅ 2-12 km/s to measure the velocity loss and degree of fragmentation for dust particles penetrating 6 and 28 μm thick polyvinylidene fluoride (PVDF) dust detectors. These measurements prove that even for a ratio of PVDF foil thickness to particle diameter as large as 0.6, the velocity loss and fragmentation is far less than expected from earlier reports in the literature. For 6 μm thick foils the velocity loss is ≤5%. These experiments are based on an extension of our earlier work which showed that two PVDF foils spaced a given distance apart could provide accurate time-of-flight (TOF) information due to the fast pulse rise time of PVDF detector response. We also report on our present state of development of PVDF position-sensing detectors which identify the x, y coordinates of particle impact, using detector and electronic pulse techniques adapted from our semiconductor position-sensing cosmic-ray detectors. Typical position errors of ≅ 1 mm are readily achieved. Finally, we have combined the above developments into a dust-particle telescope which accurately (≅ 1 0 angular accuracy) measures the trajectory of the incident particle as well as its mass and incident velocity, irrespective of whether it is a charged or neutral particle. We discuss how this practical dust telescope can be combined with dust capture cells for space flight and later recovery for laboratory determination of elemental and isotopic composition of captured dust. We also describe a simpler trajectory array based on discrete mosaics of thin detectors which would measure trajectories with a mean angular error of ≅ 4 0 . We discuss the application of these instruments for distinguishing between interplanetary dust of cometary and asteroidal origin, and for measurements on a space station, from near-Earth trapped dust of artificial origin. (orig.)

  6. Air-conditioner filters enriching dust mites allergen.

    Science.gov (United States)

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (Pair-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  7. The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars

    Science.gov (United States)

    Ertel, S.; Defrère, D.; Hinz, P.; Mennesson, B.; Kennedy, G. M.; Danchi, W. C.; Gelino, C.; Hill, J. M.; Hoffmann, W. F.; Rieke, G.; Shannon, A.; Spalding, E.; Stone, J. M.; Vaz, A.; Weinberger, A. J.; Willems, P.; Absil, O.; Arbo, P.; Bailey, V. P.; Beichman, C.; Bryden, G.; Downey, E. C.; Durney, O.; Esposito, S.; Gaspar, A.; Grenz, P.; Haniff, C. A.; Leisenring, J. M.; Marion, L.; McMahon, T. J.; Millan-Gabet, R.; Montoya, M.; Morzinski, K. M.; Pinna, E.; Power, J.; Puglisi, A.; Roberge, A.; Serabyn, E.; Skemer, A. J.; Stapelfeldt, K.; Su, K. Y. L.; Vaitheeswaran, V.; Wyatt, M. C.

    2018-05-01

    The Hunt for Observable Signatures of Terrestrial Systems survey searches for dust near the habitable zones (HZs) around nearby, bright main-sequence stars. We use nulling interferometry in the N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early-type and Sun-like stars, but decrease from {60}-21+16% for stars with previously detected cold dust to {8}-3+10% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focusing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable Large Binocular Telescope Interferometer (LBTI) excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are limited so far, and extending the survey is critical to informing the design of future exo-Earth imaging surveys.

  8. Light scattering and absorption properties of dust particles retrieved from satellite measurements

    International Nuclear Information System (INIS)

    Hu, R.-M.; Sokhi, R.S.

    2009-01-01

    We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. We find the nonsphericity and absorption of dust particles strongly affect the scattering signatures such as phase function and polarization at the ultraviolet wavelengths. From our retrieval results, we find the high levels of dust concentration occurred over most desert regions such as Saharan and Gobi deserts. The dust absorption is found to be sensitive to mineral chemical composition, particularly the fraction of strongly absorbing dust particles. The enhancement of polarization at the scattering angles exceeding 120 0 is found for the nonspherical dust particles. If the polarization is neglected in the radiative transfer calculation, a maximum 50 percent error is introduced for the case of forward scattering and 25 percent error for the case of backscattering. We suggest that the application of polarimeter at the ultraviolet wavelengths has the great potential to improve the satellite retrievals of dust properties. Using refined optical model and radiative transfer model to calculate the solar radiative forcing of dust aerosols can reduce the uncertainties in aerosol radiative forcing assessment.

  9. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    Science.gov (United States)

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae)

    Science.gov (United States)

    Wijayratne, Upekala C.; Scoles-Sciulla, Sara J.; Defalco, Lesley A.

    2009-01-01

    Human expansion into the Mojave Desert is a significant threat to rare desert plants. While immediate habitat loss is often the greatest concern, rare plants situated near areas where soil surfaces experience frequent disturbance may be indirectly impacted when fine particulate dust accumulates on leaf surfaces. Remaining populations of the federally listed Astragalus jaegerianus (Lane Mountain milkvetch) occur on land open to expanding military activities and on adjacent public land with increasing recreational use. This study was initiated to determine whether dust accumulation could decrease the vigor and fitness of A. jaegerianus through reduced growth. Beginning in early May 2004, plants located on Bureau of Land Management (BLM) land were dusted bimonthly at canopy-level dust concentrations ranging from 0 to 32 g/m2, and physiology and growth were monitored until late June when plants senesced. The maximum experimental dust level simulates dust concentrations of Mojave Desert perennials neighboring military activities at a nearby army training center. Average shoot growth declined with increasing dust accumulation, but seasonal net photosynthesis increased. Further investigation of plants grown in a greenhouse supported similar trends. This pattern of greater net photosynthesis with increasing dust accumulation may be explained by higher leaf temperatures of dusted individuals. Ambient dust deposition measured in traps near field plants (May 2004–July 2004) ranged from 0.04–0.17 g/m2/ d, which was well below the lowest level of dust on experimental plants (3.95 g/m2/d). With this low level of ambient deposition, we expect that A. jaegerianus plants in this population were not greatly affected by the dust they receive at the level of recreational use during the study.

  12. Ecological Restoration Programs Induced Amelioration of the Dust Pollution in North China Plain

    Science.gov (United States)

    Long, X.; Tie, X.; Li, G.; Junji, C.

    2017-12-01

    With Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product (MCD12Q1), we quantitatively evaluate the ecological restoration programs (ERP) induced land cover change in China by calculating gridded the land use fraction (LUF). We clearly capture two obvious vegetation (grass and forest) protective barriers arise between the dust source region DSR and North China Plain NCP from 2011 to 2013. The WRF-DUST model is applied to investigate the impact of ERPs on dust pollution from 2 to 8 March 2016, corresponding to a national dust storm event over China. Despite some model biases, the WRF-DUST model reasonably reproduced the temporal variations of dust storm event, involving IOA of 0.96 and NMB of 2% for DSR, with IOA of 0.83 and NMB of -15% for downwind area of NCP. Generally, the WRF-DUST model well capture the spatial variations and evolutions of dust storm events with episode-average [PMC] correlation coefficient (R) of 0.77, especially the dust storm outbreak and transport evolution, involving daily average [PMC] R of 0.9 and 0.73 on 4-5 March, respectively. It is found that the ERPs generally reduce the dust pollution in NCP, especially for BTH, involving upper dust pollution control benefits of -15.3% (-21.0 μg m-3) for BTH, and -6.2% (-9.3 μg m-3) for NCP. We are the first to conduct model sensitivity studies to quantitatively evaluate the impacts of the ERPs on the dust pollution in NCP. And our narrative is independently based on first-hand sources, whereas government statistics.

  13. Charged dust in saturn's magnetosphere

    International Nuclear Information System (INIS)

    Mendis, D.A.; Hill, J.R.; Houpis, H.L.F.

    1983-01-01

    Gravito-electrodynamic theory of charged dust grains is used to explain a variety of phenomena in those portions of the Saturnian ring system that are known to be dominated by fine (micron- and submicron-sized) dust, and in which collisional forces and Coulomb drag can be neglected. Among the phenomena discussed are the formation and evolution of the rotating near-radial spokes in the B-ring, the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Several novel processes predicted by the gravitoelectrodynamic theory, including 'magneto-gravitational capture' of exogenic dust by the magnetosphere, '1:1 magneto-gravitational orbital resonances' of charged dust with nearby satellites, and 'gyro-orbital resonances,' are used to explain individual observations. The effect of a ring current associated with this charged dust is also evaluated. Finally, the cosmogonic implications of the magneto-gravitational theory are briefly discussed. While several (although not all) of these processes have been discussed by one or more of the present authors elsewhere, the purpose of this paper is to synthesize all these processes within the framework of gravito-electrodynamics, and also to show its range of applicability within Saturn's ring system

  14. Spring Dust Storm Smothers Beijing

    Science.gov (United States)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  15. Physical properties of five grain dust types.

    Science.gov (United States)

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  16. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.

  17. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  18. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    Science.gov (United States)

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised

  19. Herd protection effect of N95 respirators in healthcare workers.

    Science.gov (United States)

    Chen, Xin; Chughtai, Abrar Ahmad; MacIntyre, Chandini Raina

    2017-12-01

    Objective To determine if there was herd protection conferred to unprotected healthcare workers (HCWs) by N95 respirators worn by colleagues. Methods Data were analysed from a prospective cluster randomized clinical trial conducted in Beijing, China between 1 December 2008 and 15 January 2009. A minimum compliance level (MCL) of N95 respirators for prevention of clinical respiratory illness (CRI) was set based on various compliance cut-offs. The CRI rates were compared between compliant (≥MCL) and non-compliant (protection from use of N95 respirators by colleagues within a hospital ward.

  20. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...